[go: up one dir, main page]

JP2011258782A - Nitride semiconductor substrate - Google Patents

Nitride semiconductor substrate Download PDF

Info

Publication number
JP2011258782A
JP2011258782A JP2010132558A JP2010132558A JP2011258782A JP 2011258782 A JP2011258782 A JP 2011258782A JP 2010132558 A JP2010132558 A JP 2010132558A JP 2010132558 A JP2010132558 A JP 2010132558A JP 2011258782 A JP2011258782 A JP 2011258782A
Authority
JP
Japan
Prior art keywords
layer
nitride semiconductor
atoms
region
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010132558A
Other languages
Japanese (ja)
Other versions
JP2011258782A5 (en
Inventor
Akira Yoshida
晃 吉田
Jun Komiyama
純 小宮山
Yoshihisa Abe
芳久 阿部
Koji Oishi
浩司 大石
Kenichi Eriguchi
健一 江里口
Shunichi Suzuki
俊一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2010132558A priority Critical patent/JP2011258782A/en
Publication of JP2011258782A publication Critical patent/JP2011258782A/en
Publication of JP2011258782A5 publication Critical patent/JP2011258782A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

【課題】
しきい値電圧をより向上させることのできる、中間層とデバイス活性層の間にノーマリ
ーオフ作用をもつ窒化物半導体層を形成する。
【解決手段】
Si単結晶基板上に形成され窒化物半導体の積層構造からなる中間層と、中間層上に形成され、組成AlGa1−xN(0≦x≦0.05)、厚さ200nm以上2000nm以下、炭素濃度1´1018atoms/cm以上1´1021atoms/cm以下の窒化物半導体からなる領域1と、領域1上に形成され、組成AlGa1−yN(0.1≦y≦1)、厚さ0.2nm以上100nm以下、炭素濃度1´1018atoms/cm以上1´1021atoms/cm以下の窒化物半導体からなる領域2と、領域2上に形成される窒化物半導体のデバイス活性層からなる窒化物半導体基板。
【選択図】図1
【Task】
A nitride semiconductor layer having a normally-off action is formed between the intermediate layer and the device active layer, which can further improve the threshold voltage.
[Solution]
An intermediate layer formed on a Si single crystal substrate and having a laminated structure of nitride semiconductors, and formed on the intermediate layer, composition Al x Ga 1-x N (0 ≦ x ≦ 0.05), thickness of 200 nm to 2000 nm Hereinafter, a region 1 made of a nitride semiconductor having a carbon concentration of 1'10 18 atoms / cm 3 or more and 1'10 21 atoms / cm 3 or less, and a composition Al y Ga 1-y N (0. 1 ≦ y ≦ 1), a region 2 made of a nitride semiconductor having a thickness of 0.2 nm to 100 nm and a carbon concentration of 1′10 18 atoms / cm 3 or more and 1′10 21 atoms / cm 3 or less; A nitride semiconductor substrate comprising a nitride semiconductor device active layer to be formed.
[Selection] Figure 1

Description

本発明は、高速かつ高耐圧電子デバイスとして好適な窒化物半導体に用いられる、窒化物半導体基板の構造に関する。   The present invention relates to a structure of a nitride semiconductor substrate used for a nitride semiconductor suitable as a high-speed and high-voltage electronic device.

窒化ガリウム(GaN)や窒化アルミニウム(AlN)等の窒化物半導体は、高い電子移動度や高い耐熱性等の優れた特性を有し、特に、高周波動作かつ高耐圧を必要とする領域に用いられる電子デバイス、例えば、高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)や、ヘテロ接合電界効果トランジスタ(HFET:Heterojunction FET)への適用が期待されている。 Nitride semiconductors such as gallium nitride (GaN) and aluminum nitride (AlN) have excellent characteristics such as high electron mobility and high heat resistance, and are used particularly in regions that require high-frequency operation and high breakdown voltage. Applications to electronic devices such as high electron mobility transistors (HEMTs) and heterojunction field effect transistors (HFETs) are expected.

この窒化物半導体に用いる窒化物半導体基板の構造や作製方法として、例えば、Si単結晶基板上に窒化物半導体層からなる中間層を介して窒化物半導体結晶を成膜する方法は、高品質な結晶を安定供給でき、低価格で大面積の基板が得られる点で、好適といえる。 As a structure and manufacturing method of a nitride semiconductor substrate used for this nitride semiconductor, for example, a method of forming a nitride semiconductor crystal on an Si single crystal substrate through an intermediate layer made of a nitride semiconductor layer is a high quality. This can be said to be preferable in that crystals can be stably supplied and a large-area substrate can be obtained at a low price.

ところで、ヘテロ接合を用いた電界効果トランジスタには、AlGaN層を電子供給層とし、GaN層をチャネル層としたヘテロ接合が用いられているが、このようなGaN系FET構造の課題は、ノーマリーオフ型素子の作製が困難なことである。また、単純にノーマリーオフ型にすることだけを目的とすると、この材料系の特徴である通電時の抵抗である(オン抵抗)の低減性と相反する。すなわち、ノーマリーオフ型素子を作るためにはキャリアを抑制しなければならないが、これは素子のオン抵抗を高めることになり好ましくない。よって、ノーマリーオフ動作が低オン抵抗を損なうことなく実現されるには、制御可能なゲート部のみで電流の遮断を行い、その他のソース−ゲート間のチャネルおよびゲート−ドレイン間のチャネルでは低抵抗性を確保しなければならない。 By the way, a field effect transistor using a heterojunction uses a heterojunction in which an AlGaN layer is used as an electron supply layer and a GaN layer is used as a channel layer. It is difficult to produce an off-type element. Further, if the object is simply to be a normally-off type, it is in contradiction to the reduction of the on-resistance, which is a characteristic of this material system. That is, in order to produce a normally-off type element, carriers must be suppressed, but this increases the on-resistance of the element, which is not preferable. Therefore, in order for a normally-off operation to be realized without impairing the low on-resistance, the current is cut off only by the controllable gate portion, and the other source-gate channel and the gate-drain channel are low. Resistance must be ensured.

この課題の解決方法として、たとえば、特許文献1には、窒化物半導体電界効果トランジスタにおいて、しきい電圧の制御が可能なエンハンスメント形の動作を得ることを目的として、結晶方位の+c方向にAlGa1−xN層、GaN層、AlGa1−yN層の順に積層されており、x≧yにすることにより空乏化しているダブルヘテロ構造からなるチャンネルをゲート部に有することを特徴とする窒化物半導体電界効果トランジスタという技術が開示されている。 As a method for solving this problem, for example, Patent Document 1 discloses that in a nitride semiconductor field effect transistor, Al x is applied in the + c direction of the crystal orientation in order to obtain an enhancement type operation capable of controlling a threshold voltage. Ga 1-x N layer, GaN layer, and Al y Ga 1-y N layer are stacked in this order, and the gate portion has a channel having a double heterostructure that is depleted when x ≧ y. A technique called a nitride semiconductor field effect transistor is disclosed.

また、特許文献2には、ノーマリーオフ動作を実現可能な半導体装置として、第1の窒化物半導体層と、第1の窒化物半導体層の上に設けられ第1の窒化物半導体層よりもバン
ドギャップが大きい第2の窒化物半導体層と、第2の窒化物半導体層の上に設けられたソース電極と、第2の窒化物半導体層の上に設けられたドレイン電極と、第2の窒化物半導体層の表面上におけるソース電極とドレイン電極との間に設けられた絶縁層と、絶縁層の上に設けられたp型の第3の窒化物半導体層と、第3の窒化物半導体層の上に設けられたゲート電極とを備えるという技術が開示されている。
Further, in Patent Document 2, as a semiconductor device capable of realizing a normally-off operation, a first nitride semiconductor layer and a first nitride semiconductor layer provided on the first nitride semiconductor layer are provided. A second nitride semiconductor layer having a large band gap; a source electrode provided on the second nitride semiconductor layer; a drain electrode provided on the second nitride semiconductor layer; An insulating layer provided between the source electrode and the drain electrode on the surface of the nitride semiconductor layer, a p-type third nitride semiconductor layer provided on the insulating layer, and a third nitride semiconductor A technique of providing a gate electrode provided on a layer is disclosed.

特開2008−10803号公報JP 2008-10803 A 特開2009−71061号公報JP 2009-71061 A

特許文献1に記載の技術では、しきい値電圧の制御が可能ではあるが、さらに高いしきい値電圧を得るという要求に対しては、十分対応できているとはいえなかった。 With the technique described in Patent Document 1, it is possible to control the threshold voltage, but it cannot be said that the request for obtaining a higher threshold voltage is sufficiently met.

また、特許文献2に記載の技術では、ゲート電極の下にp型窒化物半導体層を設けることと、p型窒化物半導体層を単に電子供給層に接して設けた場合に起こる不具合を抑制するために、p型窒化物半導体層とチャネル層との間を電気的に絶縁分離する絶縁膜を形成している。よって絶縁膜の形成が高コスト化を招く。また、しきい値電圧向上の点でも、やはり十分とはいいがたい。 In the technique described in Patent Document 2, a p-type nitride semiconductor layer is provided under the gate electrode, and problems that occur when the p-type nitride semiconductor layer is provided simply in contact with the electron supply layer are suppressed. For this purpose, an insulating film for electrically insulating and separating the p-type nitride semiconductor layer and the channel layer is formed. Therefore, the formation of the insulating film causes an increase in cost. Also, it is not enough to improve the threshold voltage.

本発明は、このような技術的課題に鑑みてなされたものであり、より高いしきい値電圧
を実現できるノーマリーオフ型の高耐圧デバイスに好適な窒化物半導体基板を、簡易な構造で提供することを目的とする。
The present invention has been made in view of such technical problems, and provides a nitride semiconductor substrate suitable for a normally-off type high breakdown voltage device capable of realizing a higher threshold voltage with a simple structure. The purpose is to do.

本発明に係る窒化物半導体基板は、Si単結晶からなる基板と、前記基板上に形成されAlを含む窒化物半導体層を少なくとも1層以上含む窒化物半導体の積層構造からなる中間層と、前記中間層上に形成され、組成AlGa1−xN(0≦x≦0.05)、厚さ200nm以上2000nm以下、炭素濃度1´1018atoms/cm以上1´1021atoms/cm以下の単層または多層構造の窒化物半導体からなる領域1と、前記領域1上に形成され、組成AlGa1−yN(0.1≦y≦1)、厚さ0.2nm以上100nm以下、炭素濃度1´1018atoms/cm以上1´1021atoms/cm以下の単層または多層構造の窒化物半導体からなる領域2と、前記領域2上に形成される窒化物半導体のデバイス活性層とからなることを特徴とする。このような構成をとることで、従来よりしきい値電圧を高くできるノーマリーオフ型の窒化物半導体基板とすることが可能となる。 A nitride semiconductor substrate according to the present invention includes a substrate made of a Si single crystal, an intermediate layer formed on the substrate and having a nitride semiconductor multilayer structure including at least one nitride semiconductor layer containing Al, and Formed on the intermediate layer, composition Al x Ga 1-x N (0 ≦ x ≦ 0.05), thickness 200 nm or more and 2000 nm or less, carbon concentration 1′10 18 atoms / cm 3 or more 1′10 21 atoms / cm A region 1 made of a nitride semiconductor having a single-layer or multilayer structure of 3 or less, and a composition Al y Ga 1-y N (0.1 ≦ y ≦ 1) and a thickness of 0.2 nm or more formed on the region 1 A region 2 made of a single-layer or multi-layer nitride semiconductor having a carbon concentration of 100 nm or less and a carbon concentration of 1′10 18 atoms / cm 3 or more and 1′10 21 atoms / cm 3 or less, and a nitride formed on the region 2 It is characterized by comprising a semiconductor device active layer. By adopting such a configuration, it is possible to obtain a normally-off type nitride semiconductor substrate in which the threshold voltage can be increased as compared with the prior art.

また、本発明に係る窒化物半導体基板は、前記中間層または前記デバイス活性層のいずれか1つもしくは両方の炭素濃度が、炭素濃度1´1018atoms/cm以上1´1021atoms/cm以下であることが好ましい。このような構成をとることで、高耐圧化に加えてノーマリーオフ化が達成される効果を併せ持つ、従来よりしきい値電圧を高くできるノーマリーオフ型の窒化物半導体基板とすることが可能となる。 In the nitride semiconductor substrate according to the present invention, the carbon concentration of any one or both of the intermediate layer and the device active layer is a carbon concentration of 1′10 18 atoms / cm 3 or more and 1′10 21 atoms / cm. It is preferable that it is 3 or less. By adopting such a configuration, it is possible to obtain a normally-off type nitride semiconductor substrate that has the effect of achieving normally-off in addition to high withstand voltage and can have a higher threshold voltage than conventional ones. It becomes.

本発明に係る窒化物半導体基板は、これを用いてデバイスを作製することにより、しきい値電圧の向上を図ることができるため、高耐圧デバイス、特に、ノーマリーオフ型スイッチングデバイスに好適に適用することができる。   The nitride semiconductor substrate according to the present invention can be applied to a high breakdown voltage device, particularly a normally-off switching device, because the threshold voltage can be improved by manufacturing a device using the nitride semiconductor substrate. can do.

以下、本発明の実施形態について詳細に説明する。図1は、本発明に係る窒化物半導体基板の一形態を示す概念図である。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a conceptual diagram showing one embodiment of a nitride semiconductor substrate according to the present invention.

本発明に係る窒化物半導体基板の一形態を示す概念図。The conceptual diagram which shows one form of the nitride semiconductor substrate which concerns on this invention.

本発明に係る窒化物半導体基板は、Si単結晶からなる基板と、前記基板上に形成されAlを含む窒化物半導体層を少なくとも1層以上含む窒化物半導体の積層構造からなる中間層と、前記中間層上に形成され、組成AlGa1−xN(0≦x≦0.05)、厚さ200nm以上2000nm以下、炭素濃度1´1018atoms/cm以上1´1021atoms/cm以下の単層または多層構造の窒化物半導体からなる領域1と、前記領域1上に形成され、組成AlGa1−yN(0.1≦y≦1)、厚さ0.2nm以上100nm以下、炭素濃度1´1018atoms/cm以上1´1021atoms/cm以下の単層または多層構造の窒化物半導体からなる領域2と、前記領域2上に形成される窒化物半導体のデバイス活性層とからなる。 A nitride semiconductor substrate according to the present invention includes a substrate made of a Si single crystal, an intermediate layer formed on the substrate and having a nitride semiconductor multilayer structure including at least one nitride semiconductor layer containing Al, and Formed on the intermediate layer, composition Al x Ga 1-x N (0 ≦ x ≦ 0.05), thickness 200 nm or more and 2000 nm or less, carbon concentration 1′10 18 atoms / cm 3 or more 1′10 21 atoms / cm A region 1 made of a nitride semiconductor having a single-layer or multilayer structure of 3 or less, and a composition Al y Ga 1-y N (0.1 ≦ y ≦ 1) and a thickness of 0.2 nm or more formed on the region 1 A region 2 made of a single-layer or multi-layer nitride semiconductor having a carbon concentration of 100 nm or less and a carbon concentration of 1′10 18 atoms / cm 3 or more and 1′10 21 atoms / cm 3 or less, and a nitride formed on the region 2 It consists of a semiconductor device active layer.

Si単結晶からなる基板は、窒化物半導体を形成するための下地の基板として用いられる。このSi単結晶は、公知の技術で製造された各種の材料を広く用いることができる。例えば、チョクラルスキー法(CZ法)やフローティングゾーン法(FZ法)で製造された単結晶や、あるいは気相成長法や貼り合わせ法、等の各種製法で作製された基板も適用できる。さらに、窒化物半導体基板へ及ぼす特性を考慮して、Si単結晶基板の厚さや面状態、基板中に含まれる酸素、窒素、炭素、リンやボロンなどのドーパント、各種結晶欠陥における濃度や分布を適時制御して用いることも可能である。 A substrate made of Si single crystal is used as a base substrate for forming a nitride semiconductor. As this Si single crystal, various materials manufactured by known techniques can be widely used. For example, a single crystal manufactured by the Czochralski method (CZ method) or the floating zone method (FZ method), or a substrate manufactured by various manufacturing methods such as a vapor phase growth method or a bonding method can be applied. In addition, considering the characteristics of the nitride semiconductor substrate, the thickness and surface state of the Si single crystal substrate, dopants such as oxygen, nitrogen, carbon, phosphorus and boron contained in the substrate, and the concentration and distribution of various crystal defects It is also possible to use with timely control.

Si単結晶基板上には、Alを含む窒化物半導体層を少なくとも1層以上含む窒化物半導体の積層構造からなる中間層が形成される。Si単結晶と窒化物半導体では格子定数、熱膨張係数が異なり、これにより、窒化物半導体基板に大きな反りが発生、またスリップ等の結晶欠陥が多発する。これを抑えるため、デバイスを形成するデバイス活性層との間に各種構造の中間層を設けるが、本発明においては、高い基板特性を容易に得られることから、Alを含む窒化物半導体層を少なくとも1層以上含む窒化物半導体の積層構造からなる中間層が好適に適用される。 An intermediate layer having a laminated structure of nitride semiconductors including at least one nitride semiconductor layer containing Al is formed on the Si single crystal substrate. The single crystal of Si and the nitride semiconductor have different lattice constants and thermal expansion coefficients, which causes large warpage in the nitride semiconductor substrate and frequent occurrence of crystal defects such as slip. In order to suppress this, an intermediate layer having various structures is provided between the device active layer forming the device. In the present invention, since a high substrate characteristic can be easily obtained, at least a nitride semiconductor layer containing Al is provided. An intermediate layer having a laminated structure of nitride semiconductors including one or more layers is preferably applied.

そして、中間層上には、組成AlGa1−xN(0≦x≦0.05)、厚さ200nm以上2000nm以下、炭素濃度1´1018atoms/cm以上1´1021atoms/cm以下の単層または多層構造の窒化物半導体からなる領域1が形成されている。ここで、多層の場合は、各層の合計値の厚さを領域1の厚さとする。 On the intermediate layer, a composition Al x Ga 1-x N (0 ≦ x ≦ 0.05), a thickness of 200 nm to 2000 nm, a carbon concentration of 1′10 18 atoms / cm 3 to 1′10 21 atoms / A region 1 made of a nitride semiconductor having a single-layer or multilayer structure of cm 3 or less is formed. Here, in the case of multiple layers, the total thickness of each layer is defined as the thickness of region 1.

ノーマリーオフ型の窒化物半導体基板の一例として、デバイス活性層にGaNからなる電子走行層とAlGaNからなる電子供給層を形成し、さらに、中間層と電子走行層との間にAlGaNからなる層を挿入した構造が挙げられる。そして、各層の膜厚や特性を調整することで、ノーマリーオフ化を達成し、さらにしきい値電圧を向上させることが可能となる。 As an example of a normally-off type nitride semiconductor substrate, an electron transit layer made of GaN and an electron supply layer made of AlGaN are formed in the device active layer, and further, a layer made of AlGaN between the intermediate layer and the electron transit layer A structure in which is inserted. By adjusting the thickness and characteristics of each layer, it is possible to achieve normally-off and further improve the threshold voltage.

しきい値電圧を向上させる方法として、この中間層と電子走行層との間に形成されるAlGaNからなる層(以下、ノーマリーオフ化層と記載)における伝導帯とフェルミ準位とのエネルギー差を大きくすることが考えられる。フェルミ準位を低く抑えるには、ノーマリーオフ化層内の電子の密度を減らす必要があり、一例として、ノーマリーオフ化層内の欠陥の発生を抑制することが挙げられる。 As a method for improving the threshold voltage, the energy difference between the conduction band and the Fermi level in an AlGaN layer (hereinafter referred to as a normally-off layer) formed between the intermediate layer and the electron transit layer. It is conceivable to increase In order to keep the Fermi level low, it is necessary to reduce the density of electrons in the normally-off layer. For example, the generation of defects in the normally-off layer can be suppressed.

ところで、AlGaN自体は、気相成長法で成膜する際において欠陥の入りやすい材料である。このため、成膜された層内に含有される電子が増え、フェルミ準位が高くなり、しきい値電圧を向上させることが困難となる。 By the way, AlGaN itself is a material in which defects are likely to occur when a film is formed by a vapor deposition method. For this reason, the number of electrons contained in the deposited layer increases, the Fermi level increases, and it becomes difficult to improve the threshold voltage.

ノーマリーオフ化層としてAlGaNを用いた場合、ノーマリーオフ化達成のためにはある程度の膜厚が必要になる。しかし、膜厚を厚くすると成膜された層内に含有される電子の量も、これに比例して増加するので、しきい値電圧を向上が見込めない。 When AlGaN is used as the normally-off layer, a certain degree of film thickness is required to achieve the normally-off layer. However, if the film thickness is increased, the amount of electrons contained in the deposited layer also increases in proportion to this, so that the threshold voltage cannot be improved.

そこで、本発明においては、ノーマリーオフ化層を領域1と領域2の2つの異なる構造を有する構成とすることで、相反する特性であるノーマリーオフ化としきい値電圧向上を同時に高いレベルで達成することを可能とする。ここで、領域1は、欠陥の発生しにくい領域であることにより、しきい値電圧向上の効果をもたらす役割を受け持っている。 Therefore, in the present invention, the normally-off layer is configured to have two different structures, region 1 and region 2, so that the normally-off and the threshold voltage improvement, which are mutually contradictory characteristics, can be simultaneously performed at a high level. Make it possible to achieve. Here, since the region 1 is a region in which defects are hardly generated, the region 1 plays a role of bringing about an effect of improving the threshold voltage.

領域1におけるAlGa1−xNのxは、0以上0.05以下が好ましく、0以上0.02以下がさらに好ましい。AlGaNに比べると、GaNのほうが成膜時欠陥は入りにくいので、しきい値電圧向上においてAlを含まないGaNが理想ではある。しかしながら、しきい値電圧向上を著しく阻害しない範囲でAlが含有されていても、本発明の効果は得られる。実質的に気相成長工程では、領域1にはAl組成が完全にゼロでない層もわずかに形成される。それでも、AlGa1−xNのxは、0≦x≦0.05の範囲であれば特に問題ない。 X of Al x Ga 1-x N in the region 1 is preferably 0 or more and 0.05 or less, and more preferably 0 or more and 0.02 or less. Compared to AlGaN, GaN is less prone to defects during film formation, so GaN containing no Al is ideal in improving the threshold voltage. However, the effects of the present invention can be obtained even if Al is contained within a range that does not significantly inhibit the threshold voltage improvement. Substantially in the vapor phase growth process, a small number of layers in which the Al composition is not completely zero are formed in the region 1. Nevertheless, there is no particular problem if x of Al x Ga 1-x N is in the range of 0 ≦ x ≦ 0.05.

領域1におけるAlGa1−xNの厚さは、200nm以上2000nm以下が好ましく、1000nm以上1500nm以下がさらに好ましい。200nm未満では、本発明の効果がみられる程度の電子量とするには著しく膜厚が不足しているので好ましくない。しかし、2000nmを超えると、中間層とデバイス活性層を含めた窒化物半導体層の合計の膜厚が厚くなりすぎて、窒化物半導体基板全体の反りが増大してしまうので、これも好ましくない。 The thickness of Al x Ga 1-x N in region 1 is preferably 200 nm or more and 2000 nm or less, and more preferably 1000 nm or more and 1500 nm or less. If it is less than 200 nm, it is not preferable because the film thickness is remarkably insufficient in order to obtain an amount of electrons with which the effect of the present invention can be obtained. However, if it exceeds 2000 nm, the total film thickness of the nitride semiconductor layer including the intermediate layer and the device active layer becomes too thick, and the warpage of the entire nitride semiconductor substrate increases, which is also not preferable.

また、領域1は、AlGa1−xN(0≦x≦0.05)の単層または多層構造の窒化物半導体から構成されるが、組成AlGa1−xN(0≦x≦0.05)の単層のみならず、Alの組成xの値が異なる複数のAlGa1−xN層を形成した多層構造であってもよい。さらには、Alの濃度が厚さ方向に一様に増加、または減少して変化する構造も、擬似的にxが異なる層が多層連続した構造とみなせるので、本発明の範疇に入る。 The region 1 is composed of a single-layer or multi-layer nitride semiconductor of Al x Ga 1-x N (0 ≦ x ≦ 0.05), but has a composition Al x Ga 1-x N (0 ≦ x ≦ 0.05), a multilayer structure in which a plurality of Al x Ga 1-x N layers having different values of the Al composition x may be formed. Furthermore, a structure in which the Al concentration changes uniformly as it increases or decreases in the thickness direction also falls within the scope of the present invention, since pseudo layers with different x can be regarded as a multilayer continuous structure.

領域1における炭素濃度は、1´1018atoms/cm以上1´1021atoms/cm以下が好ましく、より好ましくは1´1019atoms/cm以上5´1019atoms/cm以下である。炭素が窒化物半導体に高濃度で含有されることで、欠陥によるフェルミ準位の上昇を抑え、デバイス活性層として形成されるGaN層の伝導帯を引上げる効果がある。しかしながら、1´1018atoms/cmより低い炭素濃度では、欠陥によるフェルミ準位の上昇抑制とデバイス活性層として形成されるGaN層の伝導帯引上げ効果が十分に得られず、逆に1´1021atoms/cmより高い濃度では、炭素をドープすること自体が困難であることから、いずれも好ましくない。 The carbon concentration in region 1 is preferably 1′10 18 atoms / cm 3 or more and 1′10 21 atoms / cm 3 or less, more preferably 1′10 19 atoms / cm 3 or more and 5′10 19 atoms / cm 3 or less. is there. By containing carbon at a high concentration in the nitride semiconductor, an increase in the Fermi level due to defects can be suppressed and the conduction band of the GaN layer formed as the device active layer can be increased. However, at a carbon concentration lower than 1′10 18 atoms / cm 3 , the Fermi level increase suppression due to defects and the effect of raising the conduction band of the GaN layer formed as the device active layer cannot be sufficiently obtained. If the concentration is higher than 10 21 atoms / cm 3 , it is difficult to dope carbon.

ここで、炭素濃度が1´1018atoms/cm以上1´1021atoms/cm以下というのは、広がり抵抗(SR)測定法や二次イオン質量分析(SIMS)法などの公知の濃度測定方法を用いて、基板の厚さ方向に沿って測定したときの平均値を用いる。また特に断らない限り、基板の一主面における中央1点の測定値で代表するが、必要に応じて、基板の一主面における多点を測定した値を用いてもよい。 Here, the carbon concentration of 1′10 18 atoms / cm 3 or more and 1′10 21 atoms / cm 3 or less is a known concentration such as a spreading resistance (SR) measurement method or a secondary ion mass spectrometry (SIMS) method. Using the measurement method, the average value when measured along the thickness direction of the substrate is used. Further, unless otherwise specified, it is represented by a measurement value at one central point on one main surface of the substrate, but a value obtained by measuring multiple points on one main surface of the substrate may be used as necessary.

次に、領域1上には、組成AlGa1−yN(0.1≦y≦1)、厚さ0.2nm以上100nm以下、炭素濃度1´1018atoms/cm以上1´1021atoms/cm以下の単層、または多層構造の窒化物半導体からなる領域2が形成される。 Next, on the region 1, the composition Al y Ga 1-y N (0.1 ≦ y ≦ 1), the thickness is 0.2 nm or more and 100 nm or less, and the carbon concentration is 1′10 18 atoms / cm 3 or more and 1′10. A region 2 made of a nitride semiconductor having a single layer or multilayer structure of 21 atoms / cm 3 or less is formed.

AlGaN層においては、Al組成が大きいと、伝導帯からフェルミ準位までのエネルギー差が大きくなるので、しきい値電圧を高くすることが出来る。領域1のみでは、十分にしきい値電圧を高くすることが困難なので、領域2と組み合わせることで、よりしきい値電圧を高くすることが可能となる。 In the AlGaN layer, when the Al composition is large, the energy difference from the conduction band to the Fermi level becomes large, so that the threshold voltage can be increased. Since it is difficult to sufficiently increase the threshold voltage only in the region 1, the threshold voltage can be further increased by combining with the region 2.

領域2のAl組成は、AlGa1−yNとした場合において、yを0.1以上1以下とすることが好ましく、0.2以上1以下がさらに好ましい。Alが少ないと、伝導帯からフェルミ準位までのエネルギー差を十分大きく出来ないので、よりしきい値電圧を高くするという目的を十分達成することが困難になる。なお、領域1の場合と同様に、領域2のAl組成は、本発明の効果を著しく損なわない範囲であれば、上限は特に制限されない。 When the Al composition in the region 2 is Al y Ga 1-y N, y is preferably 0.1 or more and 1 or less, and more preferably 0.2 or more and 1 or less. If the amount of Al is small, the energy difference from the conduction band to the Fermi level cannot be made sufficiently large, so that it is difficult to sufficiently achieve the purpose of increasing the threshold voltage. As in the case of region 1, the upper limit of the Al composition in region 2 is not particularly limited as long as the effect of the present invention is not significantly impaired.

領域2におけるAlGa1−yNの厚さは、0.2nm以上100nm以下が好ましく、さらに好ましくは、0.2nm以上10nm以下である。0.2nm未満では、1分子層を下回るほどの薄い膜なので、基盤の表面全体に均一に成膜することが困難になり、膜厚保が不均一になることによる特性劣化が懸念され、好ましくない。しかし、100nmを超えると、フェルミ準位が高くなり、しきい値電圧の向上効果が低減してしまうので、これも好ましくない。 The thickness of Al y Ga 1-y N in the region 2 is preferably 0.2 nm or more and 100 nm or less, and more preferably 0.2 nm or more and 10 nm or less. If the thickness is less than 0.2 nm, the film is thin enough to be smaller than one molecular layer, so that it is difficult to form a film uniformly on the entire surface of the substrate, and there is a concern about characteristic deterioration due to non-uniform film thickness maintenance, which is not preferable. . However, if it exceeds 100 nm, the Fermi level becomes high and the effect of improving the threshold voltage is reduced, which is also not preferable.

領域2における炭素濃度は、1´1018atoms/cm以上1´1021atoms/cm以下が好ましく、より好ましくは1´1019atoms/cm以上5´1019atoms/cm以下である。領域1と同様に、炭素が窒化物半導体に高濃度で含有されることで、欠陥によるフェルミ準位の上昇を抑え、デバイス活性層として形成されるGaN層の伝導帯を引上げる効果がある。しかしながら、1´1018atoms/cmより低い炭素濃度では、欠陥によるフェルミ準位の上昇抑制とデバイス活性層として形成されるGaN層の伝導帯引上げ効果が十分に得られず、好ましくない。一方、1´1021atoms/cmより高い濃度では、炭素をドープすること自体が困難であることから、これも好ましくない。 The carbon concentration in the region 2 is preferably 1′10 18 atoms / cm 3 or more and 1′10 21 atoms / cm 3 or less, more preferably 1′10 19 atoms / cm 3 or more and 5′10 19 atoms / cm 3 or less. is there. Similar to the region 1, the high concentration of carbon contained in the nitride semiconductor has the effect of suppressing the increase of the Fermi level due to defects and increasing the conduction band of the GaN layer formed as the device active layer. However, if the carbon concentration is lower than 1′10 18 atoms / cm 3 , the increase in the Fermi level due to defects and the effect of raising the conduction band of the GaN layer formed as the device active layer cannot be sufficiently obtained, which is not preferable. On the other hand, when the concentration is higher than 1′10 21 atoms / cm 3 , it is difficult to dope carbon itself, which is also not preferable.

また、領域2は、領域1と同様に、AlGa1−yN(0.1≦y≦1)の単層または多層構造の窒化物半導体から構成される。しかしながら、組成AlGa1−yN(0.1≦y≦1)の単層のみならず、Alの組成yの値が異なる複数のAlGa1−yN層を形成した多層構造であってもよい。さらには、Alの濃度が厚さ方向に一様に増加、または減少して変化する構造も、擬似的にyが異なる層が多層連続した構造とみなせるので、本発明の範疇に入る。 Similarly to the region 1, the region 2 is composed of a single-layer or multi-layer nitride semiconductor of Al y Ga 1-y N (0.1 ≦ y ≦ 1). However, not only a single layer of composition Al y Ga 1-y N (0.1 ≦ y ≦ 1) but also a multilayer structure in which a plurality of Al y Ga 1-y N layers having different values of the composition y of Al are formed. There may be. Furthermore, a structure in which the Al concentration changes uniformly by increasing or decreasing in the thickness direction can also be regarded as a structure in which layers having different y are pseudo-multilayered, and thus falls within the scope of the present invention.

そして、前記領域2上には、窒化物半導体のデバイス活性層が形成される。本発明の好適な例としては、電子走行層と電子供給層から構成された窒化物半導体層の積層構造が挙げられる。なお、このとき、電子走行層と電子供給層との間に、本発明の領域2に相当する窒化物半導体層を挿入してもよい。領域2を介在させることで、この部位にも、しきい値電圧向上効果を追加することが可能となるからである。 A nitride semiconductor device active layer is formed on the region 2. As a preferred example of the present invention, a laminated structure of a nitride semiconductor layer composed of an electron transit layer and an electron supply layer can be mentioned. At this time, a nitride semiconductor layer corresponding to the region 2 of the present invention may be inserted between the electron transit layer and the electron supply layer. This is because the effect of improving the threshold voltage can be added to this portion by interposing the region 2.

また、本発明に係る窒化物半導体基板は、前記中間層は炭素濃度1´1018atoms/cm以上1´1021atoms/cm以下かつ前記デバイス活性層は炭素濃度5´1017atoms/cm以下であることが好ましい。 In the nitride semiconductor substrate according to the present invention, the intermediate layer has a carbon concentration of 1′10 18 atoms / cm 3 or more and 1′10 21 atoms / cm 3 or less, and the device active layer has a carbon concentration of 5′10 17 atoms / cm 3. It is preferable that it is cm 3 or less.

領域1および領域2と同様に、前記中間層に炭素が窒化物半導体に高濃度で含有されることで、欠陥によるフェルミ準位の上昇を抑え、デバイス活性層として形成されるGaN層の伝導帯を引上げる効果がある。しかしながら、1´1018atoms/cmより低い炭素濃度では、欠陥によるフェルミ準位の上昇抑制とデバイス活性層として形成されるGaN層の伝導帯引上げ効果が十分に得られず、好ましくない。一方、1´1021atoms/cmより高い濃度では、炭素をドープすること自体が困難であることから、いずれも好ましくない。加えて、前記デバイス活性層に炭層濃度が5´1017atoms/cmより高い濃度では、電子が散乱され電子移動度の低下が顕著となり好ましくない。 Similar to regions 1 and 2, carbon is contained in the intermediate semiconductor in a high concentration in the nitride semiconductor, thereby suppressing an increase in Fermi level due to defects and a conduction band of a GaN layer formed as a device active layer Has the effect of pulling up. However, if the carbon concentration is lower than 1′10 18 atoms / cm 3 , the increase in the Fermi level due to defects and the effect of raising the conduction band of the GaN layer formed as the device active layer cannot be sufficiently obtained, which is not preferable. On the other hand, if the concentration is higher than 1'10 21 atoms / cm 3 , it is difficult to dope carbon, so that neither is preferable. In addition, if the carbon layer concentration in the device active layer is higher than 5'10 17 atoms / cm 3 , electrons are scattered, and the decrease in electron mobility becomes remarkable, which is not preferable.

以上のように、本発明に係る窒化物半導体基板においては、中間層とデバイス活性層との間に、しきい値電圧をより向上できるノーマリーオフ化層を簡易な構成で具備する。これにより、従来よりしきい値電圧を高くできるノーマリーオフ型の窒化物半導体基板とすることが可能となる。 As described above, the nitride semiconductor substrate according to the present invention includes the normally-off layer that can further improve the threshold voltage between the intermediate layer and the device active layer with a simple configuration. As a result, a normally-off type nitride semiconductor substrate that can have a higher threshold voltage than the conventional one can be obtained.

以下、本発明の好ましい実施形態を実施例に基づき説明するが、本発明はこの実施例により限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described based on examples, but the present invention is not limited to these examples.

図1に示すような層構造を備えた窒化物半導体基板を、以下の工程により作製した。
共通する製造方法として、直径4インチのSi単結晶基板1をMOCVD装置にセットし、窒化物半導体の原料として、トリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)、NH3、メタンを用い、積層する膜に応じてこれらの原料を適時使い分け、気相成長温度を1000℃にして各層を気相成長にて形成した。なお、各層の組成および厚さの調整は、各原料の選定、流量および供給時間の調整により行った。
A nitride semiconductor substrate having a layer structure as shown in FIG. 1 was produced by the following steps.
As a common manufacturing method, a Si single crystal substrate 1 having a diameter of 4 inches is set in an MOCVD apparatus, and is laminated using trimethyl gallium (TMG), trimethyl aluminum (TMA), NH 3 , and methane as raw materials for nitride semiconductors. These raw materials were properly used according to the film, and each layer was formed by vapor phase growth at a vapor phase growth temperature of 1000 ° C. The composition and thickness of each layer were adjusted by selecting each raw material and adjusting the flow rate and supply time.

(実施例1)
Si単結晶基板1上に、厚さ20nmで炭素濃度5´1019atoms/cmのAlN単結晶層21を形成し、続けて、厚さ80nmで炭素濃度5´1019atoms/cmのAl0.2Ga0.8N単結晶層22を積層させ、これらを同様の工程にて交互に繰り返し、各10層、合計20層積層させて中間層2を形成した。この中間層2上に、厚さ1400nmかつ組成AlGa1−xN(x=0)で炭素濃度5´1019atoms/cmの単層からなる領域1と、領域1上に厚さ30nmかつ組成AlGa1−yN(y=0.2)で炭素濃度5´1019atoms/cmの単層からなる領域2とを形成した。領域2上に、厚さ500nmで炭素濃度5´1017atoms/cmのGaN単結晶層を電子走行層41として、続けて、厚さ30nmで炭素濃度5´1017atoms/cmのAl0.25Ga0.75N単結晶による電子供給層42をそれぞれ積層させることで、窒化物活性層4を形成した。以上の工程を経て、窒化物半導体基板を得た。
Example 1
An AlN single crystal layer 21 having a thickness of 20 nm and a carbon concentration of 5′10 19 atoms / cm 3 is formed on the Si single crystal substrate 1, and subsequently having a thickness of 80 nm and a carbon concentration of 5′10 19 atoms / cm 3 . The Al 0.2 Ga 0.8 N single crystal layer 22 was laminated, and these were alternately repeated in the same process, and the intermediate layer 2 was formed by laminating 10 layers each for a total of 20 layers. On this intermediate layer 2, a region 1 consisting of a single layer having a thickness of 1400 nm and a composition of Al x Ga 1-x N (x = 0) and a carbon concentration of 5′10 19 atoms / cm 3 , and a thickness on the region 1 A region 2 composed of a single layer having a carbon concentration of 5′10 19 atoms / cm 3 and a composition of Al y Ga 1-y N (y = 0.2) was formed. On the region 2, a GaN single crystal layer having a thickness of 500 nm and a carbon concentration of 5′10 17 atoms / cm 3 is used as the electron transit layer 41, and subsequently, Al having a thickness of 30 nm and a carbon concentration of 5′10 17 atoms / cm 3 is used. The nitride active layer 4 was formed by laminating the electron supply layers 42 of 0.25 Ga 0.75 N single crystals. Through the above steps, a nitride semiconductor substrate was obtained.

(比較例1)
中間層2の形成までは実施例1と同様に作製した。この中間層2上に、厚さ1430nmかつ組成AlGa1−xN(x=0)で炭素濃度5´1019atoms/cmの単層からなる領域1のみ作製した。領域1上には、実施例1と同様の窒化物活性層4を形成した。以上の工程を経て、窒化物半導体基板を得た。
(Comparative Example 1)
The same processes as in Example 1 were performed until the formation of the intermediate layer 2. On the intermediate layer 2, only the region 1 composed of a single layer having a thickness of 1430 nm and a composition of Al x Ga 1-x N (x = 0) and a carbon concentration of 5′10 19 atoms / cm 3 was produced. On the region 1, the same nitride active layer 4 as in Example 1 was formed. Through the above steps, a nitride semiconductor substrate was obtained.

(参考例)
参考例として、本発明における領域1のない構造の例を示す。まず、中間層2の形成までは実施例1と同様に作製した。この中間層2上に、厚さ30nmかつ組成AlGa1−yN(y=0.2)で炭素濃度5´1019atoms/cmの単層からなる領域2のみ作製した。領域2上には、実施例1と同様の窒化物活性層4を形成した。以上の工程を経て、窒化物半導体基板を得た。
(Reference example)
As a reference example, an example of a structure without the region 1 in the present invention is shown. First, it produced similarly to Example 1 until formation of the intermediate | middle layer 2. FIG. On the intermediate layer 2, only a region 2 composed of a single layer having a thickness of 30 nm and a composition of Al y Ga 1-y N (y = 0.2) and a carbon concentration of 5′10 19 atoms / cm 3 was produced. On the region 2, the same nitride active layer 4 as in Example 1 was formed. Through the above steps, a nitride semiconductor substrate was obtained.

これら3つの窒化物半導体基板に対して、それぞれしきい値電圧を測定し、比較した。なお、しきい値電圧の測定は、それぞれ作製した窒化物半導体基板のデバイス活性層上に、リセスゲートのショットキー電極(Ni/Au)およびソース・ドレインとしてオーミック電極(Ti/Al)の電極形成および素子分離を行い、電界効果型トランジスタのデバイスを形成後、室温にてカーブトレーサによるI−V測定を行うことで実施した。 The threshold voltages were measured and compared for these three nitride semiconductor substrates, respectively. Note that the threshold voltage is measured by forming a recess gate Schottky electrode (Ni / Au) and an ohmic electrode (Ti / Al) as source / drain on the device active layer of the nitride semiconductor substrate produced, respectively. After element isolation and forming a field effect transistor device, it was carried out by performing IV measurement with a curve tracer at room temperature.

しきい値電圧は、比較例1.0Vに対して、参考例は0.7V、実施例1は2.2Vとなった。これより、本発明の構成を有することで、従来よりしきい値電圧の向上が確認された。 The threshold voltage was 0.7V in the reference example and 2.2V in the example 1 with respect to the comparative example 1.0V. As a result, it was confirmed that the threshold voltage was improved by using the configuration of the present invention.

次に、実施例1の形態を有する窒化物半導体基板をもとに、領域1と領域2のAl組成、膜厚、炭素濃度を変更して作製した窒化物半導体基板の、それぞれのしきい値電圧を測定、比較した。このときの、領域1と領域2の各パラメータ値としきい値電圧を表1に示す。なお、各パラメータを振った実施例と比較例の評価結果において、しきい値電圧以外で特性の変化がみられたものについては、特記事項として記載した。 Next, based on the nitride semiconductor substrate having the form of Example 1, each threshold value of the nitride semiconductor substrate manufactured by changing the Al composition, the film thickness, and the carbon concentration of the region 1 and the region 2 is changed. The voltage was measured and compared. Table 1 shows the parameter values and threshold voltages of region 1 and region 2 at this time. In addition, in the evaluation results of the example and the comparative example in which each parameter was changed, those in which the characteristic was changed except for the threshold voltage were described as special notes.

表1の結果から、本発明の実施範囲においては、しきい値電圧が1.5V以上となり、しきい値向上の効果が発揮されていることがわかる。 From the results in Table 1, it can be seen that the threshold voltage is 1.5 V or more in the implementation range of the present invention, and the effect of improving the threshold is exhibited.

本発明は、大電流制御のインバータや高速かつ高耐圧電子デバイスとして好適な窒化物半導体に用いられる、窒化物半導体基板として好適である。   The present invention is suitable as a nitride semiconductor substrate used for a nitride semiconductor suitable as a high-current control inverter or a high-speed and high-voltage electronic device.

1…Si単結晶基板、2…中間層、21…1層目緩衝層、22…2層目緩衝層、3…ノーマリーオフ化層、31…領域1、32…領域2、4…デバイス活性層、41…電子走行層、42…電子供給層。 1 ... Si single crystal substrate, 2 ... intermediate layer, 21 ... first buffer layer, 22 ... second buffer layer, 3 ... normally off layer, 31 ... region 1, 32 ... region 2, 4 ... device activity Layer, 41 ... electron transit layer, 42 ... electron supply layer.

Claims (2)

Si単結晶からなる基板と、前記基板上に形成されAlを含む窒化物半導体層を少なくとも1層以上含む窒化物半導体の積層構造からなる中間層と、前記中間層上に形成され、組成AlGa1−xN(0≦x≦0.05)、厚さ200nm以上2000nm以下、炭素濃度1´1018atoms/cm以上1´1021atoms/cm以下の単層または多層構造の窒化物半導体からなる領域1と、前記領域1上に形成され、組成AlGa1−yN(0.1≦y≦1)、厚さ0.2nm以上100nm以下、炭素濃度1´1018atoms/cm以上1´1021atoms/cm以下の単層または多層構造の窒化物半導体からなる領域2と、前記領域2上に形成される窒化物半導体のデバイス活性層とからなることを特徴とする窒化物半導体基板。 A substrate formed of Si single crystal, an intermediate layer formed of a nitride semiconductor stacked structure including at least one nitride semiconductor layer including Al formed on the substrate, and a composition Al x formed on the intermediate layer. Ga 1-x N (0 ≦ x ≦ 0.05), thickness of 200 nm to 2000 nm, carbon concentration of 1′10 18 atoms / cm 3 to 1′10 21 atoms / cm 3 of single layer or multilayer structure A region 1 made of a physical semiconductor; a composition Al y Ga 1-y N (0.1 ≦ y ≦ 1); a thickness of 0.2 nm to 100 nm; a carbon concentration of 1′10 18 atoms. / Cm 3 or more and 1'10 21 atoms / cm 3 or less of a region 2 made of a nitride semiconductor having a single layer or a multilayer structure, and a nitride semiconductor device active layer formed on the region 2 The nitride semiconductor substrate characterized by the above-mentioned. 前記中間層は、炭素濃度1´1018atoms/cm以上1´1021atoms/cm以下、かつ前記デバイス活性層は炭素濃度5´1017atoms/cm以下であることを特徴とする請求項1に記載の窒化物半導体基板。 The intermediate layer has a carbon concentration of 1′10 18 atoms / cm 3 or more and 1′10 21 atoms / cm 3 or less, and the device active layer has a carbon concentration of 5′10 17 atoms / cm 3 or less. The nitride semiconductor substrate according to claim 1.
JP2010132558A 2010-06-10 2010-06-10 Nitride semiconductor substrate Pending JP2011258782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010132558A JP2011258782A (en) 2010-06-10 2010-06-10 Nitride semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010132558A JP2011258782A (en) 2010-06-10 2010-06-10 Nitride semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2011258782A true JP2011258782A (en) 2011-12-22
JP2011258782A5 JP2011258782A5 (en) 2013-03-28

Family

ID=45474638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010132558A Pending JP2011258782A (en) 2010-06-10 2010-06-10 Nitride semiconductor substrate

Country Status (1)

Country Link
JP (1) JP2011258782A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130082355A1 (en) * 2011-10-03 2013-04-04 Covalent Materials Corporation Nitride semiconductor substrate
JP6064051B2 (en) * 2013-11-06 2017-01-18 シャープ株式会社 Nitride semiconductor
JP2017085054A (en) * 2015-10-30 2017-05-18 富士通株式会社 Compound semiconductor device and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142250A (en) * 2003-11-05 2005-06-02 Furukawa Electric Co Ltd:The High electron mobility transistor
JP2005235935A (en) * 2004-02-18 2005-09-02 Furukawa Electric Co Ltd:The High electron mobility transistor
JP2006332367A (en) * 2005-05-26 2006-12-07 Sumitomo Electric Ind Ltd High electron mobility transistor, field effect transistor, epitaxial substrate, method for producing epitaxial substrate, and method for producing group III nitride transistor
JP2007251144A (en) * 2006-02-20 2007-09-27 Furukawa Electric Co Ltd:The Semiconductor element
JP2008171843A (en) * 2007-01-05 2008-07-24 Furukawa Electric Co Ltd:The Semiconductor electronic device
JP2008171842A (en) * 2007-01-05 2008-07-24 Furukawa Electric Co Ltd:The Semiconductor electronic device
JP2009272574A (en) * 2008-05-12 2009-11-19 National Institute Of Information & Communication Technology GaN-BASED FIELD-EFFECT TRANSISTOR AND METHOD OF MANUFACTURING THE SAME

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142250A (en) * 2003-11-05 2005-06-02 Furukawa Electric Co Ltd:The High electron mobility transistor
JP2005235935A (en) * 2004-02-18 2005-09-02 Furukawa Electric Co Ltd:The High electron mobility transistor
JP2006332367A (en) * 2005-05-26 2006-12-07 Sumitomo Electric Ind Ltd High electron mobility transistor, field effect transistor, epitaxial substrate, method for producing epitaxial substrate, and method for producing group III nitride transistor
JP2007251144A (en) * 2006-02-20 2007-09-27 Furukawa Electric Co Ltd:The Semiconductor element
JP2008171843A (en) * 2007-01-05 2008-07-24 Furukawa Electric Co Ltd:The Semiconductor electronic device
JP2008171842A (en) * 2007-01-05 2008-07-24 Furukawa Electric Co Ltd:The Semiconductor electronic device
JP2009272574A (en) * 2008-05-12 2009-11-19 National Institute Of Information & Communication Technology GaN-BASED FIELD-EFFECT TRANSISTOR AND METHOD OF MANUFACTURING THE SAME

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130082355A1 (en) * 2011-10-03 2013-04-04 Covalent Materials Corporation Nitride semiconductor substrate
US8637960B2 (en) * 2011-10-03 2014-01-28 Covalent Material Corporation Nitride semiconductor substrate
JP6064051B2 (en) * 2013-11-06 2017-01-18 シャープ株式会社 Nitride semiconductor
JP2017085054A (en) * 2015-10-30 2017-05-18 富士通株式会社 Compound semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US8426893B2 (en) Epitaxial substrate for electronic device and method of producing the same
JP5064824B2 (en) Semiconductor element
CN107799583B (en) P-type doping of group III nitride buffer layer structures on heterogeneous substrates
US9490324B2 (en) N-polar III-nitride transistors
JP5634681B2 (en) Semiconductor element
JP5788296B2 (en) Nitride semiconductor substrate and manufacturing method thereof
US9608103B2 (en) High electron mobility transistor with periodically carbon doped gallium nitride
JP5912383B2 (en) Nitride semiconductor substrate
US20090001384A1 (en) Group III Nitride semiconductor HFET and method for producing the same
JPWO2005015642A1 (en) Semiconductor device and manufacturing method thereof
JP2013004735A (en) Semiconductor device and semiconductor device manufacturing method
WO2011099097A1 (en) Nitride semiconductor device and process for production thereof
US20110215424A1 (en) Semiconductor device and manufacturing method thereof
KR20150091705A (en) Nitride semiconductor and method thereof
JP2015070091A (en) Group iii nitride semiconductor substrate
JP2007123824A (en) Electronic device using group III nitride compound semiconductor
TWI574407B (en) Semiconductor power component
JP2011258782A (en) Nitride semiconductor substrate
JP7034739B2 (en) Nitride semiconductor substrate and its manufacturing method
US10593790B2 (en) Nitride semiconductor substrate and method for manufacturing the same
JP2007088252A5 (en)
EP2800139A1 (en) Layer sequence for an electronic device
KR20140120519A (en) Nitride semiconductor and method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141031