JP2011226350A - Air-fuel ratio control device of internal combustion engine - Google Patents
Air-fuel ratio control device of internal combustion engine Download PDFInfo
- Publication number
- JP2011226350A JP2011226350A JP2010095873A JP2010095873A JP2011226350A JP 2011226350 A JP2011226350 A JP 2011226350A JP 2010095873 A JP2010095873 A JP 2010095873A JP 2010095873 A JP2010095873 A JP 2010095873A JP 2011226350 A JP2011226350 A JP 2011226350A
- Authority
- JP
- Japan
- Prior art keywords
- fuel ratio
- air
- fuel
- control
- combustion stability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
本発明は空燃比を制御する内燃機関の空燃比制御装置に関する。 The present invention relates to an air-fuel ratio control apparatus for an internal combustion engine that controls an air-fuel ratio.
内燃機関の燃焼を安定させるため、排気空燃比に基づき排気空燃比が所望の目標空燃比となるように補正する、所謂空燃比フィードバック制御(以下、空燃比FB制御という)が広く知られている。空燃比を検出する手段として、例えば特許文献1には、触媒上流側に設けられた空燃比センサを用いる方法が開示されている。この文献では、空燃比センサの検出値と目標空燃比との差に基づき、排気空燃比が目標空燃比となるように空燃比FB制御を行っている。 In order to stabilize the combustion of the internal combustion engine, so-called air-fuel ratio feedback control (hereinafter referred to as air-fuel ratio FB control) that corrects the exhaust air-fuel ratio based on the exhaust air-fuel ratio to be a desired target air-fuel ratio is widely known. . As a means for detecting the air-fuel ratio, for example, Patent Document 1 discloses a method using an air-fuel ratio sensor provided on the upstream side of the catalyst. In this document, air-fuel ratio FB control is performed so that the exhaust air-fuel ratio becomes the target air-fuel ratio based on the difference between the detected value of the air-fuel ratio sensor and the target air-fuel ratio.
ところで、空燃比センサは温度による影響が大きく、例えば空燃比センサの低温時には検出精度が著しく低下する。つまり、冷間時に内燃機関を始動した場合、空燃比センサの検出値は実際の空燃比とは異なる場合がある。そのため、空燃比センサ低温時には空燃比センサの検出精度が有効となるまで所定の暖機時間を要し、空燃比センサの暖機が完了するまでは前述した空燃比FB制御を行うことができない。そこで冷間始動時には、空燃比センサの暖機が完了するまで空燃比FB制御に代わりオープン制御が行われる。 By the way, the air-fuel ratio sensor is greatly influenced by temperature. For example, when the air-fuel ratio sensor is at a low temperature, the detection accuracy is remarkably lowered. That is, when the internal combustion engine is started in the cold state, the detected value of the air-fuel ratio sensor may be different from the actual air-fuel ratio. Therefore, when the air-fuel ratio sensor is at a low temperature, a predetermined warm-up time is required until the detection accuracy of the air-fuel ratio sensor becomes effective, and the above-described air-fuel ratio FB control cannot be performed until the air-fuel ratio sensor has been warmed up. Therefore, at the time of cold start, open control is performed instead of the air-fuel ratio FB control until the warm-up of the air-fuel ratio sensor is completed.
オープン制御では、実際の空燃比によらず予め設定された量の燃料が噴射されるため、実際の空燃比が目標空燃比に近づいているかは定かではない。そのため、空燃比FB制御が開始される空燃比センサの暖機完了時に検出した空燃比と目標空燃比とが乖離している場合がある。このような場合に前述した空燃比FB制御を行うと、空燃比センサの検出値と目標空燃比との差が大きいため燃料噴射量の補正量が大きくなる。つまり、燃焼状態がリーン側又はリッチ側に急激に変化することとなる。この結果、燃焼状態が不安定となり、エミッションやドライバビリティの悪化を招く恐れがあった。特に、筒内直接噴射式の内燃機関において成層燃焼を行う場合、上述したエミッションやドライバビリティの悪化に加え、点火プラグがくすぶり失火する可能性がある。 In the open control, since a predetermined amount of fuel is injected regardless of the actual air-fuel ratio, it is not certain whether the actual air-fuel ratio is approaching the target air-fuel ratio. Therefore, there is a case where the air-fuel ratio detected when the air-fuel ratio sensor for which the air-fuel ratio FB control is started is completed is deviated from the target air-fuel ratio. If the air-fuel ratio FB control described above is performed in such a case, the correction amount of the fuel injection amount increases because the difference between the detected value of the air-fuel ratio sensor and the target air-fuel ratio is large. That is, the combustion state suddenly changes to the lean side or the rich side. As a result, the combustion state becomes unstable, and there is a possibility that the emission and drivability are deteriorated. In particular, when stratified combustion is performed in an in-cylinder direct injection internal combustion engine, in addition to the above-described deterioration of emission and drivability, the spark plug may smolder and misfire.
本発明は上記課題に鑑みてなされたものであり、空燃比フィードバック開始時おけるエミッションの悪化やドライバビリティの悪化を防止した内燃機関の空燃比制御装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an air-fuel ratio control apparatus for an internal combustion engine that prevents deterioration of emission and drivability at the start of air-fuel ratio feedback.
上記課題を解決するために請求項1に記載の発明は、内燃機関に燃料を噴射する燃料噴射手段と、内燃機関の排気管に設置され排出ガスの空燃比を検出する空燃比検出手段と、
空燃比検出手段の暖機が完了したことを判定する暖機判定手段と、内燃機関の燃焼状態の安定性を検出する燃焼安定性検出手段と、暖機判定手段が空燃比検出手段の暖機が完了したと判定した場合において空燃比検出手段の検出した空燃比(以下、実空燃比という)と目標空燃比とに基づき燃料噴射手段の燃料噴射量を補正する空燃比フィードバック制御手段(以下、空燃比FB制御手段という)と、空燃比検出手段の暖機が完了した時点における実空燃比と目標空燃比とに所定値以上差がある場合、燃焼安定制検出手段より検出された燃焼安定性に基づき実空燃比を目標空燃比に近づける速度を設定する空燃比徐変制御手段とを備え、空燃比FB制御手段は、空燃比徐変制御手段により設定された速度に基づいて空燃比FB制御を実行することを特徴とする。
In order to solve the above problems, the invention described in claim 1 includes a fuel injection unit that injects fuel into an internal combustion engine, an air-fuel ratio detection unit that is installed in an exhaust pipe of the internal combustion engine and detects an air-fuel ratio of exhaust gas,
A warm-up determination unit that determines that the warm-up of the air-fuel ratio detection unit is completed, a combustion stability detection unit that detects the stability of the combustion state of the internal combustion engine, and a warm-up determination unit that warms up the air-fuel ratio detection unit The air-fuel ratio feedback control means (hereinafter, referred to as the fuel injection amount of the fuel injection means) is corrected based on the air-fuel ratio detected by the air-fuel ratio detection means (hereinafter referred to as the actual air-fuel ratio) and the target air-fuel ratio. The combustion stability detected by the combustion stability control detecting means when there is a difference of a predetermined value or more between the actual air fuel ratio and the target air fuel ratio at the time when the warm-up of the air fuel ratio detecting means is completed. And an air-fuel ratio gradual change control means for setting the speed at which the actual air-fuel ratio approaches the target air-fuel ratio. The air-fuel ratio FB control means controls the air-fuel ratio FB based on the speed set by the air-fuel ratio gradual change control means. Run And wherein the door.
上記構成によれば、空燃比徐変制御手段によって、燃焼安定性に基づいて実空燃比が目標空燃比に近づく速度が設定される。これにより、実空燃比を目標空燃比に対して徐々に近づけることが可能となる。この結果、空燃比検出手段の暖機完了時に検出した実空燃比が目標空燃比と乖離した状態であっても、実空燃比がリッチ又はリーン側に急激に変化することがない。従って、エミッションの悪化やドライバビリティの悪化を防止することができる。 According to the above configuration, the speed at which the actual air-fuel ratio approaches the target air-fuel ratio is set based on the combustion stability by the air-fuel ratio gradual change control means. As a result, the actual air-fuel ratio can be gradually brought closer to the target air-fuel ratio. As a result, even if the actual air-fuel ratio detected when the warm-up of the air-fuel ratio detection unit is completed is deviated from the target air-fuel ratio, the actual air-fuel ratio does not rapidly change to the rich or lean side. Therefore, it is possible to prevent deterioration of emission and drivability.
請求項2に記載の発明は、空燃比徐変制御手段は、燃焼安定性が悪化した場合は実空燃比が目標空燃比に近づく速度が遅くなるようにし、燃焼安定性が所定値よりも小さい場合は実空燃比が目標空燃比に近づく速度が早くなるように設定することを特徴とする。 In the invention according to claim 2, the air-fuel ratio gradual change control means makes the speed at which the actual air-fuel ratio approaches the target air-fuel ratio slows down when the combustion stability deteriorates, and the combustion stability is smaller than a predetermined value. In this case, the actual air-fuel ratio is set so as to increase the speed at which the actual air-fuel ratio approaches the target air-fuel ratio.
上記構成によれば、燃焼安定性が良好な場合は実空燃比が目標空燃比に近づく速度が早くなるように設定され、燃焼安定性が悪化している場合は実空燃比が目標空燃比に近づく速度が遅くなるように設定される。これにより、常に一定の速度で目標空燃比に近づける場合と比較して、燃焼安定性を悪化させる可能性を低くすることができる。また、燃焼状態が良好な場合には、一定の速度で目標空燃比に近づける場合と比較して、早く目標燃圧に到達させることができる。 According to the above configuration, when the combustion stability is good, the speed at which the actual air-fuel ratio approaches the target air-fuel ratio is set to be faster, and when the combustion stability is deteriorated, the actual air-fuel ratio becomes the target air-fuel ratio. It is set so that the approaching speed becomes slower. Thereby, compared with the case where it always approaches a target air fuel ratio at a fixed speed, the possibility of deteriorating combustion stability can be reduced. Further, when the combustion state is good, the target fuel pressure can be reached earlier than when the target air-fuel ratio is approached at a constant speed.
請求項3に記載の発明は、空燃比徐変制御手段は、空燃比検出手段の暖機が完了した時点における実空燃比と目標空燃比とに所定値以上差がある場合、空燃比検出手段の暖機完了時に検出した実空燃比を仮の目標空燃比の始点として設定すると共に、燃焼安定性に基づき仮の目標空燃比を目標空燃比に近づける速度の変化率(以下、目標値徐変率という)を設定し、空燃FB制御手段は、目標値徐変率により設定された仮の目標空燃比と実空燃比とに基づき燃料噴射量を補正することを特徴とする。 According to a third aspect of the present invention, the air-fuel ratio gradual change control means has the air-fuel ratio detection means when there is a difference between the actual air-fuel ratio and the target air-fuel ratio at the time when the warm-up of the air-fuel ratio detection means is completed by a predetermined value or more. The actual air-fuel ratio detected when the warm-up of the engine is completed is set as the starting point of the temporary target air-fuel ratio, and the rate of change in speed at which the temporary target air-fuel ratio is brought close to the target air-fuel ratio based on the combustion stability The air / fuel FB control means corrects the fuel injection amount based on the temporary target air / fuel ratio and the actual air / fuel ratio set by the target value gradual change rate.
上記構成によれば、空燃比徐変制御手段が燃焼安定性に基づき設定した目標値徐変率によって仮の目標空燃比が設定される。そして、仮の目標空燃比と実空燃比とに基づきFB制御が実施される。従って、空燃比検出手段の暖機完了時に検出された実空燃比と目標空燃比とが乖離した状態であっても、空燃比FB制御で参照される値は仮の目標空燃比と実空燃比であるため、燃料噴射量の補正量が大きくなることを防止することができる。 According to the above configuration, the temporary target air-fuel ratio is set by the target value gradual change rate set by the air-fuel ratio gradual change control means based on the combustion stability. Then, the FB control is performed based on the temporary target air-fuel ratio and the actual air-fuel ratio. Therefore, even if the actual air-fuel ratio detected at the completion of warm-up of the air-fuel ratio detection means and the target air-fuel ratio are deviated, the values referred to in the air-fuel ratio FB control are the temporary target air-fuel ratio and the actual air-fuel ratio. Therefore, it is possible to prevent the correction amount of the fuel injection amount from increasing.
請求項4に記載の発明は、空燃比徐変制御手段は、燃焼安定性に基づき空燃比FB制御による燃料噴射量の補正係数(以下、FBゲインという)の値を変更することにより、実空燃比を目標空燃比に近づける速度を設定することを特徴とする。 According to a fourth aspect of the present invention, the air-fuel ratio gradual change control means changes the value of the fuel injection amount correction coefficient (hereinafter referred to as FB gain) by the air-fuel ratio FB control based on the combustion stability, thereby A speed at which the fuel ratio is brought close to the target air-fuel ratio is set.
上記構成によれば、燃焼安定性に基づき空燃比FB制御によるFBゲインを変更することにより燃料噴射量を調節している。そのため、請求項3に記載の発明のように、仮の目標空燃比を設定することなく、実空燃比を目標空燃比に近づける速度を設定することができる。 According to the above configuration, the fuel injection amount is adjusted by changing the FB gain by the air-fuel ratio FB control based on the combustion stability. Therefore, as in the third aspect of the invention, the speed at which the actual air-fuel ratio approaches the target air-fuel ratio can be set without setting the temporary target air-fuel ratio.
燃焼安定性検出手段としては、請求項5に記載の発明のように筒内圧センサの検出値に基づき内燃機関の燃焼安定性を検出するとよい。また、請求項6に記載の発明のようにクランク角センサの検出値に基づき内燃機関の燃焼安定性を検出してもよい。 As the combustion stability detecting means, it is preferable to detect the combustion stability of the internal combustion engine based on the detection value of the in-cylinder pressure sensor as in the fifth aspect of the invention. Further, the combustion stability of the internal combustion engine may be detected based on the detected value of the crank angle sensor as in the sixth aspect of the invention.
[第1実施形態]
以下、本発明の第1実施形態について図面に基づいて説明する。図1は空燃比制御システム全体の概略構成を示す図である。なお、図1では便宜上1つの気筒のみを示している。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of the entire air-fuel ratio control system. In FIG. 1, only one cylinder is shown for convenience.
図1に示すように筒内噴射式の内燃機関であるエンジン1の吸気管2の最上流部にはエアクリーナ3が設けられている。このエアクリーナ3の下流側にはDCモータ4によって開度調節されるスロットル弁5が設けられている。DCモータ4は、使用者のアクセル踏込量(アクセル開度)を検出するアクセル開度センサからの信号に基づいて駆動される。具体的には、アクセル開度に応じてエンジン制御装置6(以下、「ECU」という)から出力される信号に基づいてスロットル弁5の開度(スロットル開度)が制御される。このスロットル開度に応じて各気筒ヘの吸入空気量が調節される。スロットル弁5の近傍には、スロットル開度を検出するスロットルセンサ7が設けられている。また、エアクリーナ3とスロットル弁5との間には吸入される空気量(以下、「吸気量」という)を検出するエアフローメータ8が設けられている。
As shown in FIG. 1, an
スロットル弁5の下流側にはサージタンク9が設けられ、このサージタンク9には吸気管内の圧力を検出する吸気圧センサ10が設けられている。また、サージタンク9にはエンジン1の各気筒に空気を導入する吸気マニホールドが接続されている。各気筒の吸気マニホールド内には吸気ポートが形成され、この吸気ポートがエンジン1の各気筒に形成された吸気弁11に連結されている。
A surge tank 9 is provided on the downstream side of the throttle valve 5, and an
エンジン1の各気筒には、各気筒の燃焼室内に直接燃料を噴射するインジェクタ12(請求項でいう燃料噴射手段)が取り付けられている。インジェクタ12への燃料の供給は、燃料ポンプ(図示せず)と高圧ポンプ(図示せず)の2つのポンプによって行われる。燃焼室へ燃料を直接噴射するには、噴射燃圧が燃焼室内の圧力よりも高圧である必要がある。そのため、まず燃料タンク(図示せず)内に配置された燃料ポンプ(図示せず)によって燃料を吸上げて燃料の圧力(以下、「燃圧」という)を高める。さらに燃料配管に設けられた高圧ポンプによって加圧し、デリバリパイプ(図示せず)に圧送する。高圧ポンプによって加圧された燃料は例えば、2〜10MPaの範囲内の所定圧となり、デリバリパイプによって各気筒のインジェクタ12に分配される。この高圧の燃料がインジェクタ12から燃焼室内に噴射され、吸気ポートから供給される吸気と混合して混合気が形成される。
Each cylinder of the engine 1 is provided with an injector 12 (fuel injection means in the claims) that injects fuel directly into the combustion chamber of each cylinder. The fuel is supplied to the
燃焼室内の混合気は、エンジン1のシリンダヘッドに取り付けられた点火プラグ13によって点火される。点火プラグ13は各気筒にそれぞれ取り付けられており、各点火プラグ13の火花放電によって気筒内の混合気に点火される。
The air-fuel mixture in the combustion chamber is ignited by a
点火によって混合気が爆発(膨張)し、ピストン14が図1中の下側に移動することによって、コネクティングロッドを介してクランク軸が回転する。クランク軸の径外方にはクランク角センサ15が設けられている。クランク角センサ15は、クランク軸の回転角度(クランク角)を検出しECU6に出力する。また、エンジン1のシリンダブロックには水温センサ16が設けられており、エンジン1の冷却水温を検出しECU6に出力する。
The air-fuel mixture explodes (expands) by ignition, and the
エンジン1の排気弁17から排出される排出ガスは、排気マニホールドを介して一本の排気管18に合流する。この排気管18には、理論空燃比付近で排出ガスを浄化する三元触媒19が接続されている。また、三元触媒19の上流側には排出ガスの空燃比を検出する空燃比センサ20(請求項でいう空燃比検出手段)が設けられている。空燃比センサ20は温度による影響が大きく、検出値が有効となるまで所定の暖機時間を必要とする。ECU6では、空燃比センサ20が暖気完了後に検出した空燃比(以下、実空燃比)と、エンジンの運転状態に応じて設定される目標空燃比とに基づき、インジェクタ12の燃料噴射量を補正する空燃比フィードバック制御(以下、「空燃比FB制御」という)を行っている。
The exhaust gas discharged from the
前述した各種センサの出力信号はECU6に入力される。ECU6は、マイクロコンピュータを主体として、CPU(中央演算処理装置)、ROM(記憶媒体)及びRAM(一時記憶媒体)等から構成されている。ECU6には制御プログラムや制御マップが記憶されている。例えば、エンジンの運転状況(エンジン回転数や吸気量)に応じて目標空燃比を算出するための目標空燃比マップが記憶されている。このような制御プログラムや制御マップによって各種センサ出力に基づき前述したDCモータ4、インジェクタ12、点火プラグ13が制御される。
Output signals from the various sensors described above are input to the ECU 6. The ECU 6 is mainly composed of a microcomputer, and includes a CPU (Central Processing Unit), a ROM (storage medium), a RAM (temporary storage medium), and the like. The ECU 6 stores a control program and a control map. For example, a target air-fuel ratio map for calculating a target air-fuel ratio according to the engine operating status (engine speed and intake air amount) is stored. The above-described DC motor 4,
以下、ECUにて行われる空燃比制御の処理手順について図2を用いて説明する。本制御は、所定期間(例えば、4msec)毎に繰り返し実行される。 Hereinafter, the procedure of air-fuel ratio control performed by the ECU will be described with reference to FIG. This control is repeatedly executed every predetermined period (for example, 4 msec).
まず、ステップ100にて空燃比センサ20が有効であるかが判定される。換言すると、空燃比センサ20の暖機が完了しているかどうかが判定される(請求項でいう暖機判定手段)。前述したように空燃比センサ20は温度による影響を大きく受けるため、空燃比センサ20の暖機完了前は検出精度が著しく低下している。そのため、暖機完了前の空燃比センサ20の検出値は、実際の空燃比と異なるおそれがある。本ステップでの「空燃比センサが有効」とは空燃比センサ20の暖機が完了している状態であり、この状態での空燃比センサ20の検出値は実際の空燃比と略等しい。
First, at
ステップ100にて空燃比センサ20の暖機が完了していないと判定された場合はステップ200に移行する。ステップ200では、開ループによって空燃比制御が行われる(以下、「オープン制御」という)。具体的には、予め実験等により設定された燃料噴射量が噴射され、予め設定された点火時期に点火されることで燃焼が行われる。このオープン制御による燃焼によって空燃比センサ20は徐々に暖機される。そして、本ルーチンを一旦終了する。
If it is determined in
一方、ステップ100にて空燃比センサ20の暖機が完了していると判定された場合、つまり空燃比センサ20が有効であると判定された場合はステップ300に移行する。ステップ300では実空燃比と目標空燃比との差が所定値以上であるかが判定される。目標空燃比と実空燃比との差が所定値以上である場合に、後述する通常の空燃比FB制御を実施すると、燃料噴射量の補正量が多いため燃焼状態が急激に変化してしまう。これにより、エミッションやドライバビリティの悪化を招く恐れがある。そのため、目標空燃比と実空燃比との差が所定値以上である場合はステップ400に移行し、燃焼安定性に基づく空燃比FB制御(以下、「燃焼安定性FB制御」という)が実施される。一方、目標空燃比と実空燃比との差が所定値よりも少ない場合は、ステップ500に移行し、通常の空燃比FB制御が実施される。
On the other hand, if it is determined in
本ルーチンは所定期間毎に実行されるため、燃焼安定性FB制御は、空燃比センサが有効となった時点で検出された実空燃比と目標空燃比との差が所定値以上である場合に実施される。つまり、始動時だけでなく、空燃比センサの暖機が完了し、FB制御開始時において実空燃比と目標空燃比との差が所定値以上の場合には、燃焼安定性FB制御が実施される。 Since this routine is executed every predetermined period, the combustion stability FB control is performed when the difference between the actual air-fuel ratio detected at the time when the air-fuel ratio sensor becomes effective and the target air-fuel ratio is equal to or greater than a predetermined value. To be implemented. That is, not only at the time of start-up, but also when the warm-up of the air-fuel ratio sensor is completed and the difference between the actual air-fuel ratio and the target air-fuel ratio is greater than or equal to a predetermined value at the start of FB control, combustion stability FB control is performed. The
以上の処理手順によって、空燃比制御を終了する。 The air-fuel ratio control is terminated by the above processing procedure.
次に、ステップ400にて実施される燃焼安定性FB制御、及びステップ500にて実施される通常の空燃比FB制御について図3及び図4を用いて説明する。
Next, the combustion stability FB control performed in
まずは、通常の空燃比FB制御(ステップ500)について図3を用いて説明する。 First, normal air-fuel ratio FB control (step 500) will be described with reference to FIG.
通常の空燃比FB制御は、まず、ステップ501にて基本噴射量Tpを算出する。具体的にはエンジン運転状態、例えばクランク角センサから出力される回転数や吸気圧センサから出力される吸気管圧力等に基づくマップ等から基本燃料噴射量Tpを算出する。
In normal air-fuel ratio FB control, first, in
基本噴射量Tpの算出後、ステップ502に移行し目標空燃比と実空燃比とから空燃比FB補正係数FAFを算出する。空燃比FB補正係数FAFは、目標空燃比と実空燃比との差が大きいほど燃料噴射量TAUを大きく変化させる値となる。しかし、本ルーチンは、ステップ300にて目標空燃比と実空燃比との差が所定値よりも小さいと判定されている場合に実施される。従って、燃料噴射量TAUが大きく変化することがないため、空燃比が急激に変化することはない。
After calculating the basic injection amount Tp, the routine proceeds to step 502, where the air-fuel ratio FB correction coefficient FAF is calculated from the target air-fuel ratio and the actual air-fuel ratio. The air-fuel ratio FB correction coefficient FAF becomes a value that greatly changes the fuel injection amount TAU as the difference between the target air-fuel ratio and the actual air-fuel ratio increases. However, this routine is executed when it is determined in
次にステップ503にて、基本噴射量Tp及び空燃比FB補正係数FAF用いて次式により実際に噴射する燃料噴射量TAUを算出する。
Next, at
TAU=Tp×FAF×FALL
ここで、FALLは、空燃比FB補正係数FAF以外の補正係数(例えば冷却水温による補正係数、加減速時の補正係数等)である。
TAU = Tp × FAF × FALL
Here, FALL is a correction coefficient other than the air-fuel ratio FB correction coefficient FAF (for example, a correction coefficient due to cooling water temperature, a correction coefficient during acceleration / deceleration, etc.).
以上の処理手順によって通常の空燃比FB制御が行われる。 Normal air-fuel ratio FB control is performed by the above processing procedure.
次にステップ400で行われる燃焼安定性FB制御(請求項でいう空燃比徐変制御手段)について図4を用いて説明する。前述した通常の空燃比FB制御では、目標空燃比と実空燃比とに基づいて燃料噴射量を補正していた。これに対し燃焼安定性FB制御では、燃焼安定性に基づいて設定される仮の目標空燃比と実空燃比とに基づいて燃料噴射量の補正を行う。以下詳細に説明する。
Next, the combustion stability FB control (air-fuel ratio gradual change control means in the claims) performed in
まず、ステップ401にて仮の目標空燃比を設定する。具体的には、空燃比センサ20が有効となった時点での検出値を仮の目標空燃比の始点として設定する。この仮の目標空燃比の始点を設定した後の初回の燃料噴射時は、仮の目標空燃比と実空燃比とが同じ値となるため空燃比FB制御による補正を行うことなく、エンジン運転状態に応じて設定される基本燃料噴射量が噴射される。
First, in
仮の目標空燃比の設定後、ステップ402にて燃焼安定性が悪化したかどうかを判定する。燃焼安定性は、筒内圧センサ(請求項でいう安定性検出手段)の検出値に基づき検出される。具体的には、筒内圧センサにより検出される燃焼室内の圧力変化のばらつきを用いて燃焼状態の安定性を検出する。仮の目標空燃比の始点を設定した直後は前述した基本燃料噴射量の燃焼によって変化する燃焼安定性を検出し、仮の目標空燃比の始点を設定した直後以降は、前回の燃焼によって変化した燃焼安定性を検出する。また、燃焼安定性は、クランク角センサ15(請求項でいう安定性検出手段)の検出値に基づき検出することもできる。この場合はクランク角センサ15により検出されるクランク軸の回転のばらつきに基づいて燃焼状態の安定性を検出する。
After setting the temporary target air-fuel ratio, it is determined in
燃焼安定性が悪化したかどうかの判定は、燃焼安定性と所定値(以下、「安定性限界」という)とを比較することにより行われる。具体的には、燃焼安定性が安定性限界以上の場合は燃焼安定性が悪化している、つまり前回の燃焼が適切に行われていないと判断し、燃焼安定性が安定性限界よりも小さい場合は前回の燃焼が良好に行われていると判断する。このような方法で燃焼安定性が悪化したかどうかが判定され、燃焼安定性が悪化している場合はステップ403に移行し、燃焼安定性が悪化していない場合はステップ404に移行する。 Whether the combustion stability has deteriorated is determined by comparing the combustion stability with a predetermined value (hereinafter referred to as “stability limit”). Specifically, if the combustion stability is above the stability limit, it is judged that the combustion stability has deteriorated, that is, the previous combustion has not been performed properly, and the combustion stability is smaller than the stability limit. In this case, it is determined that the previous combustion is performed well. It is determined whether or not the combustion stability has deteriorated by such a method. If the combustion stability has deteriorated, the process proceeds to step 403, and if the combustion stability has not deteriorated, the process proceeds to step 404.
ステップ403及びステップ404では、燃焼安定性に基づき仮の目標空燃比を目標空燃比に近づける速度の変化率(以下、「目標値徐変率」という)を設定する。例えば、前回の目標値徐変率と同じ値で今回の仮の目標空燃比を設定すると、仮の目標空燃比は前回と同じ速度で目標空燃比に近づくことになる。つまり、目標値徐変率は、今回設定する仮の目標空燃比を前回と比較してどの程度目標空燃比に近い値にするか、という仮の目標空燃比の傾きと捉えることもできる。従って、前回の目標値徐変率で設定した仮の目標空燃比によるFB制御の結果、燃焼安定性が悪化した場合に、前回と同じ目標値徐変率で今回の仮の目標空燃比を設定すると、燃焼安定性はさらに悪化する可能性がある。
In
ステップ402にて燃焼安定性が悪化していると判定されたステップ403では、前述したように前回と同じ目標値徐変率で今回の仮の目標空燃比設定すると、燃焼安定性はさらに悪化してしまう。そのため、目標値徐変率を前回の値よりも小さい値に設定する。これにより仮の目標空燃比は目標空燃比に緩やかに近づいていく。換言すると、仮の目標空燃比が目標空燃比に近づく速度が遅くなるように設定される。そして、目標値徐変率の設定後ステップ405へ移行する。
In
ステップ403に対し、前回の燃焼が良好に行われていると判定されたステップ404では、安定性限界に対してまだ余裕があるため、目標値徐変率を前回の目標値徐変率よりも大きい値に設定しても燃焼安定性が悪化する可能性が少ない。そのため、前回の目標値徐変率よりも大きな値に設定する。これにより、仮の目標空燃比が目標空燃比に近づく速度は速くなるように設定される。そして、目標値徐変率の設定後ステップ405へ移行する。
In
ステップ405ではステップ403又はステップ404にて設定された目標値徐変率に基づき仮の目標空燃比を更新し、ステップ406へ移行する。
In
ステップ406では、ステップ405にて更新された仮の目標空燃比と実空燃比とから空燃比を補正する。具体的には、燃焼安定性に応じて設定された仮の目標空燃比と実空燃比とに基づいて算出される燃焼安定性FB係数FAF2と基本燃料噴射量Tpとを用いて次式により燃料噴射量TAUを算出する。
In
TAU=Tp×FAF2×FALL
燃焼安定性FB係数FAF2は、仮の目標空燃比と実空燃比との差が大きいほど燃料噴射量TAUを大きく変化させることとなる。しかし、前述したように仮の目標空燃比は燃焼安定性に応じて設定されるため、実空燃比と仮の目標空燃比とが大きく乖離することはない。
TAU = Tp × FAF2 × FALL
The combustion stability FB coefficient FAF2 greatly changes the fuel injection amount TAU as the difference between the temporary target air-fuel ratio and the actual air-fuel ratio increases. However, since the temporary target air-fuel ratio is set according to the combustion stability as described above, the actual air-fuel ratio and the temporary target air-fuel ratio do not greatly deviate.
ステップ407では、仮の空燃比に基づき補正された燃料噴射量によって燃焼が行われた後の実空燃比が目標空燃比に到達したかどうかが判定される。実空燃比が目標空燃比に到達した場合は本ルーチンを終了し、実空燃比が目標空燃比に到達していない場合は、ステップ402に移行し、ステップ402〜ステップ407の処理が行われる。以上の処理手順によって燃焼安定性FB制御が行われる。
In
次に上述した始動時における空燃比制御の処理手順に対応する各種制御の遷移状態を図5に基づき説明する。 Next, transition states of various controls corresponding to the processing procedure of the air-fuel ratio control at the time of starting described above will be described with reference to FIG.
まず時刻t0においてエンジンが始動される。始動直後は空燃比センサ20の暖機が完了していないため、空燃比センサ使用可否フラグ、及び空燃比FBフラグは「OFF」となっている。そのため、時刻t0〜t1間は、オープン制御によって予め決められた燃料が噴射される(ステップ200)。前述したように空燃比センサ20の暖機が完了していないため実空燃比を検出することはできないが、t0〜t1間において空燃比センサ20は理論空燃比を示す値を暫定的に出力する。また、始動時は確実にエンジンを始動させる必要があるため、通常時よりも多くの燃料が噴射されるように設定されている。そのため、始動直後の実空燃比は図5に示すようにリッチとなる。
First, the engine is started at time t0. Immediately after startup, the air-
オープン制御によって空燃比センサの暖機が行われ、時刻t1にて空燃比センサの暖機が完了する。つまり、空燃比センサが有効となる。これにより、空燃比センサ使用可否フラグ、及び空燃比FBフラグが「ON」となり、燃焼安定性FB制御、又は空燃比FB制御が実行可能となる(ステップ100)。そして、時刻t1において空燃比センサの検出値(実空燃比)と目標空燃比との差が所定値以上であるため(ステップ300)、時刻t1以降は燃焼安定性FB制御が実施される(ステップ400)。従って、時刻t1における実空燃比を仮の目標空燃比の始点として設定する(ステップ401)。なお、図5中の一転鎖線は仮の目標空燃比を示している。 The air-fuel ratio sensor is warmed up by the open control, and at time t1, the air-fuel ratio sensor is warmed up. That is, the air-fuel ratio sensor is effective. As a result, the air-fuel ratio sensor availability flag and the air-fuel ratio FB flag are turned “ON”, and the combustion stability FB control or the air-fuel ratio FB control can be executed (step 100). Since the difference between the detected value of the air-fuel ratio sensor (actual air-fuel ratio) and the target air-fuel ratio is greater than or equal to a predetermined value at time t1 (step 300), combustion stability FB control is performed after time t1 (step 300). 400). Therefore, the actual air-fuel ratio at time t1 is set as the temporary target air-fuel ratio start point (step 401). Note that a one-dot chain line in FIG. 5 indicates a temporary target air-fuel ratio.
時刻t1〜時刻t2間では、燃焼安定性が安定性限界よりも小さい値であるため(ステップ402)、目標値徐変率を大きな値に設定する。つまり、仮の目標空燃比が目標空燃比に早く近づくように設定する(ステップ404)。そして仮の目標空燃比と実空燃比とから燃料噴射量の補正が行われ、空燃比が補正される。また、時刻t2、t3、t4では燃焼安定性が安定性限界を上回り燃焼状態が悪化しているため、目標値徐変率を小さな値に設定する。つまり、仮の目標空燃比が目標空燃比に近づく早さが遅くなるように設定する(ステップ405)。 Between time t1 and time t2, since the combustion stability is a value smaller than the stability limit (step 402), the target value gradual change rate is set to a large value. That is, the provisional target air-fuel ratio is set so as to approach the target air-fuel ratio quickly (step 404). Then, the fuel injection amount is corrected from the temporary target air-fuel ratio and the actual air-fuel ratio, and the air-fuel ratio is corrected. At times t2, t3, and t4, the combustion stability exceeds the stability limit and the combustion state deteriorates, so the target value gradual change rate is set to a small value. That is, the speed at which the temporary target air-fuel ratio approaches the target air-fuel ratio is set to be slow (step 405).
そして、時刻t5において、実空燃比が目標空燃比に到達した時点で始動時における空燃比制御を終了する。 Then, at time t5, when the actual air-fuel ratio reaches the target air-fuel ratio, the air-fuel ratio control at the time of start is ended.
次に本実施形態の作用効果について説明する。 Next, the effect of this embodiment is demonstrated.
上記構成によれば、空燃比センサ20が有効になったときに検出した実空燃比と目標空燃比とに所定値以上差がある場合は、空燃比徐変制御手段によって仮の目標空燃比が設定されると共に、燃焼安定性に応じて目標値徐変率が設定される。つまり、燃焼安定性に基づき仮の目標空燃比が目標空燃比に近づく速度が調節される。そして、通常の空燃比FB制御が参照する目標空燃比を仮の目標空燃比とすることによって、仮の目標空燃比と実空燃比とによって燃料噴射量の補正が行われる。従って、目標空燃比に対して徐々に近づくように設定される仮の目標空燃比と実空燃比とに基づき燃料噴射量の補正が行われるため、実空燃比も徐々に目標空燃比に近づいていく。具体的には、仮の目標空燃比が目標空燃比に近づく速度と略同じ速度で実空燃比が目標空燃比に近づいていく。つまり、燃焼安定性に基づき実空燃比を目標空燃比に近づける速度を設定している。これにより、オープン制御によって実空燃比と目標空燃比とが乖離した場合であっても、燃料噴射量の補正量が急激に変化することがない。従って、実空燃比がリーン又はリッチ側に急激に変化することがないため、燃焼状態が不安定になることを防止することができ、その結果、エミッションの悪化やドライバビリティの悪化を防止することができる。
According to the above configuration, if there is a difference between the actual air-fuel ratio detected when the air-
また、燃料噴射量が急激に変化することがないため、点火プラグがくすぶり失火することを防止することができる。 Further, since the fuel injection amount does not change abruptly, it is possible to prevent the ignition plug from smoldering and misfiring.
[第2実施形態]
第2実施形態を含む以下の実施形態においては、既に説明した実施形態の構成と同一構成又は相当する構成については、同一番号を付しその重複説明を省略する。
[Second Embodiment]
In the following embodiments including the second embodiment, the same or corresponding configurations as the configurations of the already described embodiments are denoted by the same reference numerals, and redundant description thereof is omitted.
第1実施形態では、燃焼安定性に基づいて仮の目標空燃比を設定することにより、実空燃比が目標空燃比に徐々に近づくように制御していた。これに対し、第2実施形態では、仮の目標空燃比を設定することなく、燃焼安定性に応じてFBゲインを設定することにより燃料噴射量を補正し、実空燃比が徐々に目標空燃比に近づくように制御する。 In the first embodiment, the provisional target air-fuel ratio is set based on the combustion stability, so that the actual air-fuel ratio is controlled to gradually approach the target air-fuel ratio. On the other hand, in the second embodiment, the fuel injection amount is corrected by setting the FB gain according to the combustion stability without setting the temporary target air-fuel ratio, and the actual air-fuel ratio gradually becomes the target air-fuel ratio. Control to approach.
ここでFBゲインについて説明する。FBゲインとは空燃比FB係数FAFを算出する際の係数である。例えば、PID制御により空燃比FB係数FAFを算出する場合は、目標空燃比と実空燃比との偏差に対する比例項・積分項・微分項に基づき次式より算出される。 Here, the FB gain will be described. The FB gain is a coefficient for calculating the air-fuel ratio FB coefficient FAF. For example, when the air-fuel ratio FB coefficient FAF is calculated by PID control, it is calculated from the following equation based on a proportional term, an integral term, and a differential term with respect to the deviation between the target air-fuel ratio and the actual air-fuel ratio.
FAF=Kp×偏差 + Ki×偏差の積算値 + Kd×前回偏差との差
Kp・Ki・Kdはそれぞれ比例係数・積分係数・微分係数であり、これらの係数をFBゲインという。
FAF = Kp × deviation + Ki × integrated value of deviation + Kd × difference from previous deviation Kp, Ki, and Kd are a proportional coefficient, an integral coefficient, and a differential coefficient, respectively, and these coefficients are called FB gains.
PID制御という観点で第1実施形態を考えると、第1実施形態では、燃焼安定性に基づいて設定された仮の目標空燃比と実空燃比との偏差を用いて燃焼安定性FB係数FAF2を算出しており、FBゲインの値は通常の空燃比FB制御と同じ値を用いていた。これに対し、第2実施形態では、燃焼安定性に応じてこれらの係数(FBゲイン)を変更する。 Considering the first embodiment in terms of PID control, in the first embodiment, the combustion stability FB coefficient FAF2 is calculated using the deviation between the temporary target air-fuel ratio and the actual air-fuel ratio set based on the combustion stability. The calculated FB gain value is the same as that in the normal air-fuel ratio FB control. On the other hand, in the second embodiment, these coefficients (FB gain) are changed according to the combustion stability.
以下、第2実施形態における燃焼安定性FB制御の処理手順について、図6に基づき説明する。 Hereinafter, the processing procedure of the combustion stability FB control in the second embodiment will be described with reference to FIG.
燃焼安定性FB制御(ステップ400)は、図2のステップ300にて、目標空燃比と実空燃比との差が所定値以上であると判定された場合に実施される。ステップ601では、燃焼安定性を検出し、燃焼安定性が悪化したかどうかを判定する。燃焼安定性は、第1実施形態と同様に、筒内圧センサにより検出される燃焼室内の圧力変化のばらつきやクランク角センサ15により検出されるクランク軸の回転のばらつきに基づいて検出される。
Combustion stability FB control (step 400) is performed when it is determined in
燃焼安定性が悪化したかどうかの判定は、燃焼安定性と安定性限界とを比較することにより行われる。具体的には、燃焼安定性が安定性限界以上の場合は燃焼安定性が悪化している、つまり前回の燃焼が適切に行われていないと判断し、燃焼安定性が安定性限界よりも小さい場合は前回の燃焼が良好に行われていると判断する。このような方法で燃焼安定性が悪化したかどうかが判定され、燃焼安定性が悪化している場合はステップ602に移行し、燃焼安定性が悪化していない場合はステップ603に移行する。 Whether the combustion stability has deteriorated is determined by comparing the combustion stability with the stability limit. Specifically, if the combustion stability is above the stability limit, it is judged that the combustion stability has deteriorated, that is, the previous combustion has not been performed properly, and the combustion stability is smaller than the stability limit. In this case, it is determined that the previous combustion is performed well. It is determined whether or not the combustion stability is deteriorated by such a method. If the combustion stability is deteriorated, the process proceeds to step 602. If the combustion stability is not deteriorated, the process proceeds to step 603.
ステップ602及びステップ603では、燃焼安定性に基づき実空燃比を目標空燃比に近づける速度を設定する。具体的には、前述したFBゲインを設定する。本制御は、空燃比センサ20の暖機完了時において実空燃比と目標空燃比との差が所定値以上である場合に実施されるため、通常の空燃比FB制御に用いるFBゲインを用いると、空燃比FB補正係数が大きな値となり、燃料噴射量の補正量が多くなるため空燃比が急激に変化し燃焼状態をさらに悪化させる可能性がある。
In
ステップ601において燃焼安定性が悪化していると判定されたステップ602では、燃料噴射量の補正量を、通常の空燃比FB制御による燃料噴射量の補正量よりも少なくする必要がある。そのため、燃焼安定性に基づいてFBゲインを、通常の空燃比FB制御時と比較して小さな値に設定する。そして、FBゲインの設定後ステップ604に移行する。
In
ステップ602に対し、前回の燃焼が良好に行われていると判定されたステップ603では、安定性限界に対して、まだ余裕があるためFBゲインを前回のFBゲインよりも大きな値に設定しても燃焼安定性が悪化する可能性が少ない。そのため、前回のFBゲインよりも大きな値に設定する。これにより、実空燃比が目標空燃比に近づく速度が早くなる。そして、FBゲインの設定後ステップ604へ移行する。
In
ステップ604では、ステップ602又はステップ603にて燃焼安定性に応じて設定されたFBゲインに基づき燃料噴射量を補正する。具体的には、燃焼安定性に応じて設定されたFBゲイン(PID制御時においてはKp・Ki・Kd)と目標空燃比と実空燃比とに基づいて算出される燃焼安定性FB係数FAF3と、基本燃料噴射量Tpとを用いて次式により燃料噴射量TAUを算出する。
In
TAU=Tp×FAF3×FALL
これにより、燃焼安定性に応じて設定された燃焼安定性FB係数によって燃料噴射量TAUが算出される。つまり、燃焼安定性に応じて実空燃比が目標空燃比に近づく速度を設定される。
TAU = Tp × FAF3 × FALL
Thus, the fuel injection amount TAU is calculated from the combustion stability FB coefficient set according to the combustion stability. That is, the speed at which the actual air-fuel ratio approaches the target air-fuel ratio is set according to the combustion stability.
次いでステップ605では、補正された燃料噴射量によって燃焼が行われた後の実空燃比が目標空燃比に到達したかどうかが判定される。実空燃比が目標空燃比に到達した場合は本ルーチンを終了し、実空燃比が目標空燃比に到達していない場合は、ステップ601に移行し、ステップ601〜ステップ605の処理が行われる。以上の処理手順によって燃焼安定性FB制御が行われる。
Next, at
次に、上述した始動時における空燃比制御の処理手順に対応する各種制御の遷移状態を図7に基づき説明する。 Next, transition states of various controls corresponding to the processing procedure of the air-fuel ratio control at the time of starting described above will be described with reference to FIG.
まず、時刻t0においてエンジンが始動される。始動直後は空燃比センサ20の暖機が完了していないため、空燃比センサ使用可否フラグ、及び空燃比FBフラグは「OFF」となっている(ステップ100)。そのため、時刻t0〜t1間は、オープン制御によって予め決められた燃料が噴射される(ステップ200)。
First, the engine is started at time t0. Immediately after start-up, the air-
オープン制御によって空燃比センサの暖機が行われ、時刻t1にて空燃比センサの暖機が完了する。つまり、空燃比センサが有効となる。これにより、空燃比センサ使用可否フラグ、及び空燃比FBフラグが「ON」となり、FB制御が実行可能となる(ステップ100)。さらに、時刻t1において空燃比センサの検出値(実空燃比)と目標空燃比との差が所定値以上であるため(ステップ300)、時刻t1以降は燃焼安定性FB制御が実施される(ステップ400)。つまり、燃焼安定性を検出し、FBゲインの設定、空燃比の補正が開始される(ステップ601〜ステップ605)。
The air-fuel ratio sensor is warmed up by the open control, and at time t1, the air-fuel ratio sensor is warmed up. That is, the air-fuel ratio sensor is effective. As a result, the air-fuel ratio sensor availability flag and the air-fuel ratio FB flag are set to “ON”, and the FB control can be executed (step 100). Further, since the difference between the detected value of the air-fuel ratio sensor (actual air-fuel ratio) and the target air-fuel ratio is greater than or equal to a predetermined value at time t1 (step 300), combustion stability FB control is performed after time t1 (step step). 400). That is, the combustion stability is detected, the FB gain setting and the air-fuel ratio correction are started (
時刻t1〜時刻t2間では、燃焼安定性が安定性限界よりも小さい値であるため(ステップ601)、FBゲインを大きな値に設定する。つまり、実空燃比が目標空燃比に早く近づくように設定する(ステップ603)。また、時刻t2、t3、t4では燃焼安定性が安定性限界を上回り燃焼状態が悪化しているため(ステップ601)、FBゲインを小さな値に設定する。つまり、実空燃比が目標空燃比に近づく早さが遅くなるように設定する(ステップ602)。 Between time t1 and time t2, the combustion stability is a value smaller than the stability limit (step 601), so the FB gain is set to a large value. That is, the actual air-fuel ratio is set so as to approach the target air-fuel ratio quickly (step 603). At times t2, t3, and t4, the combustion stability exceeds the stability limit and the combustion state is deteriorated (step 601), so the FB gain is set to a small value. That is, the speed at which the actual air-fuel ratio approaches the target air-fuel ratio is set to be slow (step 602).
そして、時刻t5において、実空燃比が目標空燃比に到達した時点で始動時における空燃比制御を終了する。 Then, at time t5, when the actual air-fuel ratio reaches the target air-fuel ratio, the air-fuel ratio control at the time of start is ended.
次に、第2実施形態の作用効果について説明する。 Next, the function and effect of the second embodiment will be described.
上記構成によれば、空燃比センサ20が有効になったときに検出した実空燃比と目標空燃比とに差がある場合は、燃焼安定性に基づきFBゲインが設定される。具体的には、燃焼安定性が悪化している場合は実空燃比が目標空燃比に近づく速度が遅くなるようにFBゲインが設定される。逆に、燃焼安定性が良好な場合は実空燃比が目標空燃比に近づく速度が早くなるようにFBゲインが設定される。つまり、燃焼安定性に応じて実空燃比が目標空燃比に近づく速度が設定される。これにより、オープン制御によって実空燃比と目標空燃比とが乖離した場合であっても、FB制御が開始されても燃料噴射量の補正量が急激に変化することがない。従って、実空燃比がリーン又はリッチ側に急激に変化することがないため、燃焼状態が不安定になることを防止することができ、その結果、エミッションの悪化やドライバビリティの悪化を防止することができる。
According to the above configuration, when there is a difference between the actual air-fuel ratio detected when the air-
以上のごとく、上記第1実施形態及び第2実施形態によれば、FB制御による燃料噴射量の補正量を燃焼安定性に応じて設定することにより、エミッションやドライバビリティの悪化を防止した内燃機関の空燃比制御装置を提供することができる。 As described above, according to the first embodiment and the second embodiment, the internal combustion engine that prevents the deterioration of emission and drivability by setting the correction amount of the fuel injection amount by the FB control according to the combustion stability. The air-fuel ratio control apparatus can be provided.
[他の実施形態]
・第1実施形態及び第2実施形態では、燃焼安定性FB制御において、燃焼安定性が良好な場合は実空燃比を目標空燃比に近づける速度を前回と比較して早くなるように設定していたが、前回と同じ速度で設定してもよい。
[Other Embodiments]
In the first and second embodiments, in the combustion stability FB control, when the combustion stability is good, the speed at which the actual air-fuel ratio is brought close to the target air-fuel ratio is set to be faster than the previous time. However, it may be set at the same speed as the previous time.
・第1実施形態及び第2実施形態では、空燃比センサの暖機完了時において、実空燃比と目標空燃比とに所定値以上の差がある場合に燃焼安定性FB制御を実施し、実空燃比が目標空燃比に到達するまで燃焼安定性FB制御を繰り返し行っていた。しかし、実空燃比が目標空燃比に到達する前であっても、燃焼安定性FB制御によって実空燃比と目標空燃比との差が所定値以下となった場合には、燃焼安定性FBを繰り返し行うことなく通常の空燃比FB制御に切り換える態様にしてもよい。 In the first embodiment and the second embodiment, when the air-fuel ratio sensor is warmed up, combustion stability FB control is performed when there is a difference of a predetermined value or more between the actual air-fuel ratio and the target air-fuel ratio. The combustion stability FB control was repeatedly performed until the air-fuel ratio reached the target air-fuel ratio. However, even before the actual air-fuel ratio reaches the target air-fuel ratio, if the difference between the actual air-fuel ratio and the target air-fuel ratio is not more than a predetermined value by the combustion stability FB control, the combustion stability FB is reduced. It is also possible to switch to normal air-fuel ratio FB control without repeating.
1 エンジン(内燃機関)
6 ECU
12 インジェクタ(燃料噴射手段)
15 クランク角センサ(燃焼安定性検出手段)
20 排気管
20 空燃比センサ(空燃比検出手段)
1 engine (internal combustion engine)
6 ECU
12 Injector (fuel injection means)
15 Crank angle sensor (combustion stability detection means)
20
Claims (6)
前記内燃機関の排気管に設置され排出ガスの空燃比を検出する空燃比検出手段と、
前記空燃比検出手段の暖機が完了したことを判定する暖機判定手段と、
前記内燃機関の燃焼状態の安定性を検出する燃焼安定性検出手段と、
前記暖機判定手段が前記空燃比検出手段の暖機が完了したと判定した場合において前記空燃比検出手段の検出した空燃比(以下、実空燃比という)と目標空燃比とに基づき前記燃料噴射手段の燃料噴射量を補正する空燃比フィードバック制御手段(以下、空燃比FB制御手段という)と、
前記空燃比検出手段の暖機が完了した時点における前記実空燃比と前記目標空燃比とに所定値以上差がある場合、前記燃焼安定制検出手段にて検出された燃焼安定性に基づき前記実空燃比を前記目標空燃比に近づける速度を設定する空燃比徐変制御手段と
を備え、
前記空燃比FB制御手段は、前記空燃比徐変制御手段により設定された速度に基づいて空燃比FB制御を実行することを特徴とする内燃機関の空燃比制御装置。 Fuel injection means for injecting fuel into the internal combustion engine;
Air-fuel ratio detection means for detecting the air-fuel ratio of the exhaust gas installed in the exhaust pipe of the internal combustion engine;
A warm-up determination unit for determining that the warm-up of the air-fuel ratio detection unit is completed;
Combustion stability detecting means for detecting the stability of the combustion state of the internal combustion engine;
When the warm-up determination means determines that the air-fuel ratio detection means has been warmed up, the fuel injection is performed based on the air-fuel ratio detected by the air-fuel ratio detection means (hereinafter referred to as the actual air-fuel ratio) and the target air-fuel ratio. Air-fuel ratio feedback control means (hereinafter referred to as air-fuel ratio FB control means) for correcting the fuel injection amount of the means;
If there is a difference between the actual air-fuel ratio and the target air-fuel ratio at the time when the air-fuel ratio detection means has been warmed up by a predetermined value or more, the actual air-fuel ratio detection means is based on the combustion stability detected by the combustion stability control detection means. Air-fuel ratio gradual change control means for setting a speed at which the air-fuel ratio approaches the target air-fuel ratio,
An air-fuel ratio control apparatus for an internal combustion engine, wherein the air-fuel ratio FB control means executes air-fuel ratio FB control based on a speed set by the air-fuel ratio gradual change control means.
前記空燃比FB制御手段は、前記目標値徐変率により設定された仮の目標空燃比と前記実空燃比とに基づき前記燃料噴射量を補正することを特徴とする請求項1又は請求項2に記載の内燃機関の空燃比制御装置。 The air-fuel ratio gradual change control means completes warming-up of the air-fuel ratio detection means when there is a difference between the actual air-fuel ratio and the target air-fuel ratio at the time when warm-up of the air-fuel ratio detection means is completed. The actual air-fuel ratio detected from time to time is set as the starting point of the temporary target air-fuel ratio, and the rate of change in speed at which the temporary target air-fuel ratio is brought close to the target air-fuel ratio based on the combustion stability (target value gradual change rate) Set
3. The air-fuel ratio FB control unit corrects the fuel injection amount based on a temporary target air-fuel ratio set by the target value gradual change rate and the actual air-fuel ratio. An air-fuel ratio control device for an internal combustion engine according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010095873A JP2011226350A (en) | 2010-04-19 | 2010-04-19 | Air-fuel ratio control device of internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010095873A JP2011226350A (en) | 2010-04-19 | 2010-04-19 | Air-fuel ratio control device of internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011226350A true JP2011226350A (en) | 2011-11-10 |
Family
ID=45041974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010095873A Withdrawn JP2011226350A (en) | 2010-04-19 | 2010-04-19 | Air-fuel ratio control device of internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011226350A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI563188B (en) * | 2014-09-23 | 2016-12-21 | ||
JP2018091272A (en) * | 2016-12-06 | 2018-06-14 | トヨタ自動車株式会社 | Control device for internal combustion engine |
JP2018105223A (en) * | 2016-12-26 | 2018-07-05 | トヨタ自動車株式会社 | Control device for internal combustion engine |
-
2010
- 2010-04-19 JP JP2010095873A patent/JP2011226350A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI563188B (en) * | 2014-09-23 | 2016-12-21 | ||
JP2018091272A (en) * | 2016-12-06 | 2018-06-14 | トヨタ自動車株式会社 | Control device for internal combustion engine |
JP2018105223A (en) * | 2016-12-26 | 2018-07-05 | トヨタ自動車株式会社 | Control device for internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8423267B2 (en) | Cetane number detection device and cetane number detection method | |
JP2008248769A (en) | Air fuel ratio control device for internal combustion engine | |
JP2010112244A (en) | Control device and control method | |
JP2008309036A (en) | Fuel estimation device | |
JP5278466B2 (en) | Cylinder air-fuel ratio variation abnormality detection device | |
JP2011226350A (en) | Air-fuel ratio control device of internal combustion engine | |
JP2009250075A (en) | Fuel injection amount control device and fuel injection system | |
JP5273310B2 (en) | Control device for internal combustion engine | |
JP2018105191A (en) | Control device of internal combustion engine | |
JP5187537B2 (en) | Fuel injection control device for internal combustion engine | |
US6536414B2 (en) | Fuel injection control system for internal combustion engine | |
US20090105931A1 (en) | Controller for internal combustion engine | |
JP2010168905A (en) | Air-fuel ratio learning control device for internal combustion engine | |
US9932923B2 (en) | Abnormality determination apparatus | |
JP4379670B2 (en) | Fuel property determination device for internal combustion engine | |
JP6489298B2 (en) | Fuel injection control device for internal combustion engine | |
JP2007023796A (en) | Fuel injection device | |
JP6733690B2 (en) | Combustion control device | |
JP4527133B2 (en) | Control device for internal combustion engine | |
JP6331016B2 (en) | Fuel injection control device for internal combustion engine | |
JP6777879B2 (en) | Fuel injection control device | |
JP2750777B2 (en) | Electronic control fuel supply device for internal combustion engine | |
JP4462419B2 (en) | Engine exhaust system abnormality detection device | |
JP2005201163A (en) | Control device for internal combustion engine | |
JP2012087651A (en) | Control device of internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20130702 |