[go: up one dir, main page]

JP2018091272A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2018091272A
JP2018091272A JP2016236798A JP2016236798A JP2018091272A JP 2018091272 A JP2018091272 A JP 2018091272A JP 2016236798 A JP2016236798 A JP 2016236798A JP 2016236798 A JP2016236798 A JP 2016236798A JP 2018091272 A JP2018091272 A JP 2018091272A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
cylinder
catalyst temperature
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016236798A
Other languages
Japanese (ja)
Other versions
JP6737156B2 (en
Inventor
良行 正源寺
Yoshiyuki Shogenji
良行 正源寺
啓一 明城
Keiichi Myojo
啓一 明城
勇喜 野瀬
Yuki Nose
勇喜 野瀬
英二 生田
Eiji Ikuta
英二 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016236798A priority Critical patent/JP6737156B2/en
Publication of JP2018091272A publication Critical patent/JP2018091272A/en
Application granted granted Critical
Publication of JP6737156B2 publication Critical patent/JP6737156B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】触媒昇温制御において、触媒昇温制御の開始及び終了による空燃比の急激な変化に伴うトルクショックを低減するとともに、点火時期遅角制御による失火の発生を予防する。【解決手段】内燃機関の制御装置は、任意の気筒でリッチ燃焼を実行し他の気筒でリーン燃焼を実行して触媒を昇温する触媒昇温制御を実行する実行部と、触媒昇温制御の開始要求がなされると、各気筒の空燃比を触媒昇温制御実行時の目標空燃比まで徐変させ、触媒昇温制御の終了要求がなされると、各気筒の空燃比を、内燃機関の運転状態に応じた目標空燃比まで徐変させる徐変処理部と、触媒昇温制御の実行中、又は、徐変中に、ノッキング抑制の目的以外の点火時期遅角要求がなされると、各気筒の空燃比を内燃機関の運転状態に応じた目標空燃比とするまでの時間を、ノッキング抑制の目的以外の点火時期遅角要求がない場合よりも短縮する時間短縮部と、を備える。【選択図】図1PROBLEM TO BE SOLVED: To reduce a torque shock caused by a sudden change of an air-fuel ratio due to start and end of catalyst temperature raising control, and prevent misfire due to ignition timing retard control. A control device for an internal combustion engine includes an execution unit that executes a rich combustion in an arbitrary cylinder and a lean combustion in another cylinder to execute a catalyst temperature increase control for increasing a temperature of a catalyst, and a catalyst temperature increase control. Is started, the air-fuel ratio of each cylinder is gradually changed to the target air-fuel ratio at the time of executing the catalyst temperature raising control, and when the end request of the catalyst temperature raising control is issued, the air-fuel ratio of each cylinder is changed to the internal combustion engine. When the ignition timing retard request other than the purpose of suppressing knocking is made during the execution of the catalyst temperature raising control or during the gradual change, the gradual change processing unit that gradually changes to the target air-fuel ratio according to the operating state of A time shortening unit that shortens the time until the air-fuel ratio of each cylinder reaches the target air-fuel ratio according to the operating state of the internal combustion engine as compared to when there is no ignition timing retard request other than for the purpose of suppressing knocking. [Selection diagram] Figure 1

Description

本発明は、内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine.

エンジンの排気系には排気ガスを浄化するための触媒が設けられている。触媒の排ガス浄化能力を有効に発揮させるためには、触媒昇温を行い、触媒の温度を活性化温度まで上昇させる必要がある。   An engine exhaust system is provided with a catalyst for purifying exhaust gas. In order to effectively exhibit the exhaust gas purification ability of the catalyst, it is necessary to raise the catalyst temperature and raise the catalyst temperature to the activation temperature.

特許文献1では、複数の気筒のうち任意の気筒において筒内における燃焼時の空燃比が理論空燃比よりも小さいリッチ燃焼を実行し、他の気筒において筒内における燃焼時の空燃比が理論空燃比よりも大きいリーン燃焼を実行し、複数の気筒の空燃比の平均が理論空燃比となるよう各気筒での燃料噴射量を制御することで、触媒昇温を促進している。   In Patent Document 1, rich combustion in which an air-fuel ratio at the time of combustion in a cylinder is smaller than the stoichiometric air-fuel ratio in any cylinder among a plurality of cylinders is performed, and the air-fuel ratio at the time of combustion in a cylinder is stoichiometrically empty in other cylinders. Catalyst combustion is promoted by performing lean combustion larger than the fuel ratio and controlling the fuel injection amount in each cylinder so that the average of the air-fuel ratios of the plurality of cylinders becomes the stoichiometric air-fuel ratio.

特開2012−57492号公報JP 2012-57492 A

リッチ燃焼とリーン燃焼とを別々の気筒で実行させる触媒昇温制御において、空燃比の理論空燃比からの増量割合(以下、ディザ振幅という)を大きくすればするほど、昇温効果は大きくなる。しかしながら、ディザ振幅が大きい場合、触媒昇温制御の開始及び終了時、空燃比の急激な変化に伴いトルクショックが発生するおそれがある。   In the catalyst temperature increase control in which rich combustion and lean combustion are executed in separate cylinders, the temperature increase effect increases as the ratio of increase in the air-fuel ratio from the theoretical air-fuel ratio (hereinafter referred to as dither amplitude) increases. However, when the dither amplitude is large, a torque shock may occur due to a rapid change in the air-fuel ratio at the start and end of the catalyst temperature increase control.

一方、車両の加速減速時又は変速時のショック低減やシフトチェンジの早期化などのために、点火時期を遅角させてエンジン発生トルクを抑制することがある。このときに、触媒昇温制御が実行中であると、特にリーン燃焼を実行する気筒においては失火に対する点火時期の遅角余裕がないため、わずかな点火時期遅角が失火を引き起こす可能性があり、点火時期遅角要求が制限され、エンジン発生トルクが希望通りにコントロールできないおそれがある。   On the other hand, the engine generated torque may be suppressed by retarding the ignition timing in order to reduce shock at the time of acceleration / deceleration of the vehicle or at the time of shifting or to speed up the shift change. At this time, if the catalyst temperature rise control is being performed, there is no ignition timing delay margin for misfire, particularly in a cylinder that performs lean combustion, so a slight ignition timing delay may cause misfire. The ignition timing retardation request is limited, and the engine generated torque may not be controlled as desired.

そこで、本明細書開示の内燃機関の制御装置は、リッチ燃焼とリーン燃焼とを別々の気筒で実行させる触媒昇温制御において、触媒昇温制御の開始及び終了による空燃比の急激な変化に伴うトルクショックを低減するとともに、点火時期遅角制御による失火の発生を抑制することを課題とする。   Therefore, the control device for an internal combustion engine disclosed in the present specification is accompanied by a rapid change in the air-fuel ratio due to the start and end of catalyst temperature increase control in catalyst temperature increase control in which rich combustion and lean combustion are executed in separate cylinders. It is an object of the present invention to reduce torque shock and suppress the occurrence of misfire due to ignition timing retardation control.

かかる課題を解決するために、本明細書に開示された内燃機関の制御装置は、内燃機関の複数の気筒のうち、任意の気筒で筒内における燃焼時の空燃比が理論空燃比よりも小さいリッチ燃焼を実行させ、他の気筒で筒内における燃焼時の空燃比が理論空燃比よりも大きいリーン燃焼を実行させ、前記複数の気筒からの排気を浄化する触媒を昇温する触媒昇温制御を実行する実行部と、前記触媒昇温制御の開始要求がなされた場合、前記各気筒の燃焼時の空燃比を前記触媒昇温制御実行時の目標空燃比となるまで徐変させ、前記触媒昇温制御の終了要求がなされた場合、前記各気筒の燃焼時の空燃比を、前記触媒昇温制御の終了後の前記内燃機関の運転状態に応じた目標空燃比となるまで徐変させる徐変処理部と、前記触媒昇温制御の実行中、又は、前記徐変中に、ノッキング抑制の目的以外の点火時期遅角要求がなされた場合、前記各気筒の燃焼時の空燃比を前記内燃機関の運転状態に応じた目標空燃比とするまでの時間を、前記ノッキング抑制の目的以外の点火時期遅角要求がない場合よりも短縮する時間短縮部と、を備える。   In order to solve such a problem, an internal combustion engine control device disclosed in the present specification has an air-fuel ratio at the time of combustion in a cylinder of any of the plurality of cylinders of the internal combustion engine smaller than the stoichiometric air-fuel ratio. Catalyst temperature increase control for increasing the temperature of a catalyst that purifies exhaust from the plurality of cylinders by executing rich combustion, performing lean combustion in which the air-fuel ratio during combustion in the cylinder is greater than the stoichiometric air-fuel ratio in other cylinders When the catalyst temperature raising control start request is made, the air-fuel ratio at the time of combustion of each cylinder is gradually changed until the target air-fuel ratio at the time of performing the catalyst temperature raising control is reached, and the catalyst When a request to end the temperature increase control is made, the air-fuel ratio at the time of combustion of each cylinder is gradually changed until the target air-fuel ratio according to the operating state of the internal combustion engine after the completion of the catalyst temperature increase control is reached. During the execution of the change processing unit and the catalyst temperature increase control, When the ignition timing retardation request other than the purpose of suppressing knocking is made during the gradual change, the air-fuel ratio at the time of combustion of each cylinder is set to the target air-fuel ratio according to the operating state of the internal combustion engine. A time shortening unit that shortens the time as compared with a case where there is no ignition timing retardation request other than the purpose of suppressing knocking.

本明細書開示の内燃機関の制御装置によれば、リッチ燃焼とリーン燃焼とを別々の気筒で実行させる触媒昇温制御において、触媒昇温制御の開始及び終了による空燃比の急激な変化に伴うトルクショックを低減するとともに、点火時期遅角制御による失火の発生を抑制することができる。   According to the control device for an internal combustion engine disclosed in the present specification, in catalyst temperature increase control in which rich combustion and lean combustion are performed in separate cylinders, accompanying a rapid change in the air-fuel ratio due to the start and end of catalyst temperature increase control Torque shock can be reduced and the occurrence of misfire due to ignition timing retardation control can be suppressed.

図1は、実施形態に係る内燃機関の制御装置を適用したエンジンシステムの構成を示す概略図である。FIG. 1 is a schematic diagram illustrating a configuration of an engine system to which an internal combustion engine control apparatus according to an embodiment is applied. 図2は、ECUが実行する触媒昇温制御からの復帰処理の一例を示すフローチャートである。FIG. 2 is a flowchart illustrating an example of a return process from the catalyst temperature increase control executed by the ECU. 図3は、触媒昇温制御からの復帰処理におけるリッチ気筒での空燃比及びリーン気筒での空燃比の変化の一例を示すタイムチャートである。FIG. 3 is a time chart showing an example of changes in the air-fuel ratio in the rich cylinder and the air-fuel ratio in the lean cylinder in the return processing from the catalyst temperature increase control.

以下、本発明の実施形態について、添付図面を参照しつつ説明する。ただし、図面中、各部の寸法、比率等は、実際のものと完全に一致するようには図示されていない場合がある。また、図面によっては細部が省略されて描かれている場合もある。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, in the drawings, the dimensions, ratios, and the like of each part may not be shown so as to completely match the actual ones. In some cases, details are omitted in some drawings.

まず、図1を参照し、一実施形態に係る内燃機関の制御装置が適用されたエンジンシステムについて説明する。図1は、一実施形態に係る内燃機関の制御装置が適用されたエンジンシステム1の構成を示す概略図である。   First, an engine system to which a control device for an internal combustion engine according to an embodiment is applied will be described with reference to FIG. FIG. 1 is a schematic diagram illustrating a configuration of an engine system 1 to which an internal combustion engine control device according to an embodiment is applied.

図1に示すように、エンジンシステム1は、内燃機関20を備えている。内燃機関20は、シリンダブロック21に形成された燃焼室23の内部で燃料および空気の混合気を燃焼させ、燃焼室23内でピストン24を往復移動させることにより動力を発生する。内燃機関20は車両用多気筒エンジン(1気筒のみ図示)であり、本実施形態では、気筒#1〜#4を備える4気筒エンジンであるものとする。なお、内燃機関20が備える気筒数は、本実施形態に限定されるものではない。   As shown in FIG. 1, the engine system 1 includes an internal combustion engine 20. The internal combustion engine 20 generates power by burning a mixture of fuel and air in a combustion chamber 23 formed in the cylinder block 21 and reciprocating a piston 24 in the combustion chamber 23. The internal combustion engine 20 is a vehicular multi-cylinder engine (only one cylinder is shown). In this embodiment, the internal combustion engine 20 is a four-cylinder engine including cylinders # 1 to # 4. Note that the number of cylinders included in the internal combustion engine 20 is not limited to this embodiment.

内燃機関20のシリンダヘッドには、吸気ポートを開閉する吸気弁Viと、排気ポートを開閉する排気弁Veとが気筒ごとに設けられている。各吸気弁Viおよび各排気弁Veは図示しないカムシャフトによって開閉させられる。また、シリンダヘッドの頂部には、燃焼室23内の混合気に点火するための点火プラグ27が気筒ごとに取り付けられている。   The cylinder head of the internal combustion engine 20 is provided with an intake valve Vi for opening and closing an intake port and an exhaust valve Ve for opening and closing an exhaust port for each cylinder. Each intake valve Vi and each exhaust valve Ve are opened and closed by a camshaft (not shown). A spark plug 27 for igniting the air-fuel mixture in the combustion chamber 23 is attached to the top of the cylinder head for each cylinder.

各気筒の吸気ポートは気筒毎の枝管を介してサージタンク18に接続されている。サージタンク18の上流側には吸気管10が接続されており、吸気管10の上流端にはエアクリーナ19が設けられている。そして吸気管10には、上流側から順に、吸入空気量を検出するためのエアフローメータ15と、電子制御式スロットルバルブ13とが組み込まれている。   The intake port of each cylinder is connected to the surge tank 18 via a branch pipe for each cylinder. An intake pipe 10 is connected to the upstream side of the surge tank 18, and an air cleaner 19 is provided at the upstream end of the intake pipe 10. An air flow meter 15 for detecting the intake air amount and an electronically controlled throttle valve 13 are incorporated in the intake pipe 10 in order from the upstream side.

また、各気筒の吸気ポートには、燃料を吸気ポート内に噴射するインジェクタ12が設置されている。インジェクタ12から噴射された燃料は吸入空気と混合されて混合気をなし、この混合気が吸気弁Viの開弁時に燃焼室23に吸入され、ピストン24で圧縮され、点火プラグ27で点火燃焼させられる。   An injector 12 for injecting fuel into the intake port is installed at the intake port of each cylinder. The fuel injected from the injector 12 is mixed with intake air to form an air-fuel mixture. The air-fuel mixture is sucked into the combustion chamber 23 when the intake valve Vi is opened, compressed by the piston 24, and ignited and burned by the spark plug 27. It is done.

一方、各気筒の排気ポートは気筒毎の枝管を介して排気管30に接続されている。排気管30には、触媒31が設けられている。なお排気ポート、枝管及び排気管30により排気通路が形成される。触媒31の上流側には、排気ガスの空燃比を検出するための空燃比センサ33が設置されている。空燃比センサ33は、いわゆる広域空燃比センサであり、比較的広範囲に亘る空燃比を連続的に検出可能で、その空燃比に比例した値の信号を出力する。   On the other hand, the exhaust port of each cylinder is connected to the exhaust pipe 30 via a branch pipe for each cylinder. A catalyst 31 is provided in the exhaust pipe 30. An exhaust passage is formed by the exhaust port, the branch pipe, and the exhaust pipe 30. An air-fuel ratio sensor 33 for detecting the air-fuel ratio of the exhaust gas is installed on the upstream side of the catalyst 31. The air-fuel ratio sensor 33 is a so-called wide-area air-fuel ratio sensor, which can continuously detect an air-fuel ratio over a relatively wide range and outputs a signal having a value proportional to the air-fuel ratio.

エンジンシステム1は、ECU(Electronic Control Unit)50を備えている。ECU50は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及び記憶装置等を備える。ECU50は、ROMや記憶装置に記憶されたプログラムを実行することにより各種制御を行う。ECU50は、実行部、徐変処理部、及び時間短縮部を備える内燃機関の制御装置の一例である。   The engine system 1 includes an ECU (Electronic Control Unit) 50. The ECU 50 includes a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM), and a storage device. The ECU 50 performs various controls by executing a program stored in the ROM or the storage device. The ECU 50 is an example of an internal combustion engine control device that includes an execution unit, a gradual change processing unit, and a time shortening unit.

ECU50には、上述の点火プラグ27、スロットルバルブ13及びインジェクタ12等が電気的に接続されている。またECU50には、前述のエアフローメータ15、空燃比センサ33、内燃機関20のクランク角を検出するクランク角センサ25のほか、アクセル開度を検出するアクセル開度センサやその他の各種センサが図示されないA/D変換器等を介して電気的に接続されている。ECU50は、各種センサの検出値等に基づいて、所望の出力が得られるように、点火プラグ27、スロットルバルブ13、インジェクタ12等を制御し、点火時期、燃料噴射量、燃料噴射時期、スロットル開度等を制御する。   The ECU 50 is electrically connected to the spark plug 27, the throttle valve 13, the injector 12, and the like. In addition, the ECU 50 does not show the air flow meter 15, the air-fuel ratio sensor 33, the crank angle sensor 25 that detects the crank angle of the internal combustion engine 20, the accelerator opening sensor that detects the accelerator opening, and other various sensors. It is electrically connected via an A / D converter or the like. The ECU 50 controls the ignition plug 27, the throttle valve 13, the injector 12 and the like so as to obtain a desired output based on the detection values of various sensors, etc., and performs ignition timing, fuel injection amount, fuel injection timing, throttle opening. Control the degree etc.

また、ECU50は、触媒31を昇温するための触媒昇温制御を実行する。具体的には、ECU50は、4つの気筒のうち任意の気筒を、筒内における燃焼時の空燃比が理論空燃比よりも小さいリッチ燃焼が実行されるリッチ気筒に設定する。また、ECU50は、他の気筒を、筒内における燃焼時の空燃比が理論空燃比よりも大きいリーン燃焼が実行されるリーン気筒に設定する。ここで、触媒31は、触媒31に流入する排気ガスの空燃比が理論空燃比(ストイキ、例えば14.55)近傍のときにその浄化能力が高くなる。そのため、ECU50は、リッチ気筒でリッチ燃焼が実行され、リーン気筒でリーン燃焼が実行され、全ての気筒の空燃比の平均が理論空燃比となるように、各気筒への燃料噴射量を制御する。具体的には、ECU50は、空燃比センサ33により検出された空燃比が理論空燃比に一致するように、各気筒への燃料噴射量をフィードバック制御する。なお、触媒31に流入する排気ガスの空燃比は理論空燃比に一致しなくてもよく、理論空燃比を含む所定の範囲内にあればよい。   Further, the ECU 50 performs catalyst temperature increase control for increasing the temperature of the catalyst 31. Specifically, the ECU 50 sets an arbitrary cylinder among the four cylinders to a rich cylinder in which rich combustion in which the air-fuel ratio during combustion in the cylinder is smaller than the stoichiometric air-fuel ratio is executed. In addition, the ECU 50 sets the other cylinders as lean cylinders in which lean combustion is performed in which the air-fuel ratio during combustion in the cylinder is greater than the stoichiometric air-fuel ratio. Here, the purification capacity of the catalyst 31 becomes high when the air-fuel ratio of the exhaust gas flowing into the catalyst 31 is near the stoichiometric air-fuel ratio (stoichiometric, for example, 14.55). Therefore, the ECU 50 controls the fuel injection amount to each cylinder so that the rich combustion is executed in the rich cylinder, the lean combustion is executed in the lean cylinder, and the average of the air-fuel ratios of all the cylinders becomes the stoichiometric air-fuel ratio. . Specifically, the ECU 50 feedback-controls the fuel injection amount to each cylinder so that the air-fuel ratio detected by the air-fuel ratio sensor 33 matches the stoichiometric air-fuel ratio. Note that the air-fuel ratio of the exhaust gas flowing into the catalyst 31 may not coincide with the stoichiometric air-fuel ratio, and may be within a predetermined range including the stoichiometric air-fuel ratio.

また、ECU50は、上述した触媒昇温制御からの復帰処理を実行する。図2は、ECU50が実行する復帰処理の一例を示すフローチャートである。図2の処理は、触媒昇温制御が開始されると実行される。   In addition, the ECU 50 executes a return process from the catalyst temperature increase control described above. FIG. 2 is a flowchart illustrating an example of the return process executed by the ECU 50. The process of FIG. 2 is executed when the catalyst temperature increase control is started.

触媒昇温制御が開始されると、ECU50は、各気筒の空燃比を触媒昇温制御時の目標空燃比まで徐々に変化させる触媒昇温制御開始時空燃比徐変処理を開始する(ステップS11)。例えば、図3の時刻t1に触媒昇温制御要求がONとなると、ECU50は、触媒昇温制御開始時空燃比徐変処理を開始する。これにより、図3の時刻t1〜t2に示すように、リッチ気筒及びリーン気筒の空燃比が触媒昇温制御時の目標空燃比まで徐々に変化するので、触媒昇温制御の開始による空燃比の急激な変化に伴ってトルクショックが発生するのを抑制することができる。   When the catalyst temperature increase control is started, the ECU 50 starts the catalyst temperature increase control start air-fuel ratio gradual change process for gradually changing the air-fuel ratio of each cylinder to the target air-fuel ratio at the time of catalyst temperature increase control (step S11). . For example, when the catalyst temperature increase control request is turned on at time t1 in FIG. 3, the ECU 50 starts the catalyst temperature increase control start air-fuel ratio gradual change process. As a result, as shown at times t1 to t2 in FIG. 3, the air-fuel ratios of the rich cylinder and the lean cylinder gradually change to the target air-fuel ratio at the time of catalyst temperature increase control. It is possible to suppress the occurrence of a torque shock accompanying a sudden change.

次に、ECU50は、瞬時点火時期遅角要求があるか否かを判断する(ステップS13)。瞬時点火時期遅角要求とは、ノッキング抑制を目的とした点火時期の遅角要求以外の点火時期遅角要求であり、例えば、瞬間的にトルクを下げるためになされる点火時期遅角要求である。瞬時点火時期遅角要求としては、例えば、変速ショックを低減するための点火時期遅角要求や、フューエルカット前後のトルクを抑制するための点火時期遅角要求が挙げられる。   Next, the ECU 50 determines whether or not there is an instantaneous ignition timing retardation request (step S13). The instantaneous ignition timing retardation request is an ignition timing retardation request other than the ignition timing retardation request for the purpose of suppressing knocking, for example, an ignition timing retardation request made to instantaneously reduce the torque. . Examples of the instantaneous ignition timing retardation request include an ignition timing retardation request for reducing shift shock and an ignition timing retardation request for suppressing torque before and after fuel cut.

瞬時点火時期遅角要求がない場合(ステップS13/NO)、ECU50は、各気筒の空燃比が触媒昇温制御時の目標空燃比に到達したか否かを判断する(ステップS15)。   When there is no instantaneous ignition timing retardation request (step S13 / NO), the ECU 50 determines whether or not the air-fuel ratio of each cylinder has reached the target air-fuel ratio during the catalyst temperature increase control (step S15).

各気筒の空燃比が触媒昇温制御時の目標空燃比に到達していない場合(ステップS15/NO)、ステップS13に戻る。一方、各気筒の空燃比が触媒昇温制御時の目標空燃比に到達した場合(ステップS15/YES)、ECU50は、瞬時点火時期遅角要求があるか否かを判断する(ステップS21)。   When the air-fuel ratio of each cylinder has not reached the target air-fuel ratio at the time of catalyst temperature increase control (step S15 / NO), the process returns to step S13. On the other hand, when the air-fuel ratio of each cylinder reaches the target air-fuel ratio at the time of catalyst temperature increase control (step S15 / YES), the ECU 50 determines whether or not there is a request for retarding the instantaneous ignition timing (step S21).

瞬時点火時期遅角要求がない場合(ステップS21/NO)、ECU50は、触媒昇温制御の終了を要求する終了要求がある否かを判断する(ステップS25)。例えば、ECU50は、図3の時刻t2に示すように、触媒昇温制御要求がOFFになった場合に、終了要求があったと判断する。   When there is no instantaneous ignition timing retardation request (step S21 / NO), the ECU 50 determines whether or not there is an end request for requesting the end of the catalyst temperature increase control (step S25). For example, as shown at time t2 in FIG. 3, the ECU 50 determines that an end request has been made when the catalyst temperature increase control request is turned off.

触媒昇温制御の終了要求があった場合(ステップS25/YES)、ECU50は、各気筒の空燃比を、触媒昇温制御の終了後の内燃機関20の運転状態に応じて設定される目標空燃比まで徐々に変化させる触媒昇温制御終了時空燃比徐変処理を開始する(ステップS27)。ECU50は、例えば、図3の時刻t2において触媒昇温制御要求がOFFとなると、触媒昇温制御終了時空燃比徐変処理を開始する。そして、ECU50は、図3の時刻t2〜t3に示すように、各気筒の空燃比を内燃機関20の運転状態に応じた目標空燃比まで徐々に変化させる。   When there is a request to end the catalyst temperature rise control (step S25 / YES), the ECU 50 sets the air-fuel ratio of each cylinder to the target sky set according to the operating state of the internal combustion engine 20 after the catalyst temperature rise control ends. An air-fuel ratio gradual change process at the end of catalyst temperature increase control for gradually changing to the fuel ratio is started (step S27). For example, when the catalyst temperature increase control request is turned OFF at time t2 in FIG. 3, the ECU 50 starts the air-fuel ratio gradual change process at the end of the catalyst temperature increase control. Then, the ECU 50 gradually changes the air-fuel ratio of each cylinder to the target air-fuel ratio corresponding to the operating state of the internal combustion engine 20, as shown at times t2 to t3 in FIG.

触媒昇温制御終了時空燃比徐変処理の開始後、ECU50は、瞬時点火時期遅角要求があるか否かを判断する(ステップS29)。瞬時点火時期遅角要求がない場合(ステップS29/NO)、ECU50は、各気筒の空燃比が、内燃機関20の運転状態に応じた目標空燃比に到達したか否かを判断する(ステップS33)。図3では、例えば、時刻t3において、各気筒の空燃比が内燃機関20の運転状態に応じた目標空燃比に到達しているため、時刻t3において、ステップS33の判断がYESとなる。   After the start of the catalyst temperature increase control end air-fuel ratio gradual change processing, the ECU 50 determines whether or not there is a request for retarding the instantaneous ignition timing (step S29). When there is no instantaneous ignition timing retardation request (step S29 / NO), the ECU 50 determines whether or not the air-fuel ratio of each cylinder has reached the target air-fuel ratio corresponding to the operating state of the internal combustion engine 20 (step S33). ). In FIG. 3, for example, at time t3, the air-fuel ratio of each cylinder has reached the target air-fuel ratio corresponding to the operating state of the internal combustion engine 20, so the determination in step S33 becomes YES at time t3.

各気筒の空燃比が、内燃機関20の運転状態に応じた目標空燃比に到達していない場合(ステップS33/NO)、ステップS29に戻るが、各気筒の空燃比が、内燃機関20の運転状態に応じた目標空燃比に到達した場合(ステップS33/YES)、ECU50は、図2の処理を終了する。触媒昇温制御の終了時に瞬時点火時期遅角要求がない場合、各気筒の空燃比が内燃機関20に応じた目標空燃比まで徐々に変化するので、触媒昇温制御の終了による空燃比の急激な変化に伴ってトルクショックが発生するのを抑制することができる。   When the air-fuel ratio of each cylinder has not reached the target air-fuel ratio according to the operating state of the internal combustion engine 20 (step S33 / NO), the process returns to step S29, but the air-fuel ratio of each cylinder is the operation of the internal combustion engine 20. When the target air-fuel ratio corresponding to the state is reached (step S33 / YES), the ECU 50 ends the process of FIG. If there is no instantaneous ignition timing retardation request at the end of the catalyst temperature increase control, the air-fuel ratio of each cylinder gradually changes to the target air-fuel ratio corresponding to the internal combustion engine 20. It is possible to suppress the occurrence of a torque shock accompanying a change.

一方、ステップS27の触媒昇温制御終了時空燃比徐変処理の開始後、瞬時点火時期遅角要求があった場合(ステップS29/YES)、ECU50は、触媒昇温制御終了時空燃比徐変処理を中止し、各気筒の空燃比を、内燃機関20の運転状態に応じた目標空燃比とする(ステップS31)。例えば、図3の時刻t4において、触媒昇温制御要求がOFFとなったため、ECU50が、触媒昇温制御終了時空燃比徐変処理を開始したとする(ステップS27)。ここで、図3に示すように、時刻t5において、瞬時点火時期遅角要求がONとなると、ステップS29の判断が肯定され、ECU50は、触媒昇温制御終了時空燃比徐変処理を中止し、各気筒の空燃比を、内燃機関20の運転状態に応じた目標空燃比とする(ステップS31)。これにより、失火の発生を抑制できる。   On the other hand, after the start of the air-fuel ratio gradual change process at the end of catalyst temperature increase control in step S27, when there is an instantaneous ignition timing delay request (step S29 / YES), the ECU 50 performs the air-fuel ratio gradual change process at the end of catalyst temperature increase control. The operation is stopped, and the air-fuel ratio of each cylinder is set to the target air-fuel ratio according to the operating state of the internal combustion engine 20 (step S31). For example, it is assumed that the catalyst temperature increase control request is turned OFF at time t4 in FIG. 3, and thus the ECU 50 starts the air-fuel ratio gradual change process at the end of the catalyst temperature increase control (step S27). Here, as shown in FIG. 3, when the instantaneous ignition timing retardation request is turned on at time t5, the determination in step S29 is affirmed, and the ECU 50 stops the air-fuel ratio gradual change process at the end of the catalyst temperature increase control, The air-fuel ratio of each cylinder is set to a target air-fuel ratio corresponding to the operating state of the internal combustion engine 20 (step S31). Thereby, generation | occurrence | production of misfire can be suppressed.

なお、触媒昇温制御の終了要求がない場合(ステップS25/NO)、ステップS21に戻る。   In addition, when there is no request | requirement of completion | finish of catalyst temperature rising control (step S25 / NO), it returns to step S21.

各気筒の空燃比が触媒昇温制御時の目標空燃比に到達した後(ステップS15/YES)に瞬時点火時期遅角要求があった場合(ステップS21/YES)、ECU50は、触媒昇温制御終了時空燃比徐変処理を行わずに、各気筒の空燃比を、内燃機関20の運転状態に応じた目標空燃比とする(ステップS23)。例えば、図3の時刻t6に示すように、瞬時点火時期遅角要求がONになった場合、ECU50は、触媒昇温制御終了時空燃比徐変処理を行わず、各気筒の空燃比を内燃機関20の運転状態に応じた目標空燃比とする。これにより、失火の発生が抑制される。   When there is an instantaneous ignition timing retardation request (step S21 / YES) after the air-fuel ratio of each cylinder reaches the target air-fuel ratio at the time of catalyst temperature increase control (step S15 / YES), the ECU 50 causes the catalyst temperature increase control. The air-fuel ratio of each cylinder is set to the target air-fuel ratio corresponding to the operating state of the internal combustion engine 20 without performing the ending air-fuel ratio gradual change process (step S23). For example, as shown at time t6 in FIG. 3, when the instantaneous ignition timing retardation request is turned ON, the ECU 50 does not perform the air-fuel ratio gradual change processing at the end of the catalyst temperature increase control, and sets the air-fuel ratio of each cylinder to the internal combustion engine. The target air-fuel ratio is set according to the operation state of 20. Thereby, generation | occurrence | production of misfire is suppressed.

一方、触媒昇温制御開始時空燃比徐変処理中に瞬時点火時期遅角要求があった場合(ステップS13/YES)、ECU50は、触媒昇温制御終了時空燃比徐変処理を行わずに、各気筒の空燃比を内燃機関20の運転状態に応じた目標空燃比とする(ステップS17)。例えば、図3の時刻t7に示すように、触媒昇温制御開始時空燃比徐変処理中に瞬時点火時期遅角要求がONになった場合、ECU50は、触媒昇温制御終了時空燃比徐変処理を行わず、各気筒の空燃比を内燃機関20の運転状態に応じた目標空燃比とする。これにより、失火の発生が抑制される。   On the other hand, if there is an instantaneous ignition timing retardation request during the air-fuel ratio gradual change process at the start of the catalyst temperature increase control (step S13 / YES), the ECU 50 does not perform the air-fuel ratio gradual change process at the end of the catalyst temperature increase control. The air / fuel ratio of the cylinder is set to a target air / fuel ratio corresponding to the operating state of the internal combustion engine 20 (step S17). For example, as shown at time t7 in FIG. 3, when the instantaneous ignition timing retardation request is turned ON during the catalyst temperature increase control start air-fuel ratio gradual change process, the ECU 50 performs the catalyst temperature increase control end air-fuel ratio gradual change process. The air-fuel ratio of each cylinder is set to the target air-fuel ratio corresponding to the operating state of the internal combustion engine 20 without performing the above. Thereby, generation | occurrence | production of misfire is suppressed.

以上、詳細に説明したように、本実施形態にかかるECU50は、内燃機関20の複数の気筒のうち、任意の気筒で筒内における燃焼時の空燃比が理論空燃比よりも小さいリッチ燃焼を実行させ、他の気筒で筒内における燃焼時の空燃比が理論空燃比よりも大きいリーン燃焼を実行させ、複数の気筒からの排気を浄化する触媒を昇温する触媒昇温制御を実行し、触媒昇温制御の開始要求がなされた場合、各気筒の燃焼時の空燃比を触媒昇温制御実行時の目標空燃比となるまで徐変させ、触媒昇温制御の終了要求がなされた場合、各気筒の燃焼時の空燃比を、触媒昇温制御の終了後の内燃機関の運転状態に応じた目標空燃比となるまで徐変させ、触媒昇温制御の実行中、又は、徐変中に、ノッキング抑制の目的以外の点火時期遅角要求がなされた場合、各気筒の燃焼時の空燃比を内燃機関の運転状態に応じた目標空燃比とするまでの時間を、ノッキング抑制の目的以外の点火時期遅角要求がない場合よりも短縮する。触媒昇温制御の開始及び終了時、瞬時点火時期遅角要求がない場合には、各気筒の空燃比は触媒昇温制御時の目標空燃比又は内燃機関20の運転状態に応じた目標空燃比となるまで徐々に変化するため、空燃比の急激な変化に伴うトルクショックを抑制することができる。一方、瞬時点火時期遅角要求がある場合には、各気筒の空燃比を内燃機関20の運転状態に応じた目標空燃比とするまでの時間を瞬時点火時期遅角要求がない場合よりも短縮するため、失火の発生を抑制することができる。   As described above in detail, the ECU 50 according to the present embodiment executes rich combustion in which the air-fuel ratio at the time of combustion in the cylinder is smaller than the stoichiometric air-fuel ratio in any cylinder among the plurality of cylinders of the internal combustion engine 20. Catalyst temperature increase control for increasing the temperature of the catalyst that purifies the exhaust gas from the plurality of cylinders by executing lean combustion in which the air-fuel ratio at the time of combustion in the cylinder is larger than the stoichiometric air-fuel ratio in the other cylinder, When a start request for temperature increase control is made, the air-fuel ratio at the time of combustion of each cylinder is gradually changed until it reaches the target air-fuel ratio at the time of catalyst temperature increase control execution, and when an end request for catalyst temperature increase control is made, The air-fuel ratio at the time of combustion of the cylinder is gradually changed until the target air-fuel ratio corresponding to the operating state of the internal combustion engine after the completion of the catalyst temperature increase control is reached, while the catalyst temperature increase control is being executed, or during the gradual change, Ignition timing retardation request other than the purpose of suppressing knocking is made If the time of the air-fuel ratio at the time of combustion in each cylinder until the target air-fuel ratio in accordance with the operating state of the internal combustion engine, is shorter than when there is no ignition timing delay request other than the purpose of knocking suppression. At the start and end of the catalyst temperature increase control, when there is no request for retarding the instantaneous ignition timing, the air-fuel ratio of each cylinder is the target air-fuel ratio at the time of catalyst temperature increase control or the target air-fuel ratio according to the operating state of the internal combustion engine 20 Therefore, torque shock associated with a sudden change in the air-fuel ratio can be suppressed. On the other hand, when there is a request for retarding the instantaneous ignition timing, the time until the air-fuel ratio of each cylinder is set to the target air-fuel ratio corresponding to the operating state of the internal combustion engine 20 is shorter than when there is no request for retarding the instantaneous ignition timing. Therefore, the occurrence of misfire can be suppressed.

なお、上記実施形態において、瞬時点火時期遅角要求がなされた場合、ECU50は、空燃比の徐変処理をせずに内燃機関20の運転状態に応じた目標空燃比にしていたが、空燃比徐変速度を増加させ(徐変の傾きを大きくする)、各気筒の空燃比を内燃機関20の運転状態に応じた目標空燃比とするまでの時間を、瞬時点火時期遅角要求がない場合よりも短縮してもよい。   In the above embodiment, when the instantaneous ignition timing retardation request is made, the ECU 50 has set the target air-fuel ratio according to the operating state of the internal combustion engine 20 without performing the gradual change processing of the air-fuel ratio. When there is no instantaneous ignition timing retardation request for increasing the gradual change speed (increasing the gradient of gradual change) and setting the air-fuel ratio of each cylinder to the target air-fuel ratio according to the operating state of the internal combustion engine 20 May be shortened.

上記実施形態は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、これらの実施例を種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施例が可能であることは上記記載から自明である。   The above-described embodiments are merely examples for carrying out the present invention, and the present invention is not limited to these. Various modifications of these embodiments are within the scope of the present invention, and It is apparent from the above description that various other embodiments are possible within the scope.

1 エンジンシステム
20 内燃機関
31 触媒
50 ECU(内燃機関の制御装置、実行部、徐変処理部、時間短縮部)
1 engine system 20 internal combustion engine 31 catalyst 50 ECU (control device of internal combustion engine, execution unit, gradual change processing unit, time reduction unit)

Claims (1)

内燃機関の複数の気筒のうち、任意の気筒で筒内における燃焼時の空燃比が理論空燃比よりも小さいリッチ燃焼を実行させ、他の気筒で筒内における燃焼時の空燃比が理論空燃比よりも大きいリーン燃焼を実行させ、前記複数の気筒からの排気を浄化する触媒を昇温する触媒昇温制御を実行する実行部と、
前記触媒昇温制御の開始要求がなされた場合、前記各気筒の燃焼時の空燃比を前記触媒昇温制御実行時の目標空燃比となるまで徐変させ、前記触媒昇温制御の終了要求がなされた場合、前記各気筒の燃焼時の空燃比を、前記触媒昇温制御の終了後の前記内燃機関の運転状態に応じた目標空燃比となるまで徐変させる徐変処理部と、
前記触媒昇温制御の実行中、又は、前記徐変中に、ノッキング抑制の目的以外の点火時期遅角要求がなされた場合、前記各気筒の燃焼時の空燃比を前記内燃機関の運転状態に応じた目標空燃比とするまでの時間を、前記ノッキング抑制の目的以外の点火時期遅角要求がない場合よりも短縮する時間短縮部と、
を備える内燃機関の制御装置。
Of a plurality of cylinders of an internal combustion engine, rich combustion in which the air-fuel ratio at the time of combustion in the cylinder is smaller than the stoichiometric air-fuel ratio is executed in any cylinder, and the air-fuel ratio at the time of combustion in the cylinder is the stoichiometric air-fuel ratio in the other cylinders An execution unit for executing a catalyst temperature increase control for increasing the temperature of a catalyst for purifying exhaust gas from the plurality of cylinders, and performing lean combustion larger than
When a request to start the catalyst temperature increase control is made, the air-fuel ratio at the time of combustion of each cylinder is gradually changed until it reaches the target air-fuel ratio at the time of execution of the catalyst temperature increase control. A gradual change processing unit that gradually changes the air-fuel ratio at the time of combustion of each cylinder until it reaches a target air-fuel ratio according to the operating state of the internal combustion engine after the completion of the catalyst temperature increase control;
When an ignition timing retardation request other than the purpose of suppressing knocking is made during execution of the catalyst temperature increase control or during the gradual change, the air-fuel ratio at the time of combustion of each cylinder is set to the operating state of the internal combustion engine. A time shortening unit that shortens the time until the corresponding target air-fuel ratio is reached as compared with the case where there is no ignition timing retardation request other than the purpose of suppressing knocking;
A control device for an internal combustion engine.
JP2016236798A 2016-12-06 2016-12-06 Control device for internal combustion engine Expired - Fee Related JP6737156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016236798A JP6737156B2 (en) 2016-12-06 2016-12-06 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016236798A JP6737156B2 (en) 2016-12-06 2016-12-06 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2018091272A true JP2018091272A (en) 2018-06-14
JP6737156B2 JP6737156B2 (en) 2020-08-05

Family

ID=62565389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016236798A Expired - Fee Related JP6737156B2 (en) 2016-12-06 2016-12-06 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6737156B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953489A (en) * 1995-08-11 1997-02-25 Nissan Motor Co Ltd Control device if multi-cylinder engine
JPH09236034A (en) * 1996-02-29 1997-09-09 Nissan Motor Co Ltd Exhaust gas purifier for engine
JPH11101150A (en) * 1997-09-26 1999-04-13 Honda Motor Co Ltd Control device for internal combustion engine
JP2000120477A (en) * 1998-10-13 2000-04-25 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP2002155788A (en) * 2000-11-16 2002-05-31 Mitsubishi Motors Corp Engine control device
JP2011226350A (en) * 2010-04-19 2011-11-10 Denso Corp Air-fuel ratio control device of internal combustion engine
JP2015203405A (en) * 2014-04-16 2015-11-16 トヨタ自動車株式会社 Control device of internal combustion engine
JP2017150412A (en) * 2016-02-25 2017-08-31 トヨタ自動車株式会社 Control device of internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953489A (en) * 1995-08-11 1997-02-25 Nissan Motor Co Ltd Control device if multi-cylinder engine
JPH09236034A (en) * 1996-02-29 1997-09-09 Nissan Motor Co Ltd Exhaust gas purifier for engine
JPH11101150A (en) * 1997-09-26 1999-04-13 Honda Motor Co Ltd Control device for internal combustion engine
JP2000120477A (en) * 1998-10-13 2000-04-25 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP2002155788A (en) * 2000-11-16 2002-05-31 Mitsubishi Motors Corp Engine control device
JP2011226350A (en) * 2010-04-19 2011-11-10 Denso Corp Air-fuel ratio control device of internal combustion engine
JP2015203405A (en) * 2014-04-16 2015-11-16 トヨタ自動車株式会社 Control device of internal combustion engine
JP2017150412A (en) * 2016-02-25 2017-08-31 トヨタ自動車株式会社 Control device of internal combustion engine

Also Published As

Publication number Publication date
JP6737156B2 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
JP6350972B2 (en) Engine control device
JP6315003B2 (en) Control device for internal combustion engine
JP4893499B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP2018141445A (en) Control device of vehicle
JP6156485B2 (en) Control device for internal combustion engine
WO2012176746A1 (en) Control device for cylinder-injection-type internal combustion engine
JP3893909B2 (en) Control device for direct-injection spark-ignition internal combustion engine
US10669953B2 (en) Engine control system
JP2007332820A (en) Fuel property determination device for internal combustion engine
CN108798923A (en) Control Device for Internal Combustion Engine
JP2018105222A (en) Control device for internal combustion engine
JP6103247B2 (en) Control device for internal combustion engine
JP6686863B2 (en) Control device for internal combustion engine
JP2010216326A (en) Method for controlling switching of combustion method of internal combustion engine
JP2008267294A (en) Internal combustion engine control system
JP6737156B2 (en) Control device for internal combustion engine
JP6221837B2 (en) Control device for internal combustion engine
CN106481474A (en) Control device for explosive motor
JP2010265815A (en) Fuel injection system for internal combustion engine
JP6551500B2 (en) Engine control device
JP2006132399A (en) Control device and control method for supercharged engine
JP7331785B2 (en) Control device for internal combustion engine
JP2019108824A (en) Fuel injection control apparatus
JP4735382B2 (en) Fuel supply control device for internal combustion engine
JP2025017101A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200408

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200629

R151 Written notification of patent or utility model registration

Ref document number: 6737156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees