[go: up one dir, main page]

JP2010094667A - Ammonia-decomposition catalyst, method of producing the same, and method of treating ammonia - Google Patents

Ammonia-decomposition catalyst, method of producing the same, and method of treating ammonia Download PDF

Info

Publication number
JP2010094667A
JP2010094667A JP2009216008A JP2009216008A JP2010094667A JP 2010094667 A JP2010094667 A JP 2010094667A JP 2009216008 A JP2009216008 A JP 2009216008A JP 2009216008 A JP2009216008 A JP 2009216008A JP 2010094667 A JP2010094667 A JP 2010094667A
Authority
JP
Japan
Prior art keywords
ammonia
component
nitrogen
hydrogen
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009216008A
Other languages
Japanese (ja)
Inventor
Masaru Kirishiki
賢 桐敷
Masanori Yoshimune
壮基 吉宗
Hideaki Tsuneki
英昭 常木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2009216008A priority Critical patent/JP2010094667A/en
Publication of JP2010094667A publication Critical patent/JP2010094667A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst capable of producing highly pure hydrogen by efficiently decomposing ammonia into nitrogen and hydrogen in a broad ammonia concentration range at a relatively low temperature and at a high space velocity without using noble metal, a method of producing the same, and a method of treating ammonia. <P>SOLUTION: The ammonia decomposition catalyst includes at least one species selected from the group consisting of molybdenum, tungsten, and vanadium. The ammonia decomposition catalyst is produced for example, by preparing an oxide comprising a specific transition metal and subsequently treating the oxide with an ammonia gas or with a mixed gas of nitrogen and hydrogen at a temperature of 300 to 800°C. By treating a gas comprising ammonia using the ammonia-decomposition catalyst, ammonia therein is decomposed into nitrogen and hydrogen, and hydrogen can be obtained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、アンモニアを窒素と水素とに分解する触媒およびその製造方法、ならびに、この触媒を用いたアンモニア処理方法に関する。   The present invention relates to a catalyst for decomposing ammonia into nitrogen and hydrogen, a method for producing the catalyst, and an ammonia treatment method using the catalyst.

アンモニアは、臭気性、特に刺激性の悪臭を有するので、ガス中に臭気閾値以上含まれる場合には、これを処理することが必要となる。そこで、従来から様々なアンモニア処理方法が検討されてきた。例えば、アンモニアを酸素と接触させて窒素と水とに酸化する方法、アンモニアを窒素と水素とに分解する方法などが提案されている。   Since ammonia has an odorous property, particularly an irritating malodor, it is necessary to treat it when the gas contains an odor threshold value or more. Therefore, various ammonia treatment methods have been conventionally studied. For example, a method in which ammonia is brought into contact with oxygen and oxidized into nitrogen and water, and a method in which ammonia is decomposed into nitrogen and hydrogen have been proposed.

例えば、特許文献1には、コークス炉から生じるアンモニアを窒素と水とに酸化するにあたり、例えば、白金−アルミナ触媒、マンガン−アルミナ触媒、コバルト−アルミナ触媒などを用いると共に、コークス炉から生じるアンモニアを窒素と水素とに分解するにあたり、例えば、鉄−アルミナ触媒、ニッケル−アルミナ触媒などを用いるアンモニア処理方法が開示されている。しかし、このアンモニア処理方法は、NOxが副生することが多いことから、新たにNOx処理設備が必要となるので、好ましくない。   For example, Patent Document 1 discloses that, for example, a platinum-alumina catalyst, a manganese-alumina catalyst, a cobalt-alumina catalyst, and the like are used to oxidize ammonia generated from a coke oven to nitrogen and water, and ammonia generated from the coke oven is used. In decomposing into nitrogen and hydrogen, for example, an ammonia treatment method using an iron-alumina catalyst, a nickel-alumina catalyst, or the like is disclosed. However, this ammonia treatment method is not preferable because NOx is often produced as a by-product and a new NOx treatment facility is required.

また、特許文献2には、有機性廃棄物を処理する工程から生じるアンモニアを窒素と水素とに分解するにあたり、アルミナ、シリカ、チタニア、ジルコニアなどの金属酸化物担体上にニッケルまたはニッケル酸化物を担持させ、さらにアルカリ土類金属およびランタノイド元素の少なくとも一方を金属または酸化物の形で添加した触媒を用いるアンモニア処理方法が開示されている。しかし、このアンモニア処理方法は、アンモニア分解率が低く、実用的ではない。   Patent Document 2 discloses that nickel or nickel oxide is deposited on a metal oxide carrier such as alumina, silica, titania, zirconia in decomposing ammonia generated from a process of treating organic waste into nitrogen and hydrogen. An ammonia treatment method using a catalyst that is supported and further added with at least one of an alkaline earth metal and a lanthanoid element in the form of a metal or an oxide is disclosed. However, this ammonia treatment method has a low ammonia decomposition rate and is not practical.

さらに、特許文献3には、コークス炉から生じるアンモニアを窒素と水素とに分解するにあたり、アルミナ担体上のルテニウムにアルカリ金属またはアルカリ土類金属の塩基性化合物を添加した触媒を用いるアンモニア処理方法が開示されている。このアンモニア処理方法は、従来の鉄−アルミナなどの触媒に比べて、より低温でアンモニアを分解できるという利点があるにもかかわらず、活性金属種として、希少貴金属であるルテニウムを用いているので、コスト面で大きな問題を抱えており、実用的ではない。   Further, Patent Document 3 discloses an ammonia treatment method using a catalyst in which an alkali metal or an alkaline earth metal basic compound is added to ruthenium on an alumina support in decomposing ammonia generated from a coke oven into nitrogen and hydrogen. It is disclosed. This ammonia treatment method uses ruthenium, which is a rare noble metal, as an active metal species, despite the advantage that ammonia can be decomposed at a lower temperature than a conventional catalyst such as iron-alumina. It has a big problem in cost and is not practical.

その他、アンモニアの分解によって回収された水素を燃料電池用の水素源として利用することが検討されているが、この場合は、高純度の水素を得ることが必要となる。これまでに提案されてきたアンモニア分解触媒を用いて、高純度の水素を得ようとすると、非常に高い反応温度が必要となり、あるいは、高価な触媒を多量に用いる必要があるという問題があった。   In addition, it has been studied to use hydrogen recovered by decomposition of ammonia as a hydrogen source for a fuel cell. In this case, it is necessary to obtain high-purity hydrogen. When trying to obtain high-purity hydrogen using the ammonia decomposition catalysts proposed so far, there is a problem that a very high reaction temperature is required or a large amount of an expensive catalyst needs to be used. .

このような問題を解決するために、アンモニアを比較的低温(約400〜500℃)で分解できる触媒として、例えば、特許文献4には、鉄−セリア複合体が開示され、特許文献5には、ニッケル−酸化ランタン/アルミナ、ニッケル−イットリア/アルミナ、ニッケル−セリア/アルミナの3元系複合体が開示され、非特許文献1には、鉄−セリア/ジルコニアの3元系複合体が開示されている。   In order to solve such a problem, as a catalyst capable of decomposing ammonia at a relatively low temperature (about 400 to 500 ° C.), for example, Patent Document 4 discloses an iron-ceria complex, and Patent Document 5 discloses Nickel-lanthanum oxide / alumina, nickel-yttria / alumina, nickel-ceria / alumina ternary composites are disclosed, and Non-Patent Document 1 discloses an iron-ceria / zirconia ternary composite. ing.

しかし、これらの触媒は、いずれも、処理ガスのアンモニア濃度が低い(具体的には、特許文献4は5体積%、特許文献5は50体積%)か、あるいは、アンモニアを基準とした空間速度が低い(具体的には、特許文献4は642h−1、特許文献5は1,000h−1、非特許文献1は430h−1)といった条件下で、アンモニア分解率を測定しているので、たとえ、アンモニア分解率が比較的低温で100%であるからと言っても、必ずしも触媒性能が高いわけではない。 However, any of these catalysts has a low ammonia concentration in the processing gas (specifically, 5% by volume in Patent Document 4 and 50% by volume in Patent Document 5), or a space velocity based on ammonia. (Specifically, Patent Document 4 is 642 h −1 , Patent Document 5 is 1,000 h −1 , Non-Patent Document 1 is 430 h −1 ), and the ammonia decomposition rate is measured. Even if the ammonia decomposition rate is 100% at a relatively low temperature, the catalyst performance is not necessarily high.

このように、従来のアンモニア分解触媒は、いずれも、アンモニアを比較的低温で、かつ、高い空間速度で効率よく分解して高純度の水素を取得することはできないという問題があった。   As described above, each of the conventional ammonia decomposition catalysts has a problem that it is not possible to obtain high-purity hydrogen by efficiently decomposing ammonia at a relatively low temperature and at a high space velocity.

特開昭64−56301号公報JP-A 64-56301 特開2004−195454号公報JP 2004-195454 A 特開平1−119341号公報JP-A-1-119341 特開2001−300314号公報JP 2001-300314 A 特開平2−198639号公報Japanese Patent Laid-Open No. 2-198639

舛田雅裕、外3名,「希土類酸化物−鉄系複合体のアンモニア分解特性」,第18回希土類討論会予稿集「希土類」,主催:日本希土類学会,開催日:2001年5月10〜11日,於中央大学,p.122−123Masahiro Hamada and three others, “Ammonia Decomposition Characteristics of Rare Earth Oxide-Iron Complex”, Proceedings of the 18th Rare Earth Discussion Meeting “Rare Earth”, Organizer: Japan Rare Earth Society, Date: May 10-11, 2001 Japan, Chuo University, p. 122-123

上述した状況の下、本発明が解決すべき課題は、コスト面で実用上の問題がある貴金属を用いることなく、低濃度から高濃度までの広範囲なアンモニア濃度域において、アンモニアを比較的低温で、かつ、高い空間速度で窒素と水素とに効率よく分解して高純度の水素を取得できる触媒およびその製造方法、ならびに、アンモニア処理方法を提供することにある。   Under the circumstances described above, the problem to be solved by the present invention is that ammonia is used at a relatively low temperature in a wide ammonia concentration range from a low concentration to a high concentration without using a noble metal that has practical problems in terms of cost. Another object of the present invention is to provide a catalyst that can be efficiently decomposed into nitrogen and hydrogen at a high space velocity to obtain high purity hydrogen, a method for producing the catalyst, and an ammonia treatment method.

本発明者らは、種々検討の結果、特定の遷移金属(貴金属を除く)を含有する酸化物を、所定の温度にて、アンモニアガスまたは窒素−水素混合ガスで処理すれば、アンモニアを比較的低温で、かつ、高い空間速度で窒素と水素とに効率よく分解して高純度の水素を取得できる触媒が得られることを見出して、本発明を完成した。   As a result of various studies, the present inventors have found that if an oxide containing a specific transition metal (excluding a noble metal) is treated with ammonia gas or a nitrogen-hydrogen mixed gas at a predetermined temperature, the ammonia is relatively reduced. The present invention was completed by finding that a catalyst capable of efficiently decomposing nitrogen and hydrogen at a low temperature and at a high space velocity to obtain high purity hydrogen was obtained.

すなわち、本発明は、アンモニアを窒素と水素とに分解する触媒であって、触媒活性成分が、モリブデン、タングステンおよびバナジウムよりなる群から選択される少なくとも1種(以下「A成分」という)を含有することを特徴とするアンモニア分解触媒を提供する。本発明のアンモニア分解触媒において、前記触媒活性成分は、さらに、コバルト、ニッケル、マンガンおよび鉄よりなる群から選択される少なくとも1種(以下「B成分」という)を含有することが好ましく、この場合、A成分とB成分とは、複合酸化物の形態であることがより好ましい。また、前記触媒活性成分は、さらに、アルカリ金属、アルカリ土類金属および希土類金属よりなる群から選択される少なくとも1種(以下「C成分」という)を含有していてもよい。さらに、前記触媒活性成分の一部または全部は、アンモニアガスまたは窒素−水素混合ガスで処理されていることがある。   That is, the present invention is a catalyst for decomposing ammonia into nitrogen and hydrogen, and the catalytically active component contains at least one selected from the group consisting of molybdenum, tungsten and vanadium (hereinafter referred to as “component A”). An ammonia decomposition catalyst is provided. In the ammonia decomposition catalyst of the present invention, the catalytically active component preferably further contains at least one selected from the group consisting of cobalt, nickel, manganese and iron (hereinafter referred to as “component B”). More preferably, the A component and the B component are in the form of a composite oxide. The catalytically active component may further contain at least one selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals (hereinafter referred to as “C component”). Furthermore, some or all of the catalytically active components may be treated with ammonia gas or a nitrogen-hydrogen mixed gas.

また、本発明は、A成分を含有する酸化物またはA成分とB成分とを含有する酸化物を調製した後、前記酸化物を、300〜800℃の温度にて、アンモニアガスまたは窒素−水素混合ガスで処理することを特徴とするアンモニア分解触媒の製造方法を提供する。なお、前記酸化物を調製した後、さらにC成分の化合物を添加してもよい。この製造方法により得られたアンモニア分解触媒は、触媒活性成分の一部または全部がA成分を含有する窒化物またはA成分とB成分とを含有する窒化物に変化している。   In the present invention, after preparing an oxide containing an A component or an oxide containing an A component and a B component, the oxide is converted into ammonia gas or nitrogen-hydrogen at a temperature of 300 to 800 ° C. Provided is a method for producing an ammonia decomposition catalyst, which comprises treating with a mixed gas. In addition, you may add the compound of C component after preparing the said oxide. In the ammonia decomposition catalyst obtained by this production method, a part or all of the catalytically active component is changed to a nitride containing an A component or a nitride containing an A component and a B component.

さらに、本発明は、上記のようなアンモニア分解触媒を用いて、アンモニアを含有するガスを処理して、前記アンモニアを窒素と水素とに分解して水素を取得することを特徴とするアンモニア処理方法を提供する。   Furthermore, the present invention is an ammonia treatment method characterized in that the ammonia-decomposing catalyst as described above is used to treat a gas containing ammonia to obtain hydrogen by decomposing the ammonia into nitrogen and hydrogen. I will provide a.

本発明によれば、貴金属を用いることなく、低濃度から高濃度までの広範囲なアンモニア濃度域において、アンモニアを比較的低温で、かつ、高い空間速度で窒素と水素とに効率よく分解して高純度の水素を取得できる触媒、この触媒を簡便に製造する方法、ならびに、この触媒を用いて、アンモニアを窒素と水素とに分解して水素を取得する方法が提供される。   According to the present invention, ammonia is efficiently decomposed into nitrogen and hydrogen at a relatively low temperature and at a high space velocity in a wide ammonia concentration range from a low concentration to a high concentration without using noble metals. Provided are a catalyst capable of obtaining pure hydrogen, a method for easily producing the catalyst, and a method for obtaining hydrogen by decomposing ammonia into nitrogen and hydrogen using the catalyst.

≪アンモニア分解触媒≫
本発明のアンモニア分解触媒(以下「本発明の触媒」ということがある)は、アンモニアを窒素と水素とに分解する触媒であって、触媒活性成分が、モリブデン、タングステンおよびバナジウムよりなる群から選択される少なくとも1種(以下「A成分」という)を含有することを特徴とする。
≪Ammonia decomposition catalyst≫
The ammonia decomposition catalyst of the present invention (hereinafter sometimes referred to as “the catalyst of the present invention”) is a catalyst that decomposes ammonia into nitrogen and hydrogen, and the catalytically active component is selected from the group consisting of molybdenum, tungsten, and vanadium. It contains at least one kind (hereinafter referred to as “component A”).

触媒活性成分は、A成分に加えて、さらに、コバルト、ニッケル、マンガンおよび鉄よりなる群から選択される少なくとも1種(以下「B成分」という)を含有することが好ましい。この場合、A成分とB成分とは、複合酸化物の形態であることがより好ましい。   In addition to the component A, the catalytically active component preferably further contains at least one selected from the group consisting of cobalt, nickel, manganese and iron (hereinafter referred to as “component B”). In this case, the component A and the component B are more preferably in the form of a complex oxide.

また、触媒活性成分は、A成分に加えて、あるいは、A成分とB成分とに加えて、さらに、アルカリ金属、アルカリ土類金属および希土類金属よりなる群から選択される少なくとも1種(以下「C成分」という)を含有していてもよい。   In addition to the A component or in addition to the A component and the B component, the catalytically active component is further at least one selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals (hereinafter “ "C component") may be contained.

なお、触媒活性成分の一部または全部は、アンモニアガスまたは窒素−水素混合ガスで処理されていることがある。   Part or all of the catalytically active component may be treated with ammonia gas or a nitrogen-hydrogen mixed gas.

<A成分>
触媒活性成分は、A成分として、モリブデン、タングステンおよびバナジウムよりなる群から選択される少なくとも1種を含有する。これらのA成分のうち、モリブデンおよびタングステンが好ましく、モリブデンがより好ましい。
<A component>
The catalytically active component contains at least one selected from the group consisting of molybdenum, tungsten and vanadium as the A component. Of these components A, molybdenum and tungsten are preferable, and molybdenum is more preferable.

A成分の出発原料としては、通常、触媒の原料として用いられるものである限り、特に限定されるものではないが、好ましくは、酸化物、塩化物、アンモニウム塩、アルカリ金属塩などの無機化合物;酢酸塩、シュウ酸塩などの有機酸塩;アセチルアセトナト錯体、金属アルコキシドなどの有機金属錯体;などが挙げられる。   The starting material for the component A is not particularly limited as long as it is usually used as a starting material for the catalyst, but is preferably an inorganic compound such as an oxide, chloride, ammonium salt, alkali metal salt; And organic acid salts such as acetate and oxalate; organometallic complexes such as acetylacetonate complex and metal alkoxide; and the like.

具体的には、モリブデン源としては、例えば、酸化モリブデン、モリブデン酸アンモニウム、モリブデン酸ナトリウム、モリブデン酸カリウム、モリブデン酸ルビジウム、モリブデン酸セシウム、モリブデン酸リチウム、2−エチルヘキシル酸モリブデン、ビス(アセチルアセトナト)オキソモリブデンなどが挙げられ、モリブデン酸アンモニウムが好ましい。タングステン源としては、例えば、酸化タングステン、タングステン酸アンモニウム、タングステン酸ナトリウム、タングステン酸カリウム、タングステン酸ルビジウム、タングステン酸リチウム、タングステンエトキシドなどが挙げられ、タングステン酸アンモニウムが好ましい。バナジウム源としては、例えば、酸化バナジウム、バナジン酸アンモニウム、バナジン酸ナトリウム、バナジン酸リチウム、ビス(アセチルアセトナト)オキソバナジウム、バナジウムオキシトリエトキシド、バナジウムオキシトリイソプロポキシドなどが挙げられ、バナジン酸アンモニウムが好ましい。   Specifically, examples of the molybdenum source include molybdenum oxide, ammonium molybdate, sodium molybdate, potassium molybdate, rubidium molybdate, cesium molybdate, lithium molybdate, molybdenum 2-ethylhexylate, and bis (acetylacetonato). ) Oxomolybdenum and the like, and ammonium molybdate is preferred. Examples of the tungsten source include tungsten oxide, ammonium tungstate, sodium tungstate, potassium tungstate, rubidium tungstate, lithium tungstate, tungsten ethoxide, and the like, and ammonium tungstate is preferable. Examples of the vanadium source include vanadium oxide, ammonium vanadate, sodium vanadate, lithium vanadate, bis (acetylacetonato) oxovanadium, vanadium oxytriethoxide, vanadium oxytriisopropoxide, and vanadic acid. Ammonium is preferred.

A成分は、触媒活性成分の必須元素であり、A成分の含有量は、触媒活性成分100質量%に対して、好ましくは20〜90質量%、より好ましくは40〜70質量%である。   The A component is an essential element of the catalytically active component, and the content of the A component is preferably 20 to 90% by mass, and more preferably 40 to 70% by mass with respect to 100% by mass of the catalytically active component.

<B成分>
触媒活性成分は、B成分として、コバルト、ニッケル、マンガンおよび鉄よりなる群から選択される少なくとも1種を含有することが好ましい。これらのB成分のうち、コバルトおよびニッケルが好ましく、コバルトがより好ましい。
<B component>
The catalytically active component preferably contains at least one selected from the group consisting of cobalt, nickel, manganese and iron as the B component. Of these B components, cobalt and nickel are preferable, and cobalt is more preferable.

B成分の出発原料としては、通常、触媒の原料として用いられるものである限り、特に限定されるものではないが、好ましくは、酸化物、水酸化物、硝酸塩、硫酸塩、炭酸塩などの無機化合物;酢酸塩、シュウ酸塩などの有機酸塩;アセチルアセトナト錯体、金属アルコキシドなどの有機金属錯体;などが挙げられる。   The starting material for the component B is not particularly limited as long as it is usually used as a starting material for the catalyst, but is preferably an inorganic material such as an oxide, hydroxide, nitrate, sulfate, or carbonate. Compound; Organic acid salt such as acetate and oxalate; Organometallic complex such as acetylacetonato complex and metal alkoxide; and the like.

具体的には、コバルト源としては、例えば、酸化コバルト、水酸化コバルト、硝酸コバルト、硫酸コバルト、硫酸アンモニウムコバルト、炭酸コバルト、酢酸コバルト、シュウ酸コバルト、クエン酸コバルト、安息香酸コバルト、2−エチルヘキシル酸コバルト、酸化リチウムコバルトなどが挙げられ、硝酸コバルトが好ましい。ニッケル源としては、例えば、酸化ニッケル、水酸化ニッケル、硝酸ニッケル、硫酸ニッケル、炭酸ニッケル、酢酸ニッケル、シュウ酸ニッケル、クエン酸ニッケル、安息香酸ニッケル、2−エチルヘキシル酸ニッケル、ビス(アセチルアセトナト)ニッケルなどが挙げられ、硝酸ニッケルが好ましい。マンガン源としては、例えば、酸化マンガン、硝酸マンガン、硫酸マンガン、炭酸マンガン、酢酸マンガン、クエン酸マンガン、2−エチルヘキシル酸マンガン、過マンガン酸カリウム、過マンガン酸ナトリウム、過マンガン酸セシウムなどが挙げられ、硝酸マンガンが好ましい。鉄源としては、例えば、酸化鉄、水酸化鉄、硝酸鉄、硫酸鉄、酢酸鉄、シュウ酸鉄、クエン酸鉄、鉄メトキシドなどが挙げられ、硝酸鉄が好ましい。   Specifically, examples of the cobalt source include cobalt oxide, cobalt hydroxide, cobalt nitrate, cobalt sulfate, ammonium cobalt sulfate, cobalt carbonate, cobalt acetate, cobalt oxalate, cobalt citrate, cobalt benzoate, and 2-ethylhexyl acid. Examples include cobalt and lithium cobalt oxide, and cobalt nitrate is preferable. Examples of the nickel source include nickel oxide, nickel hydroxide, nickel nitrate, nickel sulfate, nickel carbonate, nickel acetate, nickel oxalate, nickel citrate, nickel benzoate, nickel 2-ethylhexylate, and bis (acetylacetonate). Nickel etc. are mentioned, Nickel nitrate is preferable. Examples of the manganese source include manganese oxide, manganese nitrate, manganese sulfate, manganese carbonate, manganese acetate, manganese citrate, manganese 2-ethylhexylate, potassium permanganate, sodium permanganate, cesium permanganate and the like. Manganese nitrate is preferred. Examples of the iron source include iron oxide, iron hydroxide, iron nitrate, iron sulfate, iron acetate, iron oxalate, iron citrate, and iron methoxide, and iron nitrate is preferable.

B成分の含有量は、触媒活性成分100質量%に対して、好ましくは0〜50質量%、より好ましくは10〜40質量%である。   The content of the component B is preferably 0 to 50% by mass and more preferably 10 to 40% by mass with respect to 100% by mass of the catalytically active component.

A成分とB成分とを併用する場合には、A成分およびB成分の出発原料として、例えば、A成分の酸化物とB成分の酸化物との混合物、または、A成分とB成分との複合酸化物を用いることができる。A成分とB成分との複合酸化物の具体例としては、特に限定されるものではないが、例えば、CoMoO、NiMoO、MnMoO、CoWOなどが挙げられる。 When the A component and the B component are used in combination, as a starting material of the A component and the B component, for example, a mixture of an oxide of the A component and an oxide of the B component, or a composite of the A component and the B component An oxide can be used. Specific examples of the composite oxide of the A component and the B component are not particularly limited, and examples thereof include CoMoO 4 , NiMoO 4 , MnMoO 4 , and CoWO 4 .

<C成分>
触媒活性成分は、C成分として、アルカリ金属、アルカリ土類金属および希土類金属よりなる群から選択される少なくとも1種を含有していてもよい。これらのC成分のうち、アルカリ金属およびアルカリ土類金属が好ましく、アルカリ金属がより好ましい。
<C component>
The catalytically active component may contain at least one selected from the group consisting of alkali metals, alkaline earth metals, and rare earth metals as the C component. Of these C components, alkali metals and alkaline earth metals are preferred, and alkali metals are more preferred.

C成分の出発原料としては、通常、触媒の原料として用いられるものである限り、特に限定されるものではないが、好ましくは、酸化物、水酸化物、硝酸塩、硫酸塩、炭酸塩、酢酸塩、シュウ酸塩などが挙げられる。   The starting material of component C is not particularly limited as long as it is usually used as a starting material for the catalyst, but is preferably an oxide, hydroxide, nitrate, sulfate, carbonate, acetate. And oxalate.

C成分の含有量は、触媒活性成分100質量%に対して、好ましくは0〜50質量%、より好ましくは0.2〜20質量%である。   The content of the component C is preferably 0 to 50% by mass, more preferably 0.2 to 20% by mass with respect to 100% by mass of the catalytically active component.

<物性>
本発明の触媒は、比表面積が好ましくは1〜300m/g、より好ましくは5〜260m/g、さらに好ましくは18〜200m/gである。
<Physical properties>
The specific surface area of the catalyst of the present invention is preferably 1 to 300 m 2 / g, more preferably 5 to 260 m 2 / g, still more preferably 18 to 200 m 2 / g.

<触媒の形状>
本発明の触媒は、触媒活性成分をそのまま触媒とするか、あるいは、従来公知の方法を用いて、触媒活性成分を担体に担持してもよい。担体としては、特に限定されるものではないが、例えば、アルミナ、シリカ、チタニア、ジルコニア、セリアなどの金属酸化物が挙げられる。
<Catalyst shape>
In the catalyst of the present invention, the catalytically active component may be used as it is, or the catalytically active component may be supported on a carrier by a conventionally known method. The support is not particularly limited, and examples thereof include metal oxides such as alumina, silica, titania, zirconia, and ceria.

本発明の触媒は、従来公知の方法を用いて、所望の形状に成形して用いてもよい。触媒の形状は、特に限定されるものではなく、例えば、粒状、球状、ペレット状、破砕状、サドル状、リング状、ハニカム状、モノリス状、網状、円柱状、円筒状などが挙げられる。   The catalyst of the present invention may be molded into a desired shape using a conventionally known method. The shape of the catalyst is not particularly limited, and examples thereof include granular, spherical, pellet-shaped, crushed, saddle-shaped, ring-shaped, honeycomb-shaped, monolith-shaped, net-shaped, columnar, cylindrical, and the like.

また、本発明の触媒は、構造体の表面に層状にコートして用いてもよい。構造体としては、特に限定されるものではないが、例えば、コージェライト、ムライト、炭化珪素、アルミナ、シリカ、チタニア、ジルコニア、セリアなどのセラミックスからなる構造体;フェライト系ステンレスなどの金属からなる構造体;などが挙げられる。構造体の形状としては、特に限定されるものではないが、例えば、ハニカム状、コルゲート状、網状、円柱状、円筒状などが挙げられる。   Further, the catalyst of the present invention may be used by coating the surface of the structure in layers. The structure is not particularly limited. For example, a structure made of a ceramic such as cordierite, mullite, silicon carbide, alumina, silica, titania, zirconia, and ceria; a structure made of a metal such as ferritic stainless steel Body; and the like. The shape of the structure is not particularly limited, and examples thereof include a honeycomb shape, a corrugated shape, a net shape, a columnar shape, and a cylindrical shape.

≪アンモニア分解触媒の製造方法≫
以下に、本発明のアンモニア分解触媒を製造する方法の好適な具体例を示すが、本発明の課題が達成される限り、下記の製造方法に限定されるものではない。
≪Method for producing ammonia decomposition catalyst≫
Hereinafter, preferred specific examples of the method for producing the ammonia decomposition catalyst of the present invention will be shown, but the present invention is not limited to the following production method as long as the object of the present invention is achieved.

(1)A成分の酸化物、A成分の酸化物とB成分の酸化物との混合物、A成分とB成分との複合酸化物、これらにC成分の酸化物を添加した混合物、または、これらにC成分の水溶液を添加して乾燥した混合物を、焼成して得られた焼成物を触媒として用いる方法;
(2)(1)の焼成物を、さらに、300〜800℃の温度にて、アンモニアガスまたは窒素−水素混合ガスで処理(窒化処理)をする方法;
(3)A成分を含有する塩の水溶液を焼成して酸化物とし、この酸化物を触媒として用いる方法;
(4)(3)の酸化物を、さらに、300〜800℃の温度にて、アンモニアガスまたは窒素−水素混合ガスで処理(窒化処理)をする方法;
(5)A成分を含有する塩とB成分を含有する塩との水溶液を焼成して酸化物とし、この酸化物を触媒として用いる方法;
(6)(5)の酸化物を、さらに、300〜800℃の温度にて、アンモニアガスまたは窒素−水素混合ガスで処理(窒化処理)をする方法;
(7)A成分を含有する塩の酸性水溶液をアルカリ金属の水溶液またはアンモニア水で中和したゲルを焼成して酸化物とし、この酸化物を触媒として用いる方法;
(8)(7)の酸化物を、さらに、300〜800℃の温度にて、アンモニアガスまたは窒素−水素混合ガスで処理(窒化処理)をする方法;
(9)A成分を含有する塩とB成分を含有する塩との酸性水溶液をアルカリ金属の水溶液またはアンモニア水で中和したゲルを焼成して酸化物とし、この酸化物を触媒として用いる方法;
(10)(9)の酸化物を、さらに、300〜800℃の温度にて、アンモニアガスまたは窒素−水素混合ガスで処理(窒化処理)をする方法。
(1) A component oxide, a mixture of an A component oxide and a B component oxide, a composite oxide of A component and B component, a mixture obtained by adding an oxide of C component to these, or these A method of using, as a catalyst, a calcined product obtained by calcining a mixture obtained by adding an aqueous solution of the component C to a dried product;
(2) A method in which the fired product of (1) is further treated (nitrided) with ammonia gas or a nitrogen-hydrogen mixed gas at a temperature of 300 to 800 ° C;
(3) A method in which an aqueous solution of a salt containing the component A is calcined to form an oxide, and the oxide is used as a catalyst;
(4) A method of further processing (nitriding) the oxide of (3) at a temperature of 300 to 800 ° C. with ammonia gas or a nitrogen-hydrogen mixed gas;
(5) A method in which an aqueous solution of a salt containing an A component and a salt containing a B component is baked into an oxide, and the oxide is used as a catalyst;
(6) A method of further treating (nitriding) the oxide of (5) with ammonia gas or a nitrogen-hydrogen mixed gas at a temperature of 300 to 800 ° C;
(7) A method in which an acid aqueous solution of a salt containing the component A is neutralized with an aqueous alkali metal solution or ammonia water to obtain an oxide, and the oxide is used as a catalyst;
(8) A method of further processing (nitriding) the oxide of (7) at a temperature of 300 to 800 ° C. with ammonia gas or a nitrogen-hydrogen mixed gas;
(9) A method in which an acid aqueous solution of a salt containing an A component and a salt containing a B component is neutralized with an aqueous alkali metal solution or aqueous ammonia to obtain an oxide, and the oxide is used as a catalyst;
(10) A method of further processing (nitriding) the oxide of (9) at a temperature of 300 to 800 ° C. with ammonia gas or a nitrogen-hydrogen mixed gas.

本発明によるアンモニア分解触媒の製造方法(以下「本発明の製造方法」ということがある)は、A成分を含有する酸化物またはA成分とB成分とを含有する酸化物を調製した後、前記酸化物を、300〜800℃の温度にて、アンモニアガスまたは窒素−水素混合ガスで処理(窒化処理)することを特徴とする。なお、前記酸化物を調製した後、さらにC成分の化合物を添加してもよい。   The method for producing an ammonia decomposition catalyst according to the present invention (hereinafter sometimes referred to as “the production method of the present invention”) comprises preparing an oxide containing A component or an oxide containing A component and B component; The oxide is treated (nitrided) with ammonia gas or a nitrogen-hydrogen mixed gas at a temperature of 300 to 800 ° C. In addition, you may add the compound of C component after preparing the said oxide.

窒化処理の温度は、通常は300〜800℃、好ましくは400〜750℃、より好ましくは500〜720℃である。アンモニアガスを用いる場合、その濃度は、好ましくは10〜100体積%、より好ましくは50〜100体積%である。窒素−水素混合ガスを用いる場合、窒素の濃度は、好ましくは2〜95体積%、より好ましくは20〜90体積%である。水素の濃度は、好ましくは5〜98体積%、より好ましくは10〜80体積%である。   The temperature of the nitriding treatment is usually 300 to 800 ° C, preferably 400 to 750 ° C, more preferably 500 to 720 ° C. When ammonia gas is used, the concentration is preferably 10 to 100% by volume, more preferably 50 to 100% by volume. When a nitrogen-hydrogen mixed gas is used, the concentration of nitrogen is preferably 2 to 95% by volume, more preferably 20 to 90% by volume. The concentration of hydrogen is preferably 5 to 98% by volume, more preferably 10 to 80% by volume.

ガスの流量(体積)は、アンモニアガスまたは窒素−水素混合ガスのいずれの場合も、1分間あたり、触媒の体積に対して、好ましくは80〜250倍、より好ましくは100〜200倍である。   In either case of ammonia gas or nitrogen-hydrogen mixed gas, the gas flow rate (volume) is preferably 80 to 250 times, more preferably 100 to 200 times the volume of the catalyst per minute.

なお、窒化処理に先立って、窒素を流しながら300〜400℃まで昇温することがより好ましい。この場合、窒素の流量(体積)は、1分間あたり、触媒の体積に対して、好ましくは50〜120倍、より好ましくは60〜100倍である。   Prior to nitriding treatment, it is more preferable to raise the temperature to 300 to 400 ° C. while flowing nitrogen. In this case, the flow rate (volume) of nitrogen is preferably 50 to 120 times, more preferably 60 to 100 times the volume of the catalyst per minute.

窒化処理により触媒活性成分が窒化物に変化した割合は、X線回折で触媒の結晶構造を調べることにより確認することができる。触媒活性成分の全部が窒化物に変化していることが好ましいが、必ずしもその必要はなく、触媒活性成分の一部が窒化物に変化している場合であっても、充分な触媒活性を有する。触媒中における窒化物の割合(X線回折パターンにおける酸化物のピークと窒化物のピークとの積算値の和を100%としたときの割合)は、好ましくは3%以上、より好ましくは5%以上である。   The ratio of the catalytically active component changed to nitride by the nitriding treatment can be confirmed by examining the crystal structure of the catalyst by X-ray diffraction. Although it is preferable that all of the catalytically active component is changed to nitride, it is not always necessary, and even if a part of the catalytically active component is changed to nitride, it has sufficient catalytic activity. . The ratio of nitride in the catalyst (ratio when the sum of integrated values of oxide peaks and nitride peaks in the X-ray diffraction pattern is 100%) is preferably 3% or more, more preferably 5% That's it.

≪アンモニア処理方法≫
本発明のアンモニア処理方法は、上記のようなアンモニア分解触媒を用いて、アンモニアを含有するガスを処理して、前記アンモニアを窒素と水素とに分解して水素を取得することを特徴とする。処理対象となる「アンモニアを含有するガス」としては、特に限定されるものではないが、アンモニアガスやアンモニア含有ガスだけでなく、尿素などのように熱分解によりアンモニアを生じる物質を含有するガスであってもよい。また、アンモニアを含有するガスは、触媒毒にならない程度であれば、他の成分を含有していてもよい。
≪Ammonia treatment method≫
The ammonia treatment method of the present invention is characterized in that a gas containing ammonia is treated using the ammonia decomposition catalyst as described above, and the ammonia is decomposed into nitrogen and hydrogen to obtain hydrogen. The “gas containing ammonia” to be treated is not particularly limited, but includes not only ammonia gas and ammonia-containing gas but also gas containing a substance that generates ammonia by thermal decomposition such as urea. There may be. Moreover, the gas containing ammonia may contain other components as long as it does not become a catalyst poison.

触媒あたりの「アンモニアを含有するガス」の流量は、空間速度で、好ましくは1,000〜200,000h−1、より好ましくは2,000〜150,000h−1、さらに好ましくは3,000〜100,000h−1である。ここで、触媒あたりの「アンモニアを含有するガス」の流量とは、触媒を反応器に充填した際に触媒が占める体積あたりの単位時間あたりに触媒を通過する「アンモニアを含有するガス」の体積を意味する。 The flow rate of the “gas containing ammonia” per catalyst is a space velocity, preferably 1,000 to 200,000 h −1 , more preferably 2,000 to 150,000 h −1 , more preferably 3,000 to 3,000. 100,000h- 1 . Here, the flow rate of the “gas containing ammonia” per catalyst means the volume of the “gas containing ammonia” passing through the catalyst per unit time per volume occupied by the catalyst when the catalyst is charged into the reactor. Means.

反応温度は、好ましくは180〜950℃、より好ましくは300〜900℃、さらに好ましくは400〜800℃である。反応圧力は、好ましくは0.002〜2MPa、より好ましくは0.004〜1MPaである。   Reaction temperature becomes like this. Preferably it is 180-950 degreeC, More preferably, it is 300-900 degreeC, More preferably, it is 400-800 degreeC. The reaction pressure is preferably 0.002 to 2 MPa, more preferably 0.004 to 1 MPa.

本発明のアンモニア処理方法によれば、アンモニアを分解して得られた窒素および水素を、従来公知の方法を用いて、窒素と水素とに分離することにより、高純度の水素を取得することができる。   According to the ammonia treatment method of the present invention, high-purity hydrogen can be obtained by separating nitrogen and hydrogen obtained by decomposing ammonia into nitrogen and hydrogen using a conventionally known method. it can.

以下、実験例を挙げて本発明をより具体的に説明するが、本発明はもとより下記の実験例により制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described more specifically with reference to experimental examples.However, the present invention is not limited by the following experimental examples, and appropriate modifications are made within a range that can meet the purpose described above and below. Any of these can be carried out and are included in the technical scope of the present invention.

なお、X線回折測定には、X線回折装置(製品名「RINT−2400」、株式会社リガク製)を用いた。X線源には、CuKα(0.154nm)を用い、測定条件として、X線出力50kV、300mA、発散スリット1.0mm、発散縦制限スリット10mmで、スキャンスピード毎分5度、サンプリング幅0.02度、走査範囲5〜90度で実施した。   An X-ray diffractometer (product name “RINT-2400”, manufactured by Rigaku Corporation) was used for the X-ray diffraction measurement. CuKα (0.154 nm) was used as the X-ray source. The measurement conditions were an X-ray output of 50 kV, 300 mA, a divergence slit of 1.0 mm, a divergence length limit slit of 10 mm, a scan speed of 5 degrees per minute, and a sampling width of 0. The scanning was performed at 02 degrees and a scanning range of 5 to 90 degrees.

≪実験例1≫
硝酸コバルト六水和物80.00gを蒸留水400.00gに溶解させた。別途、沸騰させた蒸留水250gにモリブデン酸アンモニウム48.53gを徐々に添加して溶解させた。両方の水溶液を混合した後、加熱攪拌し、蒸発乾固させた。得られた固形物を120℃で10時間乾燥させた後、窒素気流下、350℃で5時間焼成し、空気気流下、500℃で3時間焼成した。X線回折測定により、α−CoMoOであることを確認した。
«Experimental example 1»
80.00 g of cobalt nitrate hexahydrate was dissolved in 400.00 g of distilled water. Separately, 48.53 g of ammonium molybdate was gradually added and dissolved in 250 g of boiling distilled water. After mixing both aqueous solutions, it was heated and stirred and evaporated to dryness. The obtained solid was dried at 120 ° C. for 10 hours, calcined at 350 ° C. for 5 hours under a nitrogen stream, and calcined at 500 ° C. for 3 hours under an air stream. It was confirmed to be α-CoMoO 4 by X-ray diffraction measurement.

さらに、SUS316製の反応管に、α−CoMoOを0.5〜1.0mL充填し、窒素ガス(以下「窒素」と略す)30〜50mL/minを流しながら、400℃まで昇温した。次いで、アンモニアガス(以下「アンモニア」と略す)50〜100mL/minを流しながら、700℃まで昇温し、700℃で5時間保持する処理(窒化処理)を行って、アンモニア分解触媒(以下「CoMoO」と表示する)を得た。 Furthermore, 0.5-1.0 mL of α-CoMoO 4 was charged into a reaction tube made of SUS316, and the temperature was raised to 400 ° C. while flowing 30-50 mL / min of nitrogen gas (hereinafter referred to as “nitrogen”). Next, while flowing ammonia gas (hereinafter abbreviated as “ammonia”) at 50 to 100 mL / min, the temperature was raised to 700 ° C., and the treatment was held at 700 ° C. for 5 hours (nitriding treatment). CoMoO 4 ”).

≪実験例2≫
硝酸コバルト六水和物80.00gを蒸留水400.00gに溶解させた。別途、沸騰させた蒸留水250gにモリブデン酸アンモニウム48.53gを徐々に添加して溶解させた。両方の水溶液を混合した後、加熱攪拌し、蒸発乾固させた。得られた固形物を120℃で10時間乾燥させた後、窒素気流下、350℃で5時間焼成し、空気気流下、500℃で3時間焼成した。X線回折測定により、α−CoMoOであることを確認した。
«Experimental example 2»
80.00 g of cobalt nitrate hexahydrate was dissolved in 400.00 g of distilled water. Separately, 48.53 g of ammonium molybdate was gradually added and dissolved in 250 g of boiling distilled water. After mixing both aqueous solutions, it was heated and stirred and evaporated to dryness. The obtained solid was dried at 120 ° C. for 10 hours, calcined at 350 ° C. for 5 hours under a nitrogen stream, and calcined at 500 ° C. for 3 hours under an air stream. It was confirmed to be α-CoMoO 4 by X-ray diffraction measurement.

次いで、硝酸セシウム0.089gを蒸留水3.23gに溶解させた。この水溶液を、α−CoMoO 6.00gに滴下して均一に浸透させ、90℃で10時間乾燥させた後、X線回折測定により、α−CoMoOであることを確認した。 Next, 0.089 g of cesium nitrate was dissolved in 3.23 g of distilled water. This aqueous solution was dropped into 6.00 g of α-CoMoO 4 and uniformly infiltrated, dried at 90 ° C. for 10 hours, and confirmed to be α-CoMoO 4 by X-ray diffraction measurement.

さらに、SUS316製の反応管に、Csを含むα−CoMoOを0.5〜1.0mL充填し、窒素30〜50mL/minを流しながら、400℃まで昇温した。次いで、アンモニア50〜100mL/minを流しながら、700℃まで昇温し、700℃で5時間保持する処理(窒化処理)を行って、アンモニア分解触媒(以下「1%Cs−CoMoO」と表示する)を得た。 Furthermore, 0.5-1.0 mL of α-CoMoO 4 containing Cs was charged into a reaction tube made of SUS316, and the temperature was raised to 400 ° C. while flowing 30-50 mL / min of nitrogen. Next, while flowing ammonia at 50 to 100 mL / min, the temperature was raised to 700 ° C., and a treatment (nitriding treatment) was performed at 700 ° C. for 5 hours to display an ammonia decomposition catalyst (hereinafter, “1% Cs—CoMoO 4 ”). Obtained).

≪実験例3≫
実験例2において、硝酸セシウム0.089gを蒸留水3.23gに溶解させた水溶液に代えて、硝酸セシウム0.18gを蒸留水3.21gに溶解させた水溶液を用いたこと以外は、実験例2と同様にして、アンモニア分解触媒(以下「2%Cs−CoMoO」と表示する)を得た。なお、硝酸セシウムを均一に浸透させ、90℃で10時間乾燥させた後の状態は、X線回折測定により、α−CoMoOであることを確認した。
«Experimental example 3»
Experimental example 2 except that in Example 2, 0.089 g of cesium nitrate was dissolved in 3.23 g of distilled water, an aqueous solution in which 0.18 g of cesium nitrate was dissolved in 3.21 g of distilled water was used. In the same manner as in No. 2, an ammonia decomposition catalyst (hereinafter referred to as “2% Cs—CoMoO 4 ”) was obtained. The state after uniformly infiltrating cesium nitrate and drying at 90 ° C. for 10 hours was confirmed to be α-CoMoO 4 by X-ray diffraction measurement.

≪実験例4≫
実験例2において、硝酸セシウム0.089gを蒸留水3.23gに溶解させた水溶液に代えて、硝酸セシウム0.46gを蒸留水3.20gに溶解させた水溶液を用いたこと以外は、実験例2と同様にして、アンモニア分解触媒(以下「5%Cs−CoMoO」と表示する)を得た。なお、硝酸セシウムを均一に浸透させ、90℃で10時間乾燥させた後の状態は、X線回折測定により、α−CoMoOであることを確認した。
<< Experimental Example 4 >>
Experimental Example 2 except that in Example 2, 0.089 g of cesium nitrate was dissolved in 3.23 g of distilled water, an aqueous solution in which 0.46 g of cesium nitrate was dissolved in 3.20 g of distilled water was used. In the same manner as in No. 2, an ammonia decomposition catalyst (hereinafter referred to as “5% Cs—CoMoO 4 ”) was obtained. The state after uniformly infiltrating cesium nitrate and drying at 90 ° C. for 10 hours was confirmed to be α-CoMoO 4 by X-ray diffraction measurement.

≪実験例5〜7≫
実験例1において、硝酸コバルト六水和物およびモリブデン酸アンモニウムの量を適宜変更したこと以外は、実験例1と同様にして、コバルトとモリブデンとのモル比(Co/Mo)が、実験例5では、1.05であるアンモニア分解触媒(以下「Co/Mo=1.05」と表示する)、実験例6では、1.10であるアンモニア分解触媒(以下「Co/Mo=1.10」と表示する)、実験例7では、0.90であるアンモニア分解触媒(以下「Co/Mo=0.90」と表示する)を得た。なお、窒素気流下、350℃で5時間焼成し、空気気流下、500℃で3時間焼成した後の状態は、X線回折測定により、それぞれ、α−CoMoOであることを確認した。
<< Experimental Examples 5-7 >>
In Example 1, except that the amounts of cobalt nitrate hexahydrate and ammonium molybdate were appropriately changed, the molar ratio of cobalt to molybdenum (Co / Mo) was changed to Example 5 except that the amounts of cobalt nitrate hexahydrate and ammonium molybdate were changed. Then, an ammonia decomposition catalyst having 1.05 (hereinafter referred to as “Co / Mo = 1.05”), and in Experimental Example 6, an ammonia decomposition catalyst having 1.10 (hereinafter “Co / Mo = 1.10”). In Example 7, an ammonia decomposition catalyst with 0.90 (hereinafter referred to as “Co / Mo = 0.90”) was obtained. Incidentally, under a nitrogen stream, then calcined 5 hours at 350 ° C., under an air stream, the state after firing for 3 hours at 500 ° C., the X-ray diffraction measurement, respectively, it was confirmed that the α-CoMoO 4.

≪実験例8≫
実験例1において、硝酸コバルト六水和物を硝酸ニッケル六水和物に変更したこと以外は、実験例1と同様にして、アンモニア分解触媒(以下「NiMoO」と表示する)を得た。なお、窒素気流下、350℃で5時間焼成し、空気気流下、500℃で3時間焼成した後の状態は、X線回折測定により、α−CoMoO型を示すNiMoOであることを確認した。
<< Experimental Example 8 >>
In Experimental Example 1, an ammonia decomposition catalyst (hereinafter referred to as “NiMoO 4 ”) was obtained in the same manner as Experimental Example 1, except that the cobalt nitrate hexahydrate was changed to nickel nitrate hexahydrate. Incidentally, under a nitrogen stream, then calcined 5 hours at 350 ° C., confirmed that an air stream, the state after firing for 3 hours at 500 ° C., the X-ray diffraction measurement, a NiMoO 4 showing the 4 type alpha-CoMoO did.

≪実験例9≫
実験例8において、窒素気流下、350℃で5時間焼成し、空気気流下、500℃で3時間焼成した後の状態を、X線回折測定により、α−CoMoO型を示すNiMoOであることを確認してから、このα−CoMoO型を示すNiMoOに、硝酸セシウム0.075gを蒸留水1.55gに溶解させた水溶液を、滴下して均一に浸透させ、90℃で10時間乾燥させた後、窒化処理を行ったこと以外は、実験例8と同様にして、アンモニア分解触媒(以下「1%Cs−NiMoO」と表示する)を得た。なお、窒化処理の前段階の状態は、X線回折測定により、α−CoMoO型を示すNiMoOであることを確認した。
<< Experimental Example 9 >>
In Experimental Example 8, the state after calcination at 350 ° C. for 5 hours in a nitrogen stream and after calcination at 500 ° C. for 3 hours in an air stream is NiMoO 4 showing α-CoMoO 4 type by X-ray diffraction measurement. After confirming this, an aqueous solution in which 0.075 g of cesium nitrate was dissolved in 1.55 g of distilled water was dropped into NiMoO 4 showing the α-CoMoO 4 type, and the solution was uniformly infiltrated and stirred at 90 ° C. for 10 hours. After drying, an ammonia decomposition catalyst (hereinafter referred to as “1% Cs—NiMoO 4 ”) was obtained in the same manner as in Experimental Example 8 except that nitriding treatment was performed. The state before the nitriding treatment was confirmed to be NiMoO 4 indicating α-CoMoO 4 type by X-ray diffraction measurement.

≪実験例10および11≫
実験例9において、硝酸セシウム0.075gを蒸留水1.55gに溶解させた水溶液に代えて、実験例10では、硝酸セシウム0.15gを蒸留水1.55gに溶解させた水溶液を用いたこと、実験例11では、硝酸セシウム0.40gを蒸留水1.55gに溶解させた水溶液を用いたこと以外は、実験例9と同様にして、それぞれ、アンモニア分解触媒(以下「2%Cs−NiMoO」と表示する)およびアンモニア分解触媒(以下「5%Cs−NiMoO」と表示する)を得た。
<< Experimental Examples 10 and 11 >>
In Experimental Example 9, instead of an aqueous solution in which 0.075 g of cesium nitrate was dissolved in 1.55 g of distilled water, an aqueous solution in which 0.15 g of cesium nitrate was dissolved in 1.55 g of distilled water was used in Experimental Example 10. In Experimental Example 11, an ammonia decomposition catalyst (hereinafter referred to as “2% Cs—NiMoO”) was prepared in the same manner as in Experimental Example 9 except that an aqueous solution in which 0.40 g of cesium nitrate was dissolved in 1.55 g of distilled water was used. 4 ”) and an ammonia decomposition catalyst (hereinafter referred to as“ 5% Cs—NiMoO 4 ”).

なお、窒化処理の前段階の状態は、それぞれ、X線回折測定により、α−CoMoO型を示すNiMoOであることを確認した。 Incidentally, a pre-stage of the conditions of the nitriding treatment, respectively, by X-ray diffraction measurement, it was confirmed that the NiMoO 4 showing the 4 type alpha-CoMoO.

≪実験例12≫
SUS316製の反応管に、市販の酸化モリブデン(MoO)0.5〜1.0mLを充填し、窒素30〜50mL/minを流しながら、400℃まで昇温した。次いで、アンモニア50〜100mL/minを流しながら、700℃まで昇温し、700℃で5時間保持する処理(窒化処理)を行って、アンモニア分解触媒(以下「MoO」と表示する)を得た。
«Experimental example 12»
A reaction tube made of SUS316 was charged with 0.5 to 1.0 mL of commercially available molybdenum oxide (MoO 3 ), and heated to 400 ° C. while flowing nitrogen of 30 to 50 mL / min. Next, while flowing ammonia at 50 to 100 mL / min, the temperature is raised to 700 ° C. and a treatment (nitriding treatment) is performed at 700 ° C. for 5 hours to obtain an ammonia decomposition catalyst (hereinafter referred to as “MoO 3 ”). It was.

≪実験例13≫
硝酸セシウム0.21gを蒸留水1.62gに溶解させた水溶液を、市販の酸化モリブデン(MoO)7.00gに滴下して均一に浸透させ、120℃で10時間乾燥させた後、窒素気流下、350℃で5時間焼成し、空気気流下、500℃で3時間焼成した。
«Experimental example 13»
An aqueous solution obtained by dissolving 0.21 g of cesium nitrate in 1.62 g of distilled water is dropped into 7.00 g of commercially available molybdenum oxide (MoO 3 ) and uniformly infiltrated, and dried at 120 ° C. for 10 hours. Then, it was calcined at 350 ° C. for 5 hours, and calcined at 500 ° C. for 3 hours in an air stream.

さらに、SUS316製の反応管に、焼成物を0.5〜1.0mL充填し、窒素30〜50mL/minを流しながら、400℃まで昇温した。次いで、アンモニア50〜100mL/minを流しながら、700℃まで昇温し、700℃で5時間保持する処理(窒化処理)を行って、アンモニア分解触媒(以下「2%Cs−MoO」と表示する)を得た。 Furthermore, 0.5 to 1.0 mL of the fired product was charged into a reaction tube made of SUS316, and the temperature was raised to 400 ° C. while flowing 30 to 50 mL / min of nitrogen. Next, while flowing ammonia at 50 to 100 mL / min, the temperature was raised to 700 ° C., and a treatment (nitriding treatment) was performed at 700 ° C. for 5 hours to display an ammonia decomposition catalyst (hereinafter “2% Cs—MoO 3 ”). Obtained).

≪実験例14および15≫
実験例13において、硝酸セシウム0.21gを蒸留水1.62gに溶解させた水溶液に代えて、実験例14では、硝酸セシウム0.54gを蒸留水1.62gに溶解させた水溶液を用いたこと、実験例15では、硝酸セシウム1.14gを蒸留水1.62gに溶解させた水溶液を用いたこと以外は、実験例13と同様にして、それぞれ、アンモニア分解触媒(以下「5%Cs−MoO」と表示する)およびアンモニア分解触媒(以下「10%Cs−MoO」と表示する)を得た。
<< Experimental Examples 14 and 15 >>
In Experimental Example 13, instead of an aqueous solution in which 0.21 g of cesium nitrate was dissolved in 1.62 g of distilled water, an aqueous solution in which 0.54 g of cesium nitrate was dissolved in 1.62 g of distilled water was used in Experimental Example 14. In Experimental Example 15, an ammonia decomposition catalyst (hereinafter referred to as “5% Cs—MoO”) was prepared in the same manner as in Experimental Example 13, except that an aqueous solution in which 1.14 g of cesium nitrate was dissolved in 1.62 g of distilled water was used. 3 ”) and an ammonia decomposition catalyst (hereinafter referred to as“ 10% Cs—MoO 3 ”).

≪実験例16≫
硝酸コバルト六水和物9.49gを蒸留水41.18gに溶解させ、メタタングステン酸アンモニウム水溶液(略称「MW−2」、日本無機化学工業株式会社製;酸化タングステンとして、50質量%含有)15.13gを添加した。両方の溶液を混合した後、加熱攪拌し、蒸発乾固させた。得られた固形物を120℃で10時間乾燥させた後、窒素気流下、350℃で5時間焼成し、空気気流下、500℃で3時間焼成した。
<< Experimental Example 16 >>
9.49 g of cobalt nitrate hexahydrate was dissolved in 41.18 g of distilled water, and an aqueous ammonium metatungstate solution (abbreviation “MW-2”, manufactured by Nippon Inorganic Chemical Industries, Ltd .; containing 50% by mass as tungsten oxide) 15 .13 g was added. After mixing both solutions, they were heated and stirred and evaporated to dryness. The obtained solid was dried at 120 ° C. for 10 hours, calcined at 350 ° C. for 5 hours under a nitrogen stream, and calcined at 500 ° C. for 3 hours under an air stream.

さらに、SUS316製の反応管に、焼成物を0.5〜1.0mL充填し、窒素30〜50mL/minを流しながら、400℃まで昇温した。次いで、アンモニア50〜100mL/minを流しながら、700℃まで昇温し、700℃で5時間保持する処理(窒化処理)を行って、アンモニア分解触媒(以下「CoWO」と表示する)を得た。 Furthermore, 0.5 to 1.0 mL of the fired product was charged into a reaction tube made of SUS316, and the temperature was raised to 400 ° C. while flowing 30 to 50 mL / min of nitrogen. Next, while flowing ammonia at 50 to 100 mL / min, the temperature is raised to 700 ° C., and a treatment (nitriding treatment) is performed at 700 ° C. for 5 hours to obtain an ammonia decomposition catalyst (hereinafter referred to as “CoWO 4 ”). It was.

≪実験例17≫
硝酸マンガン六水和物13.36gを蒸留水67.08gに溶解させた。別途、沸騰させた蒸留水41.04gにモリブデン酸アンモニウム8.22gを徐々に添加して溶解させた。両方の水溶液を混合した後、加熱攪拌し、蒸発乾固させた。得られた固形物を120℃で10時間乾燥させた後、窒素気流下、350℃で5時間焼成し、空気気流下、500℃で3時間焼成した。X線回折測定により、α−MnMoOであることを確認した。
<< Experimental Example 17 >>
Manganese nitrate hexahydrate (13.36 g) was dissolved in distilled water (67.08 g). Separately, 8.22 g of ammonium molybdate was gradually added and dissolved in 41.04 g of boiling distilled water. After mixing both aqueous solutions, it was heated and stirred and evaporated to dryness. The obtained solid was dried at 120 ° C. for 10 hours, calcined at 350 ° C. for 5 hours under a nitrogen stream, and calcined at 500 ° C. for 3 hours under an air stream. It was confirmed to be α-MnMoO 4 by X-ray diffraction measurement.

さらに、SUS316製の反応管に、焼成物を0.5〜1.0mL充填し、窒素30〜50mL/minを流しながら、400℃まで昇温した。次いで、アンモニア50〜100mL/minを流しながら、700℃まで昇温し、700℃で5時間保持する処理(窒化処理)を行って、アンモニア分解触媒(以下「MnMoO」と表示する)を得た。 Furthermore, 0.5 to 1.0 mL of the fired product was charged into a reaction tube made of SUS316, and the temperature was raised to 400 ° C. while flowing 30 to 50 mL / min of nitrogen. Next, while flowing ammonia at 50 to 100 mL / min, the temperature is raised to 700 ° C. and a treatment (nitriding treatment) is performed at 700 ° C. for 5 hours to obtain an ammonia decomposition catalyst (hereinafter referred to as “MnMoO 4 ”). It was.

≪実験例18≫
硝酸カルシウム四水和物11.81gを蒸留水60.10gに溶解させた。別途、沸騰させた蒸留水45.06gにモリブデン酸アンモニウム8.83gを徐々に添加して溶解させた。両方の水溶液を混合した後、加熱攪拌し、蒸発乾固させた。得られた固形物を120℃で10時間乾燥させた後、窒素気流下、350℃で5時間焼成し、空気気流下、500℃で3時間焼成した。
<< Experimental Example 18 >>
11.81 g of calcium nitrate tetrahydrate was dissolved in 60.10 g of distilled water. Separately, 8.83 g of ammonium molybdate was gradually added and dissolved in 45.06 g of boiling distilled water. After mixing both aqueous solutions, it was heated and stirred and evaporated to dryness. The obtained solid was dried at 120 ° C. for 10 hours, calcined at 350 ° C. for 5 hours under a nitrogen stream, and calcined at 500 ° C. for 3 hours under an air stream.

さらに、SUS316製の反応管に、焼成物を0.5〜1.0mL充填し、窒素30〜50mL/minを流しながら、400℃まで昇温した。次いで、アンモニア50〜100mL/minを流しながら、700℃まで昇温し、700℃で5時間保持する処理(窒化処理)を行って、アンモニア分解触媒(以下「CaMoO」と表示する)を得た。 Furthermore, 0.5 to 1.0 mL of the fired product was charged into a reaction tube made of SUS316, and the temperature was raised to 400 ° C. while flowing 30 to 50 mL / min of nitrogen. Next, while flowing ammonia at 50 to 100 mL / min, the temperature is raised to 700 ° C. and a treatment (nitriding treatment) is performed at 700 ° C. for 5 hours to obtain an ammonia decomposition catalyst (hereinafter referred to as “CaMoO 4 ”). It was.

≪実験例19≫
硝酸マグネシウム六水和物13.92gを蒸留水70.02gに溶解させた。別途、沸騰させた蒸留水48.03gにモリブデン酸アンモニウム9.58gを徐々に添加して溶解させた。両方の水溶液を混合した後、加熱攪拌し、蒸発乾固させた。得られた固形物を120℃で10時間乾燥させた後、窒素気流下、350℃で5時間焼成し、空気気流下、500℃で3時間焼成した。
<< Experimental Example 19 >>
13.92 g of magnesium nitrate hexahydrate was dissolved in 70.02 g of distilled water. Separately, 9.58 g of ammonium molybdate was gradually added and dissolved in 48.03 g of boiling distilled water. After mixing both aqueous solutions, it was heated and stirred and evaporated to dryness. The obtained solid was dried at 120 ° C. for 10 hours, calcined at 350 ° C. for 5 hours under a nitrogen stream, and calcined at 500 ° C. for 3 hours under an air stream.

さらに、SUS316製の反応管に、焼成物を0.5〜1.0mL充填し、窒素30〜50mL/minを流しながら、400℃まで昇温した。次いで、アンモニア50〜100mL/minを流しながら、700℃まで昇温し、700℃で5時間保持する処理(窒化処理)を行って、アンモニア分解触媒(以下「MgMoO」と表示する)を得た。 Furthermore, 0.5 to 1.0 mL of the fired product was charged into a reaction tube made of SUS316, and the temperature was raised to 400 ° C. while flowing 30 to 50 mL / min of nitrogen. Next, while flowing ammonia at 50 to 100 mL / min, the temperature is raised to 700 ° C. and a treatment (nitriding treatment) is performed at 700 ° C. for 5 hours to obtain an ammonia decomposition catalyst (hereinafter referred to as “MgMoO 4 ”). It was.

≪アンモニア分解反応≫
実験例1〜19で得られた各触媒、および、純度99.9体積%以上のアンモニアを用いて、アンモニア分解反応を行い、アンモニアを窒素と水素とに分解した。
≪Ammonia decomposition reaction≫
Using each catalyst obtained in Experimental Examples 1 to 19 and ammonia having a purity of 99.9% by volume or more, an ammonia decomposition reaction was performed to decompose the ammonia into nitrogen and hydrogen.

なお、アンモニア分解率は、アンモニアの空間速度6,000h−1、反応温度400℃、450℃、または、500℃、反応圧力0.101325MPa(常圧)の条件下で測定した(下記式により算出した)。その結果を表1に示す。 The ammonia decomposition rate was measured under the conditions of an ammonia space velocity of 6,000 h −1 , a reaction temperature of 400 ° C., 450 ° C., or 500 ° C., and a reaction pressure of 0.101325 MPa (normal pressure) (calculated by the following formula). did). The results are shown in Table 1.

Figure 2010094667
Figure 2010094667

Figure 2010094667
Figure 2010094667

表1から明らかなように、実験例1〜19のアンモニア分解触媒は、いずれも、純度99.9体積%以上という高濃度のアンモニアを、400〜500℃という比較的低温で、かつ、6,000h−1という高い空間速度で効率よく窒素と水素とに分解することができる。また、実験例1〜11のアンモニア触媒は、A成分であるモリブデンとB成分であるコバルトまたはニッケルとの複合酸化物であるので、アンモニア分解率が比較的高い。さらに、実験例2〜4のアンモニア分解触媒は、特にA成分であるモリブデンとB成分であるコバルトとの複合酸化物にC成分であるセシウムが添加されているので、アンモニア分解率が非常に高い。 As is clear from Table 1, each of the ammonia decomposition catalysts of Experimental Examples 1 to 19 has a high concentration of ammonia having a purity of 99.9% by volume or more at a relatively low temperature of 400 to 500 ° C., and 6, It can be efficiently decomposed into nitrogen and hydrogen at a high space velocity of 000 h −1 . Moreover, since the ammonia catalysts of Experimental Examples 1 to 11 are complex oxides of molybdenum as the A component and cobalt or nickel as the B component, the ammonia decomposition rate is relatively high. Furthermore, the ammonia decomposition catalysts of Experimental Examples 2 to 4 have a very high ammonia decomposition rate because cesium as the C component is added to the composite oxide of molybdenum as the A component and cobalt as the B component. .

本発明は、アンモニアの分解に関するものであり、アンモニアを含有するガスを処理して無臭化する環境分野や、アンモニアを窒素と水素とに分解して水素を取得するエネルギー分野などにおいて、多大の貢献をなすものである。   The present invention relates to the decomposition of ammonia, and makes a great contribution in the environmental field in which ammonia-containing gas is treated and non-brominated, and in the energy field in which ammonia is decomposed into nitrogen and hydrogen to obtain hydrogen. It is what makes.

Claims (8)

アンモニアを窒素と水素とに分解する触媒であって、触媒活性成分が、モリブデン、タングステンおよびバナジウムよりなる群から選択される少なくとも1種(以下「A成分」という)を含有することを特徴とするアンモニア分解触媒。   A catalyst for decomposing ammonia into nitrogen and hydrogen, wherein the catalytically active component contains at least one selected from the group consisting of molybdenum, tungsten and vanadium (hereinafter referred to as “component A”). Ammonia decomposition catalyst. 前記触媒活性成分が、さらに、コバルト、ニッケル、マンガンおよび鉄よりなる群から選択される少なくとも1種(以下「B成分」という)を含有する請求項1に記載のアンモニア分解触媒。   The ammonia decomposition catalyst according to claim 1, wherein the catalytically active component further contains at least one selected from the group consisting of cobalt, nickel, manganese and iron (hereinafter referred to as "component B"). A成分とB成分とが複合酸化物の形態である請求項1または2に記載のアンモニア分解触媒。   The ammonia decomposition catalyst according to claim 1 or 2, wherein the A component and the B component are in the form of a composite oxide. 前記触媒活性成分が、さらに、アルカリ金属、アルカリ土類金属および希土類金属よりなる群から選択される少なくとも1種(以下「C成分」という)を含有する請求項1〜3のいずれか1項に記載のアンモニア分解触媒。   The catalyst active component further contains at least one selected from the group consisting of alkali metals, alkaline earth metals, and rare earth metals (hereinafter referred to as “C component”). The ammonia decomposition catalyst as described. 前記触媒活性成分の一部または全部が、アンモニアガスまたは窒素−水素混合ガスで処理されている請求項1〜4のいずれか1項に記載のアンモニア分解触媒。   The ammonia decomposition catalyst according to any one of claims 1 to 4, wherein a part or all of the catalytically active component is treated with ammonia gas or a nitrogen-hydrogen mixed gas. A成分を含有する酸化物またはA成分とB成分とを含有する酸化物を調製した後、前記酸化物を、300〜800℃の温度にて、アンモニアガスまたは窒素−水素混合ガスで処理することを特徴とするアンモニア分解触媒の製造方法。   After preparing an oxide containing an A component or an oxide containing an A component and a B component, the oxide is treated with ammonia gas or a nitrogen-hydrogen mixed gas at a temperature of 300 to 800 ° C. A process for producing an ammonia decomposition catalyst characterized by the above. 前記酸化物を調製した後、さらにC成分の化合物を添加する請求項6に記載のアンモニア分解触媒の製造方法。   The method for producing an ammonia decomposition catalyst according to claim 6, further comprising adding a compound of component C after preparing the oxide. 請求項1〜5のいずれか1項に記載のアンモニア分解触媒を用いて、アンモニアを含有するガスを処理して、前記アンモニアを窒素と水素とに分解して水素を取得することを特徴とするアンモニア処理方法。   A gas containing ammonia is treated using the ammonia decomposition catalyst according to any one of claims 1 to 5, and the ammonia is decomposed into nitrogen and hydrogen to obtain hydrogen. Ammonia treatment method.
JP2009216008A 2008-09-17 2009-09-17 Ammonia-decomposition catalyst, method of producing the same, and method of treating ammonia Pending JP2010094667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009216008A JP2010094667A (en) 2008-09-17 2009-09-17 Ammonia-decomposition catalyst, method of producing the same, and method of treating ammonia

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008238180 2008-09-17
JP2009216008A JP2010094667A (en) 2008-09-17 2009-09-17 Ammonia-decomposition catalyst, method of producing the same, and method of treating ammonia

Publications (1)

Publication Number Publication Date
JP2010094667A true JP2010094667A (en) 2010-04-30

Family

ID=42256731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009216008A Pending JP2010094667A (en) 2008-09-17 2009-09-17 Ammonia-decomposition catalyst, method of producing the same, and method of treating ammonia

Country Status (1)

Country Link
JP (1) JP2010094667A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161713A (en) * 2011-02-03 2012-08-30 Agc Seimi Chemical Co Ltd Ammonia decomposition catalyst and decomposition method of ammonia
JP2016538127A (en) * 2013-12-10 2016-12-08 中国科学院大▲連▼化学物理研究所Dalian Institute Of Chemical Physics,Chinese Academy Of Sciences Catalysts for ammonia synthesis and ammonia decomposition
CN114160154A (en) * 2021-12-13 2022-03-11 衡水市高新区博元新能源技术研发中心 Catalyst for treating motor vehicle tail gas
CN117199403A (en) * 2023-11-07 2023-12-08 浙江帕瓦新能源股份有限公司 Self-supporting catalytic electrode, preparation method and application thereof, and fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198638A (en) * 1989-01-27 1990-08-07 Nkk Corp Catalyst for decomposing ammonia
JP2004307326A (en) * 2003-03-25 2004-11-04 Ngk Insulators Ltd Method for recovering energy from organic waste
JP2007531209A (en) * 2004-03-23 2007-11-01 アムミネクス・アー/エス Use of ammonia storage devices in energy generation
JP2009534285A (en) * 2006-04-18 2009-09-24 ロッコ トゥリノ,ロサリオ Catalytic thermophysical dissociation device that dissociates liquid ammonia into its constituent gaseous hydrogen and nitrogen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198638A (en) * 1989-01-27 1990-08-07 Nkk Corp Catalyst for decomposing ammonia
JP2004307326A (en) * 2003-03-25 2004-11-04 Ngk Insulators Ltd Method for recovering energy from organic waste
JP2007531209A (en) * 2004-03-23 2007-11-01 アムミネクス・アー/エス Use of ammonia storage devices in energy generation
JP2009534285A (en) * 2006-04-18 2009-09-24 ロッコ トゥリノ,ロサリオ Catalytic thermophysical dissociation device that dissociates liquid ammonia into its constituent gaseous hydrogen and nitrogen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161713A (en) * 2011-02-03 2012-08-30 Agc Seimi Chemical Co Ltd Ammonia decomposition catalyst and decomposition method of ammonia
JP2016538127A (en) * 2013-12-10 2016-12-08 中国科学院大▲連▼化学物理研究所Dalian Institute Of Chemical Physics,Chinese Academy Of Sciences Catalysts for ammonia synthesis and ammonia decomposition
CN114160154A (en) * 2021-12-13 2022-03-11 衡水市高新区博元新能源技术研发中心 Catalyst for treating motor vehicle tail gas
CN117199403A (en) * 2023-11-07 2023-12-08 浙江帕瓦新能源股份有限公司 Self-supporting catalytic electrode, preparation method and application thereof, and fuel cell

Similar Documents

Publication Publication Date Title
JP5547936B2 (en) Ammonia decomposition catalyst, production method thereof, and ammonia treatment method
WO2010032790A1 (en) Catalyst for ammonia decomposition, process for producing same, and method of treating ammonia
Wang et al. Highly improved soot combustion performance over synergetic MnxCe1− xO2 solid solutions within mesoporous nanosheets
RU2619943C2 (en) Additives to ammoxidation catalysts based on metal oxide mixtures input before calcination
US4081510A (en) Process for catalytically treating an exhaust gas containing ammonia gas and oxygen gas to reduce said ammonia gas to nitrogen
Kobayashi et al. Low temperature selective catalytic reduction of NO by NH3 over V2O5 supported on TiO2–SiO2–MoO3
CN101142019A (en) Oxygen removal catalyst and oxygen removal method using the catalyst
US11779905B2 (en) Catalyst compositions and process for direct production of hydrogen cyanide in an acrylonitrile reactor feed stream
CN101522298A (en) Catalyst, method and apparatus for purifying nitrogen oxide
TWI764938B (en) Ammoxidation catalyst with selective co-product hcn production
Ren et al. Effect of Calcination Temperature on the Activation Performance and Reaction Mechanism of Ce–Mn–Ru/TiO2 Catalysts for Selective Catalytic Reduction of NO with NH3
JP2009254981A (en) Ammonia decomposing catalyst and method of decomposing ammonia
RU2005140141A (en) Catalyst for the oxidation of methanol to formaldehyde
JP2010094667A (en) Ammonia-decomposition catalyst, method of producing the same, and method of treating ammonia
Tu et al. Low temperature performance and sulfur resistance enhancement of Mn-Ce oxides supported on W-modified MWCNT for NH3-SCR removal of NOx
CN113546636B (en) Catalyst for preparing methylacrolein from isobutene or tertiary butanol and preparation method thereof
JP2010094669A (en) Ammonia-decomposition catalyst, method of producing the same, and method of treating ammonia
JP2017001010A (en) Ammonia decomposition catalyst and method for producing hydrogen using the catalyst
CN100379493C (en) Catalyst for synthesizing p-hydroxybenzonitrile and its preparation method and application
CN117181237A (en) Catalyst for preparing ammonia by using waste gas containing CO and NOx, preparation method and ammonia preparation method
JP2017124366A (en) Ammonia decomposition catalyst and method for producing hydrogen using the catalyst
JP2010167368A (en) Treatment method for ammonia-containing aqueous solution
JP2012223768A (en) Catalyst and method for decomposing ammonia
CN116272981B (en) A 3D nanoflower-shaped MnO2-based catalyst and its preparation method and application
JP2013071071A (en) Method for treating exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131112