[go: up one dir, main page]

JP2010025760A - 半導体センサ - Google Patents

半導体センサ Download PDF

Info

Publication number
JP2010025760A
JP2010025760A JP2008187757A JP2008187757A JP2010025760A JP 2010025760 A JP2010025760 A JP 2010025760A JP 2008187757 A JP2008187757 A JP 2008187757A JP 2008187757 A JP2008187757 A JP 2008187757A JP 2010025760 A JP2010025760 A JP 2010025760A
Authority
JP
Japan
Prior art keywords
protective layer
semiconductor substrate
linear expansion
semiconductor
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008187757A
Other languages
English (en)
Inventor
Shogo Mitani
尚吾 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2008187757A priority Critical patent/JP2010025760A/ja
Publication of JP2010025760A publication Critical patent/JP2010025760A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

【課題】通電時に抵抗体にジュール熱が発生した際に、半導体基板と保護層との線膨張係数の違いによりダイアフラム部が受ける応力を抑制することで、センサ出力のドリフト現象を低減し、測定制度を向上させて安定した計測が可能な半導体センサを提供する。
【解決手段】本発明に係る半導体センサは、半導体基板2と、前記半導体基板の一部が薄板化されてなるダイアフラム部3と、前記ダイアフラム部の一面側に配された抵抗体R〜Rと、を少なくとも備えた半導体センサ1A(1)であって、前記ダイアフラム部の一面上には、少なくとも前記抵抗体を覆うように第一保護層7と第二保護層8が順に積層され、前記第一保護層の線膨張係数は、前記第二保護層の線膨張係数と比べて、前記半導体基板の線膨張係数により近い値を有していることを特徴とする。
【選択図】図1

Description

本発明は、圧力センサとして機能する半導体センサに関する。
近年、圧力センサは、家電品、医療機器、自動車部品など様々な分野で使用されており、中でも半導体圧力センサは小型で高信頼性を有するため、その用途はますます拡大している。
その一例としては、例えば図5に示すようなものが挙げられる。この圧力センサ100は、シリコン等からなる半導体基板101の一部が薄く加工されてなるダイアフラム部102(感圧部)と、圧力による該ダイアフラム部102の歪抵抗の変化を測定するために複数配された、感圧素子としての歪ゲージ103と、前記一面において、前記ダイアフラム部102を除いた外縁域に配され、前記歪ゲージ103ごとに電気的に接続された電極(パッド部)104と、半導体基板101と接合されたガラス基板等からなる台座基板105等を備えている。
このような圧力センサ100は、ダイアフラム部102が圧力を受けて撓むと、各歪ゲージ103にダイアフラム部102の歪み量に応じた応力が発生し、この応力に応じて歪ゲージ103の抵抗値が変化する。この抵抗値変化を電気信号として取り出すことにより、圧力センサ100は圧力を検出する(例えば、特許文献1参照)。
ところで、電子デバイスやMEMSデバイスは、その目的により様々な環境で使用される。それらの環境では、外部の汚染によりデバイスの特性に影響を与える可能性がある。よってそれらの影響からデバイスを保護する目的で、デバイスをモールド樹脂等で保護するのが一般的である。
しかしながら、外部環境を測定するような圧力センサにおいては、そのセンシング部を外部にさらす必要があり、上記とは別の方法でデバイスを保護する必要がある。例えば、特許文献2においては、圧力センサのダイアフラム部102にシリコーンゲルからなる保護層106を形成している。
シリコーンゲルは、その特性上すぐれた保護材として使用されている。しかし、圧力センサを動作させる際、圧力センサのゲージ抵抗部にジュール熱が発生し、その熱がシリコーンゲルにまで達する。
シリコーンゲルの線膨張係数は一般的に10−4/℃オーダーなので、シリコン基板(約3×10−6/℃)やパッシベーション膜(10−7/℃オーダー)に比べ、2桁以上大きい。その結果、半導体基板とシリコーンゲルとの体積変化に差が生ずることで、圧力センサの威圧部であるダイアフラム上にシリコーンゲルから受ける応力が発生し、センサの出力がドリフトしてしまい、安定した計測が難しくなるという問題があった。
特開2002−340714号公報 特表2002−514307号公報
本発明は、このような従来の実情に鑑みて考案されたものであり、半導体センサの通電時に抵抗体にジュール熱が発生した際に、半導体基板と保護層との線膨張係数の違いによりダイアフラム部が受ける応力を抑制することで、センサ出力のドリフト現象を低減し、測定精度を向上させて安定した計測が可能な半導体センサを提供することを目的とする。
本発明の請求項1に記載の半導体センサは、半導体基板と、前記半導体基板の一部が薄板化されてなるダイアフラム部と、前記ダイアフラム部の一面側に配された抵抗体と、を少なくとも備えた半導体センサであって、前記ダイアフラム部の一面上には、少なくとも前記抵抗体を覆うように第一保護層と第二保護層が順に積層され、前記第一保護層の線膨張係数は、前記第二保護層の線膨張係数と比べて、前記半導体基板の線膨張係数により近い値を有していることを特徴とする。
本発明の請求項2に記載の半導体センサは、請求項1において、前記第一保護層は、前記抵抗体の上部のみに配されていることを特徴とする。
本発明の請求項3に記載の半導体センサは、請求項1又は2において、前記第一保護層はゲル状をなすことを特徴とする。
本発明では、前記ダイアフラム部の一面上に、少なくとも前記抵抗体を覆うように積層された第一保護層と第二保護層を有し、前記第一保護層の線膨張係数は、前記第二保護層の線膨張係数と比べて、前記半導体基板の線膨張係数により近い値を有している。このように本発明では、第一保護層が半導体基板と近い線膨張係数を有しているので、半導体センサの通電時に抵抗体にジュール熱が発生しても、半導体基板と第一保護層との体積変化の差を小さく抑えることができ、ダイアフラム部が第一保護層から受ける応力を抑制することができる。その結果、本発明では、外部環境からダイアフラム部を保護するとともに、通電初期に発生するセンサ出力のドリフト現象を低減することができるので、測定制度が向上し、安定した計測が可能な半導体センサを提供することが可能である。
以下、本発明に係る半導体センサの一実施形態を図面に基づいて説明する。
<第一実施形態>
図1は、本発明に係る半導体センサの一構成例(第一実施形態)を模式的に示す図であり、(a)は平面図、(b)は線分A−Aにおける断面図、(c)は線分B−Bにおける断面図である。なお、図1(b)においては、抵抗体と第一保護層との位置関係を模式的に示している。また、図2は、図1に示す半導体センサが、パッケージ(「筐体」とも呼ぶ)に内蔵された状態を模式的に示す断面図である。
この半導体センサ1A(1)は、例えばシリコン基板等からなる半導体基板2と、半導体基板2の薄肉部に相当するダイアフラム部3(「感圧部」とも呼ぶ)と、前記ダイアフラム部3と隣接して配され、例えばワイヤ等を介して外部と電気的に接続されるパッド部4と、ダイアフラム部3の表面に配された感圧素子である4つのp型抵抗体(ピエゾ抵抗素子)R〜Rと、から構成されている。
そして本発明の半導体センサ1は、ダイアフラム部3の一面上には、少なくとも抵抗体R〜Rを覆うように第一保護層7と第二保護層8が順に積層され、第一保護層7の線膨張係数は、第二保護層8の線膨張係数と比べて、半導体基板2の線膨張係数により近い値を有していることを特徴とする。
本発明では、ダイアフラム部3の一面上に、少なくとも抵抗体R〜Rを覆うように積層された第一保護層7と第二保護層8を有し、第一保護層7の線膨張係数は、第二保護層8の線膨張係数と比べて、半導体基板2の線膨張係数により近い値を有している。このように本発明では、第一保護層7が半導体基板2と近い線膨張係数を有しているので、半導体センサ1の通電時に抵抗体R〜Rにジュール熱が発生しても、半導体基板2と第一保護層7との体積変化の差を小さく抑えることができ、ダイアフラム部3が第一保護層7から受ける応力を抑制することができる。その結果、本発明の半導体センサ1は、外部環境からダイアフラム部3を保護するとともに、通電初期に発生するセンサ1出力のドリフト現象を低減することができるので、測定制度が向上し、安定した計測が可能なものとなる。
図1に示すように、この半導体センサ1は、平板状の半導体基板2を基材とし、この半導体基板2の一面(図1(b))において、その中央域に位置する薄板化された領域をダイアフラム部3(「感圧部」とも呼ぶ)とする。このダイアフラム部3には、感圧素子として機能する抵抗体R〜Rが配されている。
また、前記一面において、前記ダイアフラム部3を除いた外縁域には、前記抵抗体R〜Rごとに電気的に接続されたパッド部4が配されている。したがって、半導体センサ1は、絶対圧センサとして機能する構造を備えている。
また、半導体センサ1において、パッド部4を除く外縁域は、絶縁部(図示せず)によって覆われる形態が好ましい。絶縁部を設けることにより、抵抗体R〜Rが絶縁部によって被覆した構成が得られる。この構成とした半導体センサ1では、例えば図2に示すようにパッケージ30や端子部33と接続させる際に、パッド部4以外の外縁域は全て絶縁部によって被覆されているので、台座基板10やパッケージ30に対して抵抗体R〜Rの絶縁性が十分に確保される。また、絶縁部は、抵抗体R〜Rの外気との接触を遮断するため抵抗体R〜Rの耐食性を向上させると共に、抵抗体R〜Rがダイアフラム部3を介さずに直接、外部から受ける機械的な影響を大幅に削減する効果も有する。
感圧素子として機能するp型抵抗体(ピエゾ抵抗素子)R〜Rは、ダイアフラム部3の圧力変動を検出する検出回路(ストレンゲージ)を構成するものであり、リード配線5を介して、いわゆるホイットストーンブリッジ回路を構成するよう互いが接続されている。それぞれの抵抗体R〜Rは外周部のパッド部4までを配線部6によって電気配線接続されている。
このような抵抗体R〜Rは、ダイアフラム部3の周縁部に配置すると良い。周縁部においては圧縮と引張の両応力が抵抗体R〜Rに加わり易いので、感度の良い半導体センサ1が得られる。また、各抵抗体R〜Rは、ダイアフラム部3の表面に配されており、例えばシリコン基板中にボロンなどの拡散源を注入することによって形成することができる。
また、半導体基板2には、配線部6が設けられている。この配線部6は、例えばシリコン基板中にボロン(p型抵抗体よりも高濃度のもの)などの拡散源を注入することによって形成することができる。そして、この配線部6の一端部は、p型抵抗体R〜Rと電気的に接続され、他端部は、半導体基板2上に例えばアルミニウムなどによって形成されたパッド部4と電気的に接続されている。
前記ダイアフラム部3の一面上には、外部環境の汚染からダイアフラム部3を保護する目的で、少なくとも前記抵抗体R〜Rを覆うように積層された第一保護層7と第二保護層8とを有している。
そして本発明の半導体センサ1では、第一保護層7の線膨張係数は、第二保護層8の線膨張係数と比べて、半導体基板2の線膨張係数により近い値を有している。
第一保護層7が半導体基板2と近い線膨張係数を有しているので、半導体センサ1の通電時に抵抗体R〜Rにジュール熱が発生しても、この構造により、半導体基板2と第一保護層7との体積変化の差を小さく抑えることができ、ダイアフラム部3が第一保護層7から受ける応力を抑制することができる。
ここで、第二保護層8としては、圧力をダイアフラム部3に伝え、かつ耐環境特性にすぐれたシリコーンゲル等が用いられる。シリコーンゲルの線膨張係数は10−4/℃オーダーであり、第一保護層7は、その線膨張係数が、第二保護層8と比べて半導体基板2により近い値を有する材料が用いられる。半導体基板2が例えばシリコン基板からなる場合、その線膨張係数は約3×10−6/℃である。
このような第一保護層7の材料としては、例えばエポキシ樹脂系(線膨張係数は10−5/℃オーダー)が挙げられる。このような材料を用いることで、半導体基板2に対する第一保護層7の体積変化は、第二保護層8に比べて小さく、ダイアフラム部3が第一保護層7から受ける応力を抑制することができる。
また、第一保護層7はゲル状をなすことが好ましい。これにより、圧力をダイアフラム部に伝えることができる。
なお、エポキシ系樹脂からなる保護層だけでは、耐環境性の面で、半導体センサの保護層としては不十分である。そこで本発明では、下層にエポキシ系樹脂等からなる第一保護層7を、上層に耐環境性に優れたシリコーンゲル等からなる第二保護層8を配している。これにより外部環境からのダイアフラム部3の保護と、半導体基板2と第一保護層7との線膨張係数の差に起因する圧力変動(センサ出力のドリフト現象)の低減とを両立することができる。
このように、第一保護層7が半導体基板2と近い線膨張係数を有しているので、半導体センサ1の通電時に抵抗体R〜Rにジュール熱が発生しても、この構造により、半導体基板2と第一保護層7との体積変化の差を小さく抑えることができ、ダイアフラム部3が第一保護層7から受ける応力を抑制することができる。その結果、本発明の半導体センサ1は、外部環境からダイアフラム部3を保護するとともに、通電初期に発生するセンサ1出力のドリフト現象を低減することができ、安定した計測が可能なものとなる。
このような本発明の半導体センサ1A(1)は、図2に示すように、半導体センサ1A(1)のダイアフラム部3が配された面を上にして、反対側の面(底面)を台座基板10に固定され、さらに接着剤31等によりパッケージ30に固定されている。また、金属ワイヤ32を介してパッケージ30の端子部33に実装され、パッケージ30に内蔵される。このパッケージ30は、圧力導入口34を備えている。
そして、半導体センサ1において、半導体基板2のダイアフラム部3(感圧部)に外力が加わると、ダイアフラム部3が変形し、ダイアフラム部3の表面に形成された個々のゲージ抵抗が変化する。この、ホイートストンブリッジ回路における抵抗の変化を用いてセンサ出力の変動をモニタし、圧力に換算する。
なお、上述した例では、金属ワイヤ32を介してパッケージ30の端子部33と電気的に接続される場合であったが、本発明はこれに限定されるものではなく、例えば金属ワイヤの代わりにはんだバンプを介してパッケージの端子部に電気的に接続された構造であってもよい。
<第二実施形態>
図3は、本発明に係る半導体センサの他の一構成例(第二実施形態)を模式的に示す図であり、(a)は平面図、(b)は線分C−Cにおける断面図、(c)は線分D−Dにおける断面図である。なお、図3(b)においては、抵抗体と第一保護層との位置関係を模式的に示している。また、図4は、図3に示す半導体センサが、パッケージ(「筐体」とも呼ぶ)に内蔵された状態を模式的に示す断面図である。
なお、以下に示す説明では、上述した第一実施形態と異なる部分についてのみ説明し、第一実施形態と同様の部分については、その説明を省略する。
第一実施形態では、第一保護層7が、ダイアフラム部3全体を覆うように配される構成としたのに対して、本実施形態では、第一保護層7が、抵抗体R〜Rの上部のみ(局所的)に配される構成とした点が相違する。
この半導体センサ1B(1)では、ダイアフラム部3全体ではなく、抵抗体R〜Rの上部のみに第一保護層7が配されているので、該第一保護層7から露出したリード配線5や、配線部6等の電気回路上には、電気絶縁性の高いシリコーンゲルからなる第二保護層8を直接配することができる。これにより、半導体センサ1B(1)は耐絶縁性の向上が図れるので、より高い信頼性を備えることができる。
図3(b)に示すような二層構造の保護層は、まず、各ゲージ抵抗の上に局所的にエポキシ樹脂等をディスペンス後、硬化させることにより第一保護層7を形成し、次いで、第一保護層7の上からシリコーンゲル等をディスペンスし硬化させることにより第二保護層8を形成することにより得られる。
このような本実施形態の半導体センサ1B(1)は、図4に示すように、半導体センサ1B(1)のダイアフラム部3が配された面を上にして、反対側の面(底面)を台座基板10に固定され、さらに接着剤31等によりパッケージ30に固定されている。また、金属ワイヤ32を介してパッケージ30の端子部33に実装され、パッケージ30に内蔵される。
以上、本発明の半導体センサについて説明してきたが、本発明はこれに限定されるものではなく、発明の趣旨を逸脱しない範囲で、適宜変更が可能である。
例えば、ストレンゲージとして機能するp型抵抗体の配置および数に関しては、種々の変形例が考えられ、要は、ダイアフラム部(感圧部)の圧力歪を検出できれば、その配置や数はいかなるものでも構わない。
また、上述した実施形態では、シリコーンゲルからなる第二保護層が、センサ表面のみに配された構造を例に挙げて説明したが、シリコーンゲルがパッケージ全体に充填された構造とすることもできる。
本発明は、圧力センサとして機能する半導体センサに適用可能である。このような半導体センサは、例えば一般工業用計測用、電子血圧計、高度、気圧、水深計測機能付き電子機器、携帯機器、自動車などに用いられる。
本発明に係る半導体センサの一例を示す図。 図1に示す半導体センサが、パッケージに内蔵された状態を示す断面図。 本発明に係る半導体センサの他の一例を示す図。 図3に示す半導体センサが、パッケージに内蔵された状態を示す断面図。 従来の半導体センサの一例を示す断面図。
符号の説明
〜R 抵抗体、1A,1B(1) 半導体センサ、2 半導体基板、3 ダイアフラム部(感圧部)、4 パッド部、5 リード配線、6 配線部、7 第一保護層、8 第二保護層、10 台座基板、30 パッケージ、31 接着剤、32 金属ワイヤ、33 端子部、34 圧力導入口。

Claims (3)

  1. 半導体基板と、前記半導体基板の一部が薄板化されてなるダイアフラム部と、前記ダイアフラム部の一面側に配された抵抗体と、を少なくとも備えた半導体センサであって、
    前記ダイアフラム部の一面上には、少なくとも前記抵抗体を覆うように第一保護層と第二保護層が順に積層され、
    前記第一保護層の線膨張係数は、前記第二保護層の線膨張係数と比べて、前記半導体基板の線膨張係数により近い値を有していることを特徴とする半導体センサ。
  2. 前記第一保護層は、前記抵抗体の上部のみに配されていることを特徴とする請求項1に記載の半導体センサ。
  3. 前記第一保護層はゲル状をなすことを特徴とする請求項1又は2に記載の半導体センサ。
JP2008187757A 2008-07-18 2008-07-18 半導体センサ Pending JP2010025760A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008187757A JP2010025760A (ja) 2008-07-18 2008-07-18 半導体センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008187757A JP2010025760A (ja) 2008-07-18 2008-07-18 半導体センサ

Publications (1)

Publication Number Publication Date
JP2010025760A true JP2010025760A (ja) 2010-02-04

Family

ID=41731733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008187757A Pending JP2010025760A (ja) 2008-07-18 2008-07-18 半導体センサ

Country Status (1)

Country Link
JP (1) JP2010025760A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742371A (zh) * 2014-12-26 2016-07-06 长野计器株式会社 传感器模块以及传感器模块的制造方法
US9568386B2 (en) 2014-03-05 2017-02-14 Kabushiki Kaisha Toshiba MEMS device with protective structure
JP2017219461A (ja) * 2016-06-09 2017-12-14 長野計器株式会社 歪検出器及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9568386B2 (en) 2014-03-05 2017-02-14 Kabushiki Kaisha Toshiba MEMS device with protective structure
CN105742371A (zh) * 2014-12-26 2016-07-06 长野计器株式会社 传感器模块以及传感器模块的制造方法
JP2017219461A (ja) * 2016-06-09 2017-12-14 長野計器株式会社 歪検出器及びその製造方法

Similar Documents

Publication Publication Date Title
JP5486271B2 (ja) 加速度センサ、及び加速度センサの製造方法
TWI449892B (zh) Pressure sensor device
JP6665588B2 (ja) 圧力センサ
JP2016183963A (ja) 半導体歪みゲージ
CN102980711A (zh) 具有多个传感器元件的封装的传感器
JP4739164B2 (ja) 車両用エンジンの吸入空気圧力測定用の半導体感歪センサ
US20160209344A1 (en) Complex sensor and method of manufacturing the same
JP2014048072A (ja) 圧力センサモジュール
JP5051039B2 (ja) 圧力センサ
JP2010025760A (ja) 半導体センサ
JP2005127750A (ja) 半導体センサおよびその製造方法
KR101573367B1 (ko) 압저항형 세라믹 압력센서
US9640467B2 (en) Sensor arrangement and chip comprising additional fixing pins
JP6714439B2 (ja) 歪検出器及びその製造方法
JP5859133B2 (ja) 半導体装置
KR101633027B1 (ko) Mems 센서
JP6528602B2 (ja) 圧脈波センサ及び生体情報測定装置
JP2008082952A (ja) 半導体感歪センサ
JP2010147227A (ja) 電子デバイスパッケージ
JP2009265012A (ja) 半導体センサ
JP4706634B2 (ja) 半導体センサおよびその製造方法
JP6725299B2 (ja) 荷重センサ
EP2866012A1 (en) A sensor element comprising a constraining layer
JP2013164332A (ja) 圧力センサモジュール
JP4882682B2 (ja) 圧力センサ装置