JP2010009917A - 電極用組成物、電池用電極、リチウム二次電池、及びリチウム二次電池の製造方法 - Google Patents
電極用組成物、電池用電極、リチウム二次電池、及びリチウム二次電池の製造方法 Download PDFInfo
- Publication number
- JP2010009917A JP2010009917A JP2008167303A JP2008167303A JP2010009917A JP 2010009917 A JP2010009917 A JP 2010009917A JP 2008167303 A JP2008167303 A JP 2008167303A JP 2008167303 A JP2008167303 A JP 2008167303A JP 2010009917 A JP2010009917 A JP 2010009917A
- Authority
- JP
- Japan
- Prior art keywords
- group
- electrode
- bis
- compound
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
【課題】本発明の課題は、電極層と集電体との密着性に優れた電極を提供することであり、更に、該電極を用いたリチウム二次電池、及びその製造方法を提供することである。
【解決手段】エチニル基を有する化合物及び電極活物質を含有する電極用組成物。該電極用組成物と用いた電池用電極、リチウム二次電池、及びリチウム二次電池の製造方法。
【選択図】なし
【解決手段】エチニル基を有する化合物及び電極活物質を含有する電極用組成物。該電極用組成物と用いた電池用電極、リチウム二次電池、及びリチウム二次電池の製造方法。
【選択図】なし
Description
本発明は、電極用組成物及び電池用電極に関するものである。本発明はさらにこれらを用いたリチウム二次電池及び該リチウム二次電池の製造方法に関するものである。
電気二重層キャパシタやリチウムイオン二次電池等の蓄電デバイスに用いられる電極は、一般的に、電極活物質とバインダー(結着剤)樹脂とを含む電極用組成物を、集電体に塗布、乾燥して作製される。バインダー樹脂としては、ポリテトラフルオロエチレン(PTFE)やポリフッ化ビニリデン(PVDF)等の含フッ素樹脂が一般的に用いられている。
電気二重層キャパシタは、分極性電極と電解液との界面に形成される電気二重層に電荷を蓄積することを原理としたものであり、その電気二重層キャパシタの容量密度を向上させるため、分極性電極には高比表面積の活性炭、カーボンブラック等の炭素材料、金属又は導電性金属酸化物の微粒子等が用いられている。これらの高比表面積の分極性電極は、効率よく充電及び放電するため、集電体と呼ばれる金属や黒鉛等の抵抗の小さい層又は箔と接合されている。集電体としては、通常電気化学的に耐食性の高いアルミウム等のバルブ金属、SUS304、SUS316L等のステンレス鋼等が使用される。
電気二重層キャパシタの電解液としては有機電解液と水電解液があるが、作動電圧が高く充電状態のエネルギー密度を大きくできることから、有機電解液を用いた電気二重層キャパシタが注目されている。
分極性電極としては、主に活性炭が主成分として使用されるが、活性炭は通常粉末状であり、例えば上記バインダー樹脂と混合してあらかじめシート状に成形し、これを集電体と電気的に接続させて電極体として用いる。この際、活性炭を含む電極シートと集電体との接合強度が強く、かつ電気的な接触抵抗が小さくなるように、例えば導電性接着層を電極シートと集電体の間に介在させる。
一方、携帯型ビデオカメラや携帯型パソコン等の携帯型電子機器の普及に伴い、移動用電源としての電池の需要が急増している。電池としては一般的に、一次電池(マンガン電池、アルカリマンガン電池、フッ化黒鉛リチウム電池、二酸化マンガンリチウム電池、固体電解質電池、注水電池、熱電池など)、二次電池(鉛蓄電池、ニッケルカドニウム電池、ニッケル水素電池、ニッケル鉄蓄電池、酸化銀亜鉛蓄電池、二酸化マンガンリチウム二次電池、コバルト酸リチウム炭酸系二次電池、バナジウムリチウム二次電池など)が利用されている。また、電池の小型化、軽量化、高エネルギー密度化の要求が非常に高まりつつあり、リチウム又はリチウム合金を負電極に用いた二次電池の研究開発が盛んに行われている。
リチウム二次電池は、高いエネルギー密度を有し、自己放電も少なく、しかも軽量であるという優れた特徴を有している。例えば、負極活物質であるリチウムを化学的、物理的方法により負極活物質担持体である炭素材料に担持させたものを負電極とし、正極活物質であるリチウムの複合酸化物を正電極とした非水電解質二次電池が注目されている。
しかしながら、これら電気二重層キャパシタや電池等の蓄電デバイスに用いられる電極に含フッ素系バインダー樹脂を用いた場合、電極層と集電体との接合強度が弱く、電極層と集電体とが電極巻回時に剥離したり、充放電を繰り返すうちに剥離したりするという問題があった。
このような問題を解決すべく、近年、接着性や耐熱性に優れた、ポリイミド樹脂をバインダー樹脂として用いた電極を備えた蓄電デバイスが開発されている。例えば、ポリイミド樹脂をバインダー成分として含む二次電池(例えば、特許文献1参照)や電気二重層コンデンサ用電極(例えば、特許文献2参照)が開示されている。また、炭素質粉末とポリイミド樹脂を含む混合物と集電体とが一体化されてなる分極性電極を備えた電気二重層キャパシタが開示されている(例えば、特許文献3、4参照)。更には、ポリイミド樹脂をバインダー樹脂としたケイ素系負極活物質を含むリチウム二次電池が開示されている(例えば、特許文献5〜7参照)。
これらの先行技術文献に開示された電極では、電極活物質のバインダーや電極層と集電体との接着層構成材料として、ポリイミド樹脂等が使用されているため、含フッ素樹脂をバインダー樹脂として用いた場合よりも、電極層と集電体との接着強度に優れている。
しかしながら、これらのバインダー樹脂を用いたとしても、電極層と集電体との接着強度は未だ充分とは言えない。特に、活性炭をはじめとした、比表面積1000m2/g以上の多孔質材料を電極活物質とする場合や、多少濡れ性に劣る金属を集電体とする場合には、電極層と集電体との接着強度が不充分であり、長期使用時に電極層と集電体の間で剥離が生じ二次電池として充放電サイクル寿命が低下してしまうという問題がある。従って、更なる電極層と集電体との接着強度の改良が求められている。
特開平6−163031号公報
特開平9−270370号公報
特開平11−102845号公報
特開平2006−253450号公報
特開平2005−285563号公報
特開平2005−317309号公報
特開平2008−34352号公報
しかしながら、これらのバインダー樹脂を用いたとしても、電極層と集電体との接着強度は未だ充分とは言えない。特に、活性炭をはじめとした、比表面積1000m2/g以上の多孔質材料を電極活物質とする場合や、多少濡れ性に劣る金属を集電体とする場合には、電極層と集電体との接着強度が不充分であり、長期使用時に電極層と集電体の間で剥離が生じ二次電池として充放電サイクル寿命が低下してしまうという問題がある。従って、更なる電極層と集電体との接着強度の改良が求められている。
本発明は、このような事情に鑑みてなされたものであり、新規バインダー樹脂を含有する電極用組成物、及びこの組成物を用いて形成された電極層と集電体との密着性に優れた電極を提供することを課題とする。更に、該電極を用いたリチウム二次電池、及びその製造方法を提供することを課題とする。
本発明者は、上記目的を達成するために鋭意検討を重ねた結果、バインダー樹脂としてエチニル基を有する化合物を用いることで、比表面積の高い多孔質材料を電極活物質として用いた場合や、濡れ性の低い金属からなる集電体を用いた場合でも、電極層と集電体との密着性に優れるとともに、電解液で膨潤し難い電極が得られること、およびこの電極を備えた二次電池が充放電のサイクル寿命性能に優れ、内部抵抗が増大しにくいことを見出し、本発明を完成した。
すなわち、本発明の上記課題は、下記の手段によって解決する事を見出された。
<1> エチニル基を有する化合物及び電極活物質を含有する電極用組成物である。
<2> 前記エチニル基を有する化合物がさらにイミド基有することを特徴とする<1>に記載の電極用組成物である。
<3> 前記エチニル基を有する化合物が下記一般式(1)で表される化合物であることを特徴とする<1>又は<2>に記載の電極用組成物である。
<1> エチニル基を有する化合物及び電極活物質を含有する電極用組成物である。
<2> 前記エチニル基を有する化合物がさらにイミド基有することを特徴とする<1>に記載の電極用組成物である。
<3> 前記エチニル基を有する化合物が下記一般式(1)で表される化合物であることを特徴とする<1>又は<2>に記載の電極用組成物である。
一般式(1)中、Aは4官能の炭化水素基を表す。Bは連結基を表す。R2及びR3は炭化水素基であって、少なくとも一方が下記一般式(2)で表される基を表す。
kは1以上の整数である。
kは1以上の整数である。
一般式(2)中、R1は水素原子又は炭化水素基を表す。Arは(a+1)価のアリール基又は芳香族ヘテロ環基を表す。aは、1以上5以下の整数を表す。
<4> 前記エチニル基を有する化合物が、下記一般式(3)で表される単量体を構成単位として有することを特徴とする<1>〜<3>のいずれかに記載の電極用組成物である。
<4> 前記エチニル基を有する化合物が、下記一般式(3)で表される単量体を構成単位として有することを特徴とする<1>〜<3>のいずれかに記載の電極用組成物である。
一般式(3)中、A0は(l+m)価の炭化水素基を表す。但し、A0は同一炭素原子から3つ以上の芳香環が直結する場合を含まない。A1は単結合又は2価の炭化水素基を表す。Ar、R1及びaは、一般式(2)におけると同義である。X0、X1は、互いに独立に2価の連結基を表す。l、m、nはそれぞれ独立に1以上5以下の整数を表す。但しm、n共に1となる場合を除く。
<5> 前記エチニル基を有する化合物の分子量が100000以下である<1>〜<4>のいずれかに記載の電極用組成物である。
<6> 150℃ないし400℃で熱処理された<1>〜<5>のいずれかに記載の電極用組成物である。
<7> 前記電極活物質が炭素質物質であることを特徴とする<1>〜<6>いずれかに記載の電極用組成物である。
<8> <1>〜<5>いずれかに記載の電極用組成物からなる電極層、及び集電体を構成単位として有する電池用電極である。
<9> <8>に記載の電池用電極を負極に用いたリチウム二次電池である。
<10> 正極にリチウム遷移金属複合酸化物を正極活物質として含有する<9>に記載のリチウム二次電池である。
<11> エチニル基を有する化合物を含む溶液中に負極活物質を分散させて負極活物質スラリーを作製する工程と、該負極活物質スラリーを負極集電体の表面上に塗布する工程と、該負極活物質スラリーが塗布された該負極集電体を熱処理する工程と、負極と正極との間にセパレータを配置して電極体を作製する工程と、該電極体に非水電解質を含浸させる工程とを備えたリチウム二次電池の製造方法である。
<5> 前記エチニル基を有する化合物の分子量が100000以下である<1>〜<4>のいずれかに記載の電極用組成物である。
<6> 150℃ないし400℃で熱処理された<1>〜<5>のいずれかに記載の電極用組成物である。
<7> 前記電極活物質が炭素質物質であることを特徴とする<1>〜<6>いずれかに記載の電極用組成物である。
<8> <1>〜<5>いずれかに記載の電極用組成物からなる電極層、及び集電体を構成単位として有する電池用電極である。
<9> <8>に記載の電池用電極を負極に用いたリチウム二次電池である。
<10> 正極にリチウム遷移金属複合酸化物を正極活物質として含有する<9>に記載のリチウム二次電池である。
<11> エチニル基を有する化合物を含む溶液中に負極活物質を分散させて負極活物質スラリーを作製する工程と、該負極活物質スラリーを負極集電体の表面上に塗布する工程と、該負極活物質スラリーが塗布された該負極集電体を熱処理する工程と、負極と正極との間にセパレータを配置して電極体を作製する工程と、該電極体に非水電解質を含浸させる工程とを備えたリチウム二次電池の製造方法である。
発明におけるエチニル基を有するバインダー樹脂は熱硬化性を有し、該バインダー樹脂を含む電極用組成物を用いて形成された電極は、比表面積の高い電極活物質や、濡れ性の低い金属からなる集電体を使用する場合でも、電極層と集電体との密着性に優れた電極とすることができる。また、バインダー樹脂成分の分解温度が高いため、電極作製時に高温処理が可能となる。さらに、当該バインダー樹脂は熱処理することで更に強固な架橋構造を形成することから、更に耐電解液性が向上し、高温使用時でも電解液に溶解しないため、電極層と集電体との剥離が起こりにくい。
本発明におけるバインダー樹脂を含む電極用組成物を用いて形成された電極は、電解液で膨潤し難く、非水電解質二次電池の電極としても使用することができる。
この電極を備えた蓄電デバイスは、内部抵抗が低く、しかも、その低抵抗が維持され易いため、大電流充放電サイクル寿命に優れている。
この電極を備えた蓄電デバイスは、内部抵抗が低く、しかも、その低抵抗が維持され易いため、大電流充放電サイクル寿命に優れている。
以下、本発明についてさらに詳しく説明する。
[バインダー樹脂]
本発明に係る電極用組成物は、少なくともエチニル基(−C≡C−)を有する化合物をバインダー樹脂とし、電極活物質とを含むものである。エチニル基を有する化合物としては特に制限されないが、例えばエチニル基を構造単位に有する樹脂が好ましい。その様な樹脂の例としては、ポリエチレン、ポリプロピレン、変性ポリオレフィン、アイオノマー、ポリビニルアルコール、エチレン−酢酸ビニル共重合体(EVA)、エチレン−酢酸ビニル−ビニルアルコール三元共重合体(EVOH)、ポリ塩化ビニリデン、ポリ塩化ビニル、非晶性ポリオレフィン(透明、例えば日本ゼオン/商品名:ゼオネックス)、ポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリスチレン、スチレン系共重合体(ABS樹脂、AS樹脂、SMA樹脂、ACS樹脂、ASA樹脂等)、ポリアクリロニトリル、ポリオキシメチレン、ポリメチルメタクリレート、ポリエーテルサルホン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミドイミド、フッ素樹脂(ポリ四フッ化エチレン、四フッ化エチレン−六フッ化プロピレン共重合体、ポリフッ化ビニリデン等)、液晶ポリマー、ポリアリレート、ポリメチルペンテン、ポリスルホン、ノルボルネン系樹脂、スチレン−ブタジエンゴム(SBR)等を挙げることができる。
本発明に係る電極用組成物は、少なくともエチニル基(−C≡C−)を有する化合物をバインダー樹脂とし、電極活物質とを含むものである。エチニル基を有する化合物としては特に制限されないが、例えばエチニル基を構造単位に有する樹脂が好ましい。その様な樹脂の例としては、ポリエチレン、ポリプロピレン、変性ポリオレフィン、アイオノマー、ポリビニルアルコール、エチレン−酢酸ビニル共重合体(EVA)、エチレン−酢酸ビニル−ビニルアルコール三元共重合体(EVOH)、ポリ塩化ビニリデン、ポリ塩化ビニル、非晶性ポリオレフィン(透明、例えば日本ゼオン/商品名:ゼオネックス)、ポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリスチレン、スチレン系共重合体(ABS樹脂、AS樹脂、SMA樹脂、ACS樹脂、ASA樹脂等)、ポリアクリロニトリル、ポリオキシメチレン、ポリメチルメタクリレート、ポリエーテルサルホン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミドイミド、フッ素樹脂(ポリ四フッ化エチレン、四フッ化エチレン−六フッ化プロピレン共重合体、ポリフッ化ビニリデン等)、液晶ポリマー、ポリアリレート、ポリメチルペンテン、ポリスルホン、ノルボルネン系樹脂、スチレン−ブタジエンゴム(SBR)等を挙げることができる。
これらのうち、二次電池用電極として用いた場合の電解液に対する耐性と充放電サイクル特性に優れることから、ポリエーテルサルホン、ポリフェニレンエーテル、ポリフェニレンスルフィド、PEEK、ポリエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミドイミド、SBRがより好ましく、さらにイミド環を有するポリイミド、ポリエーテルイミド、ポリアミドイミド、PEEK、ポリエーテルケトンが好ましく、特に好まくはポリイミドである。これらは一種、または二種以上を併用することができる。
[エチニル基を含有する化合物]
本発明の電極用組成物に用いることのできる化合物の一つの好ましい態様例としては、エチニル基(−C≡C−)を有するポリイミドが挙げられ、それについて詳細に説明する。
本発明のエチニル基(−C≡C−)を有する化合物は、好ましくは下記一般式(1)で表される化合物である。
本発明の電極用組成物に用いることのできる化合物の一つの好ましい態様例としては、エチニル基(−C≡C−)を有するポリイミドが挙げられ、それについて詳細に説明する。
本発明のエチニル基(−C≡C−)を有する化合物は、好ましくは下記一般式(1)で表される化合物である。
一般式(1)中、Aは4官能の炭化水素基を表す。Aで表される炭化水素基は、無置換であっても、任意に置換されていてもよく、また環状又は非環状であっても良い。
Bは連結基を表す。Bで表される連結基は、無置換でも置換されていてもよく、また環状であっても非環状であっても良い。
R2及びR3は炭化水素基であって、少なくとも一方が下記一般式(2)で表される基を表す。
Bは連結基を表す。Bで表される連結基は、無置換でも置換されていてもよく、また環状であっても非環状であっても良い。
R2及びR3は炭化水素基であって、少なくとも一方が下記一般式(2)で表される基を表す。
一般式(2)中、R1は水素原子又は炭化水素基を表す。Arは(a+1)価のアリール基又は芳香族ヘテロ環基を表す。aは、1以上5以下の整数を表す。
kは1以上の整数である。
kは1以上の整数である。
Aで表される炭化水素基は、4官能の炭化水素基であって、無置換であっても、任意に置換されていてもよく、また環状又は非環状であっても良い。
以下に、4官能の炭化水素基について説明する。本発明に於いては、説明を明快し、理解を容易にするために、炭化水素基名を化合物の名称として示す。4官能の結合手の位置はいずれの位置でも良く、特に限定されない。具体的な例を挙げると、ベンゼン、ナフタレン、ビフェニル、ジフェニルエーテル、ベンゾフェノン、ジフェニルサルホン、ジフェニルメタン、2、2‘−ジフェニルプロパン、芳香族ジエステル、シクロヘキサン、シクロペンタン、シクロブタン、そしてこれらのハロゲンや炭化水素基で置換された各種誘導体が利用可能であるが、本発明に使用できる具体的な単量体(テトラカルボン酸無水物)は後述する。
以下に、4官能の炭化水素基について説明する。本発明に於いては、説明を明快し、理解を容易にするために、炭化水素基名を化合物の名称として示す。4官能の結合手の位置はいずれの位置でも良く、特に限定されない。具体的な例を挙げると、ベンゼン、ナフタレン、ビフェニル、ジフェニルエーテル、ベンゾフェノン、ジフェニルサルホン、ジフェニルメタン、2、2‘−ジフェニルプロパン、芳香族ジエステル、シクロヘキサン、シクロペンタン、シクロブタン、そしてこれらのハロゲンや炭化水素基で置換された各種誘導体が利用可能であるが、本発明に使用できる具体的な単量体(テトラカルボン酸無水物)は後述する。
Bは連結基である。
以下にBで表される連結基を説明する。本発明に於いては、説明を明快し、理解を容易にするために、炭化水素基名を化合物の名称として示す。置換位置はいずれの位置でも良く、特に限定されない。具体的な例を挙げると、ベンゼン、ナフタレン、ビフェニル、ジフェニルエーテル、ベンゾフェノン、ジフェニルサルホン、ジフェニルメタン、2、2−ジフェニルプロパン、芳香族ジエステル、9,9−ジフェニルフルオレン、シクロヘキサン、シクロペンタン、シクロブタン、そしてこれらのハロゲンや炭化水素基、各種誘導体が利用可能であるが、本発明に使用できる具体的な単量体(ジアミン)は後述する。
以下にBで表される連結基を説明する。本発明に於いては、説明を明快し、理解を容易にするために、炭化水素基名を化合物の名称として示す。置換位置はいずれの位置でも良く、特に限定されない。具体的な例を挙げると、ベンゼン、ナフタレン、ビフェニル、ジフェニルエーテル、ベンゾフェノン、ジフェニルサルホン、ジフェニルメタン、2、2−ジフェニルプロパン、芳香族ジエステル、9,9−ジフェニルフルオレン、シクロヘキサン、シクロペンタン、シクロブタン、そしてこれらのハロゲンや炭化水素基、各種誘導体が利用可能であるが、本発明に使用できる具体的な単量体(ジアミン)は後述する。
R2及びR3は、脂肪族や芳香族の炭化水素基であって、少なくとも一方が前記一般式(2)で表される基である。前記一般式(2)で表される基では無い場合は、特にその構造が限定されるものではないが、アルキル基、アルケニル基、フェニル基やナフチル基等の芳香族炭化水素基、そしてこれらのハロゲンや他の炭化水素基で置換されたものが使用できる。
kは1以上の整数であり、好ましくは2以上、より好ましくは3以上の整数である。
aは1〜5の整数であり、好ましくは1〜3の整数、より好ましくは1又は2である。
aは1〜5の整数であり、好ましくは1〜3の整数、より好ましくは1又は2である。
好ましくは、前記エチニル基を有する化合物が、下記一般式(3)で単量体を構成単位として有する化合物である。特に好ましくは、一般式(3)で表される化合物とテトラカルボン酸無水物との反応により得られる化合物である。
以下に、一般式(3)で表される化合物について詳細に説明する。
以下に、一般式(3)で表される化合物について詳細に説明する。
一般式(3)中、A0は(l+m)価の炭化水素基を表す。但し、A0は同一炭素原子から3つ以上の芳香環が直結する場合を含まない。A1は単結合又は2価の炭化水素基を表す。Ar、R1及びaは、一般式(2)におけると同義である。X0、X1は、互いに独立に2価の連結基を表す。l、m、nはそれぞれ独立に1以上5以下の整数を表す。但しm、n共に1となる場合を除く。
A0で表される(l+m)価の炭化水素基は、無置換でも、更に置換されていてもよく、又、環状であっても非環状であっても良い。但し、A0は同一炭素原子から3つ以上の芳香環が直結する場合を含まない。
次に、A0で表される(l+m)価の炭化水素基について詳しく説明するが、説明の都合上、炭化水素基名を1価基の名称で示す。更に高次の場合は、それぞれの1価基を元に対応する高次基を示すものとする。
無置換の炭化水素基としては炭素数1〜20の直鎖または分岐の脂肪族基、炭素数3〜20の脂環式基、炭素数6〜20の芳香環基が挙げられる。前記直鎖または分岐の脂肪族基としては、アルキル基(例えばメチル、エチル、プロピル、i−プロピル、ブチル、sec−ブチル、t−ブチル、ネオペンチル、ヘキシル、2−エチルヘキシル、オクチル、ドデシルなど)、アルケニレン基(例えばプロペニル、ブテニルなど)などが、脂環式基としては、シクロアルキル基(例えばシクロペンチル、シクロヘキシル、メンチルなど)、シクロアルケニル基(例えばシクロへキセニルなど)、及び脂環式多環基(例えばボルニル、ノルボニル、デカリニル、アダマンチル、ジアマンチルなど)などが挙げられる。
芳香環としては、例えばベンゼン、ナフタレン、フルオレン、アントラセン、インデン、インダン、及びビフェニルなどが挙げられる。
次に、A0で表される(l+m)価の炭化水素基について詳しく説明するが、説明の都合上、炭化水素基名を1価基の名称で示す。更に高次の場合は、それぞれの1価基を元に対応する高次基を示すものとする。
無置換の炭化水素基としては炭素数1〜20の直鎖または分岐の脂肪族基、炭素数3〜20の脂環式基、炭素数6〜20の芳香環基が挙げられる。前記直鎖または分岐の脂肪族基としては、アルキル基(例えばメチル、エチル、プロピル、i−プロピル、ブチル、sec−ブチル、t−ブチル、ネオペンチル、ヘキシル、2−エチルヘキシル、オクチル、ドデシルなど)、アルケニレン基(例えばプロペニル、ブテニルなど)などが、脂環式基としては、シクロアルキル基(例えばシクロペンチル、シクロヘキシル、メンチルなど)、シクロアルケニル基(例えばシクロへキセニルなど)、及び脂環式多環基(例えばボルニル、ノルボニル、デカリニル、アダマンチル、ジアマンチルなど)などが挙げられる。
芳香環としては、例えばベンゼン、ナフタレン、フルオレン、アントラセン、インデン、インダン、及びビフェニルなどが挙げられる。
任意に置換されてもよい環状または非環状の炭化水素基としては、上で例示した無置換の炭化水素基に対してハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、スルホニル基、アミド基、炭素数1〜20のアルコキシ基(例えばメトキシ、ブトキシ、ドデシルオキシ)、炭素数1〜20のアシルアミノ基(例えば、アセチルアミノ、N−メチルアセチルアミノ、プロピオニルアミノなど)、炭素数6〜20のアリール基(例えばフェニル、ナフチルなど)、ヒドロキシル基、シリル基等で任意の位置で置換された構造を持つ炭化水素基が挙げられる。
これらの中でも、A0としては、高引張弾性率、高ガラス転移点が得られるという観点から、(l+m)価のアルキル基、シクロアルキル、脂環式多環基、ベンゼン、ナフタレン、ビフェニルが好ましく、(l+m)価のアルキル基、シクロヘキシル、ノルボニル、アダマンチル、ベンゼンがより好ましく、原料の入手性や製造の容易性の観点で、特にベンゼンが好ましい。
A1は、(n+1)価の無置換又は任意に置換されていてもよい環状又は非環状の炭化水素基、単結合を表す。
次に、A1で表される(n+1)価の炭化水素基について詳しく説明するが、説明の都合上、炭化水素基名を1価基の名称で示す。更に高次の場合は、それぞれの1価基を元に対応する高次基を示すものとする。
無置換の炭化水素基としては炭素数1〜20の直鎖または分岐の脂肪族基、炭素数3〜20の脂環式基、炭素数6〜20の芳香環基が挙げられる。前記直鎖または分岐の脂肪族基としては、アルキル基(例えばメチル、エチル、プロピル、i−プロピル、ブチル、sec−ブチル、t−ブチル、ネオペンチル、ヘキシル、2−エチルヘキシル、オクチル、ドデシルなど)、アルケニレン基(例えばプロペニル、ブテニルなど)などが、脂環式基としては、シクロアルキル基(例えばシクロペンチル、シクロヘキシル、メンチルなど)、シクロアルケニル基(例えばシクロへキセニルなど)、脂環式多環基(例えばボルニル、ノルボニル、デカリニル、アダマンチル、ジアマンチルなど)などが挙げられる。芳香環としては、例えばベンゼン、ナフタレン、フルオレン、アントラセン、インデン、インダン、ビフェニルなどが挙げられる。
次に、A1で表される(n+1)価の炭化水素基について詳しく説明するが、説明の都合上、炭化水素基名を1価基の名称で示す。更に高次の場合は、それぞれの1価基を元に対応する高次基を示すものとする。
無置換の炭化水素基としては炭素数1〜20の直鎖または分岐の脂肪族基、炭素数3〜20の脂環式基、炭素数6〜20の芳香環基が挙げられる。前記直鎖または分岐の脂肪族基としては、アルキル基(例えばメチル、エチル、プロピル、i−プロピル、ブチル、sec−ブチル、t−ブチル、ネオペンチル、ヘキシル、2−エチルヘキシル、オクチル、ドデシルなど)、アルケニレン基(例えばプロペニル、ブテニルなど)などが、脂環式基としては、シクロアルキル基(例えばシクロペンチル、シクロヘキシル、メンチルなど)、シクロアルケニル基(例えばシクロへキセニルなど)、脂環式多環基(例えばボルニル、ノルボニル、デカリニル、アダマンチル、ジアマンチルなど)などが挙げられる。芳香環としては、例えばベンゼン、ナフタレン、フルオレン、アントラセン、インデン、インダン、ビフェニルなどが挙げられる。
任意に置換されてもよい環状または非環状の炭化水素基としては、上で例示した無置換の炭化水素基に対してハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、スルホニル基、アミド基、炭素数1〜20のアルコキシ基(例えばメトキシ、ブトキシ、ドデシルオキシ)、炭素数1〜20のアシルアミノ基(例えば、アセチルアミノ、N−メチルアセチルアミノ、プロピオニルアミノなど)、炭素数6〜20のアリール基(例えばフェニル、ナフチルなど)、ヒドロキシル基、シリル基等で任意の位置で置換された構造を持つ炭化水素基が挙げられる。
これらの中でも、高引張弾性率、高ガラス転移点が得られるという観点から、A1としては、(n+1)価のアルキル基、シクロアルキル、脂環式多環基、ベンゼン、ナフタレン、ビフェニルが好ましく、原料の入手性や製造の容易性の観点で、特に単結合が好ましい。
Arは、(a+1)価の任意に置換されてもよい芳香環基又はヘテロ環基を表す。
次に、Arで表される(a+1)価の炭化水素基について詳しく説明するが、説明の都合上、炭化水素基名を1価基の名称で示す。更に高次の場合は、それぞれの1価基を元に対応する高次基を示すものとする。
芳香環としては、ベンゼン、インデン、インダン、ナフタリン、ビフェニル、テトラリンなどが、ヘテロ環としてはフラン、チオフェン、ピロール、ピラン、チオピラン、ピリジン、オキサゾール、チアゾール、イミダゾール、ピリミジン、トリアジン、インドール、キノリン、プリン、ベンゾイミダゾール、ベンゾチアゾール、キノキサリン、及びカルバゾールなどが挙げられる。
次に、Arで表される(a+1)価の炭化水素基について詳しく説明するが、説明の都合上、炭化水素基名を1価基の名称で示す。更に高次の場合は、それぞれの1価基を元に対応する高次基を示すものとする。
芳香環としては、ベンゼン、インデン、インダン、ナフタリン、ビフェニル、テトラリンなどが、ヘテロ環としてはフラン、チオフェン、ピロール、ピラン、チオピラン、ピリジン、オキサゾール、チアゾール、イミダゾール、ピリミジン、トリアジン、インドール、キノリン、プリン、ベンゾイミダゾール、ベンゾチアゾール、キノキサリン、及びカルバゾールなどが挙げられる。
これらの中でも、高い引張弾性率と高い耐熱性(ガラス転移点)が得られるという観点から、芳香環としては、ベンゼン、インデン、インダン、ナフタリン、ビフェニルが、ヘテロ環としては、ピリジン、ピリミジン、トリアジン、インドール、キノリン、プリン、ベンゾイミダゾール、ベンゾチアゾール、キノキサリン、又はカルバゾールなどが好ましく、芳香環としては、ベンゼン、ビフェニル、又はナフタリンが、ヘテロ環としては、ピリジン、トリアジン、インドール、又はキノリンがより好ましい。原料の入手性や製造の容易性の観点で、特に、ベンゼンが好ましい。
芳香環またはヘテロ環は他の置換基によって置換されていてもよい。その置換基としては、ハロゲン原子(−F、−Br、−Cl、−I)、アルキル基、アルケニル基、アリール基、アラルキル基、アルコキシ基、アリーロキシ基、メルカプト基、アルキルチオ基、アリールチオ基、アルキルジチオ基、アリールジチオ基、N−アルキルアミノ基、N,N−ジアリールアミノ基、N−アルキル−N−アリールアミノ基、アシルオキシ基、カルバモイルオキシ基、Ν−アルキルカルバモイルオキシ基、N−アリールカルバモイルオキシ基、N,N−ジアルキルカルバモイルオキシ基、N,N−ジアリールカルバモイルオキシ基、N−アルキル−N−リールカルバモイルオキシ基、アルキルスルホキシ基、アリールスルホキシ基、アシルチオ基、アシルアミノ基、N−アルキルアシルアミノ基、N−アリールアシルアミノ基、ウレイド基、N’−アルキルウレイド基、N’,N’−ジアルキルウレイド基、N’−アリールウレイド基、N’,N’−ジアリールウレイド基、N’−アルキル−N’−アリールウレイド基、N−アルキルウレイド基、N−アリールウレイド基、
N’−アルキル−N−アルキルウレイド基、N’−アルキル−N−アリールウレイド基、N’,N’−ジアルキル−N−アルキルウレイト基、N’,N’−ジアルキル−N−アリールウレイド基、N’−アリール−Ν−アルキルウレイド基、N’−アリール−N−アリールウレイド基、N’,N’−ジアリール−N−アルキルウレイド基、N’,N’−ジアリール−N−アリールウレイド基、N’−アルキル−N’−アリール−N−アルキルウレイド基、N’−アルキル−N’−アリール−N−アリールウレイド基、アルコキシカルボニルアミノ基、アリーロキシカルボニルアミノ基、N−アルキル−N−アルコキシカルボニルアミノ基、N−アルキル−N−アリーロキシカルボニルアミノ基、N−アリール−N−アルコキシカルボニルアミノ基、N−アリール−N−アリーロキシカルボニルアミノ基、ホルミル基、アシル基、アシロキシ基、アルコキシカルボニル基、アリールカルボニル基、アリールカルボニルオキシ基、アリーロキシカルボニル基、カルバモイル基、N−アルキルカルバモイル基、N,N−ジアルキルカルバモイル基、N−アリールカルバモイル基、N,N−ジアリールカルバモイル基、N−アルキル−N−アリールカルバモイル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、アルコキシスルホニル基、アリーロキシスルホニル基、スルフィナモイル基、N−アルキルスルフィナモイル基、N,N−ジアルキルスルフィナモイル基、N−アリールスルフィナモイル基、N,N−ジアリールスルフィナモイル基、N−アルキル−N−アリールスルフィナモイル基、スルファモイル基、N−アルキルスルファモイル基、N,N−ジアルキルスルファモイル基、N−アリールスルファモイル基、N,N−ジアリールスルファモイル基、N−アルキル−N−アリールスルファモイル基、ジアルキルホスフォノ基、ジアリールホスフォノ基、アルキルアリールホスフォノ基、モノアルキルホスフォノ基、モノアリールホスフォノ基、ジアルキルホスフォノオキシ基、ジアリールホスフォノオキシ基、アルキルアリールホスフォノオキシ基、モノアルキルホスフォノオキシ基、モノアリールホスフォノオキシ基、モルホリノ基、シアノ基、及びニトロ基が挙げられる。
これらの置換基における、アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソプロピル基、イソブチル基、s−ブチル基、t−ブチル基、イソペンチル基、ネオペンチル基、1−メチルブチル基、イソヘキシル基、2−エチルヘキシル基、2−メチルヘキシル基、及びシクロペンチル基等が挙げられる。アリール基の具体例としては、フェニル基、ビフェニル基、ナフチル基、トリル基、キシリル基、メシチル基、クメニル基、クロロフェニル基、ブロモフェニル基、クロロメチルフェニル基、ヒドロキシフェニル基、メトキシフェニル基、エトキシフェニル基、フェノキシフェニル基、アセトキシフェニル基、ベンゾイロキシフェニル基、メチルチオフェニル基、フェニルチオフェニル基、メチルアミノフェニル基、ジメチルアミノフェニル基、アセチルアミノフェニル基、カルボキシフェニル基、メトキシカルボニルフェニル基、エトキシフェニルカルボニル基、フェノキシカルボニルフェニル基、N−フェニルカルバモイルフェニル基、シアノフェニル基、スルホフェニル基、スルホナトフェニル基、ホスフォノフェニル基、及びホスフォナトフェニル基等を挙げることができる。また、アルケニル基の例としては、ビニル基、1−プロペニル基、1−ブテニル基、シンナミル基、及び2−クロロ−1−エテニル基等が挙げられる。アシル基(G1CO−)におけるG1としては、水素、ならびに上記のアルキル基、アリール基を挙げることができる。
アラルキル基としては、上記のアルキル基に上記のアリール基が置換したものを挙げることができる。
これら置換基のうち、原料の入手性や製造の容易性の観点で、好ましいものとしてはハロゲン原子(−F、−Br、−Cl)、アルキル基、アリール基、アラルキル基、アルケニル基、アルコキシ基、アリーロキシ基、アルキルチオ基、アリールチオ基、N,N−ジアルキルアミノ基、アシルオキシ基、N−アルキルカルバモイルオキシ基、N−アリールカバモイルオキシ基、アシルアミノ基、アシル基、アルコキシカルボニル基、アリールカルボニル基、アリールカルボニルオキシ基、アリーロキシカルボニル基、カルバモイル基、N−アルキルカルバモイル基、N,N−ジアルキルカルバモイル基、N−アリールカルバモイル基、N−アルキル−N−アリールカルバモイル基、スルホナト基、スルファモイル基、N−アルキルスルファモイル基、N,N−ジアルキルスルファモイル基、N−アリールスルファモイル基、N−アルキル−N−アリールスルファモイル基、及びシアノ基が挙げられる。
これら置換基のうち、より好ましいものとしてはハロゲン原子(−F、−Cl)、アルキル基(メチル基、トリフロロメチル基、エチル基、トリフロロエチル基、プロピル基、ブチル基、イソプロピル基、t−ブチル基)、アリール基(フェニル基、トリル基、メシチル基、クメニル基、クロロフェニル基、メトキシフェニル基、エトキシフェニル基、アセトキシフェニル基、ベンゾイロキシフェニル基、)、アラルキル基(ベンジル基、フェネチル基)、アルコキシ基(メトキシ基、エトキシ基、イソプロポキシ基)、アリーロキシ基(フェノキシ基)、アシルオキシ基(アセトキシ基、プロピオニルオキシ基)、アセチル基、アセトキシ基、ベンゾイル基、ベンゾイルオキシ基、及びアシルアミノ基(アセチルアミノ基)が挙げられる。
これらの中でも、原料の入手性や製造の容易性の観点で、Arとしては、(a+1)価のハロゲン原子、炭素数1〜8のアルキル基、シクロアルキル基、アルコキシ基、アシルオキシ基、アシルアミノ基、炭素数6〜10のアリール基、アリーロキシ基、アラルキル基、アラルキルオキシ基、ヒドロキシ基、シアノ基で置換された、或いは無置換のベンゼン、ビフェニル、ナフタリン、ピリジン、トリアジン、インドール、又はキノリンが好ましく、a+1価のクロル原子、炭素数1〜6のアルキル基、アルコキシ基、アシルオキシ基、炭素数6〜10のアリーロキシ基、アラルキル基、ヒドロキシ基、シアノ基で置換された、或いは無置換のベンゼン、ビフェニル、ピリジン、又はトリアジンがより好ましく、更に、a+1価の炭素数1〜4のアルキル基、アルコキシ基、アシルオキシ基、炭素数6〜10のアリーロキシ基、アラルキル基、又はシアノ基で置換された、或いは無置換のベンゼン、ビフェニルがより好ましい。特に、(a+1)価の無置換のベンゼン、ビフェニルが好ましい。
X0は2価の連結基を表すが、その構造は特に限定されない。例えば、具体的には−OCO−、−COO−、−NRCO−、−CONR−、−NRCOO−、−OCONR−、−NRCONR−、−OCOO−、−OCS−、−NRCS−、−NRCSNR−、−OCSO−、−SO−、−SO2−、−O−、−S−、−NR−、−CO−、−CS−、及び単結合から構成される群から選ばれる一つまたは二つ以上を併用することができる。中でも、高い引張弾性率と高い耐熱性(ガラス転移温度)が得られることから、X1が単結合、−OCO−、−COO−、−NRCO−、−CONR−、−NRCOO−、−OCONR−、又は−NRCONR−がより好ましく、さらには−OCO−、−COO−、−NRCO−、又は−CONR−が特に好ましい。
X1は2価の連結基を表すが、その構造は特に限定されない。例えば、具体的には−OCO−、−COO−、−NRCO−、−CONR−、−NRCOO−、−OCONR−、−NRCONR−、−OCOO−、−OCS−、−NRCS−、−NRCSNR−、−OCSO−、−SO−、−SO2−、−O−、−S−、−NR−、−CO−、−CS−、及び単結合から構成される群から選ばれる一つまたは二つ以上を併用することができる。中でも、高い引張弾性率と高い耐熱性(ガラス転移温度)が得られることから、X1が単結合、−OCO−、−COO−、−NRCO−、−CONR−、−NRCOO−、−OCONR−、又は−NRCONR−がより好ましく、特に単結合が好ましい。
R1は水素原子、無置換又は、任意に置換されていてもよい環状の炭化水素基又は非環状の炭化水素基を表すが、アセチレン化合物を構成単位として含む重合体の溶剤溶解性が優れ、かつ熱硬化が容易になることから、水素原子、無置換又は、任意に置換されていてもよい環状脂肪族炭化水素基又は非環状の脂肪族炭化水素基が好ましく、原料の入手性や製造の容易性の観点から、水素原子が特に好ましい。
芳香環としては、ベンゼン、インデン、インダン、ナフタリン、ビフェニル、テトラリンなどが、ヘテロ環としてはフラン、チオフェン、ピロール、ピラン、チオピラン、ピリジン、オキサゾール、チアゾール、イミダゾール、ピリミジン、トリアジン、インドール、キノリン、プリン、ベンゾイミダゾール、ベンゾチアゾール、キノキサリン、及びカルバゾールなどが挙げられる。
無置換の環状又は非環状の脂肪族炭化水素基としては炭素数1〜20の直鎖または分岐の脂肪族基、炭素数3〜20の脂環式基、炭素数6〜20の脂環式多環基が挙げられる。前記直鎖または分岐の脂肪族基としては、アルキル基(例えばメチル、エチル、プロピル、i−プロピル、ブチル、sec−ブチル、t−ブチル、ネオペンチル、ヘキシル、2−エチルヘキシル、オクチル、ドデシル、又はヘキサデシルなど)、アルケニレン基(例えばプロペニル、ブテニルなど)などが、脂環式基としては、シクロアルキル基(例えばシクロペンチル、シクロヘキシル、又はメンチルなど)、シクロアルケニル基(例えばシクロへキセニルなど)など、脂環式多環基としては、例えばボルニル、ノルボニル、デカリニル、アダマンチル、及びジアマンチルなどが挙げられる。
任意に置換されていてもよい環状又は非環状の脂肪族炭化水素基としては、上記無置換の環状又は非環状の脂肪族炭化水素基に、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、又はヨウ素原子)、シアノ基、ニトロ基、スルホニル基、アミド基、炭素数1〜20のアルコキシ基(例えばメトキシ、ブトキシ、ドデシルオキシ)、炭素数1〜20のアシルオキシ基(例えばアセチルオキシ、プロピオニルオキシ、ペンチルカルボニルオキシ、ウンデシルカルボニルオキシなど)、炭素数1〜20のアシルアミノ基(例えば、アセチルアミノ、N−メチルアセチルアミノ、又はプロピオニルアミノなど)、アリール基(例えばフェニル、ナフチル)、ヒドロキシル基、シリル基等が任意の位置で置換された構造を持つ炭化水素基などが挙げられる。
l、m、及びnはそれぞれ独立に1以上の整数を表す。但し、目的とする重合体中に組み込むことが難しくなることから、mとnが共に1となる場合は除かれる。l、mがそれぞれ2以上の場合、複数存在するR1、Ar、X0、X1、及びA1はそれぞれ独立に、同じでも異なっていてもよい。
a、l、m、及びnとしては高い引張弾性率と高い耐熱性(ガラス転移温度)が得られるという観点から、それぞれ独立に1〜4で(l+m)が3以上が好ましく、更に、a、l、m、及びnが、それぞれ独立に1〜3で(l+m)が3以上が好ましい。特に、原料の入手性や製造の容易性の観点で、a、l、m、及びnが、それぞれ独立に1〜2で(l+m)=3が好ましい。
以下に一般式(3)で表される化合物の具体例を示すが、これらにより本発明が限定されるものではない。
[エチニル基を有する重合体]
本発明におけるエチニル基を含有する化合物は、前項で説明した化合物の如く単量体であっても、あるいは重合体であっても良い。重合体としては、付加重合体であっても縮合体であっても良い。
重合体の基幹骨格は芳香族、脂肪族のいずれでもよく、主鎖又は側鎖にシリコーン、フルオレン等を含んでもよいが、芳香族であることが望ましい。
本発明におけるエチニル基を含有する化合物は、前項で説明した化合物の如く単量体であっても、あるいは重合体であっても良い。重合体としては、付加重合体であっても縮合体であっても良い。
重合体の基幹骨格は芳香族、脂肪族のいずれでもよく、主鎖又は側鎖にシリコーン、フルオレン等を含んでもよいが、芳香族であることが望ましい。
本発明に於けるエチニル基を有する重合体としては、エチニル基を必須成分とする以外は特に限定されないが、好ましくは前記一般式(3)で表されるエチニル基を有する単量体と、分子内に−COOH基、−COOR’基、−CSOH基、−COSH基、−CSSH基、−NCO基、−NSO基のいずれかを2つ持つ化合物、酸無水物、さらに分子内にアミノ基を2個以上持つ置換または無置換の炭化水素化合物(アミン化合物)、酸無水物、ポリオール化合物、さらに必要に応じてアルデヒド化合物と共に反応させる事により調製することができる。
[一般式(3)以外のエチニル基を持つ単量体]
本発明を構成するエチニル基を含有する化合物において、エチニル基を導入する手段としては、上述した一般式(3)で表される単量体を構成単位とする以外にも、他のエチニル基を含有する単量体を構成単位として導入することも必要に応じて可能である。この様な単量体としては、エチニル基を含有した酸無水物、またはエチニル基を含有したアミン化合物を利用することができる。これら単量体を利用することによって、エチニル基を含有する化合物構造の末端にエチニル基を導入することが可能となる。
本発明を構成するエチニル基を含有する化合物において、エチニル基を導入する手段としては、上述した一般式(3)で表される単量体を構成単位とする以外にも、他のエチニル基を含有する単量体を構成単位として導入することも必要に応じて可能である。この様な単量体としては、エチニル基を含有した酸無水物、またはエチニル基を含有したアミン化合物を利用することができる。これら単量体を利用することによって、エチニル基を含有する化合物構造の末端にエチニル基を導入することが可能となる。
この様なエチニル基を含有した酸無水物としては、4−エチニル無水フタル酸、3−エチニル無水フタル酸、4−フェニルエチニル無水フタル酸、3−フェニルエチニル無水フタル酸、エチニルナフタレンジカルボン酸無水物、フェニルエチニルナフタレンジカルボン酸無水物、エチニルアントラセンジカルボン酸無水物、フェニルエチニルアントラセンジカルボン酸無水物、4−ナフチルエチニル無水フタル酸、3−ナフチルエチニル無水フタル酸、ナフチルエチニルナフタレンジカルボン酸無水物、ナフチルエチニルアントラセンジカルボン酸無水物、4−アントラセニルルエチニル無水フタル酸、3−アントラセニルエチニル無水フタル酸、アントラセニルエチニルナフタレンジカルボン酸無水物、アントラセニルエチニルアントラセンジカルボン酸無水物などが挙げられ、これらの芳香族上の水素原子は、炭素数1〜6のアルキル基、アルケニル基、アルキニル基、アルコキシル基、ハロゲン原子で置換されていてもよい。なお、入手のしやすさを考慮に入れると、4−フェニルエチニル無水フタル酸、4−エチニル無水フタル酸の使用が望ましい。これらは単独で、若しくは2種類以上を併用しても良い。
この様なエチニル基を含有したアミン化合物としては、3−アミノフェニルアセチレン、4−アミノフェニルアセチレン、3−フェニルエチニルアニリン、4−フェニルエチニルアニリン、3−ナフチルエチニルアニリン、4−ナフチルエチニルアニリン、3−アントラセニルエチニルアニリン、及び4−アントラセニルエチニルアニリンなどが挙げられ、芳香族上の水素原子は、炭素数1〜6のアルキル基、アルケニル基、アルキニル基、アルコキシル基、ハロゲン原子で置換されていてもよい。なお、入手のしやすさを考慮に入れると、3−アミノフェニルアセチレン、4−アミノフェニルアセチレン、3−フェニルエチニルアニリン、4−フェニルエチニルアニリンの使用が望ましい。これらは単独で、若しくは2種類以上を併用しても良い。
[分子内に−CHO基、−COOH基、−COOR’基、−CSOH基、−COSH基、−CSSH基、−NCO基、−NSO基のいずれかを2つ持つ化合物]
本発明の組成物に係る分子内に−CHO基、−COOH基、−COOR’基、−CSOH基、−COSH基、−CSSH基、−NCO基、−NSO基のいずれかを2つ持つ化合物としては、ジアルデヒド類(例えばテレフタルアルデヒド、イソフタルアルデヒド、フタルアルデヒド、4−メチルフタルアルデヒド、4−メチルイソフタルアルデヒド、2,5−ジメチルテレフタルアルデヒド、1,4−シクロヘキサンジアルデヒド、2−フルオロ−1,4−ベンゼンジアルデヒド、3−メトキシ−1,4−ベンゼンジアルデヒド、1,6−ヘキサンジアルデヒド、4,4’−ジアルデヒドビフェニル、2,2−ビス(4−アルデヒドフェニル)プロパン、1,3−ジアセチルベンゼン、1,4−ジアセチルシクロヘキサンなど)、ジカルボン酸類(例えばテレフタル酸、イソフタル酸、フタル酸、4−メチルフタル酸、4−メチルイソフタル酸、2,5−ジメチルテレフタル酸、1,4−シクロヘキサンジカルボン酸、2−フルオロ−1,4−ベンゼンジカルボン酸、3−メトキシ−1,4−ベンゼンジカルボン酸、1,6−ヘキサンジカルボン酸、4,4’−ジカルボキシビフェニル、2,2−ビス(4−カルボキシフェニル)プロパン、ビス(4−カルボキシフェニル)スルホン、4,4’−ジカルボキシベンゾフェノン、4,4’−ジカルボキシビフェニルエーテル、3,3’−ジカルボキシビフェニル、2,2−ビス(3−カルボキシフェニル)プロパン、ビス(3−カルボキシフェニル)スルホン、3,3’−ジカルボキシベンゾフェノン、4,4’−ジカルボキシ−3,3’−ジメチルビフェニルエーテル、4,4’−ジカルボキシ−3,3’−ジメチルビフェニル、2,2−ビス(4−カルボキシ−3−メチルフェニル)プロパン、ビス(4−カルボキシ−3−メチルフェニル)スルホン、4,4’−ジカルボキシ−3,3’−ジメチルベンゾフェノン、4,4’−ジカルボキシ−3,3’−ジクロルビフェニル、2,2−ビス(4−カルボキシ−3−クロルフェニル)プロパン、ビス(4−カルボキシ−3−クロルフェニル)スルホン、4,4’−ジカルボキシ−3,3’−ジクロルベンゾフェノン)、ジエステル類(例えばイソフタル酸メチルエステル、テレフタル酸ジメチルエステル)、ジチオカルボン酸類(例えばヘキサンジチオーs−酸、ヘキサンジチオジカルボン酸)、ジカルバメート類(例えばN−フェのキシ)、チオカルバミンサンジエステル類(例えば)、ジイソシアネート類(例えばトリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート)、ジチオイソシアネート類(例えば1,4−フェニレンジチオイソシアネート、1,3−フェニレンジチオイソシアネート、1,4−シクロヘキシルジイソチオシアネート、5−メチルー1,3−フェニレンジチオイソシアネート)などを単独、または二種以上を併用することができる。
本発明の組成物に係る分子内に−CHO基、−COOH基、−COOR’基、−CSOH基、−COSH基、−CSSH基、−NCO基、−NSO基のいずれかを2つ持つ化合物としては、ジアルデヒド類(例えばテレフタルアルデヒド、イソフタルアルデヒド、フタルアルデヒド、4−メチルフタルアルデヒド、4−メチルイソフタルアルデヒド、2,5−ジメチルテレフタルアルデヒド、1,4−シクロヘキサンジアルデヒド、2−フルオロ−1,4−ベンゼンジアルデヒド、3−メトキシ−1,4−ベンゼンジアルデヒド、1,6−ヘキサンジアルデヒド、4,4’−ジアルデヒドビフェニル、2,2−ビス(4−アルデヒドフェニル)プロパン、1,3−ジアセチルベンゼン、1,4−ジアセチルシクロヘキサンなど)、ジカルボン酸類(例えばテレフタル酸、イソフタル酸、フタル酸、4−メチルフタル酸、4−メチルイソフタル酸、2,5−ジメチルテレフタル酸、1,4−シクロヘキサンジカルボン酸、2−フルオロ−1,4−ベンゼンジカルボン酸、3−メトキシ−1,4−ベンゼンジカルボン酸、1,6−ヘキサンジカルボン酸、4,4’−ジカルボキシビフェニル、2,2−ビス(4−カルボキシフェニル)プロパン、ビス(4−カルボキシフェニル)スルホン、4,4’−ジカルボキシベンゾフェノン、4,4’−ジカルボキシビフェニルエーテル、3,3’−ジカルボキシビフェニル、2,2−ビス(3−カルボキシフェニル)プロパン、ビス(3−カルボキシフェニル)スルホン、3,3’−ジカルボキシベンゾフェノン、4,4’−ジカルボキシ−3,3’−ジメチルビフェニルエーテル、4,4’−ジカルボキシ−3,3’−ジメチルビフェニル、2,2−ビス(4−カルボキシ−3−メチルフェニル)プロパン、ビス(4−カルボキシ−3−メチルフェニル)スルホン、4,4’−ジカルボキシ−3,3’−ジメチルベンゾフェノン、4,4’−ジカルボキシ−3,3’−ジクロルビフェニル、2,2−ビス(4−カルボキシ−3−クロルフェニル)プロパン、ビス(4−カルボキシ−3−クロルフェニル)スルホン、4,4’−ジカルボキシ−3,3’−ジクロルベンゾフェノン)、ジエステル類(例えばイソフタル酸メチルエステル、テレフタル酸ジメチルエステル)、ジチオカルボン酸類(例えばヘキサンジチオーs−酸、ヘキサンジチオジカルボン酸)、ジカルバメート類(例えばN−フェのキシ)、チオカルバミンサンジエステル類(例えば)、ジイソシアネート類(例えばトリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート)、ジチオイソシアネート類(例えば1,4−フェニレンジチオイソシアネート、1,3−フェニレンジチオイソシアネート、1,4−シクロヘキシルジイソチオシアネート、5−メチルー1,3−フェニレンジチオイソシアネート)などを単独、または二種以上を併用することができる。
本発明におけるエチニル基を有する重合体の合成に使用可能なアミン化合物は特に限定されないが、高い引張弾性率と高い耐熱性(ガラス転移温度)が得られるという観点から、ジアミン化合物が望ましい。具体的には、以下のジアミン化合物が例示される。p−フェニレンジアミン、m−フェニレンジアミン、o−フェニレンジアミン、1,4−ジアミノ−2−メチルベンゼン、1,3−ジアミノ−4−メチル−ベンゼン、1,3−ジアミノ−4−クロル−ベンゼン、1,3−ジアミノ−4−アセチルアミノ−ベンゼン、1,3−ビスアミノエチル−ベンゼン、ヘキサメチレンジアミン、3,3’−ジアミノビフェニル、4,4’−ジアミノ−3,3’−ジメチルビフェニル、4,4’−ジアミノ−3,3’−ジクロルビフェニル、2,2’−ジフルオロ−4,4’−ジアミノビフェニル、3,3’−ジフルオロ−4,4’−ジアミノビフェニル、2,2’−ジフルオロ−5,5’−ジアミノビフェニル、3,3’−ジフルオロ−5,5’−ジアミノビフェニル、2,2’−ジクロロ−4,4’−ジアミノビフェニル、3,3’−ジクロロ−4,4’−ジアミノビフェニル、2,2’−ジクロロ−5,5’−ジアミノビフェニル、3,3’−ジクロロ−5,5’−ジアミノビフェニル、2,2’−ジブロモ−4,4’−ジアミノビフェニル、3,3’−ジブロモ−4,4’−ジアミノビフェニル、2,2’−ジブロモ−5,5’−ジアミノビフェニル、3,3’−ジブロモ−5,5’−ジアミノビフェニル、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミンビフェニル、3,3’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル、2,2’−ビス(トリフルオロメチル)−5,5’−ジアミノビフェニル、3,3’−ビス(トリフルオロメチル)−5,5’−ジアミノビフェニル、2,2’−ビス(トリクロロメチル)−4,4’−ジアミンビフェニル、3,3’−ビス(トリクロロメチル)−4,4’−ジアミノビフェニル、2,2’−ビス(トリクロロメチル)−5,5’−ジアミノビフェニル、
3,3’−ビス(トリクロロメチル)−5,5’−ジアミノビフェニル、2,2’−ビス(トリブロモメチル)−4,4’−ジアミンビフェニル、3,3’−ビス(トリブロモメチル)−4,4’−ジアミノビフェニル、2,2’−ビス(トリブロモメチル)−5,5’−ジアミノビフェニル、3,3’−ビス(トリブロモメチル)−5,5’−ジアミノビフェニル、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノ−3,3’−ジメチルビフェニルエーテル、3,3’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、ビス(4−アミノ−3−メチルフェニル)スルホン、ビス(4−アミノ−3−クロルフェニル)スルホン、ビス(4−アミノフェニル)スルホン、ビス(3−アミノフェニル)スルホン、ビス(5−フルオロ−4アミノフェニル)スルホン、ビス(5−フルオロ−3−アミノフェニル)スルホン、ビス(5−クロロ−4−アミノフェニル)スルホン、ビス(5−クロロ−3−アミノフェニル)スルホン、ビス(5−ブロモ−4−アミノフェニル)スルホン、ビス(5−ブルモ−3−アミノフェニル)スルホン、ビス(5−トリフルオロメチル−4−アミノフェニル)スルホン、ビス(5−トリフルオロメチル−3−アミノフェニル)スルホン、ビス(5−トリクロロメチル−4−アミノフェニル)スルホン、ビス(5−トリクロロメチル−3−アミノフェニル)スルホン、ビス(5−トリブルモメチル−4−アミノフェニル)スルホン、ビス(5−トリブロモメチル−3−アミノフェニル)スルホン、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、4,4’−ジアミノ−3,3’−ジメチルベンゾフェノン、4,4’−ジアミノ−3,3’−ジクロルベンゾフェノン、3,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、2,2−ジ(3−アミノフェニル)プロパン、2,2−ジ(4−アミノフェニル)プロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)プロパン、2,2−ジ(3−ミノフェニル)−1,1,1,3,3,3−ヘキサフルオロアプロパン、2,2−ジ(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス(4−アミノ−3−メチルフェニル)プロパン、2,2−ビス(4−アミノ−3−クロルフェニル)プロパン、
1,1−ジ(3−アミノフェニル)−1−フェニルエタン、1,1−ジ(4−アミノフェニル)−1−フェニルエタン、1−(3−アミノフェニル)−1−(4−アミノフェニル)−1−フェニルエタン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノベンゾイル)ベンゼン、1,3−ビス(4−アミノベンゾイル)ベンゼン、1,4−ビス(3−アミノベンゾイル)ベンゼン、1,4−ビス(4−アミノベンゾイル)ベンゼン、1,3−ビス(3−アミノ−α,α−ジメチルベンジル)ベンゼン、1,3−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン、1,4−ビス(3−アミノ−α,α−ジメチルベンジル)ベンゼン、1,4−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン、1,3−ビス(3−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、1,3−ビス(4−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、1,4−ビス(3−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、1,4−ビス(4−アミノ−α,α−ジトリフルオロメチルベンジル)ベンゼン、2,6−ビス(3−アミノフェノキシ)ベンゾニトリル、2,6−ビス(3−アミノフェノキシ)ピリジン、4,4’−ビス(3−アミノフェノキシ)ビフェニル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(3−アミノフェノキシ)フェニル]ケトン、ビス[4−(4−アミノフェノキシ)フェニル]ケトン、ビス[4−(3−アミノフェノキシ)フェニル]スルフィド、ビス[4−(4−アミノフェノキシ)フェニル]スルフィド、ビス〔4−(4−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(3−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(5−フルオロ−4−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(5−フルオロ−3−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(5−クロロ−4−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(5−クロロ−3−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(5−ブロモ−4−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(5−ブロモ−3−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(5−トリフルオロメチル−4−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(5−トリフルオロメチル−3−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(5−トリクロロメチル−4−アミノフェノキシ)フェニル〕スルホン、
ビス〔4−(5−トリクロロメチル−3−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(5−トリブロモメチル−4−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(5−トリブロモメチル−3−アミノフェノキシ)フェニル〕スルホン、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、ビス〔4−(4−アミノフェノキシ)フェニル〕メタン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[3−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、1,3−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(4−アミノフェノキシ)ベンゾイル]ベンゼン、1,4−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,4−ビス[4−(4−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(3−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(3−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,4−ビス[4−(4−アミノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、4,4’−ビス[4−(4−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’−ビス[4−(4−アミノーα,αージメチルベンジル)フェノキシ]ベンゾフェノン、4,4’−ビス[4−(4−アミノーα,αージメチルベンジル)フェノキシ]ジフェニルスルホン、4,4’−ビス[4−(4−アミノフェノキシ)フェノキシ]ジフェニルスルホン、3,3’−ジアミノ−4,4’−ジフェノキシベンゾフェノン、3,3’−ジアミノ−4,4’−ジビフェノキシベンゾフェノン、3,3’−ジアミノ−4−フェノキシベンゾフェノン、3,3’−ジアミノ−4−ビフェノキシベンゾフェノン、6,6’−ビス(3−アミノフェノキシ)3,3,3,’3,’−テトラメチル−1,1’−スピロビインダン、6,6’−ビス(4−アミノフェノキシ)3,3,3,’3,’−テトラメチル−1,1’−スピロビインダン、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン、1,3−ビス(4−アミノブチル)テトラメチルジシロキサン、α,ω−ビス(3−アミノプロピル)ポリジメチルシロキサン、α,ω−ビス(3−アミノブチル)ポリジメチルシロキサン、ジアミノポリシロキサンなどを単独、または二種以上を併用することができる。
上記例示したアミン化合物は、上記アミン化合物の芳香環上の水素原子の一部、若しくは全てをフッ素原子、メチル基、メトキシ基、トリフルオロメチル基、及びトリフルオロメトキシ基から選ばれた置換基で置換したジアミンであってもよい。また、分岐を導入する目的で、アミン化合物の一部をトリアミン化合物、テトラアミン化合物と代えてもよい。
このようなトリアミン化合物の具体例としては、例えばパラローズアニリン等が挙げられる。
このようなトリアミン化合物の具体例としては、例えばパラローズアニリン等が挙げられる。
本発明におけるエチニル基を有する重合体の合成に使用可能な酸無水物としては、特に限定されないが、具体的には例えば、以下のものが挙げられる。ピロメリット酸二無水物、3−フルオロピロメリット酸二無水物、3−クロロピロメリット酸二無水物、3−ブロモピロメリット酸二無水物、3−トリフルオロメチルピロメリット酸二無水物、3−トリクロロメチルピロメリット酸二無水物、3−トリブロモメチルピロメリット酸二無水物、3,6−ジフルオロピロメリット酸二無水物、3,6−ジクロロピロメリット酸二無水物、3,6−ジブロモピロメリット酸二無水物、3,6−ビストリフルオロメチルピロメリット酸二無水物、3,6−ビストリクロロメチルピロメリット酸二無水物、3,6−ビストリブロモメチルピロメリット酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、ビス(2,3−ジカルボキシフェニル)エーテル二無水物、
ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ビス(2,3−ジカルボキシフェニル)スルフィド二無水物、ビス(3,4−ジカルボキシフェニル)スルフィド二無水物、ビス(2,3−ジカルボキシフェニル)スルホン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、1,3−ビス(3,4−ジカルボキシフェノキシ)ベンゼン二無水物、1,3−ビス(2,3−ジカルボキシフェノキシ)ベンゼン二無水物、1,4−ビス(2,3−ジカルボキシフェノキシ)ベンゼン二無水物、1,4−ビス(3,4−ジカルボキシフェノキシ)ベンゼン二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ビフェニル二無水物、2,2−ビス[(3,4−ジカルボキシフェノキシ)フェニル]プロパン二無水物、9,9−ビス(3,4−ジカルボキシフェニル)フルオレン酸二無水物、9,9−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]フルオレン酸二無水物、4,4’−ビフェニレンビス(トリメリット酸モノエステル酸無水物)、
p−フェニレンビス(トリメリット酸モノエステル酸無水物)、p−メチルフェニレンビス(トリメリット酸モノエステル酸無水物)、p−(2,3−ジメチルフェニレン)ビス(トリメリット酸モノエステル酸無水物)、1,4−ナフタレンビス(トリメリット酸モノエステル酸無水物)、2,6−ナフタレンビス(トリメリット酸モノエステル酸無水物)、2,2−ビス[4−(トリメリット酸モノエステル酸無水物)フェニル]プロパン、2,2−ビス[4−(トリメリット酸モノエステル酸無水物)フェニル]ヘキサフルオロプロパン、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,3,5,6−ピリジンテトラカルボン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、1,3−ビス(3,4−ジカルボキシフェニル)−1,1,3,3−テトラメチルジシロキサン二無水物、1−(2,3−ジカルボキシフェニル)−3−(3,4−ジカルボキシフェニル)−1,1,3,3−テトラメチルジシロキサン二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、エチレンテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物などを単独、または二種以上を併用することができる。
上記例示した酸無水物は、適宜単独で、又は混合して用いることができる。また、上記テトラカルボン酸二無水物のいずれも、それらの芳香環上の水素原子の一部、若しくは全てをフッ素原子、メチル基、メトキシ基、トリフルオロメチル基、及びトリフルオロメトキシ基から選ばれた置換基で置換して用いることもできる。
また、酸無水物の一部をヘキサカルボン酸三無水物類、オクタカルボン酸四無水物類と代えてもよい。
また、酸無水物の一部をヘキサカルボン酸三無水物類、オクタカルボン酸四無水物類と代えてもよい。
本発明におけるエチニル基を有する重合体の合成にポリオールを使用する場合の使用可能なポリオール化合物としては、特に限定されないが、具体的には例えば、以下のものが挙げられる。例えば、4,4’−ジヒドロキシビフェニル、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)−1−フェニルプロパン、ビス(4−ヒドロキシフェニル)スルホン、4,4’−ジヒドロキシベンゾフェノン、4,4’−ジヒドロキシビフェニルエーテル、3,3’−ジヒドロキシビフェニル、2,2−ビス(3−ヒドロキシフェニル)プロパン、ビス(3−ヒドロキシフェニル)スルホン、3,3’−ジヒドロキシベンゾフェノン、4,4’−ジヒドロキシ−3,3’−ジメチルビフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジメチルビフェニル、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、ビス(4−ヒドロキシ−3−メチルフェニル)スルホン、4,4’−ジヒドロキシ−3,3’−ジメチルベンゾフェノン、4,4’−ジヒドロキシ−3,3’−ジクロルビフェニル、2,2−ビス(4−ヒドロキシ−3−クロルフェニル)プロパン、ビス(4−アミノ−3−クロルフェニル)スルホン、4,4’−ジアミノ−3,3’−ジクロルベンゾフェノン、1,4−ジヒドロキシベンゼン、1,3−ジヒドロキシベンゼン、1,4−ジヒドロキシ−2−メチルベンゼン、1,3−ジヒドロキシ−4−メチル−ベンゼン、1,3−ジヒドロキシ−4−クロル−ベンゼン、1,3−ジヒドロキシ−4−アセトキシ−ベンゼン、1,3−ビスヒドロキシエチル−ベンゼン、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブタンポリオール、ヘキサンポリオール、シクロヘキサンポリオール、1,6−ビスヒドロキシメチルシクロヘキサン、及びネオペンチルグリコールなどが挙げられるが、これに限定されるものではない。これらは単独、または二種以上を併用することができる。
本発明を構成するエチニル基を含有する化合物にアルデヒド化合物を使用する場合の使用可能なアルデヒド化合物としては、特に限定されないが、具体的には例えば、以下のものが挙げられる。ホルムアルデヒド、アセトアルデヒド、トリオキサン、プロピオンアルデヒド、及びベンズアルデヒドなどが挙げられる。これらは単独、または二種以上を併用することができる。これらの中でもホルムアルデヒド、アセトアルデヒドが好ましい。
本発明を構成するエチニル基を含有する化合物には、その他の構成単位として、ジカルボン酸類、ジエステル類、ジウレア類、又はジイソシアネート類などを含むこともできる。
<重合方法>
本発明におけるエチニル基を有する重合体の製造方法には、特に制限されないが、前項で説明したエチニル基を有する単量体と上記のジアミンや酸無水物などの単量体または単量体混合物とを用いることができる。
本発明におけるエチニル基を有する重合体の製造方法には、特に制限されないが、前項で説明したエチニル基を有する単量体と上記のジアミンや酸無水物などの単量体または単量体混合物とを用いることができる。
例えば、本発明におけるエチニル基を有する重合体を製造する方法としては、ポリアミド酸を経由した後に閉環してイミド化する方法、ポリイソイミドを経由する方法、一部をイミド化した後にさらにポリアミド酸を経由してブロックポリイミドとする方法等が利用できるが、本発明に含まれるエチニル基を含有する化合物を製造する上では特に制限されない。ジアミン等のアミン化合物を溶解した有機溶媒中に、酸無水物を分散し、攪拌することで完全に溶解させ重合させる方法、酸無水物を有機溶媒中に溶解及び/または分散させた後、アミン化合物を用いて重合させる方法、酸無水物とアミン化合物の混合物を有機溶媒中で反応させて重合する方法など、公知の重合方法を用いることができる。
イミド化においては、ポリアミド酸の環化により水が生成するが、この水は、ベンゼン、トルエン、キシレンやテトラリン等と共沸させて反応系外に除去することにより、イミド化を促進することが好ましく、更に、無水酢酸等の脂肪族酸無水物や芳香族酸無水物のような脱水剤を使用すれば、イミド化反応が進行し易くなる。
イミド化においては、ポリアミド酸の環化により水が生成するが、この水は、ベンゼン、トルエン、キシレンやテトラリン等と共沸させて反応系外に除去することにより、イミド化を促進することが好ましく、更に、無水酢酸等の脂肪族酸無水物や芳香族酸無水物のような脱水剤を使用すれば、イミド化反応が進行し易くなる。
又、必要に応じて反応系に重縮合促進剤を加え、反応を速やかに完結させることもでき、このような重縮合促進剤としては、塩基性重縮合促進剤及び酸性重縮合促進剤を例示することができ、両者を併用することもできる。前記塩基性重縮合促進剤としては、例えばN,N−ジメチルアニリン、N,N−ジエチルアニリン、ピリジン、キノリン、イソキノリン、α−ピコリン、β−ピコリン、γ−ピコリン、2,4−ルチジン、トリエチルアミン、トリブチルアミン、トリペンチルアミン、N−メチルモルホリン、ジアザビシクロウンデセン、及びジアザビシクロノネン等を挙げることができ、酸性重縮合促進剤としては、例えば安息香酸、o−ヒドロキシ安息香酸、m−ヒドロキシ安息香酸、p−ヒドロキシ安息香酸、2,4−ジヒドロキシ安息香酸、p−ヒドロキシフェニル酢酸、4−ヒドロキシフェニルプロピオン酸、リン酸、p−フェノールスルホン酸、p−トルエンスルホン酸、及びクロトン酸等を挙げることができる。
上記の重縮合促進剤の使用量は、ジアミン或いはジアミン成分に対して1モル%〜50モル%、好ましくは5モル%〜35モル%であって、これらの重縮合促進剤を用いることにより、反応温度を低く設定することができるため、しばしば着色を引き起こす原因とされている加熱による副反応が防げるだけでなく、反応時間も大幅に短縮でき、経済的である。
ポリアミド酸の重合温度として60℃以下が好ましく、さらに、40℃以下であることが反応を効率良く、しかもポリアミド酸の粘度が上昇しやすいことから好ましい。
ポリアミド酸の重合温度として60℃以下が好ましく、さらに、40℃以下であることが反応を効率良く、しかもポリアミド酸の粘度が上昇しやすいことから好ましい。
<重合溶媒>
本発明を構成するエチニル基を含有する化合物の製造に用いることができる溶媒としては、例えばテトラメチル尿素、N,N−ジメチルエチルウレアのようなウレア類、ジメチルスルホキシド、ジフェニルスルホン、テトラメチルスルフォンのようなスルホキシドあるいはスルホン類、N,N−ジメチルアセトアミド(DMAc)、N,N−ジメチルホルムアミド(DMF)、N,N’−ジエチルアセトアミド、N−メチル−2−ピロリドン(NMP)、γ−ブチルラクトン、ヘキサメチルリン酸トリアミドのようなアミド類、またはホスホリルアミド類の非プロトン性溶媒、クロロホルム、塩化メチレンなどのハロゲン化アルキル類、ベンゼン、トルエン等の芳香族炭化水素類、フェノール、クレゾールなどのフェノール類、ジメチルエーテル、ジエチルエーテル、p−クレゾールメチルエーテルなどのエーテル類等が挙げられる。通常はこれらの溶媒を単独で用いるが、必要に応じて2種以上を適宜組み合わせて用いても良い。これらのうちDMF、DMAc、NMPなどのアミド類が好ましく使用される。
本発明を構成するエチニル基を含有する化合物の製造に用いることができる溶媒としては、例えばテトラメチル尿素、N,N−ジメチルエチルウレアのようなウレア類、ジメチルスルホキシド、ジフェニルスルホン、テトラメチルスルフォンのようなスルホキシドあるいはスルホン類、N,N−ジメチルアセトアミド(DMAc)、N,N−ジメチルホルムアミド(DMF)、N,N’−ジエチルアセトアミド、N−メチル−2−ピロリドン(NMP)、γ−ブチルラクトン、ヘキサメチルリン酸トリアミドのようなアミド類、またはホスホリルアミド類の非プロトン性溶媒、クロロホルム、塩化メチレンなどのハロゲン化アルキル類、ベンゼン、トルエン等の芳香族炭化水素類、フェノール、クレゾールなどのフェノール類、ジメチルエーテル、ジエチルエーテル、p−クレゾールメチルエーテルなどのエーテル類等が挙げられる。通常はこれらの溶媒を単独で用いるが、必要に応じて2種以上を適宜組み合わせて用いても良い。これらのうちDMF、DMAc、NMPなどのアミド類が好ましく使用される。
本発明に用いられるエチニル基を有する化合物の分子量は、溶液粘度を適性化する目的から、10万以下であることが好ましい。より好ましくは、500以上8万以下、さらに好ましくは1000以上5万以下である。
分子量が10万を超えると、エチニル基を有する化合物の溶液粘度が高くなり、薄膜の電極に加工し難くなるで好ましくない。
分子量が500未満以下では、得られる重合体の機械的強度が低下し、電極として外的衝撃等に弱くなるので好ましくない。
分子量が10万を超えると、エチニル基を有する化合物の溶液粘度が高くなり、薄膜の電極に加工し難くなるで好ましくない。
分子量が500未満以下では、得られる重合体の機械的強度が低下し、電極として外的衝撃等に弱くなるので好ましくない。
[電極溶媒]
本発明の電極用組成物の態様は、エチニル基を有する化合物を含む組成物である。組成物を構成するその他の構成成分としては特に限定されないが、溶媒、有機または無機の粒子、有機または無機の繊維、その他の有機または無機重合体等が挙げられる。塗布やコーティング等のハンドリングや硬化処理が容易である観点から、溶媒であることが好ましい。よって、本発明の好ましい組成物の態様例は溶液である。
本発明の電極用組成物の態様は、エチニル基を有する化合物を含む組成物である。組成物を構成するその他の構成成分としては特に限定されないが、溶媒、有機または無機の粒子、有機または無機の繊維、その他の有機または無機重合体等が挙げられる。塗布やコーティング等のハンドリングや硬化処理が容易である観点から、溶媒であることが好ましい。よって、本発明の好ましい組成物の態様例は溶液である。
好ましい態様例である溶液に用いることのできる溶媒としては、特に限定はされないが、例えばアミド系溶媒(例えばN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1−メチルー2−ピロリドン)、スルホン系溶媒(例えばスルホラン)スルホキシド系溶媒(例えばジメチルスルホキシド)、ウレイド系溶媒(例えばテトラメチルウレア)、エーテル系溶媒(例えばジオキサン、シクロペンチルメチルエーテル)、ケトン系溶媒(例えばアセトン、シクロヘキサノン)、炭化水素系溶媒(例えばトルエン、キシレン、n−デカン)、ハロゲン系溶媒(例えばテトラクロロエタン、クロロベンゼン、塩化メチレン、クロロホルム)、ピリジン系溶媒(例えばピリジン、γ−ピコリン、2,6−ルチジン)、エステル系溶媒(例えば酢酸エチル、酢酸ブチル)、およびニトリル系溶媒(例えばアセトニトリル)を単独或いは併用して用いる。このうち重合体の溶解性が良好であるという観点から、好ましくはアミド系溶媒、スルホン系溶媒、スルホキシド系溶媒、ウレイド系溶媒、エーテル系溶媒、ハロゲン系溶媒、ピリジン系溶媒、およびニトリル系溶媒であり、更に好ましくはアミド系溶媒、エーテル系溶媒、ハロゲン系溶媒、およびニトリル系溶媒であり、更に好ましくはアミド系溶媒およびニトリル系溶媒である。これらの溶媒は単独又は二種類以上を混合して用いても良い。
[電極活物質]
本発明の電極用組成物に用いられる電極活物質としては、特に限定されるものではなく、各種蓄電デバイスに用いられる従来公知の電極活物質から、目的とする蓄電デバイスに応じたものを適宜選択して用いればよい。なお、蓄電デバイスとは、化学的、物理的または物理化学的に電気を蓄えることのできる装置または素子等をいい、例えば、リチウム電池、リチウムイオン電池等の二次電池、電気二重層キャパシタなどの充放電可能なデバイスが挙げられる。
本発明の電極用組成物に用いられる電極活物質としては、特に限定されるものではなく、各種蓄電デバイスに用いられる従来公知の電極活物質から、目的とする蓄電デバイスに応じたものを適宜選択して用いればよい。なお、蓄電デバイスとは、化学的、物理的または物理化学的に電気を蓄えることのできる装置または素子等をいい、例えば、リチウム電池、リチウムイオン電池等の二次電池、電気二重層キャパシタなどの充放電可能なデバイスが挙げられる。
例えば、リチウム電池およびリチウムイオン電池の場合、正極に含まれる正極活物質としては、LiCoO2、LiNiO2、LiMnO2、LiMn2O4などのリチウムと遷移金属との複合酸化物、MnO2、V2O5などの遷移金属酸化物、MoS2、TiSなどの遷移金属硫化物、ポリアセチレン、ポリアセン、ポリアニリン、ポリピロール、ポリチオフェンなどの導電性高分子化合物、ポリ(2,5−ジメルカプト−1,3,4−チアジアゾール)などのジスルフィド化合物などが用いられる。
負極に含まれる負極活物質としては、リチウム金属、リチウムアルミニウム合金等のリチウム合金、リチウムを吸蔵・放出できる炭素質材料、黒鉛、フェノール樹脂、フラン樹脂などのコークス類、炭素繊維、ガラス状炭素、熱分解炭素、活性炭などが用いられる。
電気二重層キャパシタの場合、電極として一対の分極性電極が用いられ、この分極性電極を構成する材料としては、電気化学的に不活性な高比表面積の材料であれば、特に限定はなく、活性炭、カーボンブラック等の炭素質材料、ポリアセン、金属微粒子、導電性金属酸化物微粒子等を用いることができる。中でも、非水電解液に対して電気化学的に不活性であるとともに、適度の導電性を有することから、炭素質物質が好適に用いられる。特に、電荷が蓄積する電極界面の面積が大きいという点から、活性炭が最適である。
電気二重層キャパシタの場合、電極として一対の分極性電極が用いられ、この分極性電極を構成する材料としては、電気化学的に不活性な高比表面積の材料であれば、特に限定はなく、活性炭、カーボンブラック等の炭素質材料、ポリアセン、金属微粒子、導電性金属酸化物微粒子等を用いることができる。中でも、非水電解液に対して電気化学的に不活性であるとともに、適度の導電性を有することから、炭素質物質が好適に用いられる。特に、電荷が蓄積する電極界面の面積が大きいという点から、活性炭が最適である。
本発明のバインダー樹脂は、上述したように、高い比表面積を有する電極活物質と組み合わせた場合にも集電体に対する充分な密着性が発揮されるものである。このため、本発明の電極用組成物に用いられる電極活物質の比表面積は特に限定されるものではないが、比表面積1000m2/g以上、特に1300m2/g以上のものを用いることが好ましく、特に、これらの比表面積を有する炭素質材料が好適である。なお、比表面積は、窒素吸着等温線からBET法により算出した値である。
バインダー樹脂と電極活物質との配合割合は、特に限定されるものではないが、接着強度増大と電極の電気抵抗の低減との兼ね合いから、当該電極用組成物から得られる電極層中にバインダー樹脂が3質量%〜20質量%程度、好ましくは3質量%〜10質量%程度含まれる割合とすることが好ましい。
一般的には、バインダー樹脂3質量部〜10質量部、好ましくは4質量部〜8質量部、電極活物質90質量部〜97質量部、好ましくは92質量部〜96質量部の割合で配合することが好適である。
一般的には、バインダー樹脂3質量部〜10質量部、好ましくは4質量部〜8質量部、電極活物質90質量部〜97質量部、好ましくは92質量部〜96質量部の割合で配合することが好適である。
[導電助剤]
なお、本発明の電極用組成物中には、上記バインダー樹脂および電極活物質のほかに、得られる電極の抵抗を小さくするために、導電助剤を配合してもよい。導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック等のカーボンブラック、天然黒鉛、熱膨張黒鉛、炭素繊維、酸化ルテニウム、酸化チタン、アルミニウムやニッケル等の金属繊維などが用いられる。これらの中でも、少量の配合で所望の導電性を確保できるアセチレンブラック、ケッチェンブラックが好ましい。なお、導電助剤は、電極活物質に対して、通常5質量%〜50質量%程度配合されるが、10質量%〜30質量%程度配合することが好ましい。
なお、本発明の電極用組成物中には、上記バインダー樹脂および電極活物質のほかに、得られる電極の抵抗を小さくするために、導電助剤を配合してもよい。導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック等のカーボンブラック、天然黒鉛、熱膨張黒鉛、炭素繊維、酸化ルテニウム、酸化チタン、アルミニウムやニッケル等の金属繊維などが用いられる。これらの中でも、少量の配合で所望の導電性を確保できるアセチレンブラック、ケッチェンブラックが好ましい。なお、導電助剤は、電極活物質に対して、通常5質量%〜50質量%程度配合されるが、10質量%〜30質量%程度配合することが好ましい。
[電極]
本発明に係る電極は、上述した電極用組成物から形成された電極層と、集電体とを備えるものである。
ここで、集電体としては、特に限定されるものではなく、各種蓄電デバイスに用いられる従来公知の集電体から、目的とする蓄電デバイスに応じたものを適宜選択して用いればよい。
本発明に係る電極は、上述した電極用組成物から形成された電極層と、集電体とを備えるものである。
ここで、集電体としては、特に限定されるものではなく、各種蓄電デバイスに用いられる従来公知の集電体から、目的とする蓄電デバイスに応じたものを適宜選択して用いればよい。
リチウム電池やリチウムイオン二次電池等の非水系二次電池に用いられる集電体としては、導電性に優れる材料が一般的に用いられる。具体例としては、銅、ニッケル、アルミニウム、チタン、タンタル等のバルブ金属、SUS304等のステンレス鋼、金、白金等の貴金属、黒鉛、ガラス状カーボン、カーボンブラックを含む導電性ゴム等の炭素系材料などが挙げられる。
電気二重層キャパシタに用いられる集電体としては、導電性に優れ、かつ、電気化学的に耐久性のある材料が一般的に用いられる。具体例としては、アルミニウム、チタン、タンタル等のバルブ金属、SUS304等のステンレス鋼、金、白金等の貴金属、黒鉛、ガラス状カーボン、カーボンブラックを含む導電性ゴム等の炭素系材料などが挙げられる。
本発明の電極用組成物は、上述したように、濡れ性の低い金属からなる集電体を用いた場合でも、充分な接着力が得られることから、集電体として、エッチドアルミ、アルミニウム、ニッケル、銅等を用いることが好適である。
本発明の電極用組成物は、上述したように、濡れ性の低い金属からなる集電体を用いた場合でも、充分な接着力が得られることから、集電体として、エッチドアルミ、アルミニウム、ニッケル、銅等を用いることが好適である。
本発明に蓄電デバイス用電極は、例えば、上記バインダー樹脂と電極活物質とを含む電極用組成物を、適当な溶剤、好ましくはN−メチル−2−ピロリドンに混合・分散してなるスラリーを、集電体に塗布し、これを乾燥して電極層を形成することで得ることができる。この際、バインダー樹脂の形態としては、粉末状または上述した溶媒との組成物であるワニスとして用いることができる。
電極用組成物を集電体に塗布した後の乾燥工程は、特に限定されるものではないが、120℃以上の温度条件で行うことが好ましい。また、塗布工程と乾燥工程との間に予備乾燥工程を適宜設けることもできる。
スラリーの粘度は、特に限定されるものではないが、塗布等の作業性を考慮すると、コーンプレート粘度計で測定した30℃における粘度が、1000mPa・s〜5000mPa・sであることが好ましい。なお、この粘度は、バインダー樹脂の分子量によっても左右されることから、使用する樹脂の分子量に応じて、溶剤の量を適宜加減し、スラリー粘度を上記範囲に調節するとよい。
以上のようにして得られた本発明の蓄電デバイス用電極は、電極層と集電体層とが強固に接着されている。
以上のようにして得られた本発明の蓄電デバイス用電極は、電極層と集電体層とが強固に接着されている。
[蓄電デバイス]
本発明に係る蓄電デバイスは、上述の蓄電デバイス用電極を備えるものである。蓄電デバイスの基本構造は、一般的に、セパレータ(電解質を兼ねている場合もある)を介して正極および負極(電気二重層キャパシタの場合は一対の分極性電極)を対向配置し、必要に応じて非水電解液を含浸させたものである。本発明の蓄電デバイスにおいては、上記正極および負極(一対の分極性電極)の双方、またはいずれか一方が、本発明の蓄電デバイス用電極から構成されているものであればよく、蓄電デバイスを構成するその他の部材としては、公知の種々の部材を採用することができる。
本発明に係る蓄電デバイスは、上述の蓄電デバイス用電極を備えるものである。蓄電デバイスの基本構造は、一般的に、セパレータ(電解質を兼ねている場合もある)を介して正極および負極(電気二重層キャパシタの場合は一対の分極性電極)を対向配置し、必要に応じて非水電解液を含浸させたものである。本発明の蓄電デバイスにおいては、上記正極および負極(一対の分極性電極)の双方、またはいずれか一方が、本発明の蓄電デバイス用電極から構成されているものであればよく、蓄電デバイスを構成するその他の部材としては、公知の種々の部材を採用することができる。
[セパレータ]
セパレータとしては、例えば、紙製、ポリプロピレン製、ポリエチレン製、ガラス繊維製セパレータなどを用いることができる。
セパレータとしては、例えば、紙製、ポリプロピレン製、ポリエチレン製、ガラス繊維製セパレータなどを用いることができる。
[電解液]
非水電解液は、一般的に有機溶媒と電解質とから構成されるものである。
有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、スルホラン等の高誘電率溶媒;1,2−ジメトキシエタン、2−メチルテトラヒドロフラン、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の低粘度溶媒およびこれらの混合溶媒等が挙げられる。
非水電解液は、一般的に有機溶媒と電解質とから構成されるものである。
有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、スルホラン等の高誘電率溶媒;1,2−ジメトキシエタン、2−メチルテトラヒドロフラン、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の低粘度溶媒およびこれらの混合溶媒等が挙げられる。
[電解質]
電解質としては、伝導イオン種によって異なるが、リチウムイオン電池など、伝導イオン種がリチウムイオンのデバイスの場合、LiClO4、LiAsF6、LiPF6、LiBF4、LiCl、LiBr、CH3SO3Li、及びCF3SO3Li等のリチウム塩が、単独または2種以上の組み合わせで用いられることが多い。また、電気二重層キャパシタの電解質としては、4級アンモニウムカチオンや4級ホスホニウムカチオン等の4級オニウムカチオンと、BF4 −、PF6 −、ClO4 −、CF3SO3 −、(CF3SO2)2N−、及びCF3CO2 −等のアニオンとからなる塩が用いられることが多い。
電解質としては、伝導イオン種によって異なるが、リチウムイオン電池など、伝導イオン種がリチウムイオンのデバイスの場合、LiClO4、LiAsF6、LiPF6、LiBF4、LiCl、LiBr、CH3SO3Li、及びCF3SO3Li等のリチウム塩が、単独または2種以上の組み合わせで用いられることが多い。また、電気二重層キャパシタの電解質としては、4級アンモニウムカチオンや4級ホスホニウムカチオン等の4級オニウムカチオンと、BF4 −、PF6 −、ClO4 −、CF3SO3 −、(CF3SO2)2N−、及びCF3CO2 −等のアニオンとからなる塩が用いられることが多い。
本発明に係る二次電池は、乾燥空気または不活性ガス雰囲気において、負極および正極を、セパレータを介して積層、あるいは積層したものを捲回した後に外装体に挿入し、外装体に挿入し、電解液を含浸させた後、電池外装体を封止することで得られる。
電池の内部形状には制限が無く、セパレータを挟んで対向した正極、負極を捲回型、積層型などの形態をとることが可能であり、電池形状にも、コイン型、ラミネート型、角型、又は円筒型を用いることができる。
電池の内部形状には制限が無く、セパレータを挟んで対向した正極、負極を捲回型、積層型などの形態をとることが可能であり、電池形状にも、コイン型、ラミネート型、角型、又は円筒型を用いることができる。
以下、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
初めに、エチニル基を有する重合体の合成例を説明する。
[合成例1]エチニル基を含有する重合体1の調製
攪拌機付き200mLの3つ口フラスコに、ビス(4−アミノフェニル)エーテルを0.018mol、N−(3’−エチニルフェニル)−3,5−ジアミノベンズアミド(化合物(1)−1)を0.005mol、アニリンを0.004mol、N−メチル−2−ピロリドン110mLを入れ、フラスコ内部を窒素置換しながら溶解した。23℃で撹拌しながら、この混合液に4,4’−(2,2−ヘキサフルオロイソプロピリデン)ジフタル酸二無水物0.025molを固体のまま加えるとポリアミド酸の重合が開始し、このまま室温で2時間撹拌を継続して重合を完結させた。
その後、攪拌しながら無水酢酸0.05mol及びピリジン0.005molを加え、室温で1時間、さらに60℃で3時間撹拌して目的とするエチニル基を含有する重合体1の溶液を得た。GPCで測定した重量平均分子量は、7,400であった。
[合成例1]エチニル基を含有する重合体1の調製
攪拌機付き200mLの3つ口フラスコに、ビス(4−アミノフェニル)エーテルを0.018mol、N−(3’−エチニルフェニル)−3,5−ジアミノベンズアミド(化合物(1)−1)を0.005mol、アニリンを0.004mol、N−メチル−2−ピロリドン110mLを入れ、フラスコ内部を窒素置換しながら溶解した。23℃で撹拌しながら、この混合液に4,4’−(2,2−ヘキサフルオロイソプロピリデン)ジフタル酸二無水物0.025molを固体のまま加えるとポリアミド酸の重合が開始し、このまま室温で2時間撹拌を継続して重合を完結させた。
その後、攪拌しながら無水酢酸0.05mol及びピリジン0.005molを加え、室温で1時間、さらに60℃で3時間撹拌して目的とするエチニル基を含有する重合体1の溶液を得た。GPCで測定した重量平均分子量は、7,400であった。
[合成例2]エチニル基を含有する重合体2の調製
合成例2記載の例において、N−(3‘−エチニルフェニル)−3,5−ジアミノベンズアミド(化合物(1)−1)を3,5−ジアミノ安息香酸3’−エチニルフェニル(化合物(1)−3)に変更した以外は同様にして重合を行い、エチニル基を含有する重合体2の溶液を得た。GPCで測定した重量平均分子量は、7,200であった。
合成例2記載の例において、N−(3‘−エチニルフェニル)−3,5−ジアミノベンズアミド(化合物(1)−1)を3,5−ジアミノ安息香酸3’−エチニルフェニル(化合物(1)−3)に変更した以外は同様にして重合を行い、エチニル基を含有する重合体2の溶液を得た。GPCで測定した重量平均分子量は、7,200であった。
[合成例3]エチニル基を含有する重合体3の調製
合成例1記載の例において、アニリンを3−エチニルアニリンに変更した以外は同様にして重合を行い、エチニル基を含有する重合体3の溶液を得た。GPCで測定した重量平均分子量は、7,300であった。
合成例1記載の例において、アニリンを3−エチニルアニリンに変更した以外は同様にして重合を行い、エチニル基を含有する重合体3の溶液を得た。GPCで測定した重量平均分子量は、7,300であった。
[合成例4]エチニル基を含有する重合体4の調製
攪拌機付き200mLの3つ口フラスコに、ビス(4−アミノフェニル)エーテルを0.018mol、m−フェニレンジアミンを0.005mol、3−エチニルアニリンを0.004mol、N−メチル−2−ピロリドン110mLを入れ、フラスコ内部を窒素置換しながら溶解した。23℃で撹拌しながら、この混合液に4,4’−(2,2−ヘキサフルオロイソプロピリデン)ジフタル酸二無水物0.025molを固体のまま加えるとポリアミド酸の重合が開始し、このまま室温で2時間撹拌を継続して重合を完結させた。
その後、攪拌しながら無水酢酸0.05molおよぼピリジン0.005molを加え、室温で1時間、さらに60℃で3時間撹拌して目的とするエチニル基を含有する重合体4の溶液を得た。GPCで測定した重量平均分子量は、7,800であった。
攪拌機付き200mLの3つ口フラスコに、ビス(4−アミノフェニル)エーテルを0.018mol、m−フェニレンジアミンを0.005mol、3−エチニルアニリンを0.004mol、N−メチル−2−ピロリドン110mLを入れ、フラスコ内部を窒素置換しながら溶解した。23℃で撹拌しながら、この混合液に4,4’−(2,2−ヘキサフルオロイソプロピリデン)ジフタル酸二無水物0.025molを固体のまま加えるとポリアミド酸の重合が開始し、このまま室温で2時間撹拌を継続して重合を完結させた。
その後、攪拌しながら無水酢酸0.05molおよぼピリジン0.005molを加え、室温で1時間、さらに60℃で3時間撹拌して目的とするエチニル基を含有する重合体4の溶液を得た。GPCで測定した重量平均分子量は、7,800であった。
実施例1
(正極の調製)
正極活物質と導電性付与剤とを混合し、結着剤を溶解させたNMP中に均一に分散させスラリーを作製した。正極活物質としては、LiMn2O4を用い、導電性付与剤にはカーボンブラックを用い、結着剤としてPVDFを用いた。そのスラリーを正極集電体となる厚さ20μmのアルミ金属箔上に塗布後、NMPを蒸発させることにより正極層を形成し正極を作製した。正極合剤層中の固形分比率は、正極活物質/導電性付与剤/結着剤=80/10/10(質量%)とした。
(正極の調製)
正極活物質と導電性付与剤とを混合し、結着剤を溶解させたNMP中に均一に分散させスラリーを作製した。正極活物質としては、LiMn2O4を用い、導電性付与剤にはカーボンブラックを用い、結着剤としてPVDFを用いた。そのスラリーを正極集電体となる厚さ20μmのアルミ金属箔上に塗布後、NMPを蒸発させることにより正極層を形成し正極を作製した。正極合剤層中の固形分比率は、正極活物質/導電性付与剤/結着剤=80/10/10(質量%)とした。
(負極の調製)
1)電極用組成物の調製
負極活物質として活性炭(MSP−20、BET比表面積2000m2/g、関西熱化学(株)製)、導電性カーボンとしてHS−100(電気化学工業(株)製)、そしてバインダー樹脂として合成例1で調製した重合体1、溶媒としてNMPを、活物質/導電性カーボン/バインダー樹脂=90/5/5、固形分33質量%となる割合で混合してペースト状にし、電極用組成物を調製した。
1)電極用組成物の調製
負極活物質として活性炭(MSP−20、BET比表面積2000m2/g、関西熱化学(株)製)、導電性カーボンとしてHS−100(電気化学工業(株)製)、そしてバインダー樹脂として合成例1で調製した重合体1、溶媒としてNMPを、活物質/導電性カーボン/バインダー樹脂=90/5/5、固形分33質量%となる割合で混合してペースト状にし、電極用組成物を調製した。
2)負極の調製
得られたペースト状の電極用組成物をアルミ集電箔(30CB、日本蓄電器工業(株)製)上に塗布して80℃で30分溶媒を乾燥させた後、さらに窒素雰囲気下で300℃×2時間熱処理し負極を作製した。
得られたペースト状の電極用組成物をアルミ集電箔(30CB、日本蓄電器工業(株)製)上に塗布して80℃で30分溶媒を乾燥させた後、さらに窒素雰囲気下で300℃×2時間熱処理し負極を作製した。
(二次電池の調製)
上記で得られた正極と負極とをポリエチレンおよびポリプロピレンからなるセパレータを介して積層し、ポリプロピレン樹脂(融着層、厚さ70μm)、ポリエチレンテレフタレート(20μm)、アルミニウム(50μm)、ポリエチレンテレフタレート(20μm)の順に積層した構造を有するアルミラミネートフィルム2枚を用いて上記の電極積層体を挟み、電極積層体の周囲を熱融着させてラミネート型電池を作製した。電解液として、エチレンカーボネート/ジエチルカーボネート=30/70(体積%)に、電解質として1mol/LのLiPF6を溶解させたものを、最後の1辺を熱融着封口する前に電極積層体に含浸させ、ラミネート型電池を作製した。
上記で得られた正極と負極とをポリエチレンおよびポリプロピレンからなるセパレータを介して積層し、ポリプロピレン樹脂(融着層、厚さ70μm)、ポリエチレンテレフタレート(20μm)、アルミニウム(50μm)、ポリエチレンテレフタレート(20μm)の順に積層した構造を有するアルミラミネートフィルム2枚を用いて上記の電極積層体を挟み、電極積層体の周囲を熱融着させてラミネート型電池を作製した。電解液として、エチレンカーボネート/ジエチルカーボネート=30/70(体積%)に、電解質として1mol/LのLiPF6を溶解させたものを、最後の1辺を熱融着封口する前に電極積層体に含浸させ、ラミネート型電池を作製した。
実施例2〜4
実施例1記載の例において、用いるエチニル基を有する重合体1を重合体2〜4に変更した以外は同様に行い、電池を作製した。
実施例1記載の例において、用いるエチニル基を有する重合体1を重合体2〜4に変更した以外は同様に行い、電池を作製した。
[比較例1]
実施例1記載の例において、電極用組成物のバインダー樹脂として重合体1の替わりに、ポリアミドイミド樹脂NR85NN(窒素含有量4.5%、東洋紡績(株)製)をNMPに溶解させた液を用い、熱処理を80℃×4時間(300℃の熱処理無し)とした以外は同様に電池を作製した。
実施例1記載の例において、電極用組成物のバインダー樹脂として重合体1の替わりに、ポリアミドイミド樹脂NR85NN(窒素含有量4.5%、東洋紡績(株)製)をNMPに溶解させた液を用い、熱処理を80℃×4時間(300℃の熱処理無し)とした以外は同様に電池を作製した。
[比較例2]
実施例1記載の例において、電極用組成物のバインダー樹脂として重合体1の替わりに、ポリフッ化ビニリデン樹脂(ガラス転移温度−30℃、アルドリッチ社製)をNMPに溶解させた液を用い、熱処理を80℃×4時間(300℃の熱処理無し)とした以外は同様に電池を作製した。
実施例1記載の例において、電極用組成物のバインダー樹脂として重合体1の替わりに、ポリフッ化ビニリデン樹脂(ガラス転移温度−30℃、アルドリッチ社製)をNMPに溶解させた液を用い、熱処理を80℃×4時間(300℃の熱処理無し)とした以外は同様に電池を作製した。
上記各実施例および比較例で得られた二次電池について下記耐久性試験を行った。結果を表1に示す。
[1]電解液浸漬試験
加熱処理した後の負極(比較例1、2は加熱処理なし)の厚さ(c)を測定した後、上記電解液に50℃にて100時間浸漬する電解液浸漬試験を行い、電解液より取り出した負極をジエチルカーボネートにて洗浄、自然乾燥させた後の負極合剤層の厚さ(d)を測定し、厚さ変化率(%)=(d−c)/cとして算出し、表1に示した。
加熱処理した後の負極(比較例1、2は加熱処理なし)の厚さ(c)を測定した後、上記電解液に50℃にて100時間浸漬する電解液浸漬試験を行い、電解液より取り出した負極をジエチルカーボネートにて洗浄、自然乾燥させた後の負極合剤層の厚さ(d)を測定し、厚さ変化率(%)=(d−c)/cとして算出し、表1に示した。
[2]充放電サイクル試験
調製した電池を用いて、室温(25℃)にて、電流値100mAの定電流および定電圧にて終止電圧4.3Vまで5時間充電し、次に電流値100mAの定電流下、終止電圧3.0Vまで放電した後、充放電サイクル試験として、充電レート1C、放電レート1Cにて、充電終止電圧4.2V、放電終止電圧3.0Vの条件にて充放電サイクル試験を行い、容量維持率(%)=500サイクル後の放電容量/10サイクル目の放電容量 として算出し、表1に示した。
調製した電池を用いて、室温(25℃)にて、電流値100mAの定電流および定電圧にて終止電圧4.3Vまで5時間充電し、次に電流値100mAの定電流下、終止電圧3.0Vまで放電した後、充放電サイクル試験として、充電レート1C、放電レート1Cにて、充電終止電圧4.2V、放電終止電圧3.0Vの条件にて充放電サイクル試験を行い、容量維持率(%)=500サイクル後の放電容量/10サイクル目の放電容量 として算出し、表1に示した。
表1の結果より、実施例1〜4で得られた電池は、比較例1,2の電池に比べて耐久性が極めて向上した。電解液浸漬試験での厚み変化が少ないこと、即ち本発明の重合体をバインダー樹脂として用いた負極の極めて膨潤が少ないことが、耐久性の向上をもたらしたものと推測される。
Claims (11)
- エチニル基を有する化合物及び電極活物質を含有する電極用組成物。
- 前記エチニル基を有する化合物がさらにイミド基を有することを特徴とする請求項1に記載の電極用組成物。
- 前記エチニル基を有する化合物の分子量が100000以下である請求項1〜請求項4のいずれか1項に記載の電極用組成物。
- 150℃ないし400℃で熱処理された請求項1〜請求項5のいずれか1項に記載の電極用組成物。
- 前記電極活物質が炭素質物質であることを特徴とする請求項1〜請求項6いずれか1項に記載の電極用組成物。
- 請求項1〜請求項5いずれか1項に記載の電極用組成物からなる電極層、及び集電体を構成単位として有する電池用電極。
- 請求項8に記載の電池用電極を負極に用いたリチウム二次電池。
- 正極にリチウム遷移金属複合酸化物を正極活物質として含有する請求項9に記載のリチウム二次電池。
- エチニル基を有する化合物を含む溶液中に負極活物質を分散させて負極活物質スラリーを作製する工程と、該負極活物質スラリーを負極集電体の表面上に塗布する工程と、該負極活物質スラリーが塗布された該負極集電体を熱処理する工程と、負極と正極との間にセパレータを配置して電極体を作製する工程と、該電極体に非水電解質を含浸させる工程とを備えたリチウム二次電池の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008167303A JP2010009917A (ja) | 2008-06-26 | 2008-06-26 | 電極用組成物、電池用電極、リチウム二次電池、及びリチウム二次電池の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008167303A JP2010009917A (ja) | 2008-06-26 | 2008-06-26 | 電極用組成物、電池用電極、リチウム二次電池、及びリチウム二次電池の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010009917A true JP2010009917A (ja) | 2010-01-14 |
Family
ID=41590159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008167303A Pending JP2010009917A (ja) | 2008-06-26 | 2008-06-26 | 電極用組成物、電池用電極、リチウム二次電池、及びリチウム二次電池の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010009917A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012238396A (ja) * | 2011-05-09 | 2012-12-06 | Shin Etsu Chem Co Ltd | 負極ペースト、負極電極及びその製造方法、並びに非水電解質二次電池 |
JP2014078416A (ja) * | 2012-10-11 | 2014-05-01 | Ube Ind Ltd | 電極用バインダー樹脂組成物、電極合剤ペースト、及び電極 |
CN107004904A (zh) * | 2014-12-01 | 2017-08-01 | 中央硝子株式会社 | 非水电解液电池用电解液和使用其的非水电解液电池 |
CN114335438A (zh) * | 2021-12-23 | 2022-04-12 | 南昌大学 | 一种高性能锂离子电池硅基负极极片的制备方法 |
CN119019628A (zh) * | 2024-08-20 | 2024-11-26 | 上海交通大学 | 一种人工sei材料、锂金属电池负极、电池及其制备方法和应用 |
-
2008
- 2008-06-26 JP JP2008167303A patent/JP2010009917A/ja active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012238396A (ja) * | 2011-05-09 | 2012-12-06 | Shin Etsu Chem Co Ltd | 負極ペースト、負極電極及びその製造方法、並びに非水電解質二次電池 |
JP2014078416A (ja) * | 2012-10-11 | 2014-05-01 | Ube Ind Ltd | 電極用バインダー樹脂組成物、電極合剤ペースト、及び電極 |
CN107004904A (zh) * | 2014-12-01 | 2017-08-01 | 中央硝子株式会社 | 非水电解液电池用电解液和使用其的非水电解液电池 |
CN107004904B (zh) * | 2014-12-01 | 2019-07-23 | 中央硝子株式会社 | 非水电解液电池用电解液和使用其的非水电解液电池 |
CN114335438A (zh) * | 2021-12-23 | 2022-04-12 | 南昌大学 | 一种高性能锂离子电池硅基负极极片的制备方法 |
CN119019628A (zh) * | 2024-08-20 | 2024-11-26 | 上海交通大学 | 一种人工sei材料、锂金属电池负极、电池及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103097463B (zh) | 聚酰亚胺前体水溶液组合物,及制备聚酰亚胺前体水溶液组合物的方法 | |
CN104126240B (zh) | 锂二次电池用隔膜及其制造方法 | |
CN102484254B (zh) | 电极用粘合剂树脂组合物、电极合剂糊剂及电极 | |
KR101796952B1 (ko) | 전지 전극의 도전제, 그것을 포함하는 전극 및 전지 | |
EP2754683A1 (en) | Composition of aqueous polyimide precursor solution and method for producing composition of aqueous polyimide precursor solution | |
JP6923841B2 (ja) | 樹脂組成物 | |
KR102511725B1 (ko) | 수지 조성물, 적층체 및 그의 제조 방법, 전극, 이차 전지 그리고 전기 이중층 캐패시터 | |
JP2010009917A (ja) | 電極用組成物、電池用電極、リチウム二次電池、及びリチウム二次電池の製造方法 | |
WO2018105338A1 (ja) | 蓄電素子用バインダー組成物、蓄電素子用スラリー組成物、電極、電極の製造方法、二次電池および電気二重層キャパシタ | |
US7355839B2 (en) | Electrode for an electrochemical capacitor, a composition used for the electrode, a method of manufacturing the electrode, and an electrochemical capacitor using the electrode | |
TWI872187B (zh) | 樹脂組成物、積層體及其製造方法、電極以及蓄電元件 | |
JPH10302771A (ja) | 二次電池用負極及びそれを用いた二次電池 | |
US20230178741A1 (en) | Polyamic acid derivatives binder for lithium ion battery | |
JPH08213048A (ja) | 非水電解質二次電池 | |
JPH0945333A (ja) | 非水電解質二次電池及びその製造法 | |
JP2011165480A (ja) | 二次電池用組成物、二次電池用電極、及び二次電池 | |
JPH10261404A (ja) | 非水電解質二次電池およびその製造方法 | |
JP2010073335A (ja) | 電極用組成物、電池用電極、リチウム二次電池、及びリチウム二次電池の製造方法 | |
JPH10302772A (ja) | 二次電池用負極およびそれを用いた二次電池 | |
JP2025063011A (ja) | 集電体及びエネルギー貯蔵デバイス | |
CN120109162A (zh) | 一种锂离子电池负极极片及其制备方法 | |
JPH0945332A (ja) | 非水電解質二次電池及びその製造方法 | |
CN115926160A (zh) | 锂离子电池硅碳负极用粘合剂及其制备方法 | |
CN115863528A (zh) | 二次电池用负极浆料及其制备方法 | |
JPH08227729A (ja) | 非水電解質二次電池及びその製造方法 |