JP2009184892A - カーボンナノチューブ形成装置およびカーボンナノチューブ形成方法 - Google Patents
カーボンナノチューブ形成装置およびカーボンナノチューブ形成方法 Download PDFInfo
- Publication number
- JP2009184892A JP2009184892A JP2008028763A JP2008028763A JP2009184892A JP 2009184892 A JP2009184892 A JP 2009184892A JP 2008028763 A JP2008028763 A JP 2008028763A JP 2008028763 A JP2008028763 A JP 2008028763A JP 2009184892 A JP2009184892 A JP 2009184892A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- carbon nanotube
- beam irradiation
- radical
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 126
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 117
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 117
- 238000000034 method Methods 0.000 title claims abstract description 46
- 239000000758 substrate Substances 0.000 claims abstract description 175
- 150000003254 radicals Chemical class 0.000 claims abstract description 124
- 239000002105 nanoparticle Substances 0.000 claims abstract description 101
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 33
- 230000007935 neutral effect Effects 0.000 claims description 39
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 30
- 239000010941 cobalt Substances 0.000 claims description 29
- 229910017052 cobalt Inorganic materials 0.000 claims description 29
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 23
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- 230000001678 irradiating effect Effects 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 12
- 239000002994 raw material Substances 0.000 claims description 12
- 238000009616 inductively coupled plasma Methods 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 229910052742 iron Inorganic materials 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 230000002401 inhibitory effect Effects 0.000 claims description 5
- 230000000903 blocking effect Effects 0.000 claims description 3
- 230000005764 inhibitory process Effects 0.000 claims description 2
- 239000003054 catalyst Substances 0.000 abstract description 19
- 239000002082 metal nanoparticle Substances 0.000 abstract 1
- 239000007858 starting material Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 37
- 150000002500 ions Chemical class 0.000 description 26
- 230000007246 mechanism Effects 0.000 description 23
- 230000003028 elevating effect Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 9
- 230000006698 induction Effects 0.000 description 8
- 239000001307 helium Substances 0.000 description 5
- 229910052734 helium Inorganic materials 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000003213 activating effect Effects 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000005553 drilling Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- -1 first Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000002371 helium Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B3/0004—Apparatus specially adapted for the manufacture or treatment of nanostructural devices or systems or methods for manufacturing the same
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/087—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
- B01J19/088—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/75—Cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B3/0009—Forming specific nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/228—Gas flow assisted PVD deposition
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/30—Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0873—Materials to be treated
- B01J2219/0879—Solid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0873—Materials to be treated
- B01J2219/0892—Materials to be treated involving catalytically active material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0894—Processes carried out in the presence of a plasma
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plasma & Fusion (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Composite Materials (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
【課題】高品質なカーボンナノチューブを高いスループットにて形成することができるカーボンナノチューブ形成技術を提供する。
【解決手段】真空チャンバ10にはラジカルビーム照射部50およびナノ粒子ビーム照射部70が設けられている。基板Wは基板保持部30によって保持されている。ナノ粒子ビーム照射部70から触媒となる金属のナノ粒子のビームを基板Wに照射して触媒形成を行う。その後、ラジカルビーム照射部50にて原料ガスからプラズマを発生させ、生成された中性ラジカル種のビームを基板Wに照射してカーボンナノチューブを成長させる。ラジカルビーム照射部50にはアパーチャ59が設けられているため、プラズマ発生に伴う圧力が高かったとしても、真空チャンバ10内を10-5Torr〜10-3Torrの比較的高い真空度に維持し続けることができる。
【選択図】図1
【解決手段】真空チャンバ10にはラジカルビーム照射部50およびナノ粒子ビーム照射部70が設けられている。基板Wは基板保持部30によって保持されている。ナノ粒子ビーム照射部70から触媒となる金属のナノ粒子のビームを基板Wに照射して触媒形成を行う。その後、ラジカルビーム照射部50にて原料ガスからプラズマを発生させ、生成された中性ラジカル種のビームを基板Wに照射してカーボンナノチューブを成長させる。ラジカルビーム照射部50にはアパーチャ59が設けられているため、プラズマ発生に伴う圧力が高かったとしても、真空チャンバ10内を10-5Torr〜10-3Torrの比較的高い真空度に維持し続けることができる。
【選択図】図1
Description
本発明は、半導体ウェハなどの基板上に配線材としてカーボンナノチューブを成長させるカーボンナノチューブ形成装置および方法に関する。
近年、LSIのBEOL(Back-End-of-Line)配線材としてカーボンナノチューブを用いようとする試みに急速に関心が高まりつつある。従来の配線材には銅(Cu)が一般的に用いられてきていたが、高性能化のためのパターン微細化に伴って配線部の電流密度が増大してきており、近い将来、銅では耐えられないほどの大きな電流密度が要求されるものと予測される。カーボンナノチューブは、グラファイトのシート(グラフェンシート)を円筒状に巻いた形状を有しており、その直径は数nm〜数十nmである。カーボンナノチューブは電気的にも機械的にも非常に優れた特性を有することが見出されており、銅に比較して1000倍近くもの大きな電流密度に耐え得るポテンシャルを有する材料である。それ故、配線材としてのカーボンナノチューブに関心が高まっているのである。
基板上にカーボンナノチューブを形成するプロセスとしては、まず下地となる基板上に触媒となるコバルト(Co)、ニッケル(Ni)、鉄(Fe)などのナノ粒子を形成する。次いで、ナノ粒子の金属触媒上にカーボンナノチューブを成長させる。LSI用途のカーボンナノチューブの成長手法としては、比較的量産に向いている化学気相蒸着(CVD)法が主に検討されており、熱CVD、熱フィラメントCVD、プラズマCVDなどの各種CVD法による試みがなされている。それらの中でも特にプラズマCVD法が注目されている。その理由は、BEOL配線材としてカーボンナノチューブを形成する場合、形成プロセスの温度が低い方が好ましく、プラズマCVDがプロセスの低温化に最も有望だからである。
プラズマCVDにおいては、炭化水素などを含む原料ガスからプラズマを発生させる。プラズマ中には各種の中性ラジカル種やイオン種が生成されるのであるが、そのうちのイオン種が基板に接触するのを極力抑制しつつ、中性ラジカル種をカーボンナノチューブ成長の活性種として積極的に利用することが良質のカーボンナノチューブを形成するのに有用であることが判明している。例えば、特許文献1には、基板がプラズマに曝されないように、基板から離れた領域にプラズマを発生させる(リモートプラズマ)とともに、プラズマ発生領域と基板との間にメッシュグリッドを設けてイオン種が基板に飛来するのを防止する技術が開示されている。
しかしながら、従来より試みられてきたプラズマCVD法では、BEOL配線材として十分な品質のカーボンナノチューブを形成することはできていなかった。また、産業利用という観点からは、従来のプラズマCVD法は、カーボンナノチューブの成長レートが遅く、スループットが低いために実用的なものではなかった。
また、上述したように、基板上にカーボンナノチューブを形成するときには、まず基板にナノ粒子触媒を形成した後、プラズマCVDによってカーボンナノチューブを成長させるという2段ステップを経る。しかし、従来の手法においては、まずプラズマCVD装置とは別の設備にてナノ粒子の金属触媒を基板上に形成し、その後当該設備から基板を取り出して外部雰囲気に暴露した後にプラズマCVD装置に基板を搬入してからカーボンナノチューブを成長させるという手順を踏んでいた。
このような2段ステップを経る場合、ナノ粒子の金属触媒が形成された基板を一旦大気に暴露してからプラズマCVD装置に搬入するために表面が活性なナノ粒子触媒が大気に暴露されて死活し、カーボンナノチューブ形成のための触媒として機能しなくなるという重大な問題が生じる。また、基板の搬出入に伴ってスループットが低下するとともに、生産設備全体としてのフットプリントが増大するという問題も生じる。
本発明は、上記課題に鑑みてなされたものであり、高品質なカーボンナノチューブを高いスループットにて形成することができるカーボンナノチューブ形成技術を提供することを第1の目的とする。
また、本発明は、基板上に形成したナノ粒子を死活させることなくカーボンナノチューブを形成することができるカーボンナノチューブ形成技術を提供することを第2の目的とする。
上記課題を解決するため、請求項1の発明は、基板上にカーボンナノチューブを成長させるカーボンナノチューブ形成装置において、基板を収容する真空チャンバと、前記真空チャンバ内を所定の真空度に維持する真空排気手段と、前記真空チャンバ内にて基板を保持する保持手段と、炭素を含有する原料ガスからプラズマを発生させ、そのプラズマより中性のラジカル種を前記保持手段に保持された基板に照射するラジカルビーム照射手段と、を備えることを特徴とする。
また、請求項2の発明は、請求項1の発明に係るカーボンナノチューブ形成装置において、前記ラジカルビーム照射手段は、前記原料ガスを導入してプラズマを発生させるプラズマ発生室と、前記プラズマ発生室の先端に設けられ、アパーチャが形成されたアパーチャ板と、を備え、前記アパーチャを介して中性のラジカル種を照射することを特徴とする。
また、請求項3の発明は、請求項1または請求項2の発明に係るカーボンナノチューブ形成装置において、前記ラジカルビーム照射手段から基板へのラジカル種の照射を遮断するラジカルシャッター部材をさらに備えることを特徴とする。
また、請求項4の発明は、請求項1から請求項3のいずれかの発明に係るカーボンナノチューブ形成装置において、コバルト、ニッケルおよび鉄からなる群から選択された少なくとも一種の金属を含むナノ粒子を前記保持手段に保持された基板に照射するナノ粒子ビーム照射手段をさらに備えることを特徴とする。
また、請求項5の発明は、請求項4の発明に係るカーボンナノチューブ形成装置において、前記ナノ粒子ビーム照射手段から基板へのナノ粒子の照射を遮断するナノ粒子シャッター部材をさらに備えることを特徴とする。
また、請求項6の発明は、請求項1から請求項5のいずれかの発明に係るカーボンナノチューブ形成装置において、前記ラジカルビーム照射手段から漏出したイオン種が前記保持手段に保持された基板に到達するのを阻害するイオン到達阻害手段をさらに備えることを特徴とする。
また、請求項7の発明は、請求項1から請求項6のいずれかの発明に係るカーボンナノチューブ形成装置において、前記保持手段は、保持する基板を所定温度に加熱する加熱手段を備えることを特徴とする。
また、請求項8の発明は、請求項1から請求項7のいずれかの発明に係るカーボンナノチューブ形成装置において、前記保持手段を、保持する基板の主面と平行な平面に沿って移動させる移動手段と、前記保持手段を、保持する基板の中心軸を回転軸として回転させる回転手段と、をさらに備えることを特徴とする。
また、請求項9の発明は、請求項1から請求項8のいずれかの発明に係るカーボンナノチューブ形成装置において、前記ラジカルビーム照射手段は、原料ガスから誘導結合プラズマを発生させるICP装置を備えることを特徴とする。
また、請求項10の発明は、請求項1から請求項8のいずれかの発明に係るカーボンナノチューブ形成装置において、前記ラジカルビーム照射手段は、原料ガスから電子サイクロトロン共鳴プラズマを発生させるECR装置を備えることを特徴とする。
また、請求項11の発明は、真空チャンバ内に収容された基板上にカーボンナノチューブを成長させるカーボンナノチューブ形成方法において、前記真空チャンバ内を所定の真空度に維持する真空排気工程と、ラジカルビーム照射手段に炭素を含有する原料ガスを導入してプラズマを発生させるプラズマ発生工程と、発生したプラズマより中性のラジカル種を前記ラジカルビーム照射手段から前記真空チャンバ内に保持される基板に照射するラジカルビーム照射工程と、を備えることを特徴とする。
また、請求項12の発明は、請求項11の発明に係るカーボンナノチューブ形成方法において、前記ラジカルビーム照射手段からアパーチャを介して中性のラジカル種を照射することを特徴とする。
また、請求項13の発明は、請求項11または請求項12の発明に係るカーボンナノチューブ形成方法において、前記ラジカルビーム照射工程よりも前に、コバルト、ニッケルおよび鉄からなる群から選択された少なくとも一種の金属を含むナノ粒子を前記真空チャンバ内に保持される基板に照射するナノ粒子ビーム照射工程をさらに備えることを特徴とする。
また、請求項14の発明は、請求項11から請求項13のいずれかの発明に係るカーボンナノチューブ形成方法において、前記ラジカルビーム照射工程は、基板を所定温度に加熱する加熱工程を含むことを特徴とする。
本発明によれば、基板を収容する真空チャンバを所定の真空度に維持しつつ、ラジカルビーム照射手段が炭素を含有する原料ガスからプラズマを発生させ、そのプラズマから中性ラジカル種を基板に照射するため、高品質なカーボンナノチューブを高いスループットにて形成することができる。
特に、請求項2の発明によれば、プラズマ発生室の先端にアパーチャを設け、ラジカルビーム照射手段がアパーチャを介して中性のラジカル種を照射するため、ラジカルビーム照射手段にてプラズマを発生させつつも確実に真空チャンバ内を所定の真空度に維持することができる。
特に、請求項4の発明によれば、コバルト、ニッケルおよび鉄からなる群から選択された少なくとも一種の金属を含むナノ粒子を基板に照射するナノ粒子ビーム照射手段を備えるため、基板上に形成したナノ粒子が大気中に暴露されることがなくなり、ナノ粒子を死活させることなくカーボンナノチューブを形成することができる。
特に、請求項6の発明によれば、ラジカルビーム照射手段から漏出したイオン種が保持手段に保持された基板に到達するのを阻害するイオン到達阻害手段を備えるため、より高品質なカーボンナノチューブを形成することができる。
特に、請求項8の発明によれば、保持手段を基板の主面と平行な平面に沿って移動させる移動手段と、保持手段を基板の中心軸を回転軸として回転させる回転手段と、を備えるため、ラジカルビーム照射手段から基板の全面に中性のラジカル種を照射することができる。
特に、請求項12の発明によれば、ラジカルビーム照射手段からアパーチャを介して中性のラジカル種を照射するため、ラジカルビーム照射手段にてプラズマを発生させつつも確実に真空チャンバ内を所定の真空度に維持することができる。
特に、請求項13の発明によれば、コバルト、ニッケルおよび鉄からなる群から選択された少なくとも一種の金属を含むナノ粒子を基板に照射した後、中性のラジカル種を基板に照射するため、基板上に形成したナノ粒子が大気中に暴露されることがなくなり、ナノ粒子を死活させることなくカーボンナノチューブを形成することができる。
以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。
図1は、本発明に係るカーボンナノチューブ形成装置1の全体構成を示す図である。本発明に係るカーボンナノチューブ形成装置1は、半導体ウェハや液晶用ガラス基板の表面に例えばシリコン膜を形成した基板などの基板上に配線材としてカーボンナノチューブを成長させる装置である。カーボンナノチューブ形成装置1は、真空チャンバ10に、真空排気機構20、基板保持部30、ラジカルビーム照射部50およびナノ粒子ビーム照射部70を付設して構成されている。また、カーボンナノチューブ形成装置1は、装置に設けられた各動作機構を制御してカーボンナノチューブの形成処理を実行させる制御部90を備える。
真空チャンバ10は、金属製(例えば、ステンレススチール製)の筐体であり、その内部は外部空間から完全にシールされた密閉空間とされている。真空排気機構20は、真空バルブ22、ターボ分子ポンプ(TMP)23およびロータリーポンプ(RP)24を備えて構成される。真空チャンバ10には、排気管21が連通接続されている。排気管21はターボ分子ポンプ23およびロータリーポンプ24に接続されており、その経路途中には真空バルブ22が介挿されている。
ロータリーポンプ24は、真空チャンバ10内が大気圧であっても作動させることが可能であり、真空排気行程(図5のステップS2)における初期の粗引きに使用される。ターボ分子ポンプ23は、タービン翼を高速回転させることによって気体分子を強制的に圧縮して排出する真空ポンプである。ターボ分子ポンプ23は、ロータリーポンプ24のみでは到達不可能な比較的高い真空度に真空チャンバ10内を維持することができる。本実施形態では、ターボ分子ポンプ23を備える真空排気機構20によって処理中の真空チャンバ10内を10-5Torr〜10-3Torrに維持する。但し、ターボ分子ポンプ23は大気圧に近い低真空では作動させることができず、また気体分子を大気圧まで圧縮することはできないため、ターボ分子ポンプ23の後背側にロータリーポンプ24を設けている。
基板保持部30は、真空チャンバ10の内部において処理対象となる半導体ウェハ(以後、基板Wと称す)を保持する保持台である。基板保持部30は、図示を省略する複数の把持爪によって基板Wの端縁部を把持することによって基板Wを保持する。基板保持部30のうち保持する基板Wの裏面と接触する部位は、汚染の少ないセラミックスにて形成するのが好ましい。また、基板保持部30には、保持する基板Wを加熱するヒータ35が内蔵されている。
基板保持部30は、駆動部ボックス40によって軸支されている。すなわち、真空チャンバ10の内部空間に設置された駆動部ボックス40の内側にはモータ42が固設されており、そのモータ42のモータ軸44によって基板保持部30が軸支されている。モータ軸44は軸受部43を介して駆動部ボックス40に軸受けされている。軸受部43は駆動部ボックス40の内側空間と外側空間(つまり真空チャンバ10の内部空間)とをシールする。モータ42は、基板保持部30に保持されている基板Wの主面に垂直な中心軸を回転軸とし、その回転軸の周りで基板保持部30および基板Wを回転させる。
また、モータ42を含む駆動部ボックス40の全体は昇降駆動部41による上下動(図1紙面中上下)によって位置移動される。昇降駆動部41は、真空チャンバ10の外部に設置されている。昇降駆動部41のシャフト46が真空チャンバ10の壁面に形成された開口部および駆動部ボックス40に形成された開口部を挿通してモータ42に連結されている。昇降駆動部41がシャフト46を駆動させることによってモータ42を含む駆動部ボックス40の全体が真空チャンバ10の内部にて上下動する。そして、昇降駆動部41が駆動部ボックス40を上下動させるのに伴って、基板保持部30およびそれに保持される基板Wが真空チャンバ10の内部にて当該基板Wの主面と平行な平面に沿って上下に移動し、位置を可変とする。なお、昇降駆動部41としては、ボールネジを使用したネジ送り機構やベルトとプーリとを使用したベルト送り機構などの公知の種々の直動機構を採用することができる。
駆動部ボックス40の開口部と真空チャンバ10の開口部とは、伸縮自在のジャバラ45によって連通されている。昇降駆動部41のシャフト46はジャバラ45の内側を通過する。昇降駆動部41が駆動部ボックス40を上昇させたときにはジャバラ45が伸長し、下降させたときにはジャバラ45が収縮する。このジャバラ45および軸受部43によって駆動部ボックス40の内側空間と真空チャンバ10の内部空間とは完全に雰囲気分離されている。また、駆動部ボックス40の内側空間と真空チャンバ10の外部とは連通される。従って、駆動部たるモータ42および昇降駆動部41からパーティクルが発塵したとしても、それが真空チャンバ10の内部空間に混入することは防止される。なお、基板保持部30および基板Wを回転および移動させる機構は上記に図1の構成に限定されるものではなく、基板Wを中心軸周りで回転させ、主面と平行に移動させる構成であれば良く、例えば昇降駆動部41を真空チャンバ10の内部に設けるようにしても良い。但し、モータ42および昇降駆動部41と真空チャンバ10の内部空間とは完全に雰囲気分離しておくのが好ましい。また、モータ42および昇降駆動部41に代えて、基板保持部30を2軸方向に水平移動させる機構を用いても良い。
ラジカルビーム照射部50は、真空チャンバ10の壁面を貫通して設けられている。図2は、ラジカルビーム照射部50の構成を示す図である。ラジカルビーム照射部50は、誘導結合プラズマ(Inductively Coupled Plasma)を発生させるRF−ICP装置を備えており、ケーシング51の内部に絶縁性の放電管52および誘導コイル53を備える。放電管52の基端部側からは図示を省略する原料ガス供給源から原料ガスが供給される。原料ガスとしては、アセチレン(C2H2)、エチレン(C2H4)、メタン(CH4)などの炭化水素ガスまたは気化させたアルコールを用いる。すなわち、原料ガスは炭素(C)を含有する気体である。原料ガスには、希釈剤として水素(H2)、アルゴン(Ar)、気化させた水などを添加するようにしても良い。
放電管52の先端部の周囲を囲むように誘導コイル53が配置されている。誘導コイル53には、高周波の投入に対する反射の比率を小さくするものとしてのRFマッチング装置57を介して高周波電源54が接続されている。誘導コイル53によって囲まれる放電管52の内側空間がプラズマ発生室55となる。すなわち、放電管52の基端部側から原料ガスを送給しつつ、高周波電源54が誘導コイル53に高周波の大電流を流すとプラズマ発生室55にプラズマが発生する。
また、放電管52の先端開口部を覆うようにアパーチャ板58が設けられている。アパーチャ板58の中央部にはアパーチャ59が貫通して設けられている。アパーチャ59は、φ1mm〜φ10mmの円形の小孔である。プラズマ発生室55にプラズマを発生させたときに、アパーチャ59からは中性ラジカル種が放射される。
ラジカルビーム照射部50は、アパーチャ59が基板保持部30に保持された基板Wに対向するように設置されている。すなわち、アパーチャ59の穿設方向は基板保持部30に保持された基板Wの主面と垂直であり、かつ、その穿設方向の延長線上に基板Wが位置する。従って、アパーチャ59から放出されて直進する中性ラジカル種のビームは基板保持部30に保持された基板Wに照射される。なお、ラジカルビーム照射部50は基板Wの主面と略垂直であってもよく、斜め照射であってもよい。
ナノ粒子ビーム照射部70も真空チャンバ10の壁面を貫通して設けられている。図3は、ナノ粒子ビーム照射部70の構成を示す図である。ナノ粒子ビーム照射部70は、カーボンナノチューブ形成の触媒として機能する金属(コバルト、ニッケル、鉄などを主成分として含み、微量な添加剤としてモリブデン(Mo)、チタン(Ti)、チタンナイトライド(TiN)、クロム(Cr)、アルミニウム(Al)、アルミナ(Al2O3)を含む金属)のナノ粒子を生成して照射する。ナノ粒子ビーム照射部70は、ナノ粒子生成チャンバ71に中間チャンバ77を接続して構成される。なお、ナノ粒子ビーム照射部70は、添加剤を用いず、コバルト、ニッケル、鉄からなる群から選択された少なくとも一種の金属よりナノ粒子を生成してもよい。
ナノ粒子生成チャンバ71は、Kセル(Knudsen cell:クヌーセンセル)72およびインパクター73を備える。Kセル72中には、原料となる金属(本実施形態ではコバルト)が設置されている。Kセル72の加熱によってコバルトの蒸気がKセル72の上方に向かって放出される。また、ナノ粒子生成チャンバ71には、Kセル72の上方空間に向けて図示を省略するガス供給源から例えばヘリウム(He)ガスが供給される。供給されたヘリウムガスはナノ粒子生成チャンバ71内にて図3の紙面左から右へと向かうような流れを形成する。このヘリウムガスの流れによって、Kセル72から蒸発したコバルト原子が衝突・クラスタリングを繰り返して気相中にコバルトのナノ粒子を形成する。
形成されたコバルトのナノ粒子はヘリウムガスの流れによって運搬され、インパクター73によってサイズ分級され、所定のサイズ以上の大きなナノ粒子が取り除かれる。インパクター73を通過した所定サイズ以下のナノ粒子は、ナノ粒子生成チャンバ71と中間チャンバ77との接続開口部分である第1アパーチャ75から中間チャンバ77内に導入される。
中間チャンバ77は、第1アパーチャ75と第2アパーチャ79とで囲まれた空間を真空排気機構20とは別個の排気手段である差動排気部78によって排気することにより段階的に減圧する差動排気室である。中間チャンバ77に導入されたコバルトのナノ粒子は第2アパーチャ79から真空チャンバ10内に放射される。ナノ粒子生成チャンバ71においては、供給されるヘリウムガスおよびコバルトの蒸気によって内部の圧力が数10mTorr〜数100mTorrとなり、真空チャンバ10内に比較して著しく真空度が低くなるが、差動排気室として機能する中間チャンバ77を備えることによって、真空チャンバ10内の真空度を維持することができる。
ナノ粒子ビーム照射部70は、第2アパーチャ79が基板保持部30に保持された基板Wに対向するように設置されている。すなわち、第2アパーチャ79の穿設方向は基板保持部30に保持された基板Wの主面と垂直であり、かつ、その穿設方向の延長線上に基板Wが位置する。従って、第2アパーチャ79から放出されて直進するナノ粒子ビームは基板保持部30に保持された基板Wに照射される。なお、ナノ粒子ビーム照射部70は基板Wの主面と略垂直であってもよく、斜め照射であってもよい。
図1に示すように、ラジカルビーム照射部50の前方はシャッター61によって遮蔽可能とされている。シャッター駆動部62がシャッター61を図1中の2点鎖線位置に移動させることによって、ラジカルビーム照射部50から基板保持部30に保持された基板Wへ向かう中性ラジカル種のビームが遮断される。シャッター駆動部62がシャッター61を図1中の実線位置に移動させているときは、ラジカルビーム照射部50から基板Wに中性ラジカル種のビームを照射することができる。
同様に、ナノ粒子ビーム照射部70の前方はシャッター81によって遮蔽可能とされている。シャッター駆動部82がシャッター81を図1中の2点鎖線位置に移動させることによって、ナノ粒子ビーム照射部70から基板保持部30に保持された基板Wへ向かうナノ粒子のビームが遮断される。シャッター駆動部82がシャッター81を図1中の実線位置に移動させているときは、ナノ粒子ビーム照射部70から基板Wにナノ粒子ビームを照射することができる。
また、カーボンナノチューブ形成装置1は、ラジカルビーム照射部50と基板保持部30との間に、イオン種が基板Wに到達するのを防止する図4に例示するような手段を設けている(図1では図示省略)。図4(a)に示す例では、ラジカルビーム照射部50と基板保持部30に保持される基板Wとの間に金属製のメッシュグリッド65を配置している。メッシュグリッド65にはバイアス電源66によって所定電圧のバイアス電圧が印加される。これにより、ラジカルビーム照射部50から放出されたイオン種がメッシュグリッド65を通過することは不可能となり、イオン種が基板Wに到達するのを防止することができる。
また、図4(b)に示す例では、ラジカルビーム照射部50から基板保持部30に保持される基板Wへと向かう経路を挟み込むように、2枚の金属板67,68を配置している。金属板67は接地されている。一方の金属板68にはバイアス電源66によって所定電圧のバイアス電圧が印加されている。これにより、2枚の金属板67,68の間には電界が形成され、ラジカルビーム照射部50から放出されたイオン種の進路はその電界によって大きく曲げられ、イオン種が基板Wに到達するのを防止することができる。
また、制御部90は、カーボンナノチューブ形成装置1に設けられた種々の動作機構を制御する。制御部90のハードウェアとしての構成は一般的なコンピュータと同様である。すなわち、制御部90は、各種演算処理を行うCPU、基本プログラムを記憶する読み出し専用のメモリであるROM、各種情報を記憶する読み書き自在のメモリであるRAMおよび制御用ソフトウェアやデータなどを記憶しておく磁気ディスクを備えている。
上述した構成以外にも、カーボンナノチューブ形成装置1には、真空装置としての公知の種々の機構が設けられている。例えば、真空チャンバ10には、基板Wを搬出入するための搬送開口部、内部空間の真空度を計測するための真空計、ヒータ35から発生する熱による温度上昇を防止するための冷却機構および内部空間を大気開放するためのリークバルブ(いずれも図示省略)などが形設されている。
次に、上記構成を有するカーボンナノチューブ形成装置1におけるカーボンナノチューブ形成処理について説明する。図5は、カーボンナノチューブ形成装置1におけるカーボンナノチューブ形成処理の手順を示すフローチャートである。以下に示すカーボンナノチューブの形成処理の手順は、制御部90がカーボンナノチューブ形成装置1の各動作機構を制御することによって実行される。
まず、処理対象となる基板Wが真空チャンバ10に搬入されて基板保持部30に保持される(ステップS1)。真空チャンバ10内の真空度維持のため、真空チャンバ10にロードロックチャンバを付設し、そのロードロックチャンバを介して基板Wの搬出入を行うようにしても良い。
続いて、真空チャンバ10内の真空排気が行われる(ステップS2)。真空チャンバ10内の真空排気は、真空排気機構20によって実行される。真空チャンバ10内が大気圧の状態から真空排気を行う場合には、真空バルブ22を開放しつつロータリーポンプ24によって粗引きを行った後、所定の真空度となってからターボ分子ポンプ23を作動させ、処理を開始する前の状態として真空チャンバ10内の真空度を10-7Torr〜10-4Torrに到達させる。上述したロードロックチャンバを介して基板Wの搬出入を行う場合には、真空チャンバ10内がある程度の真空度となっているため、ステップS2の初期段階からロータリーポンプ24およびターボ分子ポンプ23の双方を作動させて真空チャンバ10内の真空度を10-7Torr〜10-4Torrにしても良い。
真空チャンバ10内の真空度が10-7Torr〜10-4Torrに到達した後、ナノ粒子ビーム照射部70から基板Wに向けてコバルトのナノ粒子ビームを照射する(ステップS3)。ナノ粒子ビーム照射部70におけるコバルトのナノ粒子の生成については上述した通りである。ナノ粒子ビーム照射部70は、中間チャンバ77の第2アパーチャ79からコバルトのナノ粒子ビームを放射し、そのナノ粒子は基板保持部30に保持された基板Wの表面に到達する。ナノ粒子を生成する際に、ナノ粒子ビーム照射部70のナノ粒子生成チャンバ71内の圧力は真空チャンバ10よりも相当に高くなるのであるが、中間チャンバ77によって差動排気を行っているため、真空チャンバ10内の真空度は10-5Torr〜10-3Torr程度に維持される。
処理中の真空チャンバ10内は10-5Torr〜10-3Torrの比較的高い真空度に維持されているため、ナノ粒子ビーム照射部70から放射されたコバルトのナノ粒子ビームは概ね減衰することなく直進して基板Wの表面に照射される。但し、ナノ粒子ビームの照射エリアは基板Wの面積に比較して著しく小さい。例えば、基板Wがφ300mmの半導体ウェハであったとして、ナノ粒子ビームの照射エリアは径が数cm程度である。このため、モータ42によって基板Wを回転させるとともに、昇降駆動部41によって基板Wを上下動させることにより、ナノ粒子ビーム照射部70に対して基板Wを平行に相対移動させて基板Wの全面にナノ粒子ビームが照射されるようにしている。
コバルトのナノ粒子ビームが照射されることによって、基板Wの表面にはカーボンナノチューブを成長させるための触媒が形成される。なお、ナノ粒子ビーム照射時には、ヒータ35は作動しておらず、常温にて触媒形成が行われる。
基板Wの全面にコバルトのナノ粒子ビームを照射して触媒を形成した後、ナノ粒子ビーム照射部70からのナノ粒子ビーム照射を停止するとともに、ヒータ35を作動させて基板Wを加熱する(ステップS4)。本実施形態では、カーボンナノチューブの成長に必要なプロセス温度である350℃〜400℃に基板Wを加熱する。なお、基板保持部30には図示省略の温度測定部(例えば、熱電対)が設けられており、その温度測定部によって基板Wの温度が監視される。
基板Wの温度が所定のプロセス温度に到達した後、ラジカルビーム照射部50から基板Wに向けて中性ラジカル種のビームを照射する(ステップS5)。具体的には、放電管52に原料ガスを送給しつつ、誘導コイル53に高周波の大電流を流すことによって放電管52の先端のプラズマ発生室55に誘導結合プラズマを発生させる。プラズマ発生室55に発生したプラズマ中には各種の中性ラジカル種やイオン種が生成される。これらのうち荷電粒子である大半のイオン種はプラズマ中に閉じ込められ、電気的に中性のラジカル種はプラズマ発生室55の先端に設けられたアパーチャ59から放射される。このようにして、ラジカルビーム照射部50は、アパーチャ59から中性ラジカル種のビームを放射し、その中性ラジカル種は基板保持部30に保持された基板Wの表面に到達する。
プラズマを発生させる際に、放電管52には原料ガスが送給されてプラズマ発生室55にて放電がなされるため、放電管52内部のガス圧は数mTorr〜数10mTorrに達する。本実施形態のラジカルビーム照射部50はプラズマ発生室55の先端にアパーチャ59を形成しているため、このアパーチャ59が放電管52から真空チャンバ10への気体移動の抵抗となる。このため、ある種の差動排気と同様に、真空排気機構20が十分な排気能力を有していれば、放電管52の内部ではガス圧は数mTorr〜数10mTorrに達する一方で、真空チャンバ10内は10-5Torr〜10-3Torrの真空度を維持することができる。
真空チャンバ10内は比較的高い真空度に維持されているため、ラジカルビーム照射部50から放射された中性ラジカル種のビームは概ね減衰することなく直進して基板Wの表面に照射される。但し、上記のナノ粒子ビームと同様に、中性ラジカル種ビームの照射エリアは基板Wの面積に比較して著しく小さい。このため、モータ42によって基板Wを回転させるとともに、昇降駆動部41によって基板Wを上下動させることにより、ラジカルビーム照射部50に対して基板Wを平行に相対移動させて基板Wの全面に中性ラジカル種のビームが照射されるようにしている。
350℃〜400℃に加熱された基板Wに中性ラジカル種のビームが照射されることによって、基板Wの表面の触媒上にカーボンナノチューブが成長する(ステップS6)。なお、プラズマ中のイオン種がアパーチャ59から若干漏出することもあるが、このような漏出イオン種が基板Wの表面に到達することはラジカルビーム照射部50と基板保持部30との間に設けられた図4に示す機構によって阻害される。
基板Wの全面に中性ラジカル種のビームを所定時間照射してカーボンナノチューブを成長させた後、ラジカルビーム照射部50からの中性ラジカル種のビーム照射およびヒータ35による加熱を停止する。そして、処理後の基板Wを真空チャンバ10から搬出してカーボンナノチューブの形成処理が完了する(ステップS7)。
本実施形態のカーボンナノチューブ形成装置1は、ナノ粒子ビーム照射部70に差動排気室たる中間チャンバ77を備えるとともに、ラジカルビーム照射部50にアパーチャ59を設けている。このため、ラジカルビーム照射部50およびナノ粒子ビーム照射部70の双方において、一種の差動排気システムが形成されることとなり、真空排気機構20が十分な排気能力を有していれば、真空チャンバ10内を10-5Torr〜10-3Torrの比較的高い真空度に維持することができる。
既述したように、BEOL配線材としてカーボンナノチューブを形成する場合、形成プロセスの温度が低い方が好ましい。本実施形態においては、プロセス温度を350℃〜400℃という比較的低い温度にしている。このような比較的低いプロセス温度にてカーボンナノチューブの品質および成長レートを高めるためには、プロセス圧力をも相応に低下させなければならず、プロセス温度が350℃〜400℃の場合の適切なプロセス圧力は概ね1mTorr以下であるという知見が得られている。本実施形態のカーボンナノチューブ形成装置1は、真空チャンバ10内を10-5Torr〜10-3Torrの比較的高い真空度に維持しているため、基板Wの加熱温度(プロセス温度)が350℃〜400℃の比較的低温であってもカーボンナノチューブの品質および成長レートを高めることができる。その結果、カーボンナノチューブ形成装置1は、高品質なカーボンナノチューブを高いスループットにて形成することができるのである。
一方、10-5Torr〜10-3Torrという比較的高い真空度の雰囲気下では通常プラズマを発生させることが困難である。本実施形態のカーボンナノチューブ形成装置1は、ラジカルビーム照射部50にアパーチャ59を設けて一種の差動排気を行うことにより、放電管52の内部ではガス圧を数mTorr〜数10mTorrとすることが可能であり、プラズマ発生室55に誘導結合プラズマを発生させることができる。
また、本実施形態のカーボンナノチューブ形成装置1は、1つの真空チャンバ10にラジカルビーム照射部50およびナノ粒子ビーム照射部70の双方を備えている。このため、基板Wにナノ粒子の触媒を形成した後にカーボンナノチューブを成長させるという2段ステップのプロセス処理を真空チャンバ10から基板Wを搬出することなく真空中で一貫して実行することが可能となる。よって、ナノ粒子の触媒を形成した基板Wが大気中に暴露されることがないため、ナノ粒子を死活させることなく触媒として有効に機能させてカーボンナノチューブを形成することができる。また、基板Wの移送に伴うスループットの低下を防止することができるとともに、装置全体としてのフットプリントを低減することもできる。
しかも、真空チャンバ10内は10-5Torr〜10-3Torrの比較的高い真空度に維持されているため、ナノ粒子の触媒形成もカーボンナノチューブの成長もほぼ分子流領域に近い圧力条件にて実行されることとなり、ラジカルビーム照射部50からの中性ラジカル種のビーム照射とナノ粒子ビーム照射部70からのナノ粒子ビーム照射との相互干渉を最小限に抑制することができる。すなわち、仮に、真空チャンバ10内の真空度が低く粘性流領域の圧力条件にてプロセス処理が行われた場合、ラジカルビーム照射部50から放射された中性ラジカル種が拡散によってナノ粒子ビーム照射部70に侵入したり、逆にナノ粒子ビーム照射部70から放射されたナノ粒子がラジカルビーム照射部50に侵入する危険性がある。本実施形態では、分子流領域に近い圧力条件にて中性ラジカル種のビーム照射およびナノ粒子ビーム照射が行われるため、そのような相互干渉の危険性がほとんど無いのである。
また、ラジカルビーム照射部50のアパーチャ59からは主に中性のラジカル種が放射されるのであるが、僅かにイオン種も漏出する。このようなイオン種は高品質のカーボンナノチューブを形成する妨げとなることもあるが、本実施形態のカーボンナノチューブ形成装置1は、ラジカルビーム照射部50と基板保持部30との間に図4に示す如き機構を設けており、イオン種が基板Wの表面に到達するのを防止して高品質のカーボンナノチューブを形成することができる。
以上、本発明の実施の形態について説明したが、この発明はその趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態においては、ラジカルビーム照射源として、誘導コイル53に高周波の大電流を流して原料ガスから誘導結合プラズマを発生させるRF−ICP方式のラジカルビーム照射部50を用いていたが、これを図6に示すようなものとしても良い。図6のラジカルビーム照射部150は、電子サイクロトロン共鳴(Electron Cyclotron Resonance)プラズマを発生させるECR装置を備えている。
ラジカルビーム照射部150は、ケーシング151の内部にプラズマ発生室155を備え、そのプラズマ発生室155の内側にはアンテナ152、永久磁石153およびイオン除去磁石154が設けられている。プラズマ発生室155の内部空間には、図示を省略する原料ガス供給源からガス送給管157を介して原料ガスが供給される。原料ガスは上記実施形態と同様のものであり、少なくとも炭素を含有する気体である。また、アンテナ152にはECR電源156が接続されている。
プラズマ発生室155内には永久磁石153によって磁場が印加されている。この状態にて原料ガスを供給しつつ、アンテナ152にECR電源156からマイクロ波(例えば2.45GHz)を送り込むと、電子サイクロトロン共鳴の効果によってプラズマ発生室155内にプラズマが発生する。このようなECR方式は、上記実施形態のRF−ICP方式に比較して遙かに高い密度のプラズマをより低圧下(10-4Torr程度)で発生させることができるという特徴を有する。
プラズマ発生室155の先端にはアパーチャ板158が設けられている。アパーチャ板158の中央部にはアパーチャ159が設けられている。また、イオン除去磁石154は、プラズマ発生室155に発生したプラズマからイオン種を除去するために設けられたものである。
プラズマ発生室155内にて電子サイクロトロン共鳴の効果によって発生したプラズマ中にも各種の中性ラジカル種やイオン種が生成される。これらのうちイオン種はイオン除去磁石154によって除かれ、電気的に中性のラジカル種はプラズマ発生室155の先端に設けられたアパーチャ159から放射される。このようにして、ラジカルビーム照射部150は、アパーチャ159から中性ラジカル種のビームを放射し、その中性ラジカル種は基板保持部30に保持された基板Wの表面に到達する。
このような電子サイクロトロン共鳴の効果によってプラズマを発生させるECR方式のラジカルビーム照射部150をラジカルビーム照射源として用いた場合にも中性ラジカル種ビームの照射エリアは基板Wの面積に比較して著しく小さいため、モータ42によって基板Wを回転させるとともに、昇降駆動部41によって基板Wを上下動させることにより、基板Wの全面に中性ラジカル種のビームが照射されるようにする。ECR方式のラジカルビーム照射部150を使用しても、上記実施形態と同様の処理手順を実行することにより、上記実施形態と同様の効果を得ることができる。
なお、ECR方式のラジカルビーム照射部150は真空チャンバ10内と同程度の真空度にてプラズマを発生させることができるため、必ずしもアパーチャ159を設ける必要はない。その一方で、ECR方式のプラズマは比較的多数のイオン種を生成するため、中性ラジカル種によって高品質なカーボンナノチューブを成長させるためにはイオン除去磁石154が必須となる。また、ラジカルビーム照射部150と基板保持部30との間に図4に示す如き機構を設けてイオン種が基板Wの表面に到達するのを確実に防止するようにした方が好ましい。
また、上記実施形態のナノ粒子ビーム照射部70は、Kセル72の加熱によってコバルトの蒸気を発生させていたが、これに代えて、ターゲットにコバルトを用い、レーザーアブレーションによってコバルトの蒸気を発生させても良い。さらに、これらに限定されず、コバルトターゲットのDCスパッタリングによってコバルトの蒸気を発生させるようにしても良い。なお、DCスパッタリングを用いる場合には、インパクター73に代えてクワドルポールマスフィルタ(Quadrupole Mass Filter)によってサイズ分級を行うようにしても良い。
また、上記実施形態のナノ粒子ビーム照射部70は、差動排気のための中間チャンバ77を備えていたが、真空排気機構20が十分に高い排気能力を有している場合には、中間チャンバ77を設けなくても良い。この場合、第2アパーチャ79から真空チャンバ10にコバルトのナノ粒子ビームが放射される。
また、カーボンナノチューブ成長のための触媒の原料となる金属はコバルトに限定されるものではなく、ニッケルや鉄であっても良い。また、コバルト、ニッケル、鉄のうちの少なくとも一種を含む合金であっても良い。
また、上記実施形態においては、真空排気機構20をターボ分子ポンプ23およびロータリーポンプ24の組み合わせによって構成していたが、これに限定されるものではなく、真空チャンバ10内を10-5Torr〜10-3Torrの真空度に維持できるものであれば、例えば拡散ポンプ(DP)とロータリーポンプとの組み合わせによって構成するようにしても良い。
また、上記実施形態においては、ラジカルビーム照射部50およびナノ粒子ビーム照射部70の近傍にシャッター61,81を配置していたが、これに代えてまたはこれに加えて基板保持部30に保持された基板Wの直前にシャッターを設けるようにしても良い。基板Wの直前にシャッターを設ける場合、ラジカルビーム用およびナノ粒子ビーム用のそれぞれに個別のシャッターを設けても良いし、1つのシャッターにて共用するようにしても良い。
また、ターボ分子ポンプ(TMP)23の排気能力が十分に大きい場合は、図3に示すナノ粒子ビーム照射部70における中間チャンバ77、差動排気部78、第2アパーチャ79を省略することもできる。
1 カーボンナノチューブ形成装置
10 真空チャンバ
20 真空排気機構
23 ターボ分子ポンプ
24 ロータリーポンプ
30 基板保持部
41 昇降駆動部
42 モータ
50,150 ラジカルビーム照射部
52 放電管
53 誘導コイル
54 高周波電源
55,155 プラズマ発生室
57 RFマッチング装置
58,158 アパーチャ板
59,159 アパーチャ
61,81 シャッター
65 メッシュグリッド
66 バイアス電源
67,68 金属板
70 ナノ粒子ビーム照射部
71 ナノ粒子生成チャンバ
72 Kセル
73 インパクター
75 第1アパーチャ
77 中間チャンバ
79 第2アパーチャ
90 制御部
154 イオン除去磁石
W 基板
10 真空チャンバ
20 真空排気機構
23 ターボ分子ポンプ
24 ロータリーポンプ
30 基板保持部
41 昇降駆動部
42 モータ
50,150 ラジカルビーム照射部
52 放電管
53 誘導コイル
54 高周波電源
55,155 プラズマ発生室
57 RFマッチング装置
58,158 アパーチャ板
59,159 アパーチャ
61,81 シャッター
65 メッシュグリッド
66 バイアス電源
67,68 金属板
70 ナノ粒子ビーム照射部
71 ナノ粒子生成チャンバ
72 Kセル
73 インパクター
75 第1アパーチャ
77 中間チャンバ
79 第2アパーチャ
90 制御部
154 イオン除去磁石
W 基板
Claims (14)
- 基板上にカーボンナノチューブを成長させるカーボンナノチューブ形成装置であって、
基板を収容する真空チャンバと、
前記真空チャンバ内を所定の真空度に維持する真空排気手段と、
前記真空チャンバ内にて基板を保持する保持手段と、
炭素を含有する原料ガスからプラズマを発生させ、そのプラズマより中性のラジカル種を前記保持手段に保持された基板に照射するラジカルビーム照射手段と、
を備えることを特徴とするカーボンナノチューブ形成装置。 - 請求項1記載のカーボンナノチューブ形成装置において、
前記ラジカルビーム照射手段は、
前記原料ガスを導入してプラズマを発生させるプラズマ発生室と、
前記プラズマ発生室の先端に設けられ、アパーチャが形成されたアパーチャ板と、
を備え、前記アパーチャを介して中性のラジカル種を照射することを特徴とするカーボンナノチューブ形成装置。 - 請求項1または請求項2に記載のカーボンナノチューブ形成装置において、
前記ラジカルビーム照射手段から基板へのラジカル種の照射を遮断するラジカルシャッター部材をさらに備えることを特徴とするカーボンナノチューブ形成装置。 - 請求項1から請求項3のいずれかに記載のカーボンナノチューブ形成装置において、
コバルト、ニッケルおよび鉄からなる群から選択された少なくとも一種の金属を含むナノ粒子を前記保持手段に保持された基板に照射するナノ粒子ビーム照射手段をさらに備えることを特徴とするカーボンナノチューブ形成装置。 - 請求項4記載のカーボンナノチューブ形成装置において、
前記ナノ粒子ビーム照射手段から基板へのナノ粒子の照射を遮断するナノ粒子シャッター部材をさらに備えることを特徴とするカーボンナノチューブ形成装置。 - 請求項1から請求項5のいずれかに記載のカーボンナノチューブ形成装置において、
前記ラジカルビーム照射手段から漏出したイオン種が前記保持手段に保持された基板に到達するのを阻害するイオン到達阻害手段をさらに備えることを特徴とするカーボンナノチューブ形成装置。 - 請求項1から請求項6のいずれかに記載のカーボンナノチューブ形成装置において、
前記保持手段は、保持する基板を所定温度に加熱する加熱手段を備えることを特徴とするカーボンナノチューブ形成装置。 - 請求項1から請求項7のいずれかに記載のカーボンナノチューブ形成装置において、
前記保持手段を、保持する基板の主面と平行な平面に沿って移動させる移動手段と、
前記保持手段を、保持する基板の中心軸を回転軸として回転させる回転手段と、
をさらに備えることを特徴とするカーボンナノチューブ形成装置。 - 請求項1から請求項8のいずれかに記載のカーボンナノチューブ形成装置において、
前記ラジカルビーム照射手段は、原料ガスから誘導結合プラズマを発生させるICP装置を備えることを特徴とするカーボンナノチューブ形成装置。 - 請求項1から請求項8のいずれかに記載のカーボンナノチューブ形成装置において、
前記ラジカルビーム照射手段は、原料ガスから電子サイクロトロン共鳴プラズマを発生させるECR装置を備えることを特徴とするカーボンナノチューブ形成装置。 - 真空チャンバ内に収容された基板上にカーボンナノチューブを成長させるカーボンナノチューブ形成方法であって、
前記真空チャンバ内を所定の真空度に維持する真空排気工程と、
ラジカルビーム照射手段に炭素を含有する原料ガスを導入してプラズマを発生させるプラズマ発生工程と、
発生したプラズマより中性のラジカル種を前記ラジカルビーム照射手段から前記真空チャンバ内に保持される基板に照射するラジカルビーム照射工程と、
を備えることを特徴とするカーボンナノチューブ形成方法。 - 請求項11記載のカーボンナノチューブ形成方法において、
前記ラジカルビーム照射手段からアパーチャを介して中性のラジカル種を照射することを特徴とするカーボンナノチューブ形成方法。 - 請求項11または請求項12に記載のカーボンナノチューブ形成方法において、
前記ラジカルビーム照射工程よりも前に、コバルト、ニッケルおよび鉄からなる群から選択された少なくとも一種の金属を含むナノ粒子を前記真空チャンバ内に保持される基板に照射するナノ粒子ビーム照射工程をさらに備えることを特徴とするカーボンナノチューブ形成方法。 - 請求項11から請求項13のいずれかに記載のカーボンナノチューブ形成方法において、
前記ラジカルビーム照射工程は、基板を所定温度に加熱する加熱工程を含むことを特徴とするカーボンナノチューブ形成方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008028763A JP2009184892A (ja) | 2008-02-08 | 2008-02-08 | カーボンナノチューブ形成装置およびカーボンナノチューブ形成方法 |
KR1020080121679A KR20090086298A (ko) | 2008-02-08 | 2008-12-03 | 카본나노튜브형성장치 및 카본나노튜브형성방법 |
US12/355,831 US20090214800A1 (en) | 2008-02-08 | 2009-01-19 | Apparatus for and method of forming carbon nanotube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008028763A JP2009184892A (ja) | 2008-02-08 | 2008-02-08 | カーボンナノチューブ形成装置およびカーボンナノチューブ形成方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009184892A true JP2009184892A (ja) | 2009-08-20 |
Family
ID=40998592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008028763A Pending JP2009184892A (ja) | 2008-02-08 | 2008-02-08 | カーボンナノチューブ形成装置およびカーボンナノチューブ形成方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20090214800A1 (ja) |
JP (1) | JP2009184892A (ja) |
KR (1) | KR20090086298A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014519601A (ja) * | 2011-05-16 | 2014-08-14 | ゼネラル・エレクトリック・カンパニイ | はめ込み型の温度および/またはひずみのセンサ用の方法およびシステム |
JP2015510489A (ja) * | 2012-02-24 | 2015-04-09 | カリフォルニア インスティチュート オブ テクノロジー | グラフェン形成のための方法およびシステム |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8951631B2 (en) | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused metal fiber materials and process therefor |
US9005755B2 (en) | 2007-01-03 | 2015-04-14 | Applied Nanostructured Solutions, Llc | CNS-infused carbon nanomaterials and process therefor |
US8158217B2 (en) | 2007-01-03 | 2012-04-17 | Applied Nanostructured Solutions, Llc | CNT-infused fiber and method therefor |
US8951632B2 (en) | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused carbon fiber materials and process therefor |
US8147599B2 (en) | 2009-02-17 | 2012-04-03 | Mcalister Technologies, Llc | Apparatuses and methods for storing and/or filtering a substance |
CA2750484A1 (en) | 2009-02-17 | 2010-12-16 | Applied Nanostructured Solutions, Llc | Composites comprising carbon nanotubes on fiber |
BRPI1008131A2 (pt) | 2009-02-27 | 2016-03-08 | Applied Nanostructured Sols | "crescimento de nanotubo de carbono de baixa temperatura usando método de preaquecimento de gás". |
US20100227134A1 (en) | 2009-03-03 | 2010-09-09 | Lockheed Martin Corporation | Method for the prevention of nanoparticle agglomeration at high temperatures |
AU2010238610A1 (en) | 2009-04-24 | 2011-10-27 | Applied Nanostructured Solutions, Llc | CNT-infused EMI shielding composite and coating |
US9111658B2 (en) | 2009-04-24 | 2015-08-18 | Applied Nanostructured Solutions, Llc | CNS-shielded wires |
CA2760144A1 (en) | 2009-04-27 | 2010-11-11 | Applied Nanostructured Solutions, Llc | Cnt-based resistive heating for deicing composite structures |
CA2765460A1 (en) | 2009-08-03 | 2011-02-10 | Applied Nanostructured Solutions, Llc | Incorporation of nanoparticles in composite fibers |
US8662449B2 (en) | 2009-11-23 | 2014-03-04 | Applied Nanostructured Solutions, Llc | CNT-tailored composite air-based structures |
US8168291B2 (en) | 2009-11-23 | 2012-05-01 | Applied Nanostructured Solutions, Llc | Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof |
JP2013520328A (ja) | 2009-12-14 | 2013-06-06 | アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー | カーボン・ナノチューブ浸出繊維材料を含んだ難燃性複合材料及び製品 |
US9167736B2 (en) | 2010-01-15 | 2015-10-20 | Applied Nanostructured Solutions, Llc | CNT-infused fiber as a self shielding wire for enhanced power transmission line |
CN102741465A (zh) | 2010-02-02 | 2012-10-17 | 应用纳米结构方案公司 | 包含平行排列的碳纳米管的碳纳米管并入的纤维材料、其制造方法及从其衍生的复合材料 |
JP2013521656A (ja) | 2010-03-02 | 2013-06-10 | アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー | カーボン・ナノチューブ浸出電極材料を含む螺旋に巻き付けられた電気機器及びその生産方法並びに生産装置 |
EP2543052B1 (en) | 2010-03-02 | 2019-11-27 | Applied NanoStructured Solutions, LLC | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
US8780526B2 (en) | 2010-06-15 | 2014-07-15 | Applied Nanostructured Solutions, Llc | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
US9017854B2 (en) | 2010-08-30 | 2015-04-28 | Applied Nanostructured Solutions, Llc | Structural energy storage assemblies and methods for production thereof |
JP2013540683A (ja) | 2010-09-14 | 2013-11-07 | アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー | 成長したカーボン・ナノチューブを有するガラス基材及びその製造方法 |
EP2619133A1 (en) | 2010-09-22 | 2013-07-31 | Applied NanoStructured Solutions, LLC | Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof |
KR20130100045A (ko) | 2010-09-23 | 2013-09-09 | 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. | 전력 전송 라인 향상을 위한 자가 실드 와이어로서 cnt 주입된 섬유 |
US9314719B2 (en) | 2011-08-12 | 2016-04-19 | Mcalister Technologies, Llc | Filter having spiral-shaped distributor channels |
KR101424910B1 (ko) * | 2012-01-11 | 2014-07-31 | 주식회사 엘지화학 | 카본나노튜브 및 그 제조방법 |
US9085464B2 (en) | 2012-03-07 | 2015-07-21 | Applied Nanostructured Solutions, Llc | Resistance measurement system and method of using the same |
US9428837B2 (en) * | 2012-03-27 | 2016-08-30 | United Technologies Corporation | Multi-material thermal barrier coating system |
CN103896243B (zh) * | 2012-12-29 | 2016-03-09 | 清华大学 | 反应器及生长碳纳米管的方法 |
US9534296B2 (en) * | 2013-03-15 | 2017-01-03 | Mcalister Technologies, Llc | Methods of manufacture of engineered materials and devices |
US9079489B2 (en) | 2013-05-29 | 2015-07-14 | Mcalister Technologies, Llc | Methods for fuel tank recycling and net hydrogen fuel and carbon goods production along with associated apparatus and systems |
US10280512B2 (en) * | 2015-07-27 | 2019-05-07 | Varian Semiconductor Equipment Associates, Inc. | Apparatus and method for carbon film deposition profile control |
JP6440850B2 (ja) * | 2015-09-02 | 2018-12-19 | 東京エレクトロン株式会社 | グラフェンの製造方法、グラフェンの製造装置及び電子デバイスの製造方法 |
US11338224B2 (en) * | 2017-02-28 | 2022-05-24 | Tata Consultancy Services Limited | Phase separation apparatus and method |
KR102516885B1 (ko) * | 2018-05-10 | 2023-03-30 | 삼성전자주식회사 | 증착 장비 및 이를 이용한 반도체 장치 제조 방법 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030028296A (ko) * | 2001-09-28 | 2003-04-08 | 학교법인 한양학원 | 플라즈마 화학기상증착 장치 및 이를 이용한 탄소나노튜브제조방법 |
WO2004107825A1 (ja) * | 2003-05-30 | 2004-12-09 | Tokyo Electron Limited | プラズマ源及びプラズマ処理装置 |
CN1890175B (zh) * | 2003-12-03 | 2010-04-07 | 理想星株式会社 | 衍生富勒烯的制造装置及制造方法 |
JP4963539B2 (ja) * | 2004-05-10 | 2012-06-27 | 株式会社アルバック | カーボンナノチューブの作製方法及びその方法を実施するプラズマcvd装置 |
KR101190136B1 (ko) * | 2004-05-10 | 2012-10-12 | 가부시키가이샤 알박 | 카본 나노 튜브의 제작 방법 및 그 방법을 실시하는플라즈마 화학기상증착 장치 |
-
2008
- 2008-02-08 JP JP2008028763A patent/JP2009184892A/ja active Pending
- 2008-12-03 KR KR1020080121679A patent/KR20090086298A/ko not_active Ceased
-
2009
- 2009-01-19 US US12/355,831 patent/US20090214800A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014519601A (ja) * | 2011-05-16 | 2014-08-14 | ゼネラル・エレクトリック・カンパニイ | はめ込み型の温度および/またはひずみのセンサ用の方法およびシステム |
JP2015510489A (ja) * | 2012-02-24 | 2015-04-09 | カリフォルニア インスティチュート オブ テクノロジー | グラフェン形成のための方法およびシステム |
Also Published As
Publication number | Publication date |
---|---|
US20090214800A1 (en) | 2009-08-27 |
KR20090086298A (ko) | 2009-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009184892A (ja) | カーボンナノチューブ形成装置およびカーボンナノチューブ形成方法 | |
JP5660804B2 (ja) | カーボンナノチューブの形成方法及びカーボンナノチューブ成膜装置 | |
JP5511536B2 (ja) | 基板処理装置及び半導体装置の製造方法 | |
JP4914902B2 (ja) | シリサイド形成方法とその装置 | |
JP2017157778A (ja) | 基板処理装置 | |
WO2011036973A1 (ja) | カーボンナノチューブ膜の成膜方法 | |
WO2022138655A1 (ja) | 基板処理方法及び基板処理装置 | |
US11948784B2 (en) | Tilted PVD source with rotating pedestal | |
TW202125704A (zh) | 用於形成互連結構之方法及設備 | |
JP2005350342A (ja) | カーボンナノチューブの作製方法及びその方法を実施するプラズマcvd装置 | |
JP4948088B2 (ja) | 半導体製造装置 | |
JP2018142691A (ja) | 半導体製造方法及びプラズマ処理装置 | |
JP4963584B2 (ja) | プラズマcvd装置及びプラズマcvd方法 | |
US20240170265A1 (en) | Plasma processing apparatus | |
JP5788627B2 (ja) | カーボンナノチューブ成長方法 | |
JP5032042B2 (ja) | プラズマcvd装置および成膜方法 | |
JP2017084966A (ja) | 遷移金属を含む膜をエッチングする方法及び基板処理装置 | |
US20170346001A1 (en) | Method of manufacturing magnetoresistive device and magnetoresistive device manufacturing system | |
JP2009283794A (ja) | 基板処理装置 | |
JP2008127644A (ja) | 金属膜作成装置及び金属膜作成装置のクリーニング方法 | |
JP2014237557A (ja) | カーボンナノチューブ成長方法 | |
JP2870774B2 (ja) | 単結晶膜の形成方法 | |
JP4993965B2 (ja) | 半導体製造装置、基板処理方法及び基板の製造方法並びに半導体装置の製造方法 | |
WO2022158365A1 (ja) | 基板処理方法及び基板処理装置 | |
KR101974165B1 (ko) | 전이금속 디칼코게나이드 박막의 상전이 방법 및 장치 |