CN103896243B - 反应器及生长碳纳米管的方法 - Google Patents
反应器及生长碳纳米管的方法 Download PDFInfo
- Publication number
- CN103896243B CN103896243B CN201210587684.0A CN201210587684A CN103896243B CN 103896243 B CN103896243 B CN 103896243B CN 201210587684 A CN201210587684 A CN 201210587684A CN 103896243 B CN103896243 B CN 103896243B
- Authority
- CN
- China
- Prior art keywords
- carbon nanotube
- catalyst composite
- composite layer
- layer
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 385
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 359
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 358
- 238000006243 chemical reaction Methods 0.000 claims abstract description 85
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000003054 catalyst Substances 0.000 claims description 189
- 239000002131 composite material Substances 0.000 claims description 140
- 239000007789 gas Substances 0.000 claims description 54
- 239000002238 carbon nanotube film Substances 0.000 claims description 42
- 239000002245 particle Substances 0.000 claims description 33
- 229910052799 carbon Inorganic materials 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 8
- 239000012495 reaction gas Substances 0.000 claims description 7
- 239000012159 carrier gas Substances 0.000 claims description 5
- 238000005566 electron beam evaporation Methods 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 claims description 2
- 238000002207 thermal evaporation Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 201
- 239000000463 material Substances 0.000 description 13
- 238000005411 Van der Waals force Methods 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 10
- 239000003960 organic solvent Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000000758 substrate Substances 0.000 description 7
- 239000000654 additive Substances 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 6
- 239000002086 nanomaterial Substances 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 5
- 239000002071 nanotube Substances 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010909 chemical acidification Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002079 double walled nanotube Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- -1 etc. Substances 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/50—Substrate holders
- C23C14/505—Substrate holders for rotation of the substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J15/00—Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor
- B01J15/005—Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/18—Stationary reactors having moving elements inside
- B01J19/1812—Tubular reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/248—Reactors comprising multiple separated flow channels
- B01J19/2495—Net-type reactors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0605—Carbon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
- C23C14/30—Vacuum evaporation by wave energy or particle radiation by electron bombardment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/541—Heating or cooling of the substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
- C23C16/4584—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4587—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially vertically
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4587—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially vertically
- C23C16/4588—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially vertically the substrate being rotated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/46—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00132—Controlling the temperature using electric heating or cooling elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00132—Controlling the temperature using electric heating or cooling elements
- B01J2219/00135—Electric resistance heaters
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明提供一种反应器,其包括:一反应室,所述反应室包括一进气口及一与所述进气口间隔设置的出气口,其中,反应器进一步包括一碳纳米管层设置于反应室内部,并围绕一转轴旋转。本发明进一步提供一种利用所述反应室生长碳纳米管的方法。
Description
技术领域
本发明涉及一种反应器,以及所述采用所述反应器生长碳纳米管的方法。
背景技术
碳纳米管是九十年代初才发现的一种新型一维纳米材料。碳纳米管的特殊结构决定了其具有特殊的性质,如高抗张强度和高热稳定性;随着碳纳米管螺旋方式的变化,碳纳米管可呈现出金属性或半导体性等。
由于碳纳米管具有理想的一维结构以及在力学、电学、热学等领域优良的性质,其在材料科学、化学、物理学等交叉学科领域已展现出广阔的应用前景,在科学研究以及产业应用上也受到越来越多的关注。目前以碳纳米管结构作为生长基底,应用于反应器中生长新的结构逐渐成为新的研究热点,逐渐引起了广泛关注。
然而,由于碳纳米管结构中碳纳米管自身条件限制,如尺寸较小等,如何设置所述碳纳米管结构并其作为生长基底并在表面生长出新的结构一直是难以克服的难题。
发明内容
有鉴于此,确有必要提供一种碳纳米管作为生长基底的的反应器。
一种反应器,其包括:一反应室,所述反应室包括一进气口及一出气口,反应气体从所述进气口通入流向所述出气口,其中,进一步包括一碳纳米管催化剂复合层可旋转地设置于反应室内部,该碳纳米管催化剂复合层具有多个微孔,通过所述碳纳米管催化剂复合层的旋转使所述反应气体在反应室内流动过程中穿过所述碳纳米管催化剂复合层的多个微孔。
一种采用所述反应器生长碳纳米管的方法,主要包括以下步骤:提供一所述反应器;向所述反应室内通入碳源气体与载气的混合气体;旋转所述碳纳米管催化剂复合层并加热所述碳纳米管催化剂复合层以生长碳纳米管。
相对于现有技术,本案中所述反应器中采用碳纳米管层作为生长基底,由于所述碳纳米管层中的碳纳米管均匀分布且具有较大的比表面积,且所述碳纳米管层具有多个空隙,因此催化剂颗粒可以牢固的固定沉积于所述碳纳米管层表面或嵌入所述碳纳米管层中,并使反应气体贯穿所述碳纳米管层,从而能够有效的防止其团聚,并提高的反应效率。
附图说明
图1为本发明第一实施例的提供的反应器结构示意图。
图2为图1所示反应器中碳纳米管催化剂复合层的结构示意图。
图3为本发明第一实施例中所述反应器中碳纳米管拉膜的扫描电镜照片。
图4为图3所示的碳纳米管拉膜中碳纳米管片段的结构示意图。
图5为本发明所述的反应器中包括多层碳纳米管膜的结构示意图。
图6为本发明所述反应器中非扭转的碳纳米管线的结构示意图。
图7为本发明所述反应器中扭转的碳纳米管线的结构示意图。
图8为应用图1所述反应器生长碳纳米管的结构示意图。
图9为本发明第二实施例提供的反应器的结构示意图。
图10为本发明第二实施例提供的反应器生长碳纳米管的结构示意图。
主要元件符号说明
反应器 | 10,20 |
进气口 | 11 |
出气口 | 12 |
反应室 | 13 |
碳纳米管催化剂复合层 | 14 |
催化剂层 | 15 |
驱动杆 | 16 |
电源 | 140 |
固定框 | 141 |
微孔 | 142 |
碳纳米管片段 | 143 |
碳纳米管 | 145 |
第一电极 | 144 |
第二电极 | 146 |
如下具体实施例将结合上述附图进一步说明本发明。
具体实施方式
以下将结合附图对本技术方案作进一步的详细说明。
请参阅图1,下面结合附图及多个实施例对所述反应器及其作为生长装置的应用作进一步详细说明。
如图1所示,本发明第一实施例提供一种反应器10,所述反应器10包括一反应室13,以及一碳纳米管催化剂复合层14,该碳纳米管催化剂复合层14设置于反应室13内部,且围绕一转轴旋转。
所述反应室13具有一管壁,所述管壁由化学性质稳定、耐高温的材料制成,如石英、陶瓷、不锈钢等。所述反应室13可为由管壁围成的具有一定长度的管状体,其横截面可为圆形、椭圆形、三角形、矩形、正方形等轴对称图形,或者其它规则或不规则多边形。所述反应室13具有一进气口11及一出气口12分别设置于所述反应室13沿长度方向上相对的两端。所述反应室13的内径(即横截面的平均跨度)为1厘米~20厘米,优选的,所述反应室13的内径2.5厘米~10厘米,从而能够更加方便的设置碳纳米管催化剂复合层14,并能够提供足够的支撑。所述反应室13的长度为2厘米~50厘米。所述反应室13的直径为2.5厘米,长度为20厘米。
所述碳纳米管催化剂复合层14可旋转地设置于反应室13内部,所述碳纳米管催化剂复合层14在所述反应室13中旋转的方式可绕一固定方向旋转,也可同时绕多个方向旋转。进一步的,所述反应室13可包括一驱动杆16,所述驱动杆16在长度方向上具有一中心轴。所述碳纳米管催化剂复合层14可设置于所述驱动杆16上,并围绕所述驱动杆16旋转。所述碳纳米管催化剂复合层14的转轴可与所述驱动杆16的中心轴共轴设置。所述驱动杆16的轴线可与所述反应室中反应气体的流动方向形成一夹角。本实施例中,所述驱动杆16为固定于所述反应室13的管壁上的柱状结构,能够围绕自身的中心轴自由旋转。所述驱动杆16的材料可为金属材料如金、银、铝等,或绝缘材料如陶瓷等,具有一定机械强度,且在后续的加热过程中能够保持其自身形状。本实施例中,其材料为陶瓷。所述驱动杆16贯穿所述反应室13沿长度方向上的横截面,两端分别固定于所述反应室13的管壁上。优选的,所述反应室13的横截面为一轴对称图形,所述驱动杆16与所述轴对称图形的对称轴共轴设置,从而能够最大程度的利用反应室13内的空间。所述驱动杆16可通过一驱动装置(图未示)驱动,使所述驱动杆16围绕自身的中心轴旋转。
所述碳纳米管催化剂复合层14设置于所述反应室13中,所述碳纳米管催化剂复合层14设置于所述进气口11与所述出气口12之间,并且与所述进气口11及出气口12间隔设置。进一步,所述碳纳米管催化剂复合层14可为一平面的层状结构,所述碳纳米管催化剂复合层14的部分表面固定于所述驱动杆16表面,并使所述碳纳米管催化剂复合层14整体随驱动杆16的旋转,以驱动杆16为中心轴旋转,所述碳纳米管催化剂复合层14的转速可通过所述驱动杆16控制。所述碳纳米管催化剂复合层14悬空设置于所述反应室13中。所述“悬空”是指所述碳纳米管催化剂复合层14的至少部分表面不与反应室13的其他表面接触。所述碳纳米管催化剂复合层14的形状及面积可根据所述反应室13的横截面进行选择,以使所述碳纳米管催化剂复合层14能够充分利用所述反应室13内的空间,且能够在所述反应室13内旋转。所述碳纳米管催化剂复合层14的形状可为圆形、正方形、矩形、菱形等轴对称图形,也可为其他几何图形。优选的,所述驱动杆16与所述轴对称图形的对称轴重合。所述碳纳米管催化剂复合层14的面积可为0.5平方厘米至100平方厘米。本实施例中,所述碳纳米管催化剂复合层14的形状为正方形,其面积为1平方厘米。所述碳纳米管催化剂复合层14具有多个微孔142,所述微孔142连通所述进气口11及所述出气口12,从而形成多个流通通道。所述碳纳米管催化剂复合层14可为一平面体或曲面体结构,且所述碳纳米管催化剂复合层14悬空设置于所述反应室13中。
进一步的,所述碳纳米管催化剂复合层14可设置于一固定框141中,通过所述固定框141保持其形状。具体的,所述固定框141可围绕所述碳纳米管催化剂复合层14的边缘设置,边缘位置处的碳纳米管催化剂复合层14固定于所述固定框141表面,位于固定框141内的碳纳米管催化剂复合层14悬空设置,从而使所述碳纳米管催化剂复合层14悬空设置于所述反应室13内。所述固定框141也可为一网栅结构,从而为所述碳纳米管催化剂复合层14提供更好的支撑,使得所述碳纳米管催化剂复合层14能够在旋转过程中更好的保持其形状。可以理解,所述固定框141为一可选择结构,仅为提高所述碳纳米管催化剂复合层14的机械强度。所述固定框141的材料可为耐高温的金属、半导体或非金属材料,如金、铜、铝、陶瓷等。本实施例中,所述固定框141的材料为陶瓷。
所述碳纳米管催化剂复合层14包括一碳纳米管层及均匀分散于碳纳米管层表面的催化剂颗粒。所述碳纳米管层为包括多个碳纳米管的连续的整体结构,该多个碳纳米管沿着基本平行于碳纳米管层表面的方向延伸。所述碳纳米管层的厚度为10纳米~100微米,如15纳米、200纳米、1微米。本实施例中,所述碳纳米管层的厚度为100纳米。所述碳纳米管层中的碳纳米管可以为单壁碳纳米管、双壁碳纳米管或多壁碳纳米管中的一种或多种,其长度和直径可以根据需要选择。请参阅图2,所述碳纳米管层为一图形化结构,所述“图形化结构”是指所述碳纳米管层具有所述多个微孔142,该多个微孔142从所述碳纳米管层的厚度方向贯穿所述碳纳米管层。所述微孔142可以为多个相邻的碳纳米管围成的微孔或者沿碳纳米管轴向延伸方向延伸呈条形的相邻碳纳米管之间的间隙。所述微孔142为微孔时其孔径(平均孔径)范围为5纳米~100微米,比如10纳米、1微米、10微米、50微米或90微米等。所述微孔142为间隙时其宽度(平均宽度)范围为5纳米~100微米。以下称为“所述微孔142的尺寸”是指孔径或间隙宽度的尺寸范围。所述碳纳米管层中所述微孔和间隙可以同时存在并且两者尺寸可以在上述尺寸范围内不同。所述间隙105的尺寸越小,越容易在后续的生长纳米材料的过程中,固定催化剂颗粒。优选地,所述微孔142的尺寸为5纳米~10微米。进一步地,所述碳纳米管层的占空比为1:100~100:1,如1:10、1:2、1:4、4:1、2:1或10:1。优选地,所述占空比为1:4~4:1。所述微孔142在所述碳纳米管层中均匀分布。
所述碳纳米管层具有如前所述的图形效果的前提下,所述碳纳米管层中的多个碳纳米管的排列方向(轴向延伸方向)可以是无序、无规则,比如过滤形成的碳纳米管过滤膜,或者碳纳米管之间相互缠绕形成的碳纳米管絮状膜等。所述碳纳米管层中多个碳纳米管的排列方式也可以是有序的、有规则的。例如,所述碳纳米管层中多个碳纳米管的轴向均基本平行于所述基底100的且基本沿同一方向延伸;或者,所述碳纳米管层中多个碳纳米管的轴向可有规律性地基本沿两个以上方向延伸。为了容易获得较好的图形效果,本实施例中优选的,所述碳纳米管层中多个碳纳米管沿着基本平行于碳纳米管层表面的方向延伸。
所述碳纳米管层为一自支撑结构,此时所述碳纳米管层可仅通过所述驱动杆16支撑,且在后续生长纳米材料的过程中能够承载催化剂颗粒。所述催化剂颗粒分散于所述自支撑结构的碳纳米管层表面,从而形成一自支撑结构的碳纳米管催化剂复合层。其中,所述“自支撑”是指该碳纳米管层不需要大面积的载体支撑,而只要相对两边提供支撑力即能整体上悬空而保持自身状态,即将该碳纳米管层置于(或固定于)间隔特定距离设置的两个支撑体上时,位于两个支撑体之间的碳纳米管层能够悬空保持自身状态。由于碳纳米管层为自支撑结构,所述碳纳米管层可以直接设置在驱动杆16上。所述碳纳米管层可以是一连续的整体结构,也可以是多个碳纳米管线平行排列形成的单层结构。当所述碳纳米管层为多个碳纳米管线平行排列形成的单层结构时,需要在垂直于平行排列方向上提供支撑才具有自支撑能力。进一步的,所述碳纳米管层的多个碳纳米管中在延伸方向上相邻的碳纳米管之间通过范德华力首尾相连。当并列的相邻碳纳米管之间也通过范德华力相连时所述碳纳米管层的自支撑性更好。
所述碳纳米管层可以是由多个碳纳米管组成的纯碳纳米管结构。即,所述碳纳米管层在整个形成过程中无需任何化学修饰或酸化处理,不含有任何羧基等官能团修饰。所述碳纳米管层还可以为一包括多个碳纳米管以及添加材料的复合结构。其中,所述多个碳纳米管在所述碳纳米管层中占主要成分,起着框架的作用。所述添加材料包括石墨、石墨烯、碳化硅、氮化硼、氮化硅、二氧化硅、无定形碳等中的一种或多种。所述添加材料还可以包括金属碳化物、金属氧化物及金属氮化物等中的一种或多种。所述添加材料包覆于碳纳米管层中碳纳米管的至少部分表面或设置于碳纳米管层的微孔142内。优选地,所述添加材料包覆于碳纳米管的表面。由于,所述添加材料包覆于碳纳米管的表面,使得碳纳米管的直径变大,从而使碳纳米管之间的微孔142减小。所述添加材料可以通过化学气相沉积(CVD)、物理气相沉积(PVD)等方法形成于碳纳米管的表面。
具体地,所述碳纳米管层可以包括碳纳米管膜或碳纳米管线。所述碳纳米管层可以为一单层碳纳米管膜或多个层叠设置的碳纳米管膜。所述碳纳米管层可包括多个相互平行且间隔设置的碳纳米管线。所述碳纳米管层还可以包括多个交叉设置组成网状结构的碳纳米管线。当所述碳纳米管层为多个层叠设置的碳纳米管膜时,碳纳米管膜的层数不宜太少,以能够更好的起到承载基底的作用。优选地,为2层~30层。当所述碳纳米管层为多个平行设置的碳纳米管线时,相邻两个碳纳米管线之间的距离为10纳米~100微米,优选地,为10纳米~10微米。所述相邻两个碳纳米管线之间的空间构成所述碳纳米管层的微孔142。相邻两个碳纳米管线之间的间隙长度可以等于碳纳米管线的长度。通过控制碳纳米管膜的层数或碳纳米管线之间的距离,可以控制碳纳米管层中微孔142的尺寸。
所述碳纳米管膜是由若干碳纳米管组成的自支撑结构。所述自支撑主要通过碳纳米管膜中多数碳纳米管之间通过范德华力相连而实现。本实施例中,所述若干碳纳米管为沿同一方向择优取向延伸。所述择优取向是指在碳纳米管膜中大多数碳纳米管的整体延伸方向基本朝同一方向。而且,所述大多数碳纳米管的整体延伸方向基本平行于碳纳米管膜的表面。进一步地,所述碳纳米管膜中基本朝同一方向延伸的大多数碳纳米管中每一碳纳米管与在延伸方向上相邻的碳纳米管通过范德华力首尾相连。当然,所述碳纳米管膜中存在少数随机排列的碳纳米管,这些碳纳米管不会对碳纳米管膜中大多数碳纳米管的整体取向排列构成明显影响。具体地,所述碳纳米管膜中基本朝同一方向延伸的多数碳纳米管,并非绝对的直线状,可以适当的弯曲;或者并非完全按照延伸方向上排列,可以适当的偏离延伸方向。因此,不能排除碳纳米管膜的基本朝同一方向延伸的多数碳纳米管中并列的碳纳米管之间可能存在部分接触。
下面进一步说明所述碳纳米管膜或者碳纳米管线的具体构造、制备方法或处理方法。
请参阅图3及图4,所述碳纳米管层包括至少一碳纳米管膜,所述碳纳米管膜包括多个连续且基本沿同一方向延伸的碳纳米管。具体地,所述碳纳米管膜包括多个连续且定向延伸的碳纳米管片段143。该多个碳纳米管片段143通过范德华力首尾相连。每一碳纳米管片段143包括多个相互平行的碳纳米管145,该多个相互平行的碳纳米管145通过范德华力紧密结合。该碳纳米管片段143具有任意的长度、厚度、均匀性及形状。所述碳纳米管膜可通过从一碳纳米管阵列中选定部分碳纳米管后直接拉取获得。所述碳纳米管膜的厚度为1纳米~100微米,宽度与拉取出该碳纳米管膜的碳纳米管阵列的尺寸有关,长度不限。所述碳纳米管膜中相邻的碳纳米管之间存在微孔或间隙从而构成微孔142,且该微孔的孔径或间隙的尺寸小于10微米。优选地,所述碳纳米管膜的厚度为100纳米~10微米。该碳纳米管膜中的碳纳米管145沿同一方向择优取向延伸。所述碳纳米管膜及其制备方法具体请参见申请人于2007年2月9日申请的,于2010年5月26日公告的第CN101239712B号中国公开专利“碳纳米管膜结构及其制备方法”。为节省篇幅,仅引用于此,但上述申请所有技术揭露也应视为本发明申请技术揭露的一部分。
请参阅图5,当所述碳纳米管层包括层叠设置的多层碳纳米管膜时,相邻两层碳纳米管膜中的碳纳米管的延伸方向形成一交叉角度β,且β大于等于0度小于等于90度(0°≤β≤90°),如30度,60度,90度。所述层叠设置的多层碳纳米管膜能够进一步提高所述碳纳米管层的自支撑性,防止碳纳米管层在使用的过程中变形,从而能够更好的防止团聚现象的发生。本实施例中,所述碳纳米管层包括两层层叠设置的碳纳米管膜,所述交叉角度β为90度。
所述碳纳米管线可以为非扭转的碳纳米管线或扭转的碳纳米管线。所述非扭转的碳纳米管线与扭转的碳纳米管线均为自支撑结构。具体地,请参阅图6,该非扭转的碳纳米管线包括多个沿平行于该非扭转的碳纳米管线长度方向延伸的碳纳米管。具体地,该非扭转的碳纳米管线包括多个碳纳米管片段,该多个碳纳米管片段通过范德华力首尾相连,每一碳纳米管片段包括多个相互平行并通过范德华力紧密结合的碳纳米管。该碳纳米管片段具有任意的长度、厚度、均匀性及形状。该非扭转的碳纳米管线长度不限,直径为0.5纳米~100微米。非扭转的碳纳米管线为将碳纳米管膜通过有机溶剂处理得到。具体地,将有机溶剂浸润所述碳纳米管膜的整个表面,在挥发性有机溶剂挥发时产生的表面张力的作用下,碳纳米管膜中的相互平行的多个碳纳米管通过范德华力紧密结合,从而使碳纳米管膜收缩为一非扭转的碳纳米管线。该有机溶剂为挥发性有机溶剂,如乙醇、甲醇、丙酮、二氯乙烷或氯仿,本实施例中采用乙醇。通过有机溶剂处理的非扭转的碳纳米管线与未经有机溶剂处理的碳纳米管膜相比,比表面积减小,粘性降低。
所述扭转的碳纳米管线为采用一机械力将所述碳纳米管膜两端沿相反方向扭转获得。请参阅图7,该扭转的碳纳米管线包括多个绕该扭转的碳纳米管线轴向螺旋延伸的碳纳米管。具体地,该扭转的碳纳米管线包括多个碳纳米管片段,该多个碳纳米管片段通过范德华力首尾相连,每一碳纳米管片段包括多个相互平行并通过范德华力紧密结合的碳纳米管。该碳纳米管片段具有任意的长度、厚度、均匀性及形状。该扭转的碳纳米管线长度不限,直径为0.5纳米~100微米。进一步地,可采用一挥发性有机溶剂处理该扭转的碳纳米管线。在挥发性有机溶剂挥发时产生的表面张力的作用下,处理后的扭转的碳纳米管线中相邻的碳纳米管通过范德华力紧密结合,使扭转的碳纳米管线的比表面积减小,密度及强度增大。
所述碳纳米管线及其制备方法请参见申请人于2002年9月16日申请的,于2008年8月20日公告的第CN100411979C号中国公告专利“一种碳纳米管绳及其制造方法”,申请人:清华大学,鸿富锦精密工业(深圳)有限公司,以及于2005年12月16日申请的,于2009年6月17日公告的第CN100500556C号中国公告专利“碳纳米管丝及其制作方法”,申请人:清华大学,鸿富锦精密工业(深圳)有限公司。
请一并参阅图8,在碳纳米管层表面上采用电子束蒸发法、热沉积或溅射法等方法形成厚度为几纳米到几百纳米的金属催化剂层15,其中催化剂层15可为铁(Fe)、钴(Co)、镍(Ni)或其合金之一。所述催化剂层15包括多个催化剂颗粒,所述催化剂颗粒分散于所述碳纳米管层的表面。所述催化剂颗粒的尺寸为5纳米~10纳米。所述催化剂层15承载于所述碳纳米管层表面,具体的,所述催化剂颗粒均匀分散且固定于所述碳纳米管层的表面,所述催化剂颗粒可均匀分散于所述碳纳米管层中碳纳米管的表面,也可分散于所述碳纳米管之间的微孔142中。由于所述碳纳米管层具有多个微孔142,因此所述催化剂颗粒可嵌入所述微孔142中,从而得到有效的固定。可以理解,当所述催化剂颗粒的尺寸大于所述微孔142的尺寸时,所述催化剂颗粒的部分表面可嵌入所述微孔142中得到有效固定;当所述催化剂颗粒的尺寸与所述微孔142的尺寸基本相等时,所述催化剂颗粒可整体嵌入所述微孔142中被牢固固定;当所述催化剂颗粒的尺寸小于所述微孔142的尺寸时,所述催化剂颗粒在所述碳纳米管的吸附作用下吸附于所述碳纳米管的表面得到固定。本实施例中,所述催化剂层15为铁纳米颗粒,沉积厚度约为5nm,所述催化剂颗粒的尺寸为8纳米。
本发明进一步提供一种所述反应器10作为生长装置的应用,在所述碳纳米管层的表面生长纳米结构,具体的,本发明以碳纳米管为具体实施例,说明反应器10在生长碳纳米管中的应用,主要包括以下步骤:
步骤(S11),提供一反应器10;
步骤(S12),向所述反应室13内通入碳源气与载气的混合气体;以及
步骤(S13),转动所述碳纳米管催化剂复合层14,并加热所述碳纳米管催化剂复合层14以生长碳纳米管。
在步骤(S12)中,所述混合气体从所述反应室13的进气口11通入所述反应室13中。所述混合气体通过所述微孔142贯穿所述碳纳米管催化剂复合层14。同时,所述混合气体以基本相同的流速从所述反应室13的出气口12流出所述反应室13。这样可保持碳源气体在反应室13内处于流动状态,反应室13内参加反应的碳源气体会得到及时的更新以使其浓度基本维持不变,且所述碳源气体的流动方向贯穿所述催化剂层15及所述碳纳米管催化剂复合层14,从而能够使所述碳源气体能与所述催化剂颗粒充分接触,可在所述碳纳米管催化剂复合层14表面生长出高品质的碳纳米管。并且,由于所述催化剂层15中的催化剂颗粒固定于所述碳纳米管催化剂复合层14的表面,因此,在通入混合气体的过程中,所述混合气体的流动基本不会影响所述催化剂颗粒的分布,从而能够有效的避免所述催化剂颗粒团聚的情况。由于所述碳纳米管催化剂复合层14表面碳纳米管的生长速度正比于催化剂层15与反应室13的温度差,可以通过调整碳源气的流速控制催化剂的温度,因此反应室13内的流速及气压可根据所要生长的碳纳米管的生长速度等进行设定、控制,只要保证所述气压不会破坏所述碳纳米管催化剂复合层14即可。
所述载气可采用氩气,也可为氮气或其它不与后续通入的碳源气体发生反应的气体。所述碳源气体可为乙烯,也可为甲烷、乙烷、乙炔或其它气态烃类。本实施例中,碳源气体乙烯以1000sccm(StandardCubicCentimetersMinute)的流速通入反应室13中。
在步骤(S13)中,通过控制所述驱动杆16的旋转,使所述碳纳米管催化剂复合层14在反应室13内旋转。在旋转的过程中,由于碳纳米管催化剂复合层14的旋转,能够进一步的将所述混合气体吸入所述反应室13中,从而加速了混合气体在反应室13内流速,提高了反应速率。同时,在旋转过程中,所述混合气体基本沿垂直于所述碳纳米管催化剂复合层14表面的方向贯穿所述碳纳米管催化剂复合层14,使得所述混合气体能够与所述碳纳米管催化剂复合层14表面的催化剂颗粒充分的接触反应。所述反应室13可通过一加热装置(图未示)进行加热,只要保证所述反应室13的温度能够达到碳纳米管的生长温度即可。本实施例中,所述反应室13可通过向所述碳纳米管催化剂复合层14通入电流的方式加热所述反应室13。具体的,所述反应器10进一步包括一第一电极144及一第二电极146分别与所述碳纳米管催化剂复合层14电连接,具体的,所述第一电极144与所述第二电极146间隔设置于所述碳纳米管催化剂复合层14中碳纳米管层的表面。所述第一电极144与所述第二电极146与所述电源140电连接,从而向所述碳纳米管催化剂复合层14中通入电流。
通过向第一电极144与第二电极146之间施加一电压,在碳纳米管催化剂复合层14中通入电流,加热所述碳纳米管催化剂复合层14,使所述碳纳米管催化剂复合层14的温度达到碳纳米管的生长温度。第一电极144与第二电极146之间施加的电压与两导电基体之间的距离以及碳纳米管催化剂复合层14中碳纳米管的直径相关。本实施例中,碳纳米管催化剂复合层14中的碳纳米管的直径为5微米,在第一电极144与第二电极146之间施加一40伏特的直流电压。催化剂层15在碳纳米管催化剂复合层14产生的焦耳热的作用下,加热到温度为500℃至900℃,反应时间为30~60分钟,在碳纳米管催化剂复合层14的表面生长碳纳米管。而反应室13的温度约为30摄氏度至50摄氏度,使得所述催化剂层15与所述反应室13之间形成较大的温差,从而能够提高所述碳纳米管催化剂复合层14表面碳纳米管的生长速率。
进一步的,在所述碳纳米管催化剂复合层14通入电流加热的过程中,可通过一加热装置(图未示)对所述反应室进行加热以提高碳纳米管的生长速度。对碳纳米管催化剂复合层14通入电流一定时间后,停止加热,然后停止通入气体。
本发明中所述的反应器10具有以下有益效果:第一,由于所述反应器10包括一碳纳米管催化剂复合层14,而所述碳纳米管催化剂复合层14中的碳纳米管性质稳定,不会与催化剂进行反应;第二,所述碳纳米管催化剂复合层14中的碳纳米管具有较大的比表面积,因此所述碳纳米管催化剂复合层14具有良好的吸附能力,无需其他粘结剂就可以牢固的固定沉积于所述碳纳米管催化剂复合层14表面的催化剂颗粒;第三,所述碳纳米管催化剂复合层14具有多个空隙,从而使得后续沉积的催化剂颗粒能够有效的嵌入所述碳纳米管催化剂复合层14中,能够更加有效的固定沉积于的催化剂颗粒,防止其团聚,从而能够有效的防止催化剂层失活;第四,由于所述碳纳米管催化剂复合层14具有良好的电热转换能力,因此能够直接通过向所述碳纳米管催化剂复合层14通入电流的方式,加热所述碳纳米管催化剂复合层14,无需单独设置加热元件,简化了反应器的结构,降低了成本;第五,通过碳纳米管催化剂复合层14的旋转,从而加速了反应室13内部混合气体的流动,增大了混合气体与催化剂颗粒接触的几率,并加速了混合气体与催化剂颗粒的反应速率,提高了碳纳米管的生长速度。
请参阅图9,本发明第二实施例提供一种反应器20,所述反应器20包括一反应室13,所述反应室13包括多个间隔设置的碳纳米管催化剂复合层14,每一碳纳米管催化剂复合层14通过一驱动杆16固定于所述反应室13中。该反应器20具有一进气口11及一出气口12间隔设置于所述反应室13相对的两端,所述多个碳纳米管催化剂复合层14沿从进气口11到所述出气口12的方向依次设置。本发明第二实施例提供的反应器20与第一实施例所述反应器10基本相同,其不同在于,所述反应器20包括多个间隔设置的碳纳米管催化剂复合层14。
所述反应室13从所述进气口11到所述出气口12为一贯通的结构,所述多个碳纳米管催化剂复合层14沿从进气口11到出气口12的方向间隔设置于所述反应室13中,所述相邻碳纳米管催化剂复合层14之间的距离可相等或不等。进一步的,所述相邻碳纳米管催化剂复合层14之间的距离保证所述多个碳纳米管催化剂复合层14旋转时,不会发生碰撞。所述多个驱动杆16的中心轴可相互平行,也可形成一定角度。本实施例中,所述多个碳纳米管催化剂复合层14以等间距的方式设置于所述反应室13中,所述碳纳米管催化剂复合层14之间的距离可为5厘米至50厘米
请一并参阅图10,本发明第二实施例进一步提供一种所述反应器20作为生长装置生长纳米结构的应用,具体的,本发明以纳米结构为碳纳米管进行说明,主要包括以下步骤:
步骤(S21),提供一反应器10;
步骤(S22),向所述反应室13内通入碳源气与载气的混合气体,使所述混合气体依次通过所述多个碳纳米管催化剂复合层14;
步骤(S23),旋转所述多个碳纳米管催化剂复合层14,并加热所述反应室13以生长碳纳米管。
本发明第二实施例提供的反应器20作为生长装置的应用与所述反应器10基本相同,其不同在于,所述反应器20包括多个碳纳米管催化剂复合层14相互间隔且悬空设置于所述反应室13中。所述碳纳米管催化剂复合层14可沿从所述反应器20进气口11到所述出气口12的轴线方向依次设置。
在步骤(S22)中,所述混合气体从所述进气口11通入所述反应室13中,并依次贯穿所述多个碳纳米管催化剂复合层14后,从所述出气口12流出所述反应室13。由于所述反应室13包括多个间隔设置的碳纳米管催化剂复合层14,因此可充分利用所述碳源气体,使所述碳源气体得到充分的分解,进而能够有效的提高产率,并降低生长成本。
在步骤(S23)中,在所述多个碳纳米管催化剂复合层14旋转过程中,可大大的增加所述反应室13内部混合气体的流速。所述多个碳纳米管催化剂复合层14可同时加热,也可选择性的加热所述碳纳米管催化剂复合层14。本实施例中,所述反应器20包括间隔设置的一第一电极144及一第二电极146,所述多个碳纳米管催化剂复合层14并联设置于所述第一电极144及第二电极146之间。具体的,所述每一碳纳米管催化剂复合层14分别与所述第一电极144及第二电极146电连接,从而向所述碳纳米管催化剂复合层14中通入电流。所述多个碳纳米管催化剂复合层14之间形成并联关系,因此,通过在所述第一电极144及第二电极146之间施加一电压,即可在所述多个碳纳米管催化剂复合层14中通入电流,并加热所述碳纳米管催化剂复合层14达到碳纳米管的生长温度。进一步,所述每一碳纳米管催化剂复合层14与所述第一电极144及第二电极146之间均可单独设置一开关(图未示),从而能够方便的选择不同的碳纳米管催化剂复合层14进行生长。
本发明第二实施例提供的反应器20及其作为生长装置的应用,具有以下有益效果,首先,通过在一反应室内间隔设置多个碳纳米管催化剂复合层14,因此可同时在所述碳纳米管催化剂复合层14的表面生长碳纳米管;其次,所述碳源气体可依次贯穿所述碳纳米管催化剂复合层14,从而使得所述碳源气体能够得到充分的利用,例如与第一个碳纳米管催化剂复合层14表面的催化剂颗粒未反应的碳源气体,可再与所述第二个碳纳米管催化剂复合层14表面的催化剂颗粒进行反应,提高了生产效率并降低了成本;再次,所述多个碳纳米管催化剂复合层14可分别进行通电加热控制,进而可以实现选择性的生长,在某一碳纳米管催化剂复合层14出现问题时,可断开此碳纳米管催化剂复合层14,而不影响其他碳纳米管催化剂复合层14表面继续生长碳纳米管。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。
Claims (19)
1.一种反应器,其包括:
一反应室,所述反应室包括一进气口及一出气口,反应气体从所述进气口通入流向所述出气口,其特征在于,进一步包括一碳纳米管催化剂复合层可旋转地设置于反应室内部,该碳纳米管催化剂复合层具有多个微孔,通过所述碳纳米管催化剂复合层的旋转使所述反应气体在反应室内流动过程中穿过所述碳纳米管催化剂复合层的多个微孔。
2.如权利要求1所述的反应器,其特征在于,所述碳纳米管催化剂复合层为一自支撑结构,包括一碳纳米管层及均匀分散于碳纳米管层表面的催化剂颗粒。
3.如权利要求2所述的反应器,其特征在于,所述碳纳米管催化剂层包括多个催化剂颗粒固定于所述碳纳米管层中碳纳米管的表面。
4.如权利要求2所述的反应器,其特征在于,所述碳纳米管催化剂层包括多个催化剂颗粒嵌入微孔中。
5.如权利要求2所述的反应器,其特征在于,所述催化剂颗粒的尺寸为5纳米~10纳米。
6.如权利要求2所述的反应器,其特征在于,所述多个微孔沿所述碳纳米管催化剂复合层的厚度方向贯穿所述碳纳米管催化剂复合层。
7.如权利要求6所述的反应器,其特征在于,所述微孔的尺寸为5纳米至10微米。
8.如权利要求1所述的反应器,其特征在于,所述碳纳米管催化剂复合层包括至少一碳纳米管膜,所述碳纳米管膜中包括多个沿同一方向延伸的碳纳米管。
9.如权利要求8所述的反应器,其特征在于,所述碳纳米管催化剂复合层包括至少两层重叠设置的碳纳米管膜,相邻两层碳纳米管膜中,碳纳米管的延伸方向形成一夹角,所述夹角大于零度小于等于90度。
10.如权利要求1所述的反应器,其特征在于,所述碳纳米管催化剂复合层旋转的转轴垂直于气流方向。
11.如权利要求1所述的反应器,其特征在于,所述反应器进一步包括一驱动杆,所述碳纳米管催化剂复合层固定于所述驱动杆,驱动杆的自转带动所述碳纳米管催化剂复合层旋转。
12.如权利要求1所述的反应器,其特征在于,进一步包括一固定框,所述碳纳米管催化剂复合层固定于所述固定框,并通过所述固定框悬空设置。
13.如权利要求1所述的反应器,其特征在于,进一步包括多个碳纳米管催化剂复合层沿反应气体的流动方向相互间隔设置于所述反应室中,每一碳纳米管催化剂复合层围绕一转轴旋转。
14.如权利要求13所述的反应器,其特征在于,所述多个碳纳米管催化剂复合层旋转的转轴相互平行。
15.如权利要求1所述的反应器,其特征在于,进一步包括一第一电极及第二电极间隔设置且与所述碳纳米管催化剂复合层电连接。
16.一种生长碳纳米管的方法,主要包括以下步骤:
提供一如权利要求1至15中任意一项所述的反应器;
向所述反应室内通入碳源气体与载气的混合气体;
旋转所述碳纳米管催化剂复合层并加热所述碳纳米管催化剂复合层以生长碳纳米管。
17.如权利要求16所述的生长碳纳米管的方法,其特征在于,通过向所述碳纳米管催化剂复合层通入电流的方式加热所述碳纳米管催化剂复合层。
18.如权利要求16所述的生长碳纳米管的方法,其特征在于,所述反应室包括多个碳纳米管催化剂复合层间隔设置,每一碳纳米管催化剂复合层围绕一驱动杆旋转,所述多个碳纳米管催化剂复合层并联设置于一第一电极及一第二电极之间,通过向所述第一电极及第二电极施加一电压加热所述多个碳纳米管催化剂复合层。
19.如权利要求16所述的生长碳纳米管的方法,其特征在于,所述催化剂层通过电子束蒸发法、热沉积或溅射法的方法形成。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210587684.0A CN103896243B (zh) | 2012-12-29 | 2012-12-29 | 反应器及生长碳纳米管的方法 |
TW102100997A TWI490032B (zh) | 2012-12-29 | 2013-01-11 | 反應器及生長奈米碳管的方法 |
US13/869,183 US9090474B2 (en) | 2012-12-29 | 2013-04-24 | Reactor and method for growing carbon nanotube using the same |
JP2013242646A JP5663646B2 (ja) | 2012-12-29 | 2013-11-25 | 反応器 |
US14/735,153 US9840771B2 (en) | 2012-12-29 | 2015-06-10 | Method of growing carbon nanotube using reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210587684.0A CN103896243B (zh) | 2012-12-29 | 2012-12-29 | 反应器及生长碳纳米管的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103896243A CN103896243A (zh) | 2014-07-02 |
CN103896243B true CN103896243B (zh) | 2016-03-09 |
Family
ID=50987877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210587684.0A Active CN103896243B (zh) | 2012-12-29 | 2012-12-29 | 反应器及生长碳纳米管的方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US9090474B2 (zh) |
JP (1) | JP5663646B2 (zh) |
CN (1) | CN103896243B (zh) |
TW (1) | TWI490032B (zh) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103896244B (zh) * | 2012-12-29 | 2016-08-10 | 清华大学 | 反应器及生长碳纳米管的方法 |
CN103896245B (zh) * | 2012-12-29 | 2016-01-20 | 清华大学 | 反应器及生长碳纳米管的方法 |
CN103896243B (zh) * | 2012-12-29 | 2016-03-09 | 清华大学 | 反应器及生长碳纳米管的方法 |
GR1008876B (el) * | 2015-06-24 | 2016-10-14 | Global Nanotechnologies Ανωνυμη Εταιρεια Σχεδιασμου Αναπτυξης Παρασκευης Και Εμποριας Υλικων Νανοτεχνολογιας Με Δ.Τ. | Μια καινοτομος μεθοδος παραγωγης τρισδιαστατης στερεης μακροδομης νανοσωληνων ανθρακα για καθαρισμο πετρελαιοκηλιδων |
CN106145091A (zh) * | 2016-08-31 | 2016-11-23 | 无锡东恒新能源科技有限公司 | 一种制备碳纳米管的电炉及制备碳纳米管的方法 |
CN106185876A (zh) * | 2016-08-31 | 2016-12-07 | 无锡东恒新能源科技有限公司 | 一种带热处理的反应装置和制备碳纳米管的方法 |
CN106185872A (zh) * | 2016-08-31 | 2016-12-07 | 无锡东恒新能源科技有限公司 | 一种带升降基底的反应装置及碳纳米管制备的方法 |
CN106185871A (zh) * | 2016-08-31 | 2016-12-07 | 无锡东恒新能源科技有限公司 | 一种带有网格电极的反应装置和碳纳米管的制备方法 |
CN106185875A (zh) * | 2016-08-31 | 2016-12-07 | 无锡东恒新能源科技有限公司 | 一种碳纳米管的制备装置和制备方法 |
CN108996490A (zh) * | 2017-06-07 | 2018-12-14 | 清华大学 | 一种碳纳米管阵列的制备方法 |
CN108996489A (zh) * | 2017-06-07 | 2018-12-14 | 清华大学 | 一种碳纳米管阵列的制备装置 |
CA3073689A1 (en) | 2017-08-22 | 2019-02-28 | Ntherma Corporation | Methods and devices for synthesis of carbon nanotubes |
CN111263730A (zh) | 2017-08-22 | 2020-06-09 | 恩瑟玛公司 | 石墨烯纳米带、石墨烯纳米片及其混合物和合成方法 |
CN109371379B (zh) * | 2018-12-03 | 2021-05-11 | 湖南顶立科技有限公司 | 一种沉积装置及制备热解炭的方法 |
GB2593490B (en) * | 2020-03-24 | 2022-07-27 | Quantum Conductors Ltd | Conductive element |
CN114538418B (zh) * | 2021-12-31 | 2023-05-23 | 佛山市格瑞芬新能源有限公司 | 一种碳纳米管流化生产工艺 |
CN115608292A (zh) * | 2022-09-27 | 2023-01-17 | 青岛科技大学 | 内热源反应器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1733601A (zh) * | 2004-08-11 | 2006-02-15 | 清华大学 | 碳纳米管阵列结构及其制备方法 |
CN101248007A (zh) * | 2005-06-16 | 2008-08-20 | 辛芬特公司 | 生产碳纳米管的方法和反应器 |
CN102372266A (zh) * | 2010-08-23 | 2012-03-14 | 清华大学 | 碳纳米管复合结构及其制备方法 |
CN102372255A (zh) * | 2010-08-23 | 2012-03-14 | 清华大学 | 碳纳米管复合线状结构的制备装置及其制备方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100411979C (zh) * | 2002-09-16 | 2008-08-20 | 清华大学 | 一种碳纳米管绳及其制造方法 |
US20060185595A1 (en) * | 2005-02-23 | 2006-08-24 | Coll Bernard F | Apparatus and process for carbon nanotube growth |
US7744793B2 (en) * | 2005-09-06 | 2010-06-29 | Lemaire Alexander B | Apparatus and method for growing fullerene nanotube forests, and forming nanotube films, threads and composite structures therefrom |
WO2008054378A2 (en) * | 2005-10-25 | 2008-05-08 | Massachusetts Institute Of Technology | Apparatus and methods for controlled growth and assembly of nanostructures |
JP4779621B2 (ja) * | 2005-12-12 | 2011-09-28 | 株式会社デンソー | カーボンナノチューブの製造方法 |
KR100766341B1 (ko) * | 2006-01-05 | 2007-10-11 | 세메스 주식회사 | 탄소나노튜브 합성을 위한 장치 |
CN100500556C (zh) * | 2005-12-16 | 2009-06-17 | 清华大学 | 碳纳米管丝及其制作方法 |
JP4983042B2 (ja) * | 2006-02-21 | 2012-07-25 | 住友電気工業株式会社 | カーボンナノ構造体の製造方法、および触媒反応容器 |
CN101239712B (zh) * | 2007-02-09 | 2010-05-26 | 清华大学 | 碳纳米管薄膜结构及其制备方法 |
JP5213099B2 (ja) * | 2007-09-18 | 2013-06-19 | 国立大学法人東京工業大学 | カーボンファイバーシート上のカーボンナノチューブの成長方法およびカーボンナノチューブエミッター |
CN101497436B (zh) * | 2008-02-01 | 2015-06-03 | 清华大学 | 碳纳米管薄膜结构及其制备方法 |
JP2009184892A (ja) * | 2008-02-08 | 2009-08-20 | Dainippon Screen Mfg Co Ltd | カーボンナノチューブ形成装置およびカーボンナノチューブ形成方法 |
US8715609B2 (en) * | 2010-12-14 | 2014-05-06 | The Boeing Company | Augmented reactor for chemical vapor deposition of ultra-long carbon nanotubes |
CN103373719B (zh) * | 2012-04-25 | 2015-11-25 | 北京富纳特创新科技有限公司 | 碳纳米管膜的制备方法 |
CN103377774B (zh) * | 2012-04-25 | 2015-11-25 | 北京富纳特创新科技有限公司 | 导电元件的制备装置及制备方法 |
CN103377755B (zh) * | 2012-04-25 | 2015-12-09 | 北京富纳特创新科技有限公司 | 导电元件 |
CN103896243B (zh) * | 2012-12-29 | 2016-03-09 | 清华大学 | 反应器及生长碳纳米管的方法 |
CN103896245B (zh) * | 2012-12-29 | 2016-01-20 | 清华大学 | 反应器及生长碳纳米管的方法 |
CN103896244B (zh) * | 2012-12-29 | 2016-08-10 | 清华大学 | 反应器及生长碳纳米管的方法 |
-
2012
- 2012-12-29 CN CN201210587684.0A patent/CN103896243B/zh active Active
-
2013
- 2013-01-11 TW TW102100997A patent/TWI490032B/zh active
- 2013-04-24 US US13/869,183 patent/US9090474B2/en active Active
- 2013-11-25 JP JP2013242646A patent/JP5663646B2/ja active Active
-
2015
- 2015-06-10 US US14/735,153 patent/US9840771B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1733601A (zh) * | 2004-08-11 | 2006-02-15 | 清华大学 | 碳纳米管阵列结构及其制备方法 |
CN101248007A (zh) * | 2005-06-16 | 2008-08-20 | 辛芬特公司 | 生产碳纳米管的方法和反应器 |
CN102372266A (zh) * | 2010-08-23 | 2012-03-14 | 清华大学 | 碳纳米管复合结构及其制备方法 |
CN102372255A (zh) * | 2010-08-23 | 2012-03-14 | 清华大学 | 碳纳米管复合线状结构的制备装置及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103896243A (zh) | 2014-07-02 |
US9090474B2 (en) | 2015-07-28 |
JP2014129220A (ja) | 2014-07-10 |
JP5663646B2 (ja) | 2015-02-04 |
US20150274528A1 (en) | 2015-10-01 |
TW201424835A (zh) | 2014-07-01 |
TWI490032B (zh) | 2015-07-01 |
US20140186546A1 (en) | 2014-07-03 |
US9840771B2 (en) | 2017-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103896243B (zh) | 反应器及生长碳纳米管的方法 | |
CN103896245B (zh) | 反应器及生长碳纳米管的方法 | |
CN103896244B (zh) | 反应器及生长碳纳米管的方法 | |
CN103382023B (zh) | 碳纳米管结构及其制备方法 | |
CN102717537B (zh) | 石墨烯-碳纳米管复合膜结构 | |
CN101837287B (zh) | 碳纳米管纳米颗粒复合材料的制备方法 | |
TWI327177B (en) | Carbon nanotube film and method for making same | |
CN103382037B (zh) | 碳纳米管结构的制备方法 | |
CN103193217B (zh) | 一种硼掺杂金刚石与碳纳米管复合纳米锥的制备方法 | |
CN102092670B (zh) | 碳纳米管复合结构及其制备方法 | |
CN105174204A (zh) | 碳纳米管复合线的制备方法 | |
CN102074429B (zh) | 场发射阴极结构及其制备方法 | |
TW201125814A (en) | Method for making carbon nanotube structure | |
CN102431991A (zh) | 碳纳米管纳米颗粒复合材料 | |
CN103383909B (zh) | 场发射装置 | |
TWI393669B (zh) | 奈米碳管複合材料及其製備方法 | |
CN103086351B (zh) | 碳纳米管复合结构 | |
TWI343901B (en) | Method and apparatus for manufacturing carbon nanotube | |
TW201226312A (en) | Carbon nanotube composite structure and method for making same | |
TWI417923B (zh) | 場發射陰極結構及其製備方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |