[go: up one dir, main page]

JP2009129586A - 有機el素子 - Google Patents

有機el素子 Download PDF

Info

Publication number
JP2009129586A
JP2009129586A JP2007300857A JP2007300857A JP2009129586A JP 2009129586 A JP2009129586 A JP 2009129586A JP 2007300857 A JP2007300857 A JP 2007300857A JP 2007300857 A JP2007300857 A JP 2007300857A JP 2009129586 A JP2009129586 A JP 2009129586A
Authority
JP
Japan
Prior art keywords
organic
light emitting
layer
color
green
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007300857A
Other languages
English (en)
Inventor
Toshio Hama
敏夫 濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2007300857A priority Critical patent/JP2009129586A/ja
Publication of JP2009129586A publication Critical patent/JP2009129586A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

【課題】CCM方式における色再現性の改善を図るため、低電圧駆動において高効率発光することで、高輝度、高色純度を実現する。
【解決手段】対向する電極間に青ないし青緑色の光を発光する有機発光層を設けた有機EL発光単位を有するフルカラー表示可能な有機EL素子であって、前記有機発光単位が電気的に2段並列接続されており、緑色画素領域には光路調整層が形成され、赤色画素領域には色変換層を備えてなることを特徴とする有機EL素子。
【選択図】 図1

Description

本発明は、有機EL素子に関する。この有機EL素子は、高精細で視認性に優れたフルカラー表示が可能で、携帯端末機、産業用計測器、家庭用テレビなど広範囲な画面表示への応用可能性を有する。
表示装置に適用される発光素子の一例として、有機化合物の薄膜積層構造を有する有機EL発光素子が知られている。有機EL発光素子は、薄膜の自発光型素子であり、低駆動電圧、高解像度、高視野角といった優れた特徴を有することから、それらの実用化に向けて様々な検討がなされている。
有機EL発光素子は、陽極と陰極の間に少なくとも有機発光層を備えた構造を有している。有機EL発光素子は、必要に応じて、正孔注入層、正孔輸送層、電子輸送層および/または電子注入層を介在させた構造を有する。陽極と陰極の間に電圧が印加されると有機EL発光素子内に正孔および電子が注入される。注入された正孔および電子は有機発光層で再結合して、その結果有機発光層中の有機EL物質が高エネルギー状態に高められる。有機EL物質が高エネルギー状態から基底状態に遷移する際に発光する。
ディスプレイは多くの画素をマトリクスに配列して表示を構成する。画素のマトリクスの駆動方法には種々あるが、単純マトリクス駆動と呼ばれる方法は、構成が比較的簡単でよく使われている。単純マトリクス駆動するディスプレイでは、陽極および陰極がそれぞれストライプ状に複数列構成され、陽極列と陰極列が互いに直交して配置されることが特徴である。特定の信号は、選択された陽極列と選択された陰極列の交差する画素に表示される。
現在、フルカラー化の方法として、色変換層とカラーフィルターを組み合わせたCCM方式に注目が集まっている。
CCM方式は、たとえば有機EL層からの青または青緑色の光を蛍光色素で吸収して、発光層よりも長波長の緑色から赤色までの可視光に変換するものである。蛍光色素RGBの画素毎にEL層材料を変えるRGB塗分け法、あるいは、白色発光EL素子とカラーフィルターを組み合わせた白色カラーフィルター方法よりも色再現性の点で優れている。
しかしながら、CCM方式では、青または青緑色発光からの赤色を得る変換効率はあまり高くなく、高い赤色発光強度を得るには、青または青緑色の発光強度を高める必要があった。輝度を高めるには、注入電流を増やせばよいが、それでは素子の動作電圧が上昇するので、実用的ではない。さらに、緑色画素の色度が悪いという問題があった。そもそも発光色に緑成分が十分含まれており、CCM緑による変換された緑色の寄与は20%以下であり、その波長も好ましい範囲である520〜550nmよりも短波長側にある。したがって、緑色としての、中心波長が発光色の緑ピークに引っ張られて短波長側にあるため、色再現性が十分でなく、NTSC比が80%以下と低い。例えば、従来のCCM方式(青緑発光スペクトルとCCM緑、CCM赤を用いた)素子では、RGBのCIE色度、効率は以下のとおりである;R(0.63,0.36)、9.7cd/A、G(0.25,0.70)、65cd/A、B(0.11, 0.16)、16cd/Aであり、電流比はR:G:B=50:7:27、NTSC比は80%であった。
発光効率を改善し、かつ発光安定性に優れた白色発光を呈する有機EL素子を提供することを目的として、素子を積層することはこれまでいくつか提案されている。たとえば、特許文献1には、陽極と陰極との間に2色の発光層を作製することが開示されている。また、特許文献2には、陽極と陰極との間に、等電位面を介して複数の有機EL発光部を直列に配列することが開示されている。また、特許文献3には、同一色の光を発する有機EL発光素子を並列に接続して積層することにより、発光素子を流れる電流密度の低減および素子の長寿命化を実現することが開示されている。
特開平6−207170号公報 特開2003−456765号公報 特開平6−176870号公報 特開2001−76871号公報 米国特許5937272号公報
特許文献1,2に記載のように、複数の有機EL発光部を直列に配列すると効率は改善されるが、電圧が上昇するという問題がある。
特許文献3に記載のように、同一色の光を発する有機EL発光素子を並列に接続して積層すると、電圧の上昇を伴わないで効率を改善できるが、この構成をCCM方式フルカラーパネルに適用することについては、なんの開示や、示唆がなされていない。
一方、CCM方式については、発光層からの発光スペクトルをCCM緑で変換される部分の比率や変換波長を変えることは、多大な材料開発を要するものであり、容易ではない。
このような状況に鑑み、本発明は、CCM方式における色再現性の改善を図るため、低電圧駆動において高効率発光することで、高輝度、高色純度を実現することを目的とする。
即ち、本発明の要旨は、対向する電極間に青ないし青緑色の光を発光する有機発光層を設けた有機EL発光単位を有するフルカラー表示可能な有機EL素子であって、前記有機発光単位が電気的に2段並列接続されており、緑色画素領域には光路調整層が有機発光部と基板の間に形成され、赤色画素領域には色変換層を備えてなることを特徴とする有機EL素子にある。
本発明によれば、有機発光単位を積層並列とすることで、電圧上昇なく素子の発光効率を向上させることを可能とする。発光効率の向上した青緑発光部よりの発光をそのまま用いて青カラーフィルターから取り出せれば高輝度青色が得られ、一方これを色変換層に吸収させ、赤カラーフィルターから取り出することにより高輝度赤色を得ることができる。緑色画素部は光路調整層を備え、光路調整層と有機発光部の光出射側とは反対側にある反射電極との間での共振を用いて青緑発光の波長分布を変更し、緑の発光スペクトルの形状を整え、色度と輝度を改善することができる。
即ち、本発明によれば、CCM方式有機ELディスプレイにおいて、青色、緑色、赤色の高輝度化、色純度向上が可能となる。
以下、図面を参照しながら、本発明について実施の形態を詳細に説明する。
図1は本発明の有機EL素子の基本構成である積層体100を示す模式図である。
図1に示す積層体100は第1発光部1と第2発光部2とその間に挿入する中間電極部3からなる。第1発光部1は、透明基板111上にブラックマトリクス112、カラーフィルター113、平坦化層114、色変換層115、光路調整層116、パッシベーション層117が形成された上に、第1の透明電極121、画素領域を規定する第1の層間絶縁膜122、第1有機EL層123、第1の金属薄膜124が順次形成される。第2発光部は、基板211上に、第2の金属電極221、画素領域を規定する第2の層間絶縁膜222、第2有機EL層223、第2の金属薄膜224が順次形成される。中間電極部3は、透明基板311の両面上に、透明導電膜312、322が形成されてなる。2つの透明導電膜は、貫通孔331に充填される導電体によって電気的に接合されている。第1発光部の第1の透明電極121および第2発光部の第2の金属電極221はそれぞれ同一方向に延びたストライプ状に形成され、中間電極部3の透明導電膜は上記とは直交する方向に、ストライプ状に形成されている。
上記積層体100を構成する各構成因子につき説明する。
1.第1発光部1
1.1 カラーフィルター113
本発明のデバイスで用いるカラーフィルター113は、液晶ディスプレイ等、フラットパネルディスプレイに用いられるカラーフィルターであれば良く、近年はフォトレジストに顔料を分散させた、顔料分散型カラーフィルターが良く用いられる。
フラットパネルディスプレイ用のカラーフィルターは、400nm〜550nmの波長を透過する青色カラーフィルター、500nm〜600nmの波長を透過する緑色カラーフィルター、600nm以上の波長を透過する赤色カラーフィルターのそれぞれを配列したものが一般的であり、また、各カラーフィルター画素間に、主にコントラストの向上を目的として、可視域を透過しない、ブラックマトリクス112を配設することが一般的に行われている。
1.2 平坦化層114
カラーフィルターの平坦化層114は、カラーフィルターを保護する目的、および、膜面の平滑化を目的に配設されるものであり、光透過性に富み、且つ、カラーフィルターを劣化させることなく配設できる材料およびプロセスを選択する必要がある。また、カラーフィルターの上面に、透明導電膜等を形成する場合、更に、スパッタ耐性も要求されることとなる。
前述の通り、平坦化層は平滑化の目的を持つため、一般的には塗布法で形成される。その際、適用可能な材料としては、光硬化性または光熱併用型硬化性樹脂を、光および/または熱処理して、ラジカル種やイオン種を発生させて重合または架橋させ、不溶不融化させたものが一般的である。また、該光硬化性または光熱併用型硬化性樹脂は、蛍光色変換層のパターニングを行うために硬化をする前は有機溶媒またはアルカリ溶液に可溶性であることが望ましい。
具体的に光硬化性または光熱併用型硬化性樹脂とは、(1)アクロイル基やメタクロイル基を複数有するアクリル系多官能モノマーおよびオリゴマーと、光または熱重合開始剤からなる組成物膜を光または熱処理して、光ラジカルや熱ラジカルを発生させて重合させたもの、(2)ポリビニル桂皮酸エステルと増感剤からなる組成物を光または熱処理により二量化させて架橋したもの、(3)鎖状または環状オレフィンとビスアジドからなる組成物膜を光または熱処理によりナイトレンを発生させ、オレフィンと架橋させたもの、(4)エポキシ基を有するモノマーと光酸発生剤からなる組成物膜を光または熱処理により、酸(カチオン)を発生させて重合させたものなどが挙げられる。特に(1)の光硬化性又は光熱併用型硬化性樹脂が高精細でパターニングが可能であり、耐溶剤性、耐熱性等の信頼性の面でも好ましい。
その他、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエーテルサルホン、ポリビニルブチラール、ポリフェニレンエーテル、ポリアミド、ポリエーテルイミド、ノルボルネン系樹脂、メタクリル樹脂、イソブチレン無水マレイン酸共重合樹脂、環状オレフィン系等の熱可塑性樹脂や、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、アクリル系樹脂、ビニルエステル樹脂、イミド系樹脂、ウレタン系樹脂、ユリア樹脂、メラミン樹脂等の熱硬化性樹脂、あるいはポリスチレン、ポリアクリロニトリル、ポリカーボネート等と3官能性、あるいは4官能性のアルコキシシランを含むポリマーハイブリッド等も利用することができる。
1.3 色変換層115
本発明において、色変換層(有機蛍光変換層)115に用いる有機蛍光色素としては、第1色素および第2色素を含むことが好ましい。前記色変換層は1μm以下の膜厚を有し、第1色素は色変換層への入射光を吸収して、そのエネルギーを第2色素へと移動させる色素であり、第2色素は、第1色素から該エネルギーを受容して光を放射する色素であり、第1色素は、前記入射光を十分に吸収できる量で色変換層115中に存在し、第2色素は、色変換層115の総構成分子数を基準として10モル%以下、好ましくは0.1〜5モル%の量で存在することがこのましい。ここで、第1色素は、色変換層115の総構成分子数を基準として50〜99.99モル%の量で存在することが望ましい。また、色変換層115は、蒸着法によって形成される。
第1色素は、色変換層115への入射光、好ましくは有機EL素子の発する青色〜青緑色の光を吸収し、吸収したエネルギーを第2色素に移動させる色素である。したがって、第1色素の吸収スペクトルが有機EL素子の発光スペクトルと重なっていることが望ましく、第1色素の吸収極大と有機EL素子の発光スペクトルの極大とが重なっている(一致している)ことがより望ましい。また、第1色素の発光スペクトルが第2色素の吸収スペクトルと重なっていることが望ましく、第1色素の発光スペクトルの極大と第2色素の吸収極大とが重なっている(一致している)ことがより望ましい。本発明において第1色素として好適に用いることができる色素は、3−(2−ベンゾチアゾリル)−7−ジエチルアミノクマリン(クマリン6)、3−(2−ベンゾイミダゾリル)−7−ジエチルアミノクマリン(クマリン7)、クマリン135などのクマリン系色素を含む。あるいはまた、ソルベントイエロー43、ソルベントイエロー44のようなナフタルイミド系色素を、第1色素として用いてもよい。第1色素は、色変換層115の総構成分子数を基準として50〜99.99モル%の量で存在することが望ましい。このような濃度範囲で存在することによって、色変換層115の入射光を十分に吸収して、吸収した光エネルギーを第2色素へとエネルギー移動することが可能となる。
1.4 光路調整層116
光路調整層116は、第1有機EL層123および第2有機EL層223からの発光を共振させるための層であって、ハーフミラー層および誘電体層からなる。
光路調整層116を平坦化層114の上に設けることにより、光路調整層116のハーフミラー層と第2金属電極221を両端とする共振を起こさせ、この共振により、より短波長の光をより長波長の光に変換し、結果としてより長波長の光を増強する。
二つの反射性界面間の光学膜厚(nd)と共振により増強したい光の波長(λ)の間には下記式(I)の関係がある。
(nd)× (4π/λ)+φ=2mπ・・・(I)
ここで、φは二つの反射性界面で生じる反射によって与えられる位相変化の和を示し、例えば一つの反射性界面が金属によって与えられるときは、φにはπだけ寄与することが知られている。mは1〜10の整数である。
本発明では、第2金属電極221を一端とし、ハーフミラー層を他端とする共振を起こさせて、緑色光(波長500nm〜550nm)を共振させ、緑色光の誘導放出を増加させ、緑色光リッチにする。長波長側光での共振を起こさせるために、光路長を長くするための光路調整用に光路調整層116が挿入される。
ハーフミラー層としては、Ag、MgAgなどの反射率の高い金属または合金を用い、厚さ10nm〜50nmである。光路調整用に、SiN、SiO、TiO、Ta、ITO,IZOなどの材料で形成される誘電体層を用いる。
1.5 パッシベーション層117
カラーフィルター113から発生する水分から有機EL層123,223等を守る目的で、平坦化層114上面にパッシベーション層117を積層しても良い。パッシベーション層117は透明且つピンホールのない緻密な膜が求められ、例えばSiO、SiN、SiN、AlO、TiO、TaO、ZnO等の無機酸化物、無機窒化物等が使用できる。パッシベーション層117の形成方法としては特に制約はなく、スパッタ法、CVD法、真空蒸着法、ディップ法等の慣用の手法により形成できる。パッシベーション層117の膜厚は100〜300nmが好ましい。
1.6 第1の透明電極121
第1の透明電極121は、例えばスパッタ法によりIZO(インジウム亜鉛酸化物)またはITO(インジウムスズ酸化物)などの透明導電体からなるアモルファス膜とすることが好ましい。膜厚は100〜300nmが好ましい。
1.7 第1の層間絶縁膜122
第1の透明電極121パターン上で第1の有機EL層123を設ける部分に開口部を設けた層間絶縁膜122を基板全面に形成する。層間絶縁膜122は、開口部では、第1の透明電極121端部を覆うように形成される。第1の透明電極121の縁部は、電極形状が急激に変化するため電界集中が発生しやすい部位であり、第1の有機発光層123が絶縁破壊し、この結果起こる第1の透明電極121とその上部に設ける電極との短絡により表示欠陥が生じることがあるが、層間絶縁膜によりこれを防止することができる。層間絶縁膜122としては、ポリイミドや、ノボラック樹脂等の有機材料、または、酸化珪素、窒化珪素などの無機材料を用いることができる。
1.8 第1有機EL層123
第1有機EL層123は、有機発光層を少なくとも含み、必要に応じて電子注入層、電子輸送層、正孔輸送層および/または正孔注入層を含む。具体的には、陽極と陰極とを含めて記載すると、下記のような層構成からなるものが採用される。
(a)陽極/有機発光層/陰極
(b)陽極/正孔注入層/有機発光層/陰極
(c)陽極/有機発光層/電子注入層/陰極
(d)陽極/正孔注入層/有機発光層/電子注入層/陰極
(e)陽極/正孔注入層/正孔輸送層/有機発光層/電子注入層/陰極
(f)陽極/正孔輸送層/有機発光層/電子輸送層/陰極
(g)陽極/正孔注入層/正孔輸送層/有機発光層/電子輸送層/電子注入層/陰極
第1有機EL層123における各層の材料としては、特に限定されるものではなく公知のものを使用することが可能である。正孔輸送層はα−NPDを用いてもよく、これにF4−TCNQなどのルイス酸化合物をドーピングしてもよい。有機発光層の材料は、所望する色調に応じて選択することが可能であり、例えば青色から青緑色の発光を得るためには、ベンゾチアゾール系、ベンゾイミダゾール系、べンゾオキサゾール系などの蛍光増白剤、スチリルベンゼン系化合物、芳香族ジメチリディン系化合物などを使用することが可能である。あるいはまた、ホスト材料と青色ドーパントとを含むホスト−ゲスト系材料を用いて有機発光層を形成してもよい。ホスト材料としては、アルミキレート、4,4’−ビス(2,2’−ジフェニルビニル)、2,5−ビス(5−tert−ブチル−2−ベンゾオキサゾルイル)−チオフェン(BBOT)、ビフェニル(DPVBi)を用いる。青色ドーパントとしては、ぺリレン、2,5,8,11−テトラ−t−ブチルペリレン(TBP)、4,4’−ビス[2−{4−(N,N−ジフェニルアミノ)フェニル}ビニル]ビフェニル(DPAVBi)などを0.1〜5%、添加することが用いられる。電子輸送層はAlqを用いることができ、これにLiなどのアルカリ金属をドープしてもよい。
第1有機EL層123および第2有機EL層223の膜厚については駆動電圧および透明性等を考慮して適宜選択することができるが、通常は、正孔輸送層は20〜150nm、有機発光層は20〜40nm、電子輸送層は20〜40nmとする。しかし、これらに限定するものではない。第1有機EL層123は、蒸着法などの当該技術分野において知られている任意の手段を用いて形成することができる。
第1有機EL層の形成法は、マスク蒸着法(蒸着すべき箇所以外の部分をマスクで覆って蒸着を行う方法)による真空蒸着、あるいは、あらかじめ有機EL材料が形成されたシートを基板との間隔を約300μm以下に近接させ、レーザーなどの輻射エネルギーにより有機EL材料を転写する近接離間形成法でもよい(例えば、特許文献5参照。)。また、特許文献4に述べられているように、非画素領域における層間絶縁膜の上に第1の透明電極に直交する方向に分離隔壁を形成し、有機EL層を製膜後、これを剥離して、発光部1を形成してもよい。
1.9 第1の金属薄膜124
第1の金属薄膜124は、第1有機EL層123の上に形成される。第1の金属薄膜124は中間電極部の透明導電膜312とのコンタクトの改善に有効である。第1の金属薄膜124は第1の透明導電膜312と一体になって、第1発光部のキャリア注入電極の一方として機能する。
2.第2発光部
第2発光部は基板211上に、第2の金属電極221、画素領域を規定する第2の層間絶縁膜222、第2有機EL層223、第2の金属薄膜224が順次設けられている。第2の金属電極221は通常、有機EL発光素子の金属電極に用いられる材料、構造が採用されるが、微小空洞共振のための共振器の一方となるため、より高い反射性を有することが重要となる。また、第2の金属電極は、第1の透明電極と導極性のキャリアを注入できるものとする。また、第2の金属電極は第1の透明電極121と平行に形成されたストライプ状のものとすることができる。第2の層間絶縁膜222は第1の層間絶縁膜122と、第2有機EL層223は第1有機EL層123と、第2の金属薄膜224は第1の金属薄膜124と同様の構成であり、同様にして形成される。
3.中間電極部3
中間電極部3は、第1発光部1と第2発光部2との間にあって、両者を電気的に並列接続するものである。
中間電極部3は、透明基板311の両面に、透明導電膜312,322をストライプパターン状にそれぞれ形成したものである。透明基板311としては、通常、膜厚50 〜500 μm 程度の、透明で、かつ、比較的高い耐熱性を有するプラスチックフィルムが用いられ、例えばPC(ポリカーボネート)、PET(ポリエチレンテレフタレート)およびPES(ポリエーテルスルフォン)、ポリエチレンナフタレート(PEN)、ポリオレフィン(PO )等を好適に用いることができる。また、この透明基板311に用いる材料としては、これらの材料に限定されることはなく、多層膜の樹脂フィルムをベースとしたフィルムを用いてもよい。透明導電膜は、例えばスパッタ法によりITOまたはIZO を成膜して得られる。膜厚は100〜300nmが好ましい。透明基板311と透明導電膜312,322の間にバリア層を形成してもよい。バリア層は、例えばCVD 法によりSiOまたはSiNを成膜して得られる。膜厚は200〜500nmが好ましい。
フィルム状の透明基板311の上に透明導電膜312,322をストライプパターン状に形成する前に、透明基板311にレーザービーム照射、機械的な穴抜きなどで貫通孔331を形成しておく。透明導電膜312,322形成時に、この貫通孔331内に透明基板311の表面および裏面に形成する透明導電膜材料が充填され、透明導電膜312,322が電気的に接続され、同一極性を実現できるのである。貫通孔331を形成する箇所は、ストライプパターン内のどこでもよいが、好ましくは画素領域と干渉しない箇所に形成される。
グローブボックス内の乾燥窒素雰囲気(酸素および水分濃度ともに10ppm以下)下において、上記のように形成された中間電極部3を第1発光部1と第2発光部2の間に配置し、これらを貼り合わせることにより、有機EL素子を得ることができる。
このとき各層と電極が図1に示す積層体を構成するように各基板が配置される。第1有機EL層123と第2有機EL層223が、画素を構成するR,G,Bの副画素ごとに対向するように、中間電極部3を第1発光部1と第2発光部2の間に挟み、重ねあわせる。第1及び第2有機EL層に設けた第1及び第2の金属薄膜124,224を介して、第1及び第2有機EL層123,223がそれぞれ透明導電膜312,322に電気的に接続される。
以下に実施例を用いて、本発明を更に説明する。
<実施例1>
以下に示す作製法に従い、500mm×500mm×0.50mmのガラス製の透明基板111上に、RGB副画素サイズ0.148mm×0.704mm、副画素間隔0.130mmの画素構成である第1発光部を形成した。
まず、スピンコート法にて黒色色素を含むレジスト樹脂を塗布し、フォトリソグラフ法によりパターニングを実施し,カラーフィルター形成用の開口部を残して膜厚2μmのブラックマトリックス112を形成した。
青色フィルター材料(カラーモザイクCB−7001、富士フィルム株式会社より入手可能)をスピンコート法にて塗布後,フォトリソグラフ法によりパターニングを実施し、0.148mm×0.704mm、間隔0.868mmの青色カラーフィルターを得た。
つぎに、緑色フィルター材料(カラーモザイクCG−7001、富士フィルム株式会社より入手可能)をスピンコート法にて塗布後,フォトリソグラフ法によりパターニングを実施し、0.148mm×0.704mm、間隔0.868mmの緑色カラーフィルターを得た。
つぎに、赤色フィルター材料(カラーモザイクCR−7001、富士フィルム株式会社から入手可能)をスピンコート法にて塗布後,フォトリソグラフ法によりパターニングを実施し、0.148mm×0.704mm、間隔0.868mmの緑色カラーフィルターを得た。
つぎに、こうして得られたカラーフィルター113の上に、UV硬化型樹脂(エポキシ変性アクリレート)をスピンコート法にて塗布し、高圧水銀灯にて照射し、膜厚3μmの平坦化層114を形成した。この時、カラーフィルター113のパターンは変形がなく、且つ、平坦化層114上面は平坦であった。
つぎに、基板を蒸着装置に搬送し、ハーフミラー層として膜厚30nmのMgAg膜、および高屈折率(n=2.2)の誘電体層として膜厚50nmのIZOを積層し、フォトリソグラフィー法により、緑画素部に対応する領域に光路調整層116を形成した。
つぎに、赤色画素領域に、クマリン6およびDCM−2からなる色変換層115を作製した。即ち、クマリン6およびDCM−2を蒸着装置内の別個の坩堝にて加熱する共蒸着によって、マスクを用いて、赤色画素領域に厚さ200nmの色変換層115を作製した。この際に、クマリン6の蒸着速度を0.3nm/s、DCM−2の蒸着速度を0.005nm/sとなるように、それぞれの坩堝の加熱温度を制御した。本実施例の色変換層115は、色変換層115の総構成分子数(この場合には全色素のモル数)を基準として2モル%のDCM−2を含んだ(クマリン6:DCM−2のモル比が49:1である)。
つぎに、プラズマCVD装置にて、原料ガスとしてモノシラン(SiH)、アンモニア(NH)及び窒素(N)を用いるプラズマCVD法を用いて、膜厚400nmの窒化シリコン(SiN)を堆積させ、パッシベーション層117を形成した。ここで、SiNを堆積する際の基板温度は100℃以下になるようにして行った。
スパッタ法にて、透明電極として、厚さ200nmのITOを全面蒸着した。ITO上にレジスト剤「OFRP−800」(商品名、東京応化製)を塗布した後、フォトリソグラフィー法にてパターニングを行い、幅0.204mm、間隔0.074mm、膜厚200nmのストライプパターンからなる第1の透明電極(陰極)121を得た。
次にポジ型フォトレジスト[WIX−2A](商品名、日本ゼオン製)を用い画素領域に対応する部分に0.148×0.704mmの開口部を形成するように、厚さ300nmの層間絶縁膜122を、第1電極121を構成するストライプパターン間に形成した。層間絶縁膜122端部の透明基板111表面に対する角度は鋭角となっている。
以上の工程に続き、層間絶縁膜122を形成した基板を抵抗加熱蒸着装置内に装着した。0.148×0.704mmサイズの開口部を副画素領域に対応して有するマスクを用いて、第1有機EL層123として、電子輸送層、有機発光層、正孔輸送層を、真空を破らずに順次成膜した。成膜に際して真空槽内圧は1×10−4Paまで減圧した。電子輸送層はAlqを30nm積層した。有機発光層はホスト材料4,4’−ビス(2,2’−ジフェニルビニル)ビフェニル(DPVBi)に、青色ドーパント4,4’−ビス[2−{4−(N,N−ジフェニルアミノ)フェニル}ビニル]ビフェニル(DPAVBi)5wt%ドープして50nm積層した。正孔輸送層はα−NPDを120nm積層した。この後、同様なマスク製膜により、厚さ5nmのAlからなる金属薄膜124を、真空を破らずに形成した。このようにして、第1発光部1を作製した。第1発光部の発光スペクトルは波長470nmと505nmにピークを有した。
続いて、500mm×500mm×0.50mmのガラス製の基板211上に、第1の透明電極121に替えてストライプ状の第2の金属電極221を第1の透明電極121と平行に形成することを除いて、第1発光部1と同様の手順によって、第2発光部2を作製した。
第2の金属電極221の形成を以下のように行った。まず、スパッタ法にてAlを全面成膜した。Al上にレジスト剤「OFRP−800」(商品名、東京応化製)を塗布した後、フォトリソグラフィー法にてパターニングを行い、幅0.204mm、間隔0.074mm、膜厚100nmのストライプパターンからなる第2の金属電極221を得た。
500mm×500mm×0.50mmのポリイミドフィルム製の透明基板311を用いて中間電極部3を以下の方法で作製した。
透明基板311の両面にバリア層としてSiN膜をスパッタ法で形成した。続いてKrFエキシマレーザーを用い、レーザースポット径50μm、レーザー出力100mJ/パルス〜450mJ/パルスの条件で、画素領域間の透明基板311およびSiN膜に貫通穴331を形成した。
次に、スパッタ法にてITOを透明基板311の両面に全面成膜した。このとき、あらかじめあけておいた貫通孔331の内側に、両面からITOが充填され、コンタクトを形成し、両面が電気的に接続された。次に両面に形成したITO上にストライプ状の反射電極とは直交する方向にYAGレーザーを掃引して、画素領域と非画素領域とを分離した。こうしてRGB副画素に位置する、幅0.204mm、間隙0.048mm、膜厚200nmのストライプパターンからなる透明電電膜312、322を得た。本実施例において、透明導電膜312,322は、それぞれ第1発光部1および第2発光部2の陽極の一部をなす。
上記のようにして得られた第1発光部1と、第2発光部2と、中間電極部3とをグローブボックス内に導入する。第1発光部1と、第2発光部2のそれぞれの各副画素領域が対向し、かつ陰極列と陽極列が直交するように、各基板111,211,311を配置し重ねる。第1及び第2の金属薄膜124、224の間に透明導電膜312、322を挟み、乾燥窒素雰囲気(酸素および水分濃度ともに10ppm以下)下において、UV硬化接着剤を用いて封止した。
<実施例2>
第1及び第2有機EL層123,223、ならびに第1及び第2の金属薄膜124,224を以下の手順によって作製し、第1発光部1及び第2発光部2を得たことを除いて、実施例1の手順を繰り返して有機EL素子を得た。なお、第1発光部を例として本実施例の手順を説明する。
実施例1と同様にして第1層間絶縁膜122を形成した透明基板111に対して、ネガ型フォトレジスト(ZPN1100 、日本ゼオン(株)製) を、スピンコーターを用いて約5μm の厚さに塗布した後に、温風循環式オーブンにてプリベークした。第1の透明電極121を構成するストライプ状部分電極の伸びる方向と直交する方向に伸びるストライプ状開口部のパターンを有するフォトマスクを用いてレジスト膜を露光し、温風循環式オーブンにてポストベークを行い、続いて現像を行って、電気絶縁性の分離隔壁を得た。得られた隔壁は、幅30μm、ピッチ1016μmの複数のストライプ形状部分から構成された。
次いで、マスクを使用しなかったことを除いて実施例1と同様の手順に従って第1有機EL層123を成膜した。さらに、マスクを使用しなかったことを除いて実施例1と同様の手順に従って第1の金属薄膜124を成膜した。その後、JIS Z1522に規定されているセロハンテープを隔壁上にはり、隔壁上の金属薄膜のみを剥離した。
ついで、第1の金属薄膜124を形成した透明基板111の全面にSiO膜を形成した。さらに、圧力100Pa、流量比2:1:1のSF/O/Ar混合ガスを用い、1.5kWの電力を印加したプラズマエッチングを行ってSiO膜のエッチングを行った。ここで、第1の金属薄膜がエッチストップ層として機能し、分離隔壁上の突出する部分を除去した。
< 比較例1>
実施例2と同様の手順により、500mm×500mm×0.50mmのガラス基板21上に、副画素サイズ0.148mm×0.704mm、副画素間隔0.130mmの画素構成をもつ発光部を形成した。即ち、実施例1と同様にしてカラーフィルター形成用の開口部を残してブラックマトリックス22を形成し、その開口部にR,G,Bのカラーフィルター23を形成した。次いで、実施例1と同様にしてこのカラーフィルター23の上に平坦化層24を形成し、赤色画素領域に色変換層25を形成した。次に、実施例1と同様にしてパッシベーション層26を形成し、その上に透明電極27を形成した後、画素領域に対応する部分に開口部を形成するように、厚さ300nmの層間絶縁膜28を透明電極27上に形成した。図2に示すように、緑色画素領域には、光路調整層をもうけず、発光部31も一つの分離隔壁29を用いた従来構造であり、上部電極32はAlとした有機EL素子を得た。
<比較例2>
実施例1において、緑色画素領域に光路調整層のかわりにクマリン6からなる緑色変換層を作製した以外は実施例1と同じとした有機EL素子を得た。
(評価)
素子の特性を評価したところ、比較例1および2で、動作電圧6VでのR,G,Bの効率は、2.5,7.5,3.0cd/A、2.5,8.0,3.0cd/Aであったが、実施例1の素子では、R,G,Bの効率は、同じ電圧で、それぞれ5,10,6cd/Aと向上した。緑画素部では、波長470nmと505nmにピークをもつ元のスペクトルを、光路調整して、波長520nmにピークをもつような微小空洞共振構造としたため、緑色変換層を必要としないで、CIE色度は(0.20、0.71)と色純度のよい緑を得た。比較例1では、緑用のCCMを用いていないので、CIE色度が(0.30、0.60)、比較例2ではCIE色度が(0.25、0.70)と色純度はよくない。それぞれのNTSC比は、60%、80%であった。
本発明によれば、高輝度、高色純度のフルカラー表示が可能で、本発明による有機EL素子は、携帯端末機、産業用計測器、家庭用テレビなど広範囲な画面表示への応用可能性を有する。
本発明の有機EL素子の基本構成を示す模式図である。 比較例1の有機EL素子の基本構成を示す模式図である。
符号の説明
1 第1発光部
2 第2発光部
3 中間電極部
100 積層体
111 透明基板
112 ブラックマトリクス
113 カラーフィルター
114 平坦化層
115 色変換層
116 光路調整層
117 パッシベーション層
121 第1の透明電極
122 第1の層間絶縁膜
123 第1有機EL層
124 第1の金属薄膜
211 基板
221 第2の金属電極
222 第2の層間絶縁膜
223 第2有機EL層
224 第2の金属薄膜
311 透明基板
312,322 透明導電膜
331 貫通孔
21 ガラス基板
22 ブラックマトリックス
23 カラーフィルター
24 平坦化層
25 色変換層
26 パッシベーション層
27 透明電極
28 層間絶縁膜
29 分離隔壁
31 発光部
32 上部電極

Claims (4)

  1. 対向する電極間に青ないし青緑色の光を発光する有機発光層を設けた有機EL発光部を有するフルカラー表示可能な有機EL素子であって、前記有機発光部が電気的に2段並列接続されており、緑色画素領域には光路調整層が形成され、赤色画素領域には色変換層を備えてなることを特徴とする有機EL素子。
  2. 一方の面上にカラーフィルターを設けた基板のカラーフィルター上に前記有機EL素子が設けられていることを特徴とする請求項1に記載の有機EL素子。
  3. 前記緑色画素領域に設けられる光路調整層は、電気的に2段並列接続された前記有機発光部の光出射側に設けられ、有機発光部の光出射側の反対側の最外側の反射電極界面と、光路調整層の光出射側界面との間での共振により、前記有機EL発光部の発光スペクトルのピーク波長を500〜550nmに変調する光学膜厚を有していることを特徴とする請求項1または2に記載の有機EL素子。
  4. 前記色変換層の膜厚が50〜2000nmであることを特徴とする請求項1〜3のいずれか1項に記載の有機EL素子。
JP2007300857A 2007-11-20 2007-11-20 有機el素子 Withdrawn JP2009129586A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007300857A JP2009129586A (ja) 2007-11-20 2007-11-20 有機el素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007300857A JP2009129586A (ja) 2007-11-20 2007-11-20 有機el素子

Publications (1)

Publication Number Publication Date
JP2009129586A true JP2009129586A (ja) 2009-06-11

Family

ID=40820332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007300857A Withdrawn JP2009129586A (ja) 2007-11-20 2007-11-20 有機el素子

Country Status (1)

Country Link
JP (1) JP2009129586A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029709A1 (ja) * 2010-08-31 2012-03-08 株式会社島津製作所 非晶質窒化珪素膜およびその製造方法
JP2012216519A (ja) * 2011-03-25 2012-11-08 Semiconductor Energy Lab Co Ltd 発光パネル、発光装置、および発光パネルの作製方法
US9293732B2 (en) 2013-01-24 2016-03-22 Samsung Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
KR20170010861A (ko) 2014-05-30 2017-02-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치, 표시 장치, 및 전자 기기
CN110767826A (zh) * 2018-10-31 2020-02-07 云谷(固安)科技有限公司 显示面板和显示终端

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029709A1 (ja) * 2010-08-31 2012-03-08 株式会社島津製作所 非晶質窒化珪素膜およびその製造方法
JP2012216519A (ja) * 2011-03-25 2012-11-08 Semiconductor Energy Lab Co Ltd 発光パネル、発光装置、および発光パネルの作製方法
US9741967B2 (en) 2011-03-25 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting panel having plurality of organic light-emitting elements
US10333106B2 (en) 2011-03-25 2019-06-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting panel having plurality of organic light-emitting elements
US9293732B2 (en) 2013-01-24 2016-03-22 Samsung Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
KR20240033152A (ko) 2014-05-30 2024-03-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치, 표시 장치, 및 전자 기기
KR20170010861A (ko) 2014-05-30 2017-02-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치, 표시 장치, 및 전자 기기
US10777762B2 (en) 2014-05-30 2020-09-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, and electronic device with color conversion layers
US10790462B2 (en) 2014-05-30 2020-09-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, and electronic device with color conversion layers
US12127418B2 (en) 2014-05-30 2024-10-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device with color conversion layers
US11545642B2 (en) 2014-05-30 2023-01-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, display device, and electronic device with color conversion layers
KR20230053702A (ko) 2014-05-30 2023-04-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치, 표시 장치, 및 전자 기기
CN110767826A (zh) * 2018-10-31 2020-02-07 云谷(固安)科技有限公司 显示面板和显示终端
CN110767826B (zh) * 2018-10-31 2022-05-17 云谷(固安)科技有限公司 显示面板和显示终端

Similar Documents

Publication Publication Date Title
JP5236732B2 (ja) 色変換膜及び該色変換膜を含む多色発光有機elデバイス
JPWO2004036960A1 (ja) 有機エレクトロルミネッセンス表示装置及びその製造方法
JP2004335207A (ja) 有機el素子とその製造方法
CN101743782A (zh) 色变换滤光片、以及色变换滤光片和有机el显示器的制造方法
CN1953237A (zh) 有机发光器件
JP3627707B2 (ja) 色変換フィルタ基板、それを用いた有機多色elディスプレイパネルおよびそれらの製造方法
JP2007164123A (ja) 色変換機能付カラーフィルタ、有機elディスプレイおよびその製造方法
US20080224595A1 (en) Organic EL device
TWI470283B (zh) Discoloration filter substrate
JPWO2006028089A1 (ja) 発光デバイスおよびその製造方法
JP2009129586A (ja) 有機el素子
JP2010146760A (ja) 色変換フィルタパネル、パネル型有機el発光部およびカラー有機elディスプレイ
JP5450738B2 (ja) 色変換膜及び該色変換膜を含む有機elデバイス
JP4618562B2 (ja) 有機elディスプレイの製造方法
JP2003264081A (ja) 赤色蛍光変換フィルタ及びそれを用いた有機発光素子
JP2009049003A (ja) 有機el素子
JP2009205929A (ja) フルカラー有機elディスプレイパネル
JP2008305730A (ja) 多色発光デバイスの製造方法
JP2007220431A (ja) 多色発光デバイス及びその製造方法
JP3861821B2 (ja) 有機elディスプレイパネルおよびその製造方法
JP2010044916A (ja) 有機el素子の製造方法
JP2007019008A (ja) 有機elディスプレイパネル
JP4552187B2 (ja) 多色発光デバイスおよびその製造方法
JP2006269227A (ja) 多色発光デバイス及びその製造方法
JP2007250193A (ja) 有機発光素子

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091008