[go: up one dir, main page]

JP2009068522A - 油圧制御装置 - Google Patents

油圧制御装置 Download PDF

Info

Publication number
JP2009068522A
JP2009068522A JP2007234594A JP2007234594A JP2009068522A JP 2009068522 A JP2009068522 A JP 2009068522A JP 2007234594 A JP2007234594 A JP 2007234594A JP 2007234594 A JP2007234594 A JP 2007234594A JP 2009068522 A JP2009068522 A JP 2009068522A
Authority
JP
Japan
Prior art keywords
control
valve
hydraulic pressure
hydraulic
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007234594A
Other languages
English (en)
Inventor
Yusuke Ogata
勇介 大形
Yoshinobu Soga
吉伸 曽我
Ryoji Hanebuchi
良司 羽渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007234594A priority Critical patent/JP2009068522A/ja
Publication of JP2009068522A publication Critical patent/JP2009068522A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

【課題】新たな電磁弁を追加することなく、変速油圧制御弁などのフェール時にも急減速状態の発生を回避できるような油圧制御装置を提供する。
【解決手段】油圧制御装置は、ベルト式無段変速機40と各部の油圧の元圧となるライン油圧PLを調圧するプライマリレギュレータバルブ110とベルト式無段変速機40の駆動側プーリ41へ変速油圧PINを供給する変速油圧コントロールバルブ120とを備える。変速油圧コントロールバルブ120と駆動側プーリ41との間にはフェールセーフバルブ190が設けられている。フェールセーフバルブ190は、変速油圧コントロールバルブ120のフェール時や、これを制御するリニアソレノイドバルブSLPのフェール時などには、ON−OFFソレノイドバルブSL1とリニアソレノイドバルブSLTによってライン油圧PLを駆動側プーリ41へ供給するように切り換えられる。
【選択図】図3

Description

本発明は、車両用動力伝達装置の油圧制御装置に関する。
車両に搭載される無段変速機として、油圧によりベルトを挟圧して動力を伝達するとともにベルト掛かり径を変更して変速比を変化させるベルト式無段変速機が知られている。
このようなベルト式無段変速機の油圧制御装置には、各種の制御弁やそれを制御する電磁弁などが多数設けられる。例えば、各部の油圧の元圧となるライン油圧を調圧するライン油圧制御弁や、その元圧となるライン油圧を調圧して、ベルト式無段変速機の変速比を制御する変速油圧をベルト式無段変速機の駆動側プーリ(プライマリプーリ)へ供給する変速油圧制御弁、同じく元圧となるライン油圧を調圧して、ベルト式無段変速機のベルト挟圧を制御する挟圧油圧をベルト式無段変速機の従動側プーリ(セカンダリプーリ)へ供給する挟圧油圧制御弁などが設けられている。また、それらの各制御弁を制御するためのリニア電磁弁やON−OFF電磁弁などが設けられている。
特許文献1,2には、ベルト式無段変速機の油圧制御装置が示されている。また、特許文献2には、変速油圧制御弁を制御する電磁弁または挟圧油圧制御弁を制御する電磁弁がフェールした場合の制御について記載されている。
特開平3−213773号公報 特開2006−153104号公報
ところで、油圧制御装置においては、各制御弁やそれを制御する電磁弁に、バルブスティックなどの機械的なフェールや、電磁弁での断線や短絡(ショート)などの電気的要因によるフェールが生じることがある。従来のベルト式無段変速機の油圧制御装置では、駆動側プーリへの変速油圧の供給を変速油圧制御弁からしか行わない構成であったため、変速油圧制御弁やそれを制御する電磁弁がフェールすると、変速比を制御する変速油圧が急激に低下し、その結果、急減速状態に陥る可能性がある。そして、急減速にともなってベルト滑りや過大なショックが発生する可能性がある。
そのようなフェール時の急減速を回避する対策として、バックアップ機能を有する制御弁などを油圧制御装置に設けることが挙げられる。しかし、この場合、バックアップ機能を有する制御弁を制御するのにさらに別の電磁弁などが必要になり、コストアップや装置の大型化を招くという問題点もある。
上記特許文献1にはそのようなフェール時の対応については記載されていない。また、上記特許文献2には、変速油圧制御弁を制御する電磁弁がフェールした場合の対応については記載されているが、変速油圧制御弁そのものがフェールした場合の対応については記載されていない。
本発明は、そのような問題点を鑑みてなされたものであり、新たな電磁弁を追加することなく、変速油圧制御弁のフェール時などにも急減速状態の発生を回避できるような油圧制御装置を提供することを目的とする。
本発明は、上述の課題を解決するための手段を以下のように構成している。すなわち、本発明は、油圧制御装置であって、油圧によりベルトを挟圧して動力を伝達するとともにベルト掛かり径を変更して変速比を変化させるベルト式無段変速機と、各部の油圧の元圧となるライン油圧を調圧するライン油圧制御弁と、前記ベルト式無段変速機の駆動側プーリへこのベルト式無段変速機の変速比を制御する変速油圧を供給する変速油圧制御弁とを備えている。そして、前記変速油圧制御弁と駆動側プーリとの間には、前記駆動側プーリに供給する油圧を、前記変速油圧と前記ライン油圧とに切り換え可能なフェールセーフ弁が設けられ、前記フェールセーフ弁は、前記変速油圧制御弁またはこれを制御する電磁弁のフェール時には、前記ライン油圧を駆動側プーリへ供給するフェール位置に切り換えられる一方、前記フェール時以外には、前記変速油圧を駆動側プーリへ供給するノーマル位置に切り換えられ、前記フェールセーフ弁の切り換えは、既存の第1電磁弁の制御油圧と第2電磁弁の制御油圧との組み合わせによって制御されることを特徴としている。既存の第1電磁弁としては、例えば、ON−OFFタイプの電磁弁、リニアタイプの電磁弁、デューティタイプの電磁弁、三方弁タイプの電磁弁などを用いることが可能である。既存の第2電磁弁としては、例えば、リニアタイプの電磁弁、デューティタイプの電磁弁などを用いることが可能である。
上記構成によれば、変速油圧制御弁またはこれを制御する電磁弁のフェール時には、フェールセーフ弁の切り換えによってライン油圧が駆動側プーリへ供給されるので、ベルト式無段変速機の変速比を制御する油圧が急激に低下することを抑制でき、急減速状態の発生を回避できる。つまり、ライン油圧の導入によって、変速比が増速側へ変化されるので、それ以降の変速比の減速側への変化を抑制することができる。これにより、急減速にともなって発生するベルト滑りや過大なショックを防止することができる。しかも、既存の電磁弁を利用してフェールセーフ弁の切り換えを行うので、コストアップや装置の大型化を回避することができる。
本発明において、油圧制御装置を、動力源と前記ベルト式無段変速機との間に設けられた流体式動力伝達装置に備えられ、前記動力源側とベルト式無段変速機側とを直結する油圧式のロックアップクラッチと、車両の走行に際して動力伝達経路を成立させるために係合させられる油圧式の走行用摩擦係合要素と、前記ロックアップクラッチの係合・解放制御の際に切り換えられるロックアップ制御弁と、前記走行用摩擦係合要素の係合の際に供給する係合油圧を係合過渡油圧と係合保持油圧とに切り換え可能なガレージ制御弁とを備える構成とする場合、前記第1電磁弁として前記ガレージ制御弁を切り換える電磁弁を利用し、前記第2電磁弁として前記ロックアップ制御弁を制御する電磁弁を利用することが可能である。ここでは、油圧制御装置がロックアップクラッチおよびロックアップ制御弁を含む場合について示している。このように、フェールセーフバルブ弁を切り換える構成として既存の構成をそのまま利用することで、コストアップや装置の大型化を回避することができる。
ここで、前記第2電磁弁によって、前記ロックアップ制御弁の制御に加え、前記ライン油圧制御弁の制御も行うような構成としてもよい。この場合、前記第2電磁弁によって前記ロックアップ制御弁を制御する際、この第2電磁弁以外の第3電磁弁によって、前記ライン油圧制御弁の制御が行われるような構成とすることが好ましい。そして、前記第3電磁弁として、前記ベルト式無段変速機の従動側プーリへこのベルト式無段変速機のベルト挟圧を制御する挟圧油圧を供給する挟圧油圧制御弁を制御するものを採用することができる。こうすれば、前記第2電磁弁によって前記ロックアップ制御弁を制御する際に、ライン油圧の調圧制御が行われなくなるような状況を回避することが可能になる。第3電磁弁としては、リニアタイプの電磁弁、デューティタイプの電磁弁などを用いることが可能である。
また、前記第2電磁弁によっては前記ライン油圧制御弁の制御を行わず、この第2電磁弁以外の第4電磁弁によって、前記ライン油圧制御弁の制御を行うように構成してもよい。この場合、前記第4電磁弁として、前記ベルト式無段変速機の従動側プーリへこのベルト式無段変速機のベルト挟圧を制御する挟圧油圧を供給する挟圧油圧制御弁を制御するものを採用することができる。第4電磁弁としては、リニアタイプの電磁弁、デューティタイプの電磁弁などを用いることが可能である。
ここで、前記第2電磁弁によって、前記ロックアップ制御弁の制御に加え、前記走行用摩擦係合要素の係合過渡油圧の制御も行うような構成としてもよい。この場合、前記第2電磁弁によって前記走行用摩擦係合要素の係合過渡油圧の制御を行う際、前記第2電磁弁の制御油圧が、前記ロックアップ制御弁の制御時に供給される側とは反対側に供給されるような構成とすることが好ましい。こうすれば、第2電磁弁によって走行用摩擦係合要素の係合過渡油圧の制御を行う際には、第2電磁弁の制御油圧が、ロックアップ制御弁の制御時に供給される側とは反対側に供給され、ロックアップクラッチが強制的に解放状態とされる。このようなロックアップクラッチの強制OFFにより、エンジンストールが発生することを防止できる。
本発明において、油圧制御装置を、車両の走行に際して動力伝達経路を成立させるために係合させられる油圧式の走行用摩擦係合要素と、前記走行用摩擦係合要素の係合の際に供給する係合油圧を係合過渡油圧と係合保持油圧とに切り換え可能なガレージ制御弁とを備える構成とする場合、前記第1電磁弁として前記ガレージ制御弁を切り換える電磁弁を利用し、前記第2電磁弁として前記ライン油圧制御弁を制御する電磁弁を利用することが可能である。ここでは、油圧制御装置がロックアップクラッチおよびロックアップ制御弁を含まない場合について示している。このように、フェールセーフバルブ弁を切り換える構成として、既存の構成をそのまま利用することで、コストアップや装置の大型化を回避することができる。
ここで、前記第2電磁弁によって、前記ライン油圧制御弁の制御に加え、前記走行用摩擦係合要素の係合過渡油圧の制御も行うような構成としてもよい。この場合、前記第2電磁弁によって前記走行用摩擦係合要素の係合過渡油圧を制御する際、この第2電磁弁以外の第5電磁弁によって、前記ライン油圧制御弁の制御が行われるような構成とすることが好ましい。そして、前記第5電磁弁として、前記ベルト式無段変速機の従動側プーリへこのベルト式無段変速機のベルト挟圧を制御する挟圧油圧を供給する挟圧油圧制御弁を制御するものを採用することができる。第5電磁弁としては、リニアタイプの電磁弁、デューティタイプの電磁弁などを用いることが可能である。
本発明において、前記フェールセーフ弁は、前記第1電磁弁が制御油圧を出力するON状態であり、かつ、前記第2電磁弁が前記係合過渡油圧の制御時の制御油圧に比べ大きい制御油圧を出力する状態である場合には、前記フェール位置に切り換えられる一方、それ以外の場合には前記ノーマル位置に切り換えられることを特徴としている。
これにより、通常時には使用しない第1電磁弁および第2電磁弁の制御状態の組み合わせを利用して、フェールセーフ弁のフェール位置への切り換えを行うので、通常時に第2電磁弁により係合過渡油圧の制御を行うときなどに、フェールセーフ弁がフェール位置に切り換えられることはない。したがって、通常時に行われる他の制御を妨げることなく、フェール時には急減速状態の発生を回避できる。また、フェール時には、走行用摩擦係合要素へ第2電磁弁の係合過渡油圧の制御時の制御油圧に比べ大きい制御油圧が供給されるので、走行用摩擦係合要素の滑りは発生しないようになっている。
ここで、前記変速油圧制御弁またはこれを制御する電磁弁のフェール時に、前記ライン油圧の代わりに、前記ベルト式無段変速機のベルト挟圧を制御する挟圧油圧や、前記走行用摩擦係合要素に供給する前記係合保持油圧や、前記各電磁弁に供給される電磁弁元圧を前記駆動側プーリに供給する構成としてもよい。こうすれば、変速油圧制御弁のフェール時などには、切換手段の切り換えによって、挟圧油圧や係合保持油圧、電磁弁元圧が駆動側プーリへ供給されるので、ベルト式無段変速機の変速比を制御する油圧が急激に低下することを抑制できる。これにより、新たな電磁弁を追加することなく、急減速状態の発生を回避でき、急減速にともなって発生するベルト滑りや過大なショックを防止することができる。
本発明によれば、油圧制御装置において、新たな電磁弁を追加することなく、変速油圧制御弁などのフェール時にも急減速状態の発生を回避できる。
本発明を実施するための最良の形態について添付図面を参照しながら説明する。
図1は、実施形態に係る車両用駆動装置の概略構成を示す図である。
図1に例示する車両用駆動装置は、FF(フロントエンジン・フロントドライブ)型車両に好適に採用されるものである。この車両用駆動装置は、走行用動力源であるエンジン(内燃機関)10、トルクコンバータ20、前後進切換装置30、ベルト式無段変速機(CVT)40、減速歯車装置50、および、差動歯車装置60を備えている。この車両用駆動装置において、エンジン10の出力は、トルクコンバータ20から前後進切換装置30、ベルト式無段変速機40、および、減速歯車装置50を介して差動歯車装置60に伝達され、左右の駆動輪70L,70Rへ分配される。上記トルクコンバータ20、前後進切換装置30、ベルト式無段変速機40などによって動力伝達機構が構成されている。
トルクコンバータ20は、流体(フルード)を介して動力伝達を行う流体伝動装置であって、エンジン10の出力軸11が連結されたフロントカバー21に一体的に設けられるポンプインペラ22と、このポンプインペラ22に対向しフロントカバー21の内面に隣接して設けられるとともにタービン軸28を介して前後進切換装置30に連結されるタービンランナ23とを備えている。具体的に、ポンプインペラ22とタービンランナ23とには、多数のブレード(図示せず)が設けられており、ポンプインペラ22が回転することによりフルードの螺旋流を生じさせ、その螺旋流をタービンランナ23に送ることによりタービンランナ23にトルクを与えて回転させるようになっている。
ポンプインペラ22とタービンランナ23との内周側の部分には、タービンランナ23から送り出されたフルードの流動方向を変化させてポンプインペラ22に流入させるステータ24が配置されている。このステータ24は、一方向クラッチ25を介して所定の固定部に連結されている。また、ポンプインペラ22には、油圧制御回路100(図3参照)の各部に作動油を供給したりするための油圧をエンジン10により回転駆動されることによって発生する機械式のオイルポンプ(油圧発生源)27が設けられている。
トルクコンバータ20は、ロックアップクラッチ26を備えている。ロックアップクラッチ26は、ポンプインペラ22とタービンランナ23とステータ24とからなる実質的なトルクコンバータに対して並列に配置されたものであって、フロントカバー21の内面に対向した状態でタービンランナ23に保持されている。そして、ロックアップクラッチ26は、油圧によってフロントカバー21の内面に押し付けられることにより、入力部材であるフロントカバー21から出力部材であるタービンランナ23に直接、トルクを伝達するようになっている。ここで、その油圧を制御することによりロックアップクラッチ26のクラッチ容量を制御できるようになっている。具体的には、ロックアップクラッチ26は、油圧制御回路100(図3参照)のロックアップコントロールバルブ140により、係合側油圧室261に供給されるロックアップ係合油圧PONと解放側油圧室262に供給されるロックアップ解放油圧POFFとの差圧(ロックアップ差圧)ΔPを制御することによって、完全係合・半係合(スリップ状態での係合)または解放される。
ロックアップクラッチ26を完全係合させることにより、フロントカバー21(ポンプインペラ22)およびタービンランナ23が一体回転する。また、ロックアップクラッチ26を所定のスリップ状態(半係合状態)で係合させることにより、駆動時には所定のスリップ量でタービンランナ23がポンプインペラ22に追従して回転する。一方、ロックアップ差圧ΔPを負に設定することによりロックアップクラッチ26は解放状態となる。油圧制御回路100によるロックアップクラッチ26の係合・解放については後述する。
前後進切換装置30は、ダブルピニオン型の遊星歯車機構31と、前進用クラッチC1と、後進用ブレーキB1とを備えている。
遊星歯車機構31のサンギヤ32は、トルクコンバータ20のタービン軸28に一体的に連結されており、キャリヤ36は、ベルト式無段変速機40の入力軸47に一体的に連結されている。キャリヤ36およびサンギヤ32は、前進用クラッチC1を介して選択的に連結されるようになっている。また、リングギヤ33は、後進用ブレーキB1を介してハウジングに選択的に固定されるようになっている。
サンギヤ32とリングギヤ33との間には、サンギヤ32に噛合する内側のピニオンギヤ34と、この内側のピニオンギヤ34およびリングギヤ33に噛合する外側のピニオンギヤ35とが配置されている。これらピニオンギヤ34,35は、キャリヤ36によって自転かつ公転自在に保持されている。
前進用クラッチC1および後進用ブレーキB1は、ともに油圧アクチュエータによって係合・解放される油圧式の走行用摩擦係合要素である。前進用クラッチC1が係合されるとともに後進用ブレーキB1が解放されることにより、前後進切換装置30は一体回転状態となり、前後進切換装置30において前進用動力伝達経路が成立する。この状態では、前進方向の駆動力がベルト式無段変速機40側へ伝達される。一方、後進用ブレーキB1が係合されるとともに前進用クラッチC1が解放されることにより、前後進切換装置30において後進用動力伝達経路が成立する。この状態では、入力軸47はタービン軸28に対して逆方向へ回転し、この後進方向の駆動力がベルト式無段変速機40側へ伝達される。また、前進用クラッチC1および後進用ブレーキB1がともに解放されると、前後進切換装置30は、エンジン10とベルト式無段変速機40との間の動力伝達を遮断するニュートラル(遮断状態)になる。
より詳細には、前進用クラッチC1および後進用ブレーキB1は、油圧制御回路100(図3参照)のマニュアルバルブ170がシフトレバー87(図2参照)の操作にしたがって機械的に切り換えられることにより、係合・解放されるようになっている。シフトレバー87は、例えば、運転席の横に配設されて運転者により切換操作されるもので、駐車のためのパーキング位置「P」、後進走行のためのリバース位置「R」、動力伝達を遮断するニュートラル位置「N」、前進走行のためのドライブ位置「D」などの各シフト位置に選択的に操作されるようになっている。パーキング位置「P」およびニュートラル位置「N」では、前進用クラッチC1および後進用ブレーキB1はともに解放される。リバース位置「R」では、後進用ブレーキB1が係合される一方、前進用クラッチC1が解放される。ドライブ位置「D」では、前進用クラッチC1が係合される一方、後進用ブレーキB1が解放される。油圧制御回路100による前後進切換装置30の走行用摩擦係合要素(前進用クラッチC1、後進用ブレーキB1)の係合・解放については後述する。
ベルト式無段変速機40は、油圧により伝動ベルト45を挟圧して動力を伝達するとともにその伝動ベルト45の掛かり径を変更して変速比を変化させるものである。ベルト式無段変速機40は、上記入力軸47に設けられた駆動側プーリ(プライマリプーリ)41と、出力軸48に設けられた従動側プーリ(セカンダリプーリ)42と、これらの両プーリ41,42に巻き掛けられた金属製の伝動ベルト45とを備えている。そして、ベルト式無段変速機40は、両プーリ41,42と伝動ベルト45との間の摩擦力を介して動力伝達が行われるように構成されている。
駆動側プーリ41は、有効径が可変な可変プーリであって、入力軸47に固定された固定シーブ411と、入力軸47に軸方向のみの摺動が可能な状態で配設された可動シーブ412によって構成されている。従動側プーリ42も同様に、有効径が可変な可変プーリであって、出力軸48に固定された固定シーブ421と、出力軸48に軸方向のみの摺動が可能な状態で配設された可動シーブ422によって構成されている。駆動側プーリ41の可動シーブ412側には、固定シーブ411と可動シーブ412との間のV溝幅を変更するための油圧アクチュエータ413が配置されている。また、従動側プーリ42の可動シーブ422側にも同様に、固定シーブ421と可動シーブ422との間のV溝幅を変更するための油圧アクチュエータ423が配置されている。
そして、ベルト式無段変速機40において、駆動側プーリ41の油圧アクチュエータ413の油圧(変速油圧)PINを制御することにより、両プーリ41,42のV溝幅が変化して伝動ベルト45の掛かり径(有効径)が変更され、変速比γ(=入力軸回転速度NIN/出力軸回転速度NOUT)が連続的に変化する。また、従動側プーリ42の油圧アクチュエータ423の油圧(挟圧油圧)POUTは、伝動ベルト45の滑りが生じない範囲で伝達トルクを伝達する所定のベルト挟圧力(摩擦力)を発生させるように制御される。
駆動側プーリ41の油圧アクチュエータ413の変速油圧PIN、および、従動側プーリ42の油圧アクチュエータ423の挟圧油圧POUTは、電子制御装置80(図2参照)からの指令にしたがってそれぞれ調圧される。ここで、変速油圧PINは、油圧制御回路100(図3参照)の変速油圧コントロールバルブ120によって調圧制御される。また、挟圧油圧POUTは、油圧制御回路100の挟圧油圧コントロールバルブ130によって調圧制御される。油圧制御回路100によるベルト式無段変速機40の変速油圧PINおよび挟圧油圧POUTの調圧については後述する。
図2は、上述した車両用駆動装置の動力伝達機構の制御系統の一例を示すブロック図である。
図2に例示する電子制御装置80は、CPU801、ROM802、RAM803、バックアップRAM804を備えている。そして、CPU801がRAM803の一時記憶機能を利用しつつ予めROM802に記憶されたプログラムにしたがって信号処理を行うことにより、ベルト式無段変速機40の変速油圧PINおよび挟圧油圧POUTの調圧制御、前後進切換装置30の走行用摩擦係合要素(前進用クラッチC1、後進用ブレーキB1)の係合・解放の制御、トルクコンバータ20のロックアップクラッチ26の係合・解放の制御、各部の油圧の元圧となるライン油圧PLの調圧制御などの各種制御が実行されるようになっている。
詳しく説明すれば、ROM802には、各種制御プログラムや、それら各種制御プログラムを実行する際に参照されるマップ等が記憶されている。CPU801は、ROM802に記憶された各種制御プログラムやマップに基づいて演算処理を実行する。また、RAM803は、CPU801での演算結果や各センサから入力されたデータ等を一時的に記憶するメモリであり、バックアップRAM804は、エンジン10の停止時にその保存すべきデータ等を記憶する不揮発性のメモリである。これらCPU801、ROM802、RAM803、および、バックアップRAM804は、双方向性バス807を介して互いに接続されるとともに、入力インターフェース805および出力インターフェース806に接続されている。
入力インターフェース805には、上記車両用駆動装置を搭載した車両の動作状態(あるいは走行状態)を検出するために各種のセンサが接続されている。具体的に、入力インターフェース805には、レバーポジションセンサ81、アクセル操作量センサ82、エンジン回転速度センサ83、車速センサとしても機能する出力軸回転速度センサ84、入力軸回転速度センサ85、タービン回転速度センサ86などが接続されている。レバーポジションセンサ81は、例えば、パーキング位置「P」、リバース位置「R」、ニュートラル位置「N」、ドライブ位置「D」などのシフト位置にシフトレバー87が操作されたことを検出する複数のON−OFFスイッチ等を備えている。
そして、電子制御装置80には、これらの各種センサからそれぞれシフトレバー87のレバーポジション(操作位置)PSH、アクセルペダル等のアクセル操作部材の操作量(アクセル操作量)θACC、エンジン10の回転速度(エンジン回転速度)NE、ベルト式無段変速機40の出力軸48の回転速度(出力軸回転速度)NOUT、ベルト式無段変速機40の入力軸47の回転速度(入力軸回転速度)NIN、トルクコンバータ20のタービン軸28の回転速度(タービン回転速度)NTなどを表す信号が供給されるようになっている。タービン回転速度NTは、前後進切換装置30の前進用クラッチC1が係合させられた前進走行時には入力軸回転速度NINと一致する。出力軸回転速度NOUTは車速Vに対応する。また、アクセル操作量θACCは運転者の出力要求量を表している。
出力インターフェース806には、油圧制御回路100のリニアソレノイドバルブSLP,SLS,SLT、ON−OFFソレノイドバルブSL1などが接続されている。電子制御装置80は、油圧制御回路100のリニアソレノイドバルブSLP,SLS,SLTの励磁電流を制御して、これらのリニアソレノイドバルブSLP,SLS,SLTから出力される制御油圧PSLP,PSLS,PSLTをそれぞれ調圧するとともに、油圧制御回路100のON−OFFソレノイドバルブSL1のON状態(励磁状態)とOFF状態(非励磁状態)とを切り換える。これにより、ベルト式無段変速機40の変速油圧PINおよび挟圧油圧POUTの調圧制御、前後進切換装置30の走行用摩擦係合要素の係合・解放制御、ロックアップクラッチ26の係合・解放制御、ライン油圧PLの調圧制御などが行われるようになっている。
図3は、上述した車両用駆動装置の動力伝達機構を制御するための油圧制御回路の一例を示す回路図である。
図3に例示する油圧制御回路100は、上述したオイルポンプ27、変速油圧コントロールバルブ120、挟圧油圧コントロールバルブ130、ロックアップコントロールバルブ140、マニュアルバルブ170を含み、さらに、プライマリレギュレータバルブ110、ガレージシフトバルブ160、減圧バルブ180、フェールセーフバルブ190を含む。また、油圧制御回路100は、上述した電子制御装置80に接続されるリニアソレノイドバルブSLP,SLS,SLT、ON−OFFソレノイドバルブSL1を含む。なお、図3に示す油圧制御回路100は、車両用駆動装置の動力伝達機構の油圧制御回路の一部分について概略的に示したものであり、実際の油圧回路は、この図3に示すもの以外に図示しないバルブや油路なども含んでいる。
油圧制御回路100において、オイルポンプ27により発生された油圧は、プライマリレギュレータバルブ110により各部の油圧の元圧となるライン油圧PLに調整される。プライマリレギュレータバルブ110によって調圧されたライン油圧PLは、油路101を介して、変速油圧コントロールバルブ120や挟圧油圧コントロールバルブ130などの油圧制御回路100の各部に供給される。
プライマリレギュレータバルブ110は、軸方向へ移動可能な第1スプール111aおよび第2スプール111bと、第1スプール111aおよび第2スプール111bを一方へ付勢する付勢手段としてのスプリング112とを備えている。図3においては、上側に設けられた第1スプール111aと下側に設けられた第2スプール111bとがともに上下に摺動可能に設けられている。プライマリレギュレータバルブ110には、制御ポート115a,115b,115cと、入力ポート116と、出力ポート117とが設けられている。
第1スプール111aによって、入力ポート116と出力ポート117とが連通・遮断される。スプリング112は、第2スプール111bの一端側(図3では下端側)に設けられた制御油圧室113cに圧縮状態で配置されている。つまり、この制御油圧室113cは、スプリング112が配置されるスプリング室になっている。スプリング112の付勢力によって、入力ポート116と出力ポート117とを遮断する方向(図3では上方)に第2スプール111bおよび第1スプール111aが押圧されている。
制御ポート115aは、第1スプール111aの他端側(図3では上端側)に設けられる制御油圧室113aに接続されている。また、制御ポート115aは、油路101に接続されている。この制御ポート115aを介して、制御油圧室113aにライン油圧PLが供給される。
制御ポート115bは、第1スプール111aの一端側と第2スプール111bの他端側との間に設けられる制御油圧室113bに接続されている。また、制御ポート115bは、油路102を介してリニアソレノイドバルブSLSの出力ポートSLSbに接続されている。この制御ポート115bを介して、制御油圧室113bにリニアソレノイドバルブSLSの出力油圧(制御油圧)PSLSが供給される。
制御ポート115cは、上記制御油圧室113cに接続されている。また、制御ポート115cは、油路103を介して減圧バルブ180の出力ポート187に接続されている。この制御ポート115cを介して、制御油圧室113cに減圧バルブ180の出力油圧PCTLが供給される。
入力ポート116は、油路101に接続されている。この入力ポート116を介してライン油圧PLが入力されるようになっている。出力ポート117は、図示しないセカンダリレギュレータバルブに接続されている。
第1スプール111aは、制御油圧室113aに導入される上記ライン油圧PLによる力と、制御油圧室113bに導入される上記制御油圧PSLSによる力または制御油圧室113cに導入される減圧バルブ180の出力油圧PCTLによる力およびスプリング112の付勢力の合成力とのバランスにより上下に摺動する。そして、上記制御油圧などによる力が上記ライン油圧PLによる力に勝っている間は、入力ポート116と出力ポート117とが遮断された状態になっている。一方、上記ライン油圧PLによる力が上記制御油圧などによる力に勝ると、第1スプール111aが図3において下方に移動して、入力ポート116と出力ポート117とが連通されるようになる。これにより、油路101からの油圧が出力ポート117を介してドレーンされることで、ライン油圧PLの調整が行われる。したがって、リニアソレノイドバルブSLSの制御油圧PSLSおよび減圧バルブ180の出力油圧PCTL(言い換えれば、リニアソレノイドバルブSLTの制御油圧PSLT)の少なくとも一方の油圧を制御することで、ライン油圧PLの調圧制御を行うことが可能になっている。
ここで、第1スプール111aと第2スプール111bとが同径に形成されている。そして、制御ポート115bを介して供給される上記制御油圧PSLSの第1スプール111aへの作用面積(受圧面積)と、上記制御油圧PSLSの第2スプール111bへの作用面積(受圧面積)と、制御ポート115cを介して供給される上記出力油圧PCTLの第2スプール111bへの作用面積(受圧面積)とが同じになっている。
そして、制御油圧室113bに導入される上記制御油圧PSLSによる力(制御油圧PSLS*(受圧面積))および制御油圧室113cに導入される減圧バルブ180の出力油圧PCTLによる力(出力油圧PCTL*(受圧面積))とスプリング112の付勢力との合成力のうち高いほうの油圧が選択される。具体的に、プライマリレギュレータバルブ110は、上記出力油圧PCTLによる力とスプリング112の付勢力との合成力に比べ上記制御油圧PSLSによる力のほうが高いとき、第1スプール111aは第2スプール111bに対し離間した状態で上下に移動する一方、上記制御油圧PSLSによる力に比べ上記出力油圧PCTLによる力とスプリング112の付勢力との合成力のほうが高いとき、両スプール111a,111bが接触して一体的な状態で上下に移動するように構成されている。このように、ライン油圧PLの制御の際、2つの制御油圧PSLS,PSLTの演算などを行わなくても、ライン油圧PLの制御に用いられる油圧が自動的に選択されるので、ライン油圧PLの制御を容易に行うことが可能になる。
変速油圧コントロールバルブ120は、軸方向へ移動可能なスプール121と、そのスプール121を一方へ付勢する付勢手段としてのスプリング122とを備えている。変速油圧コントロールバルブ120は、リニアソレノイドバルブSLPの出力油圧(制御油圧)PSLPをパイロット圧として、元圧となるライン油圧PLを連続的に調圧制御するように構成されている。そして、変速油圧コントロールバルブ120により調整された油圧(変速油圧PIN)は、油路109a,109dを介して駆動側プーリ41の油圧アクチュエータ413に供給される。変速油圧コントロールバルブ120と油圧アクチュエータ413との間(油路109a,109dの間)には、後述するフェールセーフバルブ190が介在されている。なお、ここでは、フェールセーフバルブ190が図3の左半分に示すノーマル位置に切り換えられており、油路109a,109dが連通されていることとする。
したがって、変速油圧PINの調圧制御は、リニアソレノイドバルブSLPの制御油圧PSLPを制御することによって行われるようになっている。上記制御油圧PSLPは励磁電流に応じてリニアに変化するため、この制御油圧PSLPに応じてベルト式無段変速機40の変速比γが連続的に変更される。この場合、例えば、ROM802に予め記憶された変速マップから実際の車速Vおよびアクセル開度θACCで示される車両状態に基づいて設定される目標入力軸回転速度と、実際の入力軸回転速度NINとが一致するように、それらの回転速度差(偏差)に応じてベルト式無段変速機40の変速比γが変更される。変速マップは、変速条件に相当するもので、例えば、アクセル開度θACCをパラメータとして車速Vとベルト式無段変速機40の目標入力回転速度である目標入力軸回転速度との関係である。
挟圧油圧コントロールバルブ130は、軸方向へ移動可能なスプール131と、そのスプール131を一方へ付勢する付勢手段としてのスプリング132とを備えている。挟圧油圧コントロールバルブ130は、リニアソレノイドバルブSLSの制御油圧PSLSをパイロット圧として、元圧となるライン油圧PLを連続的に調圧制御するように構成されている。そして、挟圧油圧コントロールバルブ130により調整された油圧(挟圧油圧POUT)は、油路109bを介して従動側プーリ42の油圧アクチュエータ423に供給される。
したがって、挟圧油圧POUTの調圧制御は、リニアソレノイドバルブSLSの制御油圧PSLSを制御することによって行われるようになっている。上記制御油圧PSLSは励磁電流に応じてリニアに変化するため、この制御油圧PSLSに応じてベルト式無段変速機40のベルト挟圧力が連続的に変更される。この場合、例えば、ROM802に予め記憶された挟圧力マップから実際の変速比γおよびアクセル開度θACCで示される車両状態に基づいて設定される必要な目標変速油圧が得られるように従動側プーリ42の油圧アクチュエータ423の挟圧油圧POUTが調圧され、この挟圧油圧POUTに応じてベルト式無段変速機40のベルト挟圧力が変更される。挟圧力マップは、アクセル開度θACCをパラメータとして変速比γと必要とされる目標変速油圧との関係であり、ベルト滑りが生じないように予め実験的により求められる関係である。
ここで、変速油圧PINおよび挟圧油圧POUTは元圧となるライン油圧PLを調圧して得られるので、ライン油圧PLは少なくとも変速油圧PINおよび挟圧油圧POUT以上であることが必要である。このため、ベルト式無段変速機40の変速比γおよび挟圧力の制御を行うのに必要とされる目標変速油圧および目標挟圧油圧以上のライン油圧PLが得られるように、オイルポンプ27を駆動する必要がある。この場合、必要とされる目標変速油圧および目標挟圧油圧は、例えば、図6に示すように設定される。この図6は、入力軸回転速度NINおよび入力トルクを一定とした条件下で、ベルト式無段変速機40の変速比γに応じて必要とされる目標変速油圧および目標挟圧油圧の設定値の変化の一例を示している。図中の破線は目標変速油圧の変化を示し、一点鎖線は目標挟圧油圧の変化を示している。
変速比γがγ1よりも低い増速側(図中左側)では、目標挟圧油圧に比べ目標変速油圧が高く設定され、その差は増速度が高くなるほど大きくなる。一方、変速比γがγ1よりも高い減速側(図中右側)では、目標変速油圧に比べ目標挟圧油圧が高く設定され、その差は減速度が高くなるほど大きくなる。つまり、目標変速油圧および目標挟圧油圧の設定値は変速比γの変化にともなって(上記変速比γ1を切換点として)逆転する。そして、オイルポンプ27の駆動損失を抑制するためには、変速比γがγ1よりも高い場合、ライン油圧PLを目標挟圧油圧に比べ同じもしくは僅かに高く設定することが好ましく、また、変速比γがγ1よりも低い場合、ライン油圧PLを目標変速油圧に比べ同じもしくは僅かに高く設定することが好ましい。なお、その変速比γ1の具体的な値としては変速比「1」が挙げられるが、油圧アクチュエータ413,423の面積に依存するため、これに限定されるものではない。
減圧バルブ180は、上記プライマリレギュレータバルブ110の制御油圧室113cに導入される油圧を調整する調圧弁である。減圧バルブ180は、プライマリレギュレータバルブ110とリニアソレノイドバルブSLTとの間に設けられている。具体的に、減圧バルブ180は、軸方向へ移動可能なスプール181と、そのスプール181を一方へ付勢する付勢手段としてのスプリング182とを備えている。図3においては、スプール181が上下に摺動可能に設けられている。減圧バルブ180には、制御ポート185と、入力ポート186と、出力ポート187と、フィードバックポート188とが設けられている。
スプール181によって、入力ポート186と出力ポート187とが連通・遮断される。スプリング182は、スプール181の一端側(図3では下端側)に設けられたスプリング室184に圧縮状態で配置されている。スプリング182の付勢力によって、入力ポート186と出力ポート187とを遮断する方向(図3では上方)にスプール181が押圧されている。
制御ポート185は、スプール181の他端側(図3では上端側)に設けられる制御油圧室183に接続されている。また、制御ポート185は、油路104を介してリニアソレノイドバルブSLTの出力ポートSLTbに接続されている。この制御ポート185を介して、制御油圧室183にリニアソレノイドバルブSLTの出力油圧(制御油圧)PSLTが供給される。
入力ポート186は、図示しない第1モジュレータバルブに接続されている。この入力ポート186を介して、ライン油圧PLを元圧として第1モジュレータバルブにより調圧された第1モジュレータ油圧PM1が入力されるようになっている。出力ポート187は、油路103を介して上述したプライマリレギュレータバルブ110の制御ポート115cに接続されている。そして、この減圧バルブ180によって減圧された油圧(出力油圧PCTL)が出力ポート187から出力されるようになっている。
フィードバックポート188は、上記スプリング室184に接続されている。また、フィードバックポート188は、油路103に接続されている。このフィードバックポート188を介して、スプリング室184に上記出力油圧PCTLと等しい油圧が供給される。
スプール181は、制御油圧室183に導入される上記制御油圧PSLTと、スプリング室184に導入される上記出力油圧PCTLおよびスプリング182の付勢力の合成力とのバランスにより上下に摺動する。この場合、スプリング182の付勢力が上記制御油圧PSLTによる力に勝っている間は、スプール181が他端側に固定された状態になっており、入力ポート186と出力ポート187とが遮断されている。この状態では、上記出力油圧PCTLは、スプリング室184およびプライマリレギュレータバルブ110の制御油圧室113cへは導入されない。
一方、上記制御油圧PSLTによる力がスプリング182の付勢力に勝ると、スプール181の一端側への移動が許容されるようになる。これにともない、入力ポート186と出力ポート187とが連通され、これにより、上記出力油圧PCTLが、油路103を介して、スプリング室184およびプライマリレギュレータバルブ110の制御油圧室113cへ導入されるようになる。
出力ポート187から出力される出力油圧PCTLは、スプリング182の付勢力(荷重)をW1、フィードバックポート188を介して供給される上記出力油圧PCTLのスプール181への作用面積(受圧面積)をS1とすると、[PSLT−W1/S1]、となる。したがって、図4に示すように、リニアソレノイドバルブSLTの制御油圧PSLTを制御することで、減圧バルブ180の出力油圧PCTLの調圧制御を行うことが可能になっている。
このように、減圧バルブ180により、上記出力油圧PCTLは、リニアソレノイドバルブSLTの制御油圧PSLTに対しスプリング182の付勢力に相当する油圧だけ減圧されたものとなっている。これにより、リニアソレノイドバルブSLTを、後述するように、ライン油圧PLの調圧制御のためだけではなく、ロックアップクラッチ26の係合・解放制御のためにも用いることが可能になっている。
マニュアルバルブ170は、シフトレバー87の操作にしたがって前後進切換装置30の前進用クラッチC1および後進用ブレーキB1への油圧供給を切り換える切換弁である。マニュアルバルブ170は、シフトレバー87のパーキング位置「P」、リバース位置「R」、ニュートラル位置「N」、ドライブ位置「D」などの各シフト位置に対応して切り換えられる。
マニュアルバルブ170が、シフトレバー87のパーキング位置「P」およびニュートラル位置「N」に対応して切り換えられている場合、前進用クラッチC1の油圧サーボおよび後進用ブレーキB1の油圧サーボへは油圧は供給されない。前進用クラッチC1の油圧サーボおよび後進用ブレーキB1の油圧サーボの作動油は、マニュアルバルブ170を介してドレーンされる。これにより、前進用クラッチC1および後進用ブレーキB1がともに解放される。
マニュアルバルブ170が、シフトレバー87のリバース位置「R」に対応して切り換えられている場合、後進用ブレーキB1の油圧サーボへは油圧が供給される一方、前進用クラッチC1の油圧サーボへは油圧は供給されない。前進用クラッチC1の油圧サーボの作動油は、マニュアルバルブ170を介してドレーンされる。これにより、後進用ブレーキB1が係合されるとともに、前進用クラッチC1が解放される。
マニュアルバルブ170が、シフトレバー87のドライブ位置「D」に対応して切り換えられている場合、入力ポート176および出力ポート177が連通され、前進用クラッチC1の油圧サーボへ油圧が供給される。一方、後進用ブレーキB1の油圧サーボへは油圧は供給されない。後進用ブレーキB1の油圧サーボの作動油は、マニュアルバルブ170を介してドレーンされる。これにより、前進用クラッチC1が係合されるとともに、後進用ブレーキB1が解放される。前進用クラッチC1の係合にともなう油圧供給は、次に述べるガレージシフトバルブ160を介して行われる。
ガレージシフトバルブ160は、ガレージシフトの際、前後進切換装置30の走行用摩擦係合要素(前進用クラッチC1、後進用ブレーキB1)の係合過渡時と係合時(完全係合時)とに対応して油路を切り換える切換弁である。このガレージシフトバルブ160の切り換えにより、例えば、車両発進時などにシフトレバー87がパーキング位置「P」やニュートラル位置「N」などの非走行位置からドライブ位置「D」などの走行位置へ操作された際、前進用クラッチC1の油圧サーボへの供給油圧が、係合過渡時に対応する係合過渡油圧と、完全係合時に対応する係合保持油圧とに切り換えられる。同様に、シフトレバー87がリバース位置「R」に操作された際にも、ガレージシフトバルブ160の切り換えにより、後進用ブレーキB1の油圧サーボへの供給油圧が、係合過渡時に対応する係合過渡油圧と、完全係合時に対応する係合保持油圧とに切り換えられる。なお、ここでは、ガレージシフトバルブ160により、前進用クラッチC1の油圧サーボへの供給油圧を切り換える場合について代表して説明する。
具体的には、ガレージシフトバルブ160は、前進用クラッチC1の係合過渡時には、図3の左半分に示すコントロール位置に切り換えられ、前進用クラッチC1の完全係合時には、図3の右半分に示すノーマル位置に切り換えられるように構成されている。ガレージシフトバルブ160の切り換えは、ON−OFFソレノイドバルブSL1の出力油圧(制御油圧)PSL1を制御することによって行われる。
ガレージシフトバルブ160は、軸方向へ移動可能なスプール161と、そのスプール161を一方へ付勢する付勢手段としてのスプリング162とを備えている。図3においては、スプール161が上下に摺動可能に設けられている。スプリング162は、スプール161の一端側(図3では下端側)に設けられたスプリング室164に圧縮状態で配置されている。スプリング162の付勢力によって、ガレージシフトバルブ160を上記ノーマル位置に保持する方向(図3では上方)へスプール161が押圧されている。ガレージシフトバルブ160には、制御ポート165と、入力ポート166a,166b,166cと、出力ポート167a,167bと、ドレーンポート169a,169bとが設けられている。
制御ポート165は、スプール161の他端側(図3では上端側)に設けられる制御油圧室163に接続されている。また、制御ポート165は、ON−OFFソレノイドバルブSL1の出力ポートSL1bに接続されている。この制御ポート165を介して、制御油圧室163にON−OFFソレノイドバルブSL1の制御油圧PSL1が供給される。
入力ポート166aは、図示しない第2モジュレータバルブに接続されている。この入力ポート166aを介して、ライン油圧PLを元圧として第2モジュレータバルブにより調圧された第2モジュレータ油圧PM2が入力されるようになっている。入力ポート166b,166cは、油路105を介してリニアソレノイドバルブSLTの出力ポートSLTcにそれぞれ接続されている。入力ポート166b,166cを介して、リニアソレノイドバルブSLTの制御油圧PSLTがそれぞれ入力されるようになっている。なお、上記第2モジュレータバルブはプライマリレギュレータバルブ110の下流側に設けられ、この第2モジュレータバルブの下流側に上記第1モジュレータバルブが設けられる。このため、上記第2モジュレータ油圧PM2は、上記第1モジュレータ油圧PM1に比べ高く設定されるようになっている。
出力ポート167aは、油路107を介してマニュアルバルブ170の入力ポート176に接続されている。出力ポート167bは、油路108を介してロックアップコントロールバルブ140のバックアップポート145bに接続されている。ドレーンポート169bは、スプリング室164に接続されている。
続いて、ガレージシフトバルブ160の切り換え動作について説明する。
この実施形態では、ガレージシフトバルブ160の切り換えを行うための制御弁として、ON−OFFソレノイドバルブSL1が設けられている。ON−OFFソレノイドバルブSL1は、電子制御装置80から送られる指令にしたがって、ON状態とOFF状態とを切り換えるように構成されている。ON−OFFソレノイドバルブSL1として、以下に述べるようなノーマルクローズタイプの電磁弁を用いることが可能であるが、ノーマルオープンタイプの電磁弁を用いる構成としてもよい。なお、ガレージシフトバルブ160の切り換えを行うための制御弁として、ON−OFFソレノイドバルブSL1の代わりに、リニアタイプの電磁弁や、デューティタイプの電磁弁、三方弁タイプの電磁弁などを用いることが可能である。
具体的には、ON−OFFソレノイドバルブSL1が通電時であるON状態のとき、所定の制御油圧PSL1が出力ポートSL1bから出力され、その制御油圧PSL1がガレージシフトバルブ160へ供給される。そして、その制御油圧PSL1によってスプール161がスプリング162の付勢力に抗して下方に移動する。これにより、ガレージシフトバルブ160がコントロール位置に保持される。一方、ON−OFFソレノイドバルブSL1が非通電時であるOFF状態のとき、その制御油圧PSL1の出力が停止される。そして、スプリング162の付勢力によってスプール161が上方に移動する。これにより、ガレージシフトバルブ160がノーマル位置に保持される。なお、ON−OFFソレノイドバルブSL1には、上記第1モジュレータバルブにより調圧された上記第1モジュレータ油圧PM1が、入力ポートSL1aを介して導入される。
そして、ON−OFFソレノイドバルブSL1は、前後進切換装置30の前進用クラッチC1の係合過渡時、言い換えれば、前進用クラッチC1の係合動作が開始されてから前進用クラッチC1が完全係合状態に至るまでの間は、ON状態に制御される。これにともない、ON−OFFソレノイドバルブSL1の制御油圧PSL1が制御ポート165を介して制御油圧室163に導入され、ガレージシフトバルブ160がコントロール位置に保持される。これにより、入力ポート166bおよび出力ポート167a、入力ポート166cおよび出力ポート167bがそれぞれ連通される。
この場合、マニュアルバルブ170の入力ポート176および出力ポート177が連通されているので、入力ポート166bおよび出力ポート167aの連通により、リニアソレノイドバルブSLTの制御油圧PSLTが前進用クラッチC1の油圧サーボへ供給されるようになる。したがって、前進用クラッチC1の係合過渡時に油圧サーボに供給される係合過渡油圧が上記制御油圧PSLTになっている。こうして、リニアソレノイドバルブSLTにより前進用クラッチC1の係合過渡制御が行われる。ここで、係合過渡油圧としてのリニアソレノイドバルブSLTの制御油圧PSLTは励磁電流に応じてリニアに変化するため(図5参照)、ガレージシフトの際、前進用クラッチC1のスムーズな係合が可能になり、前進用クラッチC1の係合にともなうショックの抑制が可能になる。また、入力ポート166cおよび出力ポート167bの連通により、上記制御油圧PSLTが油路108を介してロックアップコントロールバルブ140のスプリング室144aへ供給されるようになる。
一方、ON−OFFソレノイドバルブSL1は、前進用クラッチC1が完全に係合した完全係合時(例えば、定常走行時など)にはOFF状態に制御される。この場合、制御油圧室163へのON−OFFソレノイドバルブSL1の制御油圧PSL1の供給が停止されるので、ガレージシフトバルブ160はノーマル位置に保持される。これにより、入力ポート166aおよび出力ポート167aが連通される。この場合、マニュアルバルブ170の入力ポート176および出力ポート177が連通されているので、入力ポート166aおよび出力ポート167aの連通により、上記第2モジュレータ油圧PM2が前進用クラッチC1の油圧サーボへ供給されるようになる。したがって、前進用クラッチC1の完全係合時に油圧サーボに供給される係合保持油圧が上記第2モジュレータ油圧PM2になっている。ここで、上記第2モジュレータ油圧PM2は、上記制御油圧PSLT以上の一定油圧(クラッチ圧)に設定されており、前進用クラッチC1を完全係合状態で確実に保持することが可能になる。
なお、上記以外の場合(係合過渡時と完全係合時以外の場合)には、ON−OFFソレノイドバルブSL1はOFF状態に制御され、ガレージシフトバルブ160はノーマル位置に保持される。しかし、シフトレバー87のドライブ位置「D」などの走行位置以外の位置に対応してマニュアルバルブ170が切り換えられていれば、マニュアルバルブ170の入力ポート176および出力ポート177が遮断されるため、上記第2モジュレータ油圧PM2が前進用クラッチC1の油圧サーボへ供給されることはない。
ロックアップコントロールバルブ140は、ロックアップクラッチ26の係合・解放を制御するものである。具体的には、ロックアップコントロールバルブ140は、ロックアップ差圧ΔP(ΔP=ロックアップ係合油圧PON−ロックアップ解放油圧POFF)を制御することによって、ロックアップクラッチ26の係合・解放を制御するように構成されている。ロックアップコントロールバルブ140によるロックアップ差圧ΔPの制御は、リニアソレノイドバルブSLTの制御油圧PSLTを制御することによって行われる。
ロックアップコントロールバルブ140は、軸方向へ移動可能なスプール141と、そのスプール141を一方へ付勢する付勢手段としてのスプリング142とを備えている。図3においては、スプール141が上下に摺動可能に設けられている。スプリング142は、スプール141の一端側(図3では下端側)に設けられたスプリング室144aに圧縮状態で配置されている。スプリング142の付勢力によって、ロックアップコントロールバルブ140を図3の左半分に示すOFF位置に保持する方向(図3では上方)へスプール141が押圧されている。ロックアップコントロールバルブ140には、制御ポート145aと、バックアップポート145bと、入力ポート146a,146bと、解放側ポート147aと、係合側ポート147bと、フィードバックポート148と、ドレーンポート149a,149bとが設けられている。
制御ポート145aは、スプール141の他端側(図3では上端側)に設けられる制御油圧室143に接続されている。また、制御ポート145aは、油路105を介してリニアソレノイドバルブSLTの出力ポートSLTcに接続されている。この制御ポート145aを介して、制御油圧室143にリニアソレノイドバルブSLTの制御油圧PSLTが供給される。
バックアップポート145bは、上記スプリング室144aに接続されている。また、バックアップポート145bは、油路108を介してガレージシフトバルブ160の出力ポート167bに接続されている。ガレージシフトバルブ160がコントロール位置に保持されている場合、このバックアップポート145bを介して、スプリング室144aに上記制御油圧PSLTが供給される。
入力ポート146a,146bは、プライマリレギュレータバルブ110の出力ポート117に接続された図示しないセカンダリレギュレータバルブにそれぞれ接続されている。入力ポート146a,146bを介して、セカンダリレギュレータバルブによって調圧されたセカンダリ油圧PSECが入力されるようになっている。
解放側ポート147aは、油路106aを介してロックアップクラッチ26の解放側油圧室262に接続されている。係合側ポート147bは、油路106bを介してロックアップクラッチ26の係合側油圧室261に接続されている。
フィードバックポート148は、スプール141の一端側に設けられたフィードバック油圧室144bに接続されている。また、フィードバックポート148は、油路106bに接続されている。このフィードバックポート148を介して、フィードバック油圧室144bにロックアップ係合油圧PONと等しい油圧が供給される。ドレーンポート149bは、図示しない潤滑回路と連通している。
続いて、ロックアップコントロールバルブ140によるロックアップクラッチ26の動作について説明する。
リニアソレノイドバルブSLTの制御油圧PSLTが制御ポート145aを介して制御油圧室143に導入されると、ロックアップコントロールバルブ140は、その制御油圧PSLTに応じてスプール141がスプリング142の付勢力に抗して下方に移動した状態(ON状態)となる。この場合、上記制御油圧PSLTを高くするほど、スプール141が下方に移動する。図3の右半分には、スプール141が最大限下方に移動した状態を示している。この図3の右半分に示す状態では、入力ポート146bおよび係合側ポート147b、解放側ポート147aおよびドレーンポート149aがそれぞれ連通される。このとき、ロックアップクラッチ26は完全係合状態になっている。
ロックアップコントロールバルブ140がON状態のとき、スプール141は、制御油圧室143に導入される上記制御油圧PSLT、および、解放側ポート147aと入力ポート146aとに作用するロックアップ解放油圧POFFの合成力と、フィードバック油圧室144bに導入されるロックアップ係合油圧PONおよびスプリング142の付勢力の合成力とのバランスにより上下に摺動する。ここで、ロックアップクラッチ26はロックアップ差圧ΔPに応じて係合される。ロックアップ差圧ΔPの制御は、リニアソレノイドバルブSLTの制御油圧PSLTを制御することによって行われるようになっている。上記制御油圧PSLTは励磁電流に応じてリニアに変化するため(図5参照)、ロックアップ差圧ΔPを連続的に調整することが可能になる。これにともない、そのロックアップ差圧ΔPに応じてロックアップクラッチ26の係合度合い(クラッチ容量)を連続的に変化させることが可能になる。
より詳細には、上記制御油圧PSLTを高くするほど、ロックアップ差圧ΔPが大きくなり、ロックアップクラッチ26の係合度合いが大きくなる。この場合、上記セカンダリレギュレータバルブからの作動油が、入力ポート146b、係合側ポート147b、油路106bを介してロックアップクラッチ26の係合側油圧室261に供給される。一方、解放側油圧室262の作動油が、油路106a、解放側ポート147a、ドレーンポート149aを介して排出される。そして、ロックアップ差圧ΔPが所定値以上になると、ロックアップクラッチ26は完全係合に至る。
逆に、上記制御油圧PSLTを低くするほど、ロックアップ差圧ΔPが小さくなり、ロックアップクラッチ26の係合度合いが小さくなる。この場合、上記セカンダリレギュレータバルブからの作動油が、入力ポート146a、解放側ポート147a、油路106aを介して解放側油圧室262に供給される。一方、係合側油圧室261の作動油が、油路106b、係合側ポート147b、ドレーンポート149bを介して排出される。そして、ロックアップ差圧ΔPが負の値になると、ロックアップクラッチ26は解放状態となる。
一方、リニアソレノイドバルブSLTの制御油圧PSLTの制御油圧室143への供給が停止されると、ロックアップコントロールバルブ140は、図3の左半分に示すように、スプール141がスプリング142の付勢力によって上方へ移動して原位置に保持された状態(OFF状態)となる。このOFF状態では、入力ポート146aおよび解放側ポート147a、係合側ポート147bおよびドレーンポート149bがそれぞれ連通される。このとき、ロックアップクラッチ26は解放状態となっている。
また、ガレージシフトバルブ160がコントロール位置に保持されており、前進用クラッチC1の係合過渡制御が行われる場合には、上述のようなロックアップクラッチ26の係合・解放制御は行われず、ロックアップクラッチ26を強制的に解放状態とする制御が行われる。この制御について説明する。
上述したように、ガレージシフトバルブ160がコントロール位置に保持されている場合、リニアソレノイドバルブSLTの制御油圧PSLTがロックアップコントロールバルブ140のスプリング室144aに導入される。このとき、上記制御油圧PSLTは、ロックアップコントロールバルブ140の制御油圧室143にも導入される。つまり、ロックアップコントロールバルブ140には、上記制御油圧PSLTが互いに反対側の油圧室(スプール141の両端の油圧室)143,144aに供給されることになる。
ここで、それぞれの制御油圧PSLTのスプール141に対する作用面積(受圧面積)を同じとすれば、スプール141に対するそれぞれの制御油圧PSLTによる力が互いに打ち消し合うので、スプリング142の付勢力によりスプール141が上方へ押圧される。これにより、制御油圧室143へのリニアソレノイドバルブSLTの制御油圧PSLTの供給の有無にかかわらず、ロックアップコントロールバルブ140が、図3の左半分に示すOFF状態に保持されるようになる。これにともない、ロックアップクラッチ26が強制的に解放状態にされる。なお、それぞれ制御油圧PSLTのスプール141に対する受圧面積については、スプリング油圧室144a側の受圧面積を大きくしてもよい。
このようなロックアップクラッチ26の強制OFFにより、例えば、車両発進時などのガレージシフトの際、リニアソレノイドバルブSLTのONフェールなどが発生しても、ロックアップクラッチ26を確実に解放状態に戻すことができ、エンジンストールが発生することを防止できる。しかも、スプール141の両端の油圧室143,144aに供給される油圧(上記制御油圧PSLT)が同じなので、その油圧の大小に関係なく、ロックアップクラッチ26を確実に解放状態に戻すことができる。
フェールセーフバルブ190は、変速油圧コントロールバルブ120やそれを制御するリニアソレノイドバルブSLPのフェール時などに、駆動側プーリ41の油圧アクチュエータ413にライン油圧PLを供給するために油路を切り換える切換弁である。具体的には、フェールセーフバルブ190は、変速油圧コントロールバルブ120やそれを制御するリニアソレノイドバルブSLPのフェール時など、ベルト式無段変速機40において急減速が発生する可能性がある場合には、図3の右半分に示すフェール位置に切り換えられ、それ以外の通常時には、図3の左半分に示すノーマル位置に切り換えられるように構成されている。このフェールセーフバルブ190の詳細については後述する。
リニアソレノイドバルブSLT,SLP,SLSは、例えば、ノーマルオープンタイプの電磁弁とされている。つまり、非通電時には、入力ポートと出力ポートとが連通されて入力された油圧と、電磁弁内に設けられたスプリングの付勢力とによって決まる油圧が、出力ポートより制御油圧として出力される。一方、通電時には、入力ポートから入力された油圧を電子制御装置80から送られるデューティ信号によって決まる励磁電流に応じて調圧制御した油圧が出力ポートより制御油圧として出力される。この場合、励磁電流が大きくなるほど、制御油圧が小さくなるように調圧制御される。そして、励磁電流が所定値以上になると、制御油圧が「0」になり、制御油圧の出力が停止される。例えば、リニアソレノイドバルブSLTの制御油圧PSLTは、図5に示すように、励磁電流に応じてリニアに変化する。同様に、リニアソレノイドバルブSLP,SLSの制御油圧PSLP,PSLSも励磁電流に応じてリニアに変化する。なお、リニアソレノイドバルブSLT,SLP,SLSとして、ノーマルクローズタイプの電磁弁を用いる構成としてもよい。
リニアソレノイドバルブSLTは、ライン油圧PLの調圧制御、ロックアップクラッチ26の係合・解放制御、前進用クラッチC1と後進用ブレーキB1の係合過渡制御(係合過渡油圧の制御)、および、フェールセーフバルブ190の切換制御を行うために設けられている。なお、これらの制御を行うための制御弁として、リニアソレノイドバルブSLTの代わりに、デューティタイプの電磁弁を用いる構成としてもよい。
詳細には、リニアソレノイドバルブSLTには、上記第2モジュレータバルブにより調圧された上記第2モジュレータ油圧PM2が、入力ポートSLTaを介して導入される。そして、非通電時には、リニアソレノイドバルブSLT内に設けられたスプリングの付勢力によって決まる油圧PSLTmaxが、制御油圧PSLTとして出力され、通電時には、上記第2モジュレータ油圧PM2を励磁電流に応じてリニアに調圧制御した油圧が、制御油圧PSLTとして出力される。
出力ポートSLTbから出力される制御油圧PSLTは、油路104を介して減圧バルブ180へ供給される。ライン油圧PLの調圧制御は、その制御油圧PSLTに基づいて直接行われるのではなく、その制御油圧PSLTに応じて減圧バルブ180により減圧された出力油圧PCTLに基づいて行われる。また、出力ポートSLTcから出力される制御油圧PSLTは、油路105を介してロックアップコントロールバルブ140、ガレージシフトバルブ160、および、フェールセーフバルブ190へそれぞれ供給される。ロックアップクラッチ26の係合・解放制御、前進用クラッチC1と後進用ブレーキB1の係合過渡制御、および、フェールセーフバルブ190の切換制御は、その制御油圧PSLTに基づいて行われる。
リニアソレノイドバルブSLPは、ベルト式無段変速機40の変速油圧PINの調圧制御を行うために設けられている。なお、変速油圧PINの調圧制御を行うための制御弁として、リニアソレノイドバルブSLPの代わりに、デューティタイプの電磁弁を用いる構成としてもよい。
詳細には、リニアソレノイドバルブSLPには、上記第2モジュレータバルブにより調圧された上記第2モジュレータ油圧PM2が、入力ポートSLPaを介して導入される。そして、非通電時には、リニアソレノイドバルブSLP内に設けられたスプリングの付勢力によって決まる油圧PSLPmaxが、制御油圧PSLPとして出力され、通電時には、上記第2モジュレータ油圧PM2を励磁電流に応じてリニアに調圧制御した油圧が、制御油圧PSLPとして出力される。出力ポートSLPbから出力される制御油圧PSLPは、変速油圧コントロールバルブ120へ供給される。ベルト式無段変速機40の変速油圧PINの調圧制御は、その制御油圧PSLPに基づいて行われる。
リニアソレノイドバルブSLSは、ライン油圧PLの調圧制御、および、ベルト式無段変速機40の挟圧油圧POUTの調圧制御を行うために設けられている。なお、これらの制御を行うための制御弁として、リニアソレノイドバルブSLSの代わりに、デューティタイプの電磁弁を用いる構成としてもよい。
詳細には、リニアソレノイドバルブSLSには、上記第2モジュレータバルブにより調圧された上記第2モジュレータ油圧PM2が、入力ポートSLSaを介して導入される。そして、非通電時には、リニアソレノイドバルブSLS内に設けられたスプリングの付勢力によって決まる油圧PSLSmaxが、制御油圧PSLSとして出力され、通電時には、上記第2モジュレータ油圧PM2を励磁電流に応じてリニアに調圧制御した油圧が、制御油圧PSLSとして出力される。出力ポートSLSbから出力される制御油圧PSLSは、油路102を介してプライマリレギュレータバルブ110および挟圧油圧コントロールバルブ130へそれぞれ供給される。ライン油圧PLの調圧制御、および、ベルト式無段変速機40の挟圧油圧POUTの調圧制御は、その制御油圧PSLSに基づいて行われる。
上記構成の油圧制御回路100では、単一の電磁弁(リニアソレノイドバルブSLT)によって、ライン油圧PLの調圧制御、ロックアップクラッチ26の係合・解放制御、および、前進用クラッチC1と後進用ブレーキB1の係合過渡制御を行うようにしている。そして、この実施形態では、リニアソレノイドバルブSLTによるライン油圧PLの調圧制御の制御範囲(ライン油圧制御範囲)と、ロックアップクラッチ26の係合・解放制御の制御範囲(ロックアップ制御範囲)と、前進用クラッチC1および後進用ブレーキB1の係合過渡制御の制御範囲(係合過渡制御範囲)とがそれぞれ設定されている。ここで、リニアソレノイドバルブSLTによるライン油圧PLの調圧制御とロックアップクラッチ26の係合・解放制御とは、同時には行われないようになっている。また、リニアソレノイドバルブSLTによる前進用クラッチC1と後進用ブレーキB1の係合過渡制御は、ガレージシフトバルブ160がコントロール位置に保持されている場合に行われ、ノーマル位置に保持されている場合には行われないようになっている。
図4、図5により、ライン油圧制御範囲とロックアップ制御範囲と係合過渡制御範囲とについて説明する。ここでは、まず、ガレージシフトバルブ160がノーマル位置に保持されており、前進用クラッチC1と後進用ブレーキB1の係合過渡制御が行われない場合について説明する。
図4、図5に示すように、リニアソレノイドバルブSLTへ通電される励磁電流に対し、ライン油圧制御範囲X1とロックアップ制御範囲X2とが設定されており、リニアソレノイドバルブSLTの制御油圧PSLTに対し、ライン油圧制御範囲Y1とロックアップ制御範囲Y2とが設定されている。ライン油圧制御範囲X1(Y1)とロックアップ制御範囲X2(Y2)とは互いに重なり合わないような異なった範囲に設定されている。ここでは、切換点X3(Y3)を境に、ライン油圧制御範囲X1(Y1)とロックアップ制御範囲X2(Y2)とが分けられている。
具体的に、リニアソレノイドバルブSLTへの励磁電流が切換点X3よりも小さい範囲にライン油圧制御範囲X1が設定され、大きい範囲にロックアップ制御範囲X2が設定されている。また、リニアソレノイドバルブSLTの制御油圧PSLTが切換点Y3よりも大きい範囲にライン油圧制御範囲Y1が設定され、小さい範囲にロックアップ制御範囲Y2が設定されている。なお、上記制御油圧PSLTの最小値は「0」、最大値はPSLTmaxとなっている。
このようなライン油圧制御範囲X1(Y1)とロックアップ制御範囲X2(Y2)との設定は、リニアソレノイドバルブSLTとプライマリレギュレータバルブ110との間に設けられた減圧バルブ180によって行われる。
上述したように、減圧バルブ180の出力油圧PCTLは、上記制御油圧PSLTが減圧バルブ180のスプリング182の付勢力による圧力(W1/S1)以下の場合、「0」に設定されるため、出力油圧PCTLがプライマリレギュレータバルブ110の制御油圧室113cへ導入されることはない。この場合、ライン油圧PLの調圧制御は上記制御油圧PSLTに基づいて行われず、ロックアップクラッチ26の係合・解放制御だけが上記制御油圧PSLTに基づいて行われる。また、この場合、ライン油圧PLの調圧制御は、リニアソレノイドバルブSLSの制御油圧PSLSに基づいて行われるので、ロックアップ制御範囲X2(Y2)において、ライン油圧PLの調圧制御が行われなくなる状況が未然に回避されるようになっている。
したがって、上記制御油圧PSLTがスプリング182の付勢力による圧力(W1/S1)以下となる範囲が、ロックアップ制御範囲X2(Y2)として設定される。ここで、上記切換点X3(Y3)は、上記制御油圧PSLTがスプリング182の付勢力による圧力(W1/S1)と等しいときに対応しており、この場合、減圧バルブ180の出力油圧PCTLが「0」と等しくなる。ロックアップ制御範囲X2(Y2)の大きさ(幅)は、スプリング182の付勢力による圧力(W1/S1)に応じて設定される。この場合、その圧力(W1/S1)が大きいほど、上記切換点X3(Y3)が励磁電流の小さい側(制御油圧PSLTの大きい側)に設定され、その結果、ロックアップ制御範囲X2(Y2)が大きく設定されるようになる。
一方、減圧バルブ180の出力油圧PCTLは、上記制御油圧PSLTがスプリング182の付勢力による圧力(W1/S1)を上回ると、プライマリレギュレータバルブ110の制御油圧室113cへ導入されるようになる。この場合、上述したように、ライン油圧PLの調圧制御は、出力油圧PCTLによる力とプライマリレギュレータバルブ110のスプリング112の付勢力との合成力およびリニアソレノイドバルブSLSの制御油圧PSLSによる力のうち高いほうに基づいて行われる。
したがって、上記制御油圧PSLTがスプリング182の付勢力による圧力(W1/S1)以上となる範囲が、ライン油圧制御範囲X1(Y1)として設定される。ここで、ライン油圧制御範囲X1(Y1)の大きさ(幅)は、スプリング182の付勢力による圧力(W1/S1)に応じて設定される。この場合、その圧力(W1/S1)が小さいほど、上記切換点X3(Y3)が励磁電流の大きい側(制御油圧PSLTの小さい側)に設定され、その結果、ライン油圧制御範囲X1(Y1)が大きく設定されるようになる。
このライン油圧制御範囲X1(Y1)では、ロックアップクラッチ26の係合・解放制御が行われず、ロックアップクラッチ26は完全係合状態で保持されている。このため、ライン油圧制御範囲X1(Y1)では、上記制御油圧PSLTが変化しても、ロックアップコントロールバルブ140のスプール141が最大限下方に移動した状態(図3の右半分に示す状態)で保持される。なお、上記切換点X3(Y3)において、スプール141が最大限下方に移動した状態が得られるようにしてもよいし、ロックアップ制御範囲X2(Y2)中で既にスプール141が最大限下方に移動した状態が得られるようにしてもよい。
ここで、上述したように、変速比γがγ1よりも高い場合には(図6参照)、ライン油圧PLを目標挟圧油圧に比べ同じもしくは僅かに高く設定することが好ましいが、この場合には、ライン油圧PLの調圧制御をリニアソレノイドバルブSLSの制御油圧PSLSに基づいて行うことで、オイルポンプ27の駆動損失を抑制することができる。一方、変速比γがγ1よりも低い場合には、ライン油圧PLを目標変速油圧に比べ同じもしくは僅かに高く設定することが好ましいが、この場合には、ライン油圧PLの調圧制御を減圧バルブ180の出力油圧PCTL(リニアソレノイドバルブSLTの制御油圧PSLT)に基づいて行うことで、オイルポンプ27の駆動損失を抑制することができる。
次に、ガレージシフトバルブ160がコントロール位置に保持されており、前進用クラッチC1と後進用ブレーキB1の係合過渡制御が行われる場合について説明する。なお、前進用クラッチC1の係合過渡制御は前進時に行われ、後進用ブレーキB1の係合過渡制御は後進時に行われる。
この場合、上述したように、ロックアップクラッチ26を強制的に解放状態とする制御が行われるため、ロックアップ制御範囲X2(Y2)では、ロックアップクラッチ26の係合・解放制御は行われない。一方、ライン油圧制御範囲X1(Y1)では、上述したガレージシフトバルブ160がノーマル位置に保持されている場合と同様に、ライン油圧PLの調圧制御が行われる。
図5に示すように、リニアソレノイドバルブSLTへ通電される励磁電流に対し、係合過渡制御範囲X4が設定されており、リニアソレノイドバルブSLTの制御油圧PSLTに対し、係合過渡制御範囲Y4が設定されている。この係合過渡制御範囲Y4は、前進用クラッチC1と後進用ブレーキB1の係合過渡制御が行われる場合の前進用クラッチC1の油圧サーボと後進用ブレーキB1の油圧サーボへ供給される係合過渡油圧の変動範囲になっている。そして、係合過渡制御範囲X4(Y4)に隣り合うように、フェールセーフバルブ190の切換制御を行う切換制御範囲X5(Y5)が設定されている。係合過渡制御範囲X4(Y4)と切換制御範囲X5(Y5)とは互いに重なり合わないような異なった範囲に設定されている。ここでは、切換点X6(Y6)を境に、係合過渡制御範囲X4(Y4)と切換制御範囲X5(Y5)とが分けられている。
具体的に、リニアソレノイドバルブSLTへの励磁電流が切換点X6よりも小さい範囲に切換制御範囲X5が設定され、大きい範囲に係合過渡制御範囲X4が設定されている。また、リニアソレノイドバルブSLTの制御油圧PSLTが切換点Y6よりも大きい範囲に切換制御範囲Y5が設定され、小さい範囲に係合過渡制御範囲Y4が設定されている。
係合過渡制御範囲X4(Y4)は、前進用クラッチC1と後進用ブレーキB1の急係合の際に必要なクラッチ容量に基づいて設定される。言い換えれば、そのクラッチ容量を確保できるように、係合過渡制御範囲X4(Y4)が設定されている。そして、残りの範囲が切換制御範囲X5(Y5)として設定されている。この場合、前進用クラッチC1と後進用ブレーキB1の急係合の際に必要なクラッチ容量が得られるようなリニアソレノイドバルブSLTへの励磁電流を切換点X6として設定し、また、そのクラッチ容量が得られるようなリニアソレノイドバルブSLTの制御油圧PSLTを切換点Y6として設定することが可能である。したがって、係合過渡制御範囲X4(Y4)において、前進用クラッチC1と後進用ブレーキB1の係合過渡制御が行われるが、切換制御範囲Y5(Y5)では前進用クラッチC1と後進用ブレーキB1の係合過渡制御は行われないようになっている。このように、前進用クラッチC1と後進用ブレーキB1の係合過渡制御の余剰域を利用して、切換制御範囲X5(Y5)が設定されている。切換制御範囲X5(Y5)は、リニアソレノイドバルブSLTが最大の制御油圧PSLTmaxを出力する状態(リニアソレノイドバルブSLTの非通電時))を含む範囲まで設定されている。
そして、この実施形態では、変速油圧コントロールバルブ120と駆動側プーリ41の油圧アクチュエータ413との間に、フェールセーフバルブ190が設けられている。
このフェールセーフバルブ190は、軸方向へ移動可能なスプール191と、そのスプール191を一方へ付勢する付勢手段としてのスプリング192とを備えている。図3においては、スプール191が上下に摺動可能に設けられている。スプリング192は、スプール191の一端側(図3では下端側)に設けられたスプリング室194に圧縮状態で配置されている。スプリング192の付勢力によって、フェールセーフバルブ190を上記ノーマル位置に保持する方向(図3では上方)へスプール191が押圧されている。フェールセーフバルブ190には、制御ポート195a,195bと、入力ポート196a,196bと、出力ポート197とが設けられている。
制御ポート195aは、スプール161の他端側(図3では上端側)に設けられる制御油圧室193aに接続されている。また、制御ポート195aは、油路109cを介してON−OFFソレノイドバルブSL1の出力ポートSL1bに接続されている。この制御ポート195aを介して、制御油圧室193aにON−OFFソレノイドバルブSL1の制御油圧PSL1が供給される。
制御ポート195bは、同じくスプール161の他端側に設けられる制御油圧室193bに接続されている。また、制御ポート195bは、油路105を介してリニアソレノイドバルブSLTの出力ポートSLTcに接続されている。この制御ポート195bを介して、制御油圧室193bにリニアソレノイドバルブSLTの制御油圧PSLTが供給される。
入力ポート196aは、油路109aを介して変速油圧コントロールバルブ120の出力ポート127に接続されている。この入力ポート196aを介して、変速油圧コントロールバルブ120により調圧された変速油圧PINが入力されるようになっている。入力ポート196bは、油路101に接続されており、この入力ポート196bを介して、プライマリレギュレータバルブ110により調圧されたライン油圧PLが入力されるようになっている。出力ポート197は、油路109dを介して駆動側プーリ41の油圧アクチュエータ413に接続されている。
続いて、フェールセーフバルブ190の切り換え動作について説明する。
この実施形態では、フェールセーフバルブ190の切り換えを行うための制御弁として、既存のON−OFFソレノイドバルブSL1とリニアソレノイドバルブSLTとを利用する構成としている。
具体的には、フェールセーフバルブ190は、ON−OFFソレノイドバルブSL1がON状態、かつ、リニアソレノイドバルブSLTが上述した切換制御範囲X5(Y5)にある状態のとき、図3の右半分に示すフェール位置に切り換えられ、それ以外のとき、図3の左半分に示すノーマル位置に切り換えられる。
ここで、フェールセーフバルブ190のスプリング192の付勢力(荷重)をW2、制御ポート195aを介して供給される上記制御油圧PSL1のスプール191への作用面積(受圧面積)をS2、制御ポート195bを介して供給される上記制御油圧PSLTのスプール191への作用面積(受圧面積)をS3とすると、次の式(1)〜(4)が成り立つ。言い換えれば、次の式(1)〜(4)を満たすように、スプリング荷重W2,作用面積S2,S3が設定されている。
W2>PSL1*S2 ・・・(1)
W2>PSLT*S3 ・・・(2)
W2>PSL1*S2+PSLT*S3 (上記係合過渡制御範囲X4(Y4)の場合)・・・(3)
W2<PSL1*S2+PSLT*S3 (上記切換制御範囲X5(Y5)の場合)・・・(4)
ベルト式無段変速機40において急減速状態が発生する可能性があると判定されると、ON−OFFソレノイドバルブSL1がON状態に制御されるとともに、リニアソレノイドバルブSLTが切換制御範囲Y5の制御油圧PSLTを出力する状態に制御される。これにより、フェールセーフバルブ190がフェール位置に保持される。この状態では、入力ポート196bおよび出力ポート197が連通されて、ライン油圧PLが駆動側プーリ41の油圧アクチュエータ413へ供給される。この場合、ON−OFFソレノイドバルブSL1がON状態に制御されているため、ガレージシフトバルブ160がコントロール位置に保持されるので、ロックアップクラッチ26は強制的に解放状態とされる。また、前進用クラッチC1と後進用ブレーキB1の係合過渡制御は行われず、前進用クラッチC1と後進用ブレーキB1はその急係合の際に必要なクラッチ容量を超えるクラッチ容量で係合され、前進用クラッチC1と後進用ブレーキB1の滑りは発生しないようになっている。
ここで、リニアソレノイドバルブSLTを最大の制御油圧PSLTmaxを出力する状態に制御してもよい。つまり、リニアソレノイドバルブSLTを非通電状態としてもよい。ただし、この場合、リニアソレノイドバルブSLTの制御油圧PSLTによってライン油圧PLの調圧制御も行われるので、切換制御範囲Y5内で必要なライン油圧PLに応じてリニアソレノイドバルブSLTの制御油圧PSLTを制御すればよい。
ベルト式無段変速機40で急減速状態が発生する可能性がある場合としては、何らかの原因によって駆動側プーリ41の油圧アクチュエータ413の油圧が急激に低下した場合などがあり、その原因としては、例えば、変速油圧コントロールバルブ120やそれを制御するリニアソレノイドバルブSLPがフェールした場合などがある。変速油圧コントロールバルブ120、リニアソレノイドバルブSLPのフェールとしては、バルブスティックなどの機械的要因によるフェールや、断線や短絡(ショート)などの電気的要因によるフェールなどがある。
このため、ベルト式無段変速機40で急減速状態が発生する可能性があるかどうかの判定は、次のようにして行うことが可能である。例えば、ベルト式無段変速機40の目標変速比と実変速比との偏差が所定値以上である場合に、ベルト式無段変速機40で急減速状態が発生する可能性があると判定する構成としてよい。ベルト式無段変速機40の実変速比は、出力軸回転速度センサ84および入力軸回転速度センサ85の出力信号に基づいて算出することが可能である。また、駆動側プーリ41の油圧アクチュエータ413の油圧が低下するときの変動量が所定値以上である場合に、急減速状態が発生する可能性があると判定する構成としてもよい。油圧アクチュエータ413の油圧は、例えば、油圧センサを設けることによって検出することが可能である。また、変速油圧コントロールバルブ120、リニアソレノイドバルブSLPの断線や短絡などが検知された場合に、急減速状態が発生する可能性があると判定する構成としてもよい。断線や短絡などの電気的要因によるフェールは、電子制御装置80によって検知することが可能である。
一方、ベルト式無段変速機40で急減速状態が発生する可能性のない通常時には、ON−OFFソレノイドバルブSL1がON状態、かつ、リニアソレノイドバルブSLTが切換制御範囲Y5の制御油圧PSLTを出力する状態に制御されることはない。このとき、フェールセーフバルブ190がノーマル位置に保持されている。この状態では、入力ポート196aおよび出力ポート197が連通されており、変速油圧コントロールバルブ120により調整された変速油圧PINが駆動側プーリ41の油圧アクチュエータ413へ供給されるようになっている。この通常時には、ON−OFFソレノイドバルブSL1がON状態に制御され、ガレージシフトバルブ160がコントロール位置に保持されて、前進用クラッチC1と後進用ブレーキB1の係合過渡制御が行われるが、リニアソレノイドバルブSLTが係合過渡制御範囲Y4の制御油圧PSLTを出力する状態に制御されるので、フェールセーフバルブ190がフェール位置に切り換わることはない。
以上のように、変速油圧コントロールバルブ120のフェール時などのように、ベルト式無段変速機40において急減速状態が発生する可能性がある場合には、ライン油圧PLが駆動側プーリ41の油圧アクチュエータ413へ供給されるので、油圧アクチュエータ413の油圧が急激に低下することを抑制でき、急減速状態の発生を回避できる。つまり、ライン油圧PLの導入によって、変速比γが増速側へ変化されるので、それ以降の変速比γの減速側への変化を抑制することができる。これにより、急減速にともなって発生するベルト滑りや過大なショックを防止することができる。そして、新たな電磁弁を追加することなく、既存の電磁弁(ON−OFFソレノイドバルブSL1、リニアソレノイドバルブSLT)を用いることで、コストアップや装置の大型化を回避することができる。しかも、この場合、通常時には使用しないON−OFFソレノイドバルブSL1およびリニアソレノイドバルブSLTの制御状態の組み合わせ(ON−OFFソレノイドバルブSL1がON状態、かつ、リニアソレノイドバルブSLTが切換制御範囲Y5の制御油圧PSLTを出力する状態の組み合わせ)を利用しているので、通常時に行われる他の制御を妨げることなく、急減速状態の発生を回避できる。
以上、本発明の実施形態について説明したが、ここに示した実施形態は一例であり、さまざまに変形することが可能である。その一例を以下に挙げる。
上記実施形態では、ベルト式無段変速機40で急減速状態の発生を回避するために、ライン油圧PLを駆動側プーリ41の油圧アクチュエータ413へ供給する場合について説明したが、ライン油圧PLの代わりに、挟圧油圧コントロールバルブ130によって調圧された挟圧油圧POUTを油圧アクチュエータ413へ供給する構成としてもよい。また、それ以外の油圧、例えば、第1モジュレータ油圧PM1、第2モジュレータ油圧PM2、セカンダリ油圧PSECなどを油圧アクチュエータ413へ供給する構成としてもよい。要するに、油圧アクチュエータ413への油圧供給により、変速比γを増速側へ変化できるような油圧であればよい。
上記実施形態では、フェールセーフバルブ190の切り換えを、既存のON−OFFソレノイドバルブSL1、リニアソレノイドバルブSLTによって行う場合について説明したが、フェールセーフバルブ190を切り換える構成として、それ以外の既存の電磁弁の組み合わせを採用してもよい。この場合、既存の電磁弁を2つだけではなく、3つ以上用いてもよい。このように、フェールセーフバルブ190を切り換える構成として、既存の構成をそのまま利用することで、コストアップや装置の大型化を回避することができる。
上記実施形態では、リニアソレノイドバルブSLTによって、ライン油圧PLの調圧制御、ロックアップクラッチ26の係合・解放制御、前進用クラッチC1と後進用ブレーキB1の係合過渡制御、および、フェールセーフバルブ190の切換制御を行う場合について説明したが、この場合に限られることはない。例えば、図7、図9に示すように、ロックアップクラッチ26の係合・解放制御を、リニアソレノイドバルブSLT以外の他のリニアソレノイドバルブによって行う構成としてもよい。また、図示はしないが、前進用クラッチC1および後進用ブレーキB1の係合過渡制御を、リニアソレノイドバルブSLT以外の他のリニアソレノイドバルブによって行う構成としたり、ライン油圧PLの調圧制御を、リニアソレノイドバルブSLT以外の他のリニアソレノイドバルブによって行う構成としてもよい。
図7、図9には、他の実施形態に係る油圧制御回路の一部をそれぞれ示している。図7は、ライン油圧PLの調圧制御をリニアソレノイドバルブSLT,SLSによって行う場合を示し、図9は、ライン油圧PLの調圧制御をリニアソレノイドバルブSLTのみによって行う場合を示している。図7、図9では、ロックアップクラッチの係合・解放制御に関わる部分(例えば、ロックアップコントロールバルブなど)や、マニュアルバルブなどの図示を省略している。
図7に示す油圧制御回路100’について簡潔に説明する。ここでは、図3に示す上記実施形態の油圧制御回路100と異なる部分について主に説明する。上記実施形態の油圧制御回路100と同じ部分については同じ符号を用いている。
油圧制御回路100’において、リニアソレノイドバルブSLTは、ライン油圧PLの調圧制御、前進用クラッチC1と後進用ブレーキB1の係合過渡制御(係合過渡油圧の制御)、および、フェールセーフバルブ190の切換制御を行うために設けられている。
詳細には、リニアソレノイドバルブSLTから出力される制御油圧PSLTは、フェールセーフバルブ190、ガレージシフトバルブ160を介してプライマリレギュレータバルブ110および前進用クラッチC1の油圧サーボと後進用ブレーキB1の油圧サーボへ供給される。ライン油圧PLの調圧制御、前進用クラッチC1と後進用ブレーキB1の係合過渡制御、および、フェールセーフバルブ190の切換制御は、その制御油圧PSLTに基づいて行われる。なお、油圧制御回路100においてロックアップ制御範囲の設定を行うために設けられていた減圧バルブは、油圧制御回路100’には設けられていない。
上記実施形態の場合と同様に、リニアソレノイドバルブSLTへ通電される励磁電流およびリニアソレノイドバルブSLTの制御油圧PSLTに対して係合過渡制御範囲X7(Y7)が設定されている(図8参照)。この係合過渡制御範囲Y7は、前進用クラッチC1と後進用ブレーキB1の係合過渡制御が行われる場合の前進用クラッチC1の油圧サーボと後進用ブレーキB1の油圧サーボへ供給される係合過渡油圧の変動範囲になっている。また、上記実施形態の場合と同様に、前進用クラッチC1および後進用ブレーキB1の係合過渡制御の余剰域を利用して、フェールセーフバルブ190の切換制御を行うための切換制御範囲X8(Y8)が設定されている。切換制御範囲X8(Y8)は、係合過渡制御範囲X7(Y7)に比べ制御油圧PSLTが大きい範囲に設定されている。
リニアソレノイドバルブSLPは、ベルト式無段変速機40の変速油圧PINの調圧制御を行うために設けられている。
詳細には、リニアソレノイドバルブSLPから出力される制御油圧PSLPは、変速油圧コントロールバルブ120へ供給される。ベルト式無段変速機40の変速油圧PINの調圧制御は、その制御油圧PSLPに基づいて行われる。
リニアソレノイドバルブSLSは、ライン油圧PLの調圧制御、および、ベルト式無段変速機40の挟圧油圧POUTの調圧制御を行うために設けられている。
詳細には、リニアソレノイドバルブSLSから出力される制御油圧PSLSは、挟圧油圧コントロールバルブ130、および、ガレージシフトバルブ160を介してプライマリレギュレータバルブ110へそれぞれ供給される。ライン油圧PLの調圧制御、および、ベルト式無段変速機40の挟圧油圧POUTの調圧制御は、その制御油圧PSLSに基づいて行われる。
ON−OFFソレノイドバルブSL1は、ガレージシフトバルブ160の切換制御、および、フェールセーフバルブ190の切換制御を行うために設けられている。
詳細には、ガレージシフトバルブ160によって、プライマリレギュレータバルブ110へ供給される制御油圧が、上記制御油圧PSLSと上記制御油圧PSLTとの間で切り換えられる。また、ガレージシフトバルブ160によって、前進用クラッチC1の油圧サーボおよび後進用ブレーキB1の油圧サーボへ供給される油圧が、上記制御油圧PSLTと第2モジュレータ油圧PM2との間で切り換えられる。
そして、ON−OFFソレノイドバルブSL1がON状態に制御されると、ガレージシフトバルブ160がコントロール位置(図7では上側の位置)に保持される。このとき、上記制御油圧PSLSがプライマリレギュレータバルブ110へ供給されるとともに、上記制御油圧PSLTが前進時には前進用クラッチC1の油圧サーボへ、後進時には後進用ブレーキB1の油圧サーボへ供給される。一方、ON−OFFソレノイドバルブSL1がOFF状態に制御されると、ガレージシフトバルブ160がノーマル位置(図7では下側の位置)に保持される。このとき、上記制御油圧PSLTがプライマリレギュレータバルブ110へ供給されるとともに、上記第2モジュレータ油圧PM2が前進用クラッチC1の油圧サーボおよび後進用ブレーキB1の油圧サーボへ係合保持油圧として供給される。
この実施形態では、フェールセーフバルブ190の切り換えを行うための制御弁として、既存のON−OFFソレノイドバルブSL1とリニアソレノイドバルブSLTとを利用する構成としている。
具体的には、フェールセーフバルブ190は、ON−OFFソレノイドバルブSL1がON状態、かつ、リニアソレノイドバルブSLTが上述した切換制御範囲X8(Y8)にある状態のとき、フェール位置(図7では上側の位置)に切り換えられ、それ以外のとき、ノーマル位置(図7では下側の位置)に切り換えられる。この実施形態においても、上記実施形態の場合と同様に、式(1)〜(4)が成り立っている。
そして、ベルト式無段変速機40において急減速状態が発生する可能性があると判定されると、ON−OFFソレノイドバルブSL1がON状態に制御されるとともに、リニアソレノイドバルブSLTが切換制御範囲Y8の制御油圧PSLTを出力する状態に制御される。これにより、フェールセーフバルブ190がフェール位置に保持される。この状態では、ライン油圧PLが駆動側プーリ41の油圧アクチュエータ413へ供給される。
一方、ベルト式無段変速機40で急減速状態が発生する可能性のない通常時には、ON−OFFソレノイドバルブSL1がON状態、かつ、リニアソレノイドバルブSLTが切換制御範囲Y8の制御油圧PSLTを出力する状態に制御されることはない。このとき、フェールセーフバルブ190がノーマル位置に保持されている。この状態では、変速油圧コントロールバルブ120により調整された変速油圧PINが駆動側プーリ41の油圧アクチュエータ413へ供給されるようになっている。この通常時には、ON−OFFソレノイドバルブSL1がON状態に制御され、ガレージシフトバルブ160がコントロール位置に保持されて、前進用クラッチC1および後進用ブレーキB1の係合過渡制御が行われるが、リニアソレノイドバルブSLTが係合過渡制御範囲Y7の制御油圧PSLTを出力する状態に制御されるので、フェールセーフバルブ190がフェール位置に切り換わることはない。
この実施形態においても、以上のように、変速油圧コントロールバルブ120のフェール時などのように、ベルト式無段変速機40において急減速状態が発生する可能性がある場合には、ライン油圧PLが駆動側プーリ41の油圧アクチュエータ413へ供給されるので、油圧アクチュエータ413の油圧が急激に低下することを抑制でき、急減速状態の発生を回避できる。これにより、急減速にともなって発生するベルト滑りや過大なショックを防止することができる。そして、新たな電磁弁を追加することなく、既存の電磁弁(ON−OFFソレノイドバルブSL1、リニアソレノイドバルブSLT)を用いることで、コストアップや装置の大型化を回避することができる。しかも、この場合、通常時には使用しないON−OFFソレノイドバルブSL1およびリニアソレノイドバルブSLTの制御状態の組み合わせ(ON−OFFソレノイドバルブSL1がON状態、かつ、リニアソレノイドバルブSLTが切換制御範囲Y8の制御油圧PSLTを出力する状態の組み合わせ)を利用しているので、通常時に行われる他の制御を妨げることなく、急減速状態の発生を回避できる。
次に、図9に示す油圧制御回路100”について簡潔に説明する。ここでは、図7に示す上述した油圧制御回路100’と異なる部分について主に説明する。図3に示す上記実施形態の油圧制御回路100と同じ部分については同じ符号を用いている。
図9に示す油圧制御回路100”では、ライン油圧PLの調圧制御がリニアソレノイドバルブSLTのみによって行われる点、リニアソレノイドバルブSLSの制御油圧PSLSによってベルト式無段変速機40の挟圧油圧POUTの調圧制御だけが行われる点、ガレージシフトバルブ160の構成が簡単になっている点などで、図7に示す油圧制御回路100’とは主に異なる。油圧制御回路100”では、ガレージシフトバルブ160によって、前進用クラッチC1の油圧サーボおよび後進用ブレーキB1の油圧サーボへ供給される油圧が、上記制御油圧PSLTと第2モジュレータ油圧PM2との間で切り換えられる。
この実施形態においても、リニアソレノイドバルブSLTの制御油圧PSLTに基づいて、前進用クラッチC1と後進用ブレーキB1の係合過渡制御およびフェールセーフバルブ190の切換制御が行われるため、上記実施形態の場合と同様に、リニアソレノイドバルブSLTへ通電される励磁電流およびリニアソレノイドバルブSLTの制御油圧PSLTに対して係合過渡制御範囲が設定されている。
そして、この実施形態では、フェールセーフバルブ190の切り換えを行うための制御弁として、既存のON−OFFソレノイドバルブSL1とリニアソレノイドバルブSLTとを利用する構成としている。したがって、この実施形態においても、上記実施形態の場合と同様の作用効果が得られる。
実施形態に係る車両用駆動装置の概略構成を示す図である。 図1の車両用駆動装置の動力伝達機構の制御系統の一例を示すブロック図である。 図1の車両用駆動装置の動力伝達機構を制御するための油圧制御回路の一例を示す回路図である。 リニアソレノイドバルブの制御油圧に対する減圧バルブの出力油圧の特性を示す図である。 リニアソレノイドバルブの励磁電流に対する制御油圧の特性を示す図である。 ベルト式無段変速機の変速比に応じた目標変速油圧および目標挟圧油圧の設定値の変化を示す図である。 他の実施形態に係る油圧制御回路の一部を示す図である。 リニアソレノイドバルブの励磁電流に対する制御油圧の特性を示す図である。 他の実施形態に係る油圧制御回路の一部を示す図である。
符号の説明
20 トルクコンバータ
26 ロックアップクラッチ
30 前後進切換装置
C1 前進用クラッチ
40 ベルト式無段変速機
41 駆動側プーリ
80 電子制御装置
100 油圧制御回路
110 プライマリレギュレータバルブ(ライン油圧制御弁)
120 変速油圧コントロールバルブ(変速油圧制御弁)
140 ロックアップコントロールバルブ(ロックアップ制御弁)
160 ガレージシフトバルブ(ガレージ制御弁)
180 減圧バルブ
190 フェールセーフバルブ
SLS,SLT,SLP リニアソレノイドバルブ
SL1 ON−OFFソレノイドバルブ

Claims (14)

  1. 油圧によりベルトを挟圧して動力を伝達するとともにベルト掛かり径を変更して変速比を変化させるベルト式無段変速機と、
    各部の油圧の元圧となるライン油圧を調圧するライン油圧制御弁と、
    前記ベルト式無段変速機の駆動側プーリへこのベルト式無段変速機の変速比を制御する変速油圧を供給する変速油圧制御弁とを備えた油圧制御装置において、
    前記変速油圧制御弁と駆動側プーリとの間には、前記駆動側プーリに供給する油圧を、前記変速油圧と前記ライン油圧とに切り換え可能なフェールセーフ弁が設けられ、
    前記フェールセーフ弁は、前記変速油圧制御弁またはこれを制御する電磁弁のフェール時には、前記ライン油圧を駆動側プーリへ供給するフェール位置に切り換えられる一方、前記フェール時以外には、前記変速油圧を駆動側プーリへ供給するノーマル位置に切り換えられ、
    前記フェールセーフ弁の切り換えは、既存の第1電磁弁の制御油圧と第2電磁弁の制御油圧との組み合わせによって制御されることを特徴とする油圧制御装置。
  2. 請求項1に記載の油圧制御装置において、
    動力源と前記ベルト式無段変速機との間に設けられた流体式動力伝達装置に備えられ、前記動力源側とベルト式無段変速機側とを直結する油圧式のロックアップクラッチと、
    車両の走行に際して動力伝達経路を成立させるために係合させられる油圧式の走行用摩擦係合要素と、
    前記ロックアップクラッチの係合・解放制御の際に切り換えられるロックアップ制御弁と、
    前記走行用摩擦係合要素の係合の際に供給する係合油圧を係合過渡油圧と係合保持油圧とに切り換え可能なガレージ制御弁とを備え、
    前記第1電磁弁が前記ガレージ制御弁を切り換えるものであり、前記第2電磁弁が前記ロックアップ制御弁を制御するものであることを特徴とする油圧制御装置。
  3. 請求項2に記載の油圧制御装置において、
    前記第2電磁弁によって、前記ロックアップ制御弁の制御に加え、前記ライン油圧制御弁の制御も行われることを特徴とする油圧制御装置。
  4. 請求項3に記載の油圧制御装置において、
    前記第2電磁弁によって前記ロックアップ制御弁を制御する際、この第2電磁弁以外の第3電磁弁によって、前記ライン油圧制御弁の制御が行われるように構成されており、
    前記第3電磁弁が、前記ベルト式無段変速機の従動側プーリへこのベルト式無段変速機のベルト挟圧を制御する挟圧油圧を供給する挟圧油圧制御弁を制御するものであることを特徴とする油圧制御装置。
  5. 請求項1または請求項2に記載の油圧制御装置において、
    前記第2電磁弁以外の第4電磁弁によって、前記ライン油圧制御弁の制御が行われるように構成されており、
    前記第4電磁弁が、前記ベルト式無段変速機の従動側プーリへこのベルト式無段変速機のベルト挟圧を制御する挟圧油圧を供給する挟圧油圧制御弁を制御するものであることを特徴とする油圧制御装置。
  6. 請求項1〜5のいずれか1つに記載の油圧制御装置において、
    前記第2電磁弁によって、前記ロックアップ制御弁の制御に加え、前記走行用摩擦係合要素の係合過渡油圧の制御も行われることを特徴とする油圧制御装置。
  7. 請求項6に記載の油圧制御装置において、
    前記第2電磁弁によって前記走行用摩擦係合要素の係合過渡油圧の制御を行う際、前記第2電磁弁の制御油圧が、前記ロックアップ制御弁の制御時に供給される側とは反対側に供給されることを特徴とする油圧制御装置。
  8. 請求項1に記載の油圧制御装置において、
    車両の走行に際して動力伝達経路を成立させるために係合させられる油圧式の走行用摩擦係合要素と、
    前記走行用摩擦係合要素の係合の際に供給する係合油圧を係合過渡油圧と係合保持油圧とに切り換え可能なガレージ制御弁とを備え、
    前記第1電磁弁が前記ガレージ制御弁を切り換えるものであり、前記第2電磁弁が前記ライン油圧制御弁を制御するものであることを特徴とする油圧制御装置。
  9. 請求項8に記載の油圧制御装置において、
    前記第2電磁弁によって、前記ライン油圧制御弁の制御に加え、前記走行用摩擦係合要素の係合過渡油圧の制御も行われることを特徴とする油圧制御装置。
  10. 請求項9に記載の油圧制御装置において、
    前記第2電磁弁によって前記走行用摩擦係合要素の係合過渡油圧を制御する際、この第2電磁弁以外の第5電磁弁によって、前記ライン油圧制御弁の制御が行われるように構成されており、
    前記第5電磁弁が、前記ベルト式無段変速機の従動側プーリへこのベルト式無段変速機のベルト挟圧を制御する挟圧油圧を供給する挟圧油圧制御弁を制御するものであることを特徴とする油圧制御装置。
  11. 請求項6、請求項7、請求項9、または請求項10に記載の油圧制御装置において、
    前記フェールセーフ弁は、前記第1電磁弁が制御油圧を出力するON状態であり、かつ、前記第2電磁弁が前記係合過渡油圧の制御時の制御油圧に比べ大きい制御油圧を出力する状態である場合には、前記フェール位置に切り換えられる一方、それ以外の場合には前記ノーマル位置に切り換えられることを特徴とする油圧制御装置。
  12. 請求項1〜11のいずれか1つに記載の油圧制御装置において、
    前記変速油圧制御弁またはこれを制御する電磁弁のフェール時には、前記ライン油圧の代わりに、前記ベルト式無段変速機のベルト挟圧を制御する挟圧油圧を前記駆動側プーリに供給するように構成されていることを特徴とする油圧制御装置。
  13. 請求項2〜11のいずれか1つに記載の油圧制御装置において、
    前記変速油圧制御弁またはこれを制御する電磁弁のフェール時には、前記ライン油圧の代わりに、前記走行用摩擦係合要素に供給される前記係合保持油圧を前記駆動側プーリに供給するように構成されていることを特徴とする油圧制御装置。
  14. 請求項1〜11のいずれか1つに記載の油圧制御装置において、
    前記変速油圧制御弁またはこれを制御する電磁弁のフェール時には、前記ライン油圧の代わりに、前記各電磁弁に供給される電磁弁元圧を前記駆動側プーリに供給するように構成されていることを特徴とする油圧制御装置。
JP2007234594A 2007-09-10 2007-09-10 油圧制御装置 Pending JP2009068522A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007234594A JP2009068522A (ja) 2007-09-10 2007-09-10 油圧制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007234594A JP2009068522A (ja) 2007-09-10 2007-09-10 油圧制御装置

Publications (1)

Publication Number Publication Date
JP2009068522A true JP2009068522A (ja) 2009-04-02

Family

ID=40605018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007234594A Pending JP2009068522A (ja) 2007-09-10 2007-09-10 油圧制御装置

Country Status (1)

Country Link
JP (1) JP2009068522A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068520A (ja) * 2007-09-10 2009-04-02 Toyota Motor Corp 油圧制御装置
JP2009257528A (ja) * 2008-04-18 2009-11-05 Toyota Motor Corp 油圧制御装置
JP2011196390A (ja) * 2010-03-17 2011-10-06 Honda Motor Co Ltd 自動変速機の油圧装置
WO2012046335A1 (ja) * 2010-10-08 2012-04-12 トヨタ自動車株式会社 巻掛け伝動装置の油圧制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068520A (ja) * 2007-09-10 2009-04-02 Toyota Motor Corp 油圧制御装置
US8012051B2 (en) 2007-09-10 2011-09-06 Toyota Jidosha Kabushiki Kaisha Oil pressure control apparatus
JP2009257528A (ja) * 2008-04-18 2009-11-05 Toyota Motor Corp 油圧制御装置
JP2011196390A (ja) * 2010-03-17 2011-10-06 Honda Motor Co Ltd 自動変速機の油圧装置
WO2012046335A1 (ja) * 2010-10-08 2012-04-12 トヨタ自動車株式会社 巻掛け伝動装置の油圧制御装置
JP5376067B2 (ja) * 2010-10-08 2013-12-25 トヨタ自動車株式会社 巻掛け伝動装置の油圧制御装置

Similar Documents

Publication Publication Date Title
JP4781336B2 (ja) 油圧制御装置
JP4577342B2 (ja) 油圧制御装置
JP4424399B2 (ja) 油圧制御装置
JP4678417B2 (ja) 油圧制御装置
JP4457863B2 (ja) 車両用動力伝達機構の油圧制御装置
JP4289407B2 (ja) 油圧供給装置
JP2013072479A (ja) 車両用無段変速機の制御装置
JP2014202317A (ja) 油圧制御装置
JP2015197193A (ja) 車両用無段変速機の油圧制御装置
JP2009068522A (ja) 油圧制御装置
JP2010078090A (ja) 車両の制御装置
JP4811068B2 (ja) パワートレーンの制御装置
JP2006153104A (ja) 油圧制御装置
JP2009287781A (ja) 油圧制御装置
JP4811151B2 (ja) 車両用無段変速機の変速制御装置
JP2009250304A (ja) 油圧制御装置
JP2009068523A (ja) 油圧制御装置
JP2009115116A (ja) 車両用自動変速機の油圧制御装置
US10054221B2 (en) Hydraulic control device of belt-type continuously variable transmission
JP5733048B2 (ja) 車両用自動変速機の油圧制御装置
JP5971181B2 (ja) 車両の油圧制御装置
JP2006316819A (ja) 油圧制御装置
JP4433928B2 (ja) 自動変速機の制御装置
JP2009216171A (ja) 油圧制御装置
JP2009216175A (ja) 油圧制御装置