JP2009001860A - Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability - Google Patents
Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability Download PDFInfo
- Publication number
- JP2009001860A JP2009001860A JP2007163828A JP2007163828A JP2009001860A JP 2009001860 A JP2009001860 A JP 2009001860A JP 2007163828 A JP2007163828 A JP 2007163828A JP 2007163828 A JP2007163828 A JP 2007163828A JP 2009001860 A JP2009001860 A JP 2009001860A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- target
- mol
- sputtering target
- magnetic recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
- Physical Vapour Deposition (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
この発明は、ハードディスクの高密度磁気記録媒体に適用される磁気記録膜、特に垂直磁気記録媒体に適用される磁気記録膜を形成するための比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲットに関するものである。 The present invention relates to a sputtering target for forming a perpendicular magnetic recording medium film having a low relative permeability for forming a magnetic recording film applied to a high-density magnetic recording medium of a hard disk, particularly a magnetic recording film applied to a perpendicular magnetic recording medium. It is about.
ハードディスク装置は一般にコンピューターやデジタル家電等の外部記録装置として用いられており、記録密度の一層の向上が求められている。そのため、近年、超高密度の記録を実現できる垂直磁気記録方式が注目されてきた。この垂直磁気記録方式は、従来の面内記録方式と異なり、原理的に高密度化するほど記録磁化が安定すると言われており、すでに実用化されている。この垂直磁気記録方式のハードディスク媒体の記録層に適用する材料の有力な候補としてCoCrPt−SiO2グラニュラ磁気記録膜が提案されており、このCoCrPt−SiO2グラニュラ磁気記録膜はCrおよびPtを含むCo基焼結合金相と二酸化珪素相の混合相を有するスパッタリングターゲットを用いてマグネトロンスパッタ法により作製することが知られている(非特許文献1参照)。
このスパッタリングターゲットは、通常、二酸化珪素粉末、Cr粉末、Pt粉末およびCo粉末を、二酸化珪素:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%を含有し、残部:Coからなる組成となるように配合し混合したのち、真空ホットプレスまたは熱間静水圧プレスすることにより作製されることが知られており、その他に市販のCrおよびPtを含むCo基合金粉末または急冷凝固して作製したCrおよびPtを含むCo基合金粉末と二酸化珪素粉末を二酸化珪素:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%を含有し、残部:Coからなる組成となるように配合し混合したのち、真空ホットプレスまたは熱間静水圧プレスすることにより作製されることが知られている。(特許文献1、特許文献2などを参照)。
さらに、二酸化珪素:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%を含有し、残部:Coからなる組成にさらにB:0.5〜8モル%を含有する組成のターゲットも知られている(特許文献5参照)。さらに前記二酸化珪素のほかにTiO、Cr2O3、TiO2、Ta2O5、Al2O3、BeO2、MgO、ThO2、ZrO2、CeO2、Y2O3などの非磁性酸化物が使用できることが知られている(特許文献3、4参照)。
This sputtering target usually contains silicon dioxide powder, Cr powder, Pt powder and Co powder, silicon dioxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%. The remainder: It is known to be prepared by mixing and mixing so as to have a composition consisting of Co, and then vacuum hot pressing or hot isostatic pressing, and in addition, a commercially available Co base containing Cr and Pt. Co-based alloy powder and silicon dioxide powder containing Cr and Pt prepared by alloy solidification or rapid solidification, silicon dioxide: 0.5-15 mol%, Cr: 4-20 mol%, Pt: 5-25 mol% It is known that it is prepared by mixing and mixing so as to have a composition comprising Co: balance: Co, and then vacuum hot pressing or hot isostatic pressing. (See Patent Document 1, Patent Document 2, etc.).
Further, silicon dioxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, and the balance: Co: B: 0.5 to 8 mol% The target of the composition to contain is also known (refer patent document 5). In addition to silicon dioxide, nonmagnetic oxidation such as TiO, Cr 2 O 3 , TiO 2 , Ta 2 O 5 , Al 2 O 3 , BeO 2 , MgO, ThO 2 , ZrO 2 , CeO 2 , Y 2 O 3, etc. It is known that products can be used (see Patent Documents 3 and 4).
しかし、この従来の磁気記録媒体膜形成用スパッタリングターゲットは、強磁性合金であるCrおよびPtを含むCo基合金を素地とし、この素地中にSiO2などの非磁性酸化物が均一分散している組織を有するために、非磁性体ターゲットと比較して磁束がターゲット内部を通過する割合が大きく、ターゲット上空に漏れ出る磁束が極めて少ない。このことはターゲット下部に磁気回路を配置し、ターゲット上空に漏れ出る磁束を利用して希ガスの電離効率を高めることで放電を安定化させ、成膜速度を向上させているマグネトロンスパッタリング法にとっては大きな問題となる。すなわち、ターゲット上空に漏れ出る磁束が少ない漏洩磁束密度の低いターゲット(すなわち比透磁率の高いターゲット)を用いてマグネトロンスパッタリングを行なうと、放電が安定しないかあるいは放電できても成膜速度が極端に遅くなるなどの問題を引き起こすからである。
この問題点を解消するための手段の一つとして、ターゲットの厚さを薄くして磁束をターゲット上空へ抜けやすくする方法が取られている。しかし、ターゲットを薄くすると、ターゲットの交換頻度が頻繁になるので成膜効率が悪くなり、コスト的に好ましくない。
また、漏洩磁束密度の低いターゲットは、一旦マグネトロンスパッタリングを行ってエロージョンが形成されると、エロージョン部分から磁束が集中的に漏洩し、その部分だけが益々集中的にスパッタされていくためにターゲットの利用効率が低下したり、成膜速度が経時変化したり、基板面内に膜厚のばらつきが生じたり、さらにターゲット上への再デポ膜の大量付着が生じるなどといった問題を引き起こしやすい。
However, this conventional sputtering target for forming a magnetic recording medium film is based on a Co-based alloy containing Cr and Pt, which are ferromagnetic alloys, and non-magnetic oxides such as SiO 2 are uniformly dispersed in the substrate. Since it has a structure, the proportion of magnetic flux passing through the inside of the target is larger than that of the non-magnetic target, and the magnetic flux leaking over the target is extremely small. This is for magnetron sputtering, which has a magnetic circuit placed under the target and stabilizes the discharge by increasing the ionization efficiency of the noble gas by utilizing the magnetic flux leaking over the target, thereby improving the deposition rate. It becomes a big problem. In other words, if magnetron sputtering is performed using a target having a low leakage magnetic flux density (ie, a target having a high relative permeability) with a small amount of magnetic flux leaking over the target, the deposition rate is extremely high even if the discharge is not stable or can be discharged. This is because it causes problems such as slowness.
As one of means for solving this problem, a method is adopted in which the thickness of the target is reduced so that the magnetic flux easily escapes over the target. However, if the target is made thin, the replacement frequency of the target becomes frequent, so that the film formation efficiency is deteriorated, which is not preferable in terms of cost.
In addition, a target with low leakage magnetic flux density is once the erosion is formed by performing magnetron sputtering, magnetic flux leaks intensively from the erosion part, and only that part is intensively sputtered. It tends to cause problems such as a decrease in utilization efficiency, a change in deposition rate over time, a variation in film thickness within the substrate surface, and a large amount of redeposition film deposited on the target.
そこで、本発明者らは、ターゲットの厚さを薄くすることなく比透磁率の低いスパッタリングターゲットを得るべく研究を行なった。その結果、
(イ)非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%を含有し、残部:Coおよび不可避不純物からなる成分組成を有するスパッタリングターゲットに含まれる強磁性成分のCoをCrとの二元系合金相となるように分散させ、さらにPtおよび非磁性酸化物をPt相および非磁性酸化物相として分散させた組織を有するターゲットは比透磁率が低下する、
(ロ)非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%を含有し、さらにB:0.5〜8モル%を含有し、残部:Coおよび不可避不純物からなる成分組成を有するスパッタリングターゲットに含まれる強磁性成分のCoをCrとの二元系合金相となるように分散させ、さらにPt、非磁性酸化物およびBをPtとBの合金相および非磁性酸化物相として分散させた組織を有するターゲットは比透磁率が低下する、という知見を得たのである。
Therefore, the present inventors have studied to obtain a sputtering target having a low relative permeability without reducing the thickness of the target. as a result,
(A) Non-magnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, and the remainder: a sputtering target having a component composition consisting of Co and inevitable impurities A target having a structure in which the contained ferromagnetic component Co is dispersed so as to be a binary alloy phase with Cr, and Pt and a nonmagnetic oxide are dispersed as a Pt phase and a nonmagnetic oxide phase has a specific permeability. Magnetic susceptibility decreases,
(B) Nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, further B: 0.5 to 8 mol%, the balance : Co and ferromagnetic component contained in a sputtering target having a component composition composed of Co and inevitable impurities are dispersed so as to form a binary alloy phase with Cr, and further Pt, nonmagnetic oxide and B are mixed with Pt and B. It was found that a target having a structure dispersed as an alloy phase and a nonmagnetic oxide phase has a lower relative permeability.
この発明は、これら知見に基づいてなされたものであって、
(1)非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%を含有し、残部:Coおよび不可避不純物からなる成分組成を有するスパッタリングターゲットであって、このスパッタリングターゲットはCo−Cr二元系合金相、Pt相および非磁性酸化物相が均一分散している組織を有する比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット、
(2)非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%、B:0.5〜8モル%を含有し、残部:Coおよび不可避不純物からなる成分組成を有するスパッタリングターゲットであって、このスパッタリングターゲットは素地中にCo−Cr二元系合金相、PtとBの合金相および非磁性酸化物相が均一分散している組織を有する比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット、に特徴を有するものである。
This invention was made based on these findings,
(1) Nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, a sputtering target having a component composition composed of Co and inevitable impurities The sputtering target has a structure in which a Co—Cr binary alloy phase, a Pt phase and a nonmagnetic oxide phase are uniformly dispersed, and has a low relative permeability perpendicular magnetic recording medium film forming sputtering target,
(2) Nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, B: 0.5 to 8 mol%, balance: Co and inevitable A sputtering target having a component composition consisting of impurities, the sputtering target having a structure in which a Co—Cr binary alloy phase, an alloy phase of Pt and B, and a nonmagnetic oxide phase are uniformly dispersed in the substrate. It is characterized by a sputtering target for forming a perpendicular magnetic recording medium film having a low relative magnetic permeability.
前記(1)記載のスパッタリングターゲットのCo−Cr二元系合金相は、ホットプレス中に素地のPtがCo−Cr二元系合金相の外周に拡散侵入し、Co−Cr二元系合金相の外周にCo、CrおよびPtで構成されている拡散層により被覆されることがある。この拡散層は無い方が好ましいがこの拡散層は極めて薄い場合は特性に大きな影響を与えるものではなく、前記(1)記載のスパッタリングターゲットのCo−Cr二元系合金相の外周にCo、CrおよびPtで構成されている拡散層が形成される場合もこの発明に含まれる。したがって、この発明は、
(3)前記Co−Cr二元系合金相は、Co、CrおよびPtで構成されている拡散層により被覆されている前記(1)記載の比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット、に特徴を有するものである。
In the Co—Cr binary alloy phase of the sputtering target described in (1), the Pt of the base material diffuses and penetrates into the outer periphery of the Co—Cr binary alloy phase during hot pressing, and the Co—Cr binary alloy phase May be covered with a diffusion layer made of Co, Cr and Pt. This diffusion layer is preferably absent, but if this diffusion layer is extremely thin, it does not significantly affect the characteristics, and Co, Cr is formed on the outer periphery of the Co—Cr binary alloy phase of the sputtering target described in (1). A case where a diffusion layer composed of Pt and Pt is formed is also included in the present invention. Therefore, the present invention
(3) The sputtering for forming a perpendicular magnetic recording medium film having a low relative magnetic permeability according to (1), wherein the Co—Cr binary alloy phase is covered with a diffusion layer made of Co, Cr, and Pt. The target has characteristics.
前記(2)記載のスパッタリングターゲットのCo−Cr二元系合金相は、ホットプレス中に素地のPtおよびBがCo−Cr二元系合金相の外周に拡散侵入し、Co−Cr二元系合金相の外周にCo、Cr、PtおよびBで構成されている拡散層により被覆されることがある。この拡散層は無い方が好ましいがこの拡散層は極めて薄い場合は特性に大きな影響を与えるものではなく、前記(2)記載のスパッタリングターゲットのCo−Cr二元系合金相の外周にCo、Cr、PtおよびBで構成されている拡散層が形成される場合もこの発明に含まれる。したがって、この発明は、
(4)前記Co−Cr二元系合金相は、Co、Cr、PtおよびBで構成されている拡散層により被覆されている前記(2)記載の比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット、に特徴を有するものである。
In the Co—Cr binary alloy phase of the sputtering target described in (2) above, Pt and B of the base material diffuse and penetrate into the outer periphery of the Co—Cr binary alloy phase during hot pressing, and the Co—Cr binary system The outer periphery of the alloy phase may be covered with a diffusion layer composed of Co, Cr, Pt and B. It is preferable that this diffusion layer is not present. However, if this diffusion layer is extremely thin, it does not have a large effect on the characteristics, and Co, Cr is formed on the outer periphery of the Co—Cr binary alloy phase of the sputtering target described in (2). The case where a diffusion layer composed of Pt and B is formed is also included in the present invention. Therefore, the present invention
(4) The Co—Cr binary alloy phase is covered with a diffusion layer made of Co, Cr, Pt, and B. The low-permeability perpendicular magnetic recording medium film formation according to (2) above The sputtering target has a feature.
この発明の比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲットに含まれる前記非磁性酸化物は、二酸化珪素、酸化タンタル、酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化トリウム、酸化ジルコニウム、酸化セリウムおよび酸化イットリウムのうちのいずれかであり、このことはすでに知られている。 The nonmagnetic oxide included in the sputtering target for forming a perpendicular magnetic recording medium film having a low relative magnetic permeability according to the present invention includes silicon dioxide, tantalum oxide, titanium oxide, aluminum oxide, magnesium oxide, thorium oxide, zirconium oxide, and cerium oxide. And yttrium oxide, which are already known.
この発明の比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲットを製造するには、原料粉末としてCo−Cr二元系合金粉末、Pt粉末および非磁性酸化物粉末を用意し、さらに必要に応じてB粉末を用意し、これら原料粉末を非磁性酸化物:0.5〜15モル%、Cr:4〜20モル%、Pt:5〜25モル%を含有し、必要に応じてB:0.5〜8モル%を含有し、残部:Coおよび不可避不純物からなる成分組成となるように配合し、混合し、得られた混合粉末を通常より低い温度(700〜1050℃)でホットプレスすることによりCo−Cr二元系合金粉末に含まれるCoおよびCrが素地に拡散することを阻止し、さらに素地のPtがCo−Cr二元系合金相に拡散侵入するのを阻止することが好ましい。 In order to manufacture the sputtering target for forming a perpendicular magnetic recording medium film having a low relative permeability according to the present invention, a Co—Cr binary alloy powder, a Pt powder, and a nonmagnetic oxide powder are prepared as raw powders, and further required. B powder is prepared accordingly, and these raw material powders contain nonmagnetic oxide: 0.5 to 15 mol%, Cr: 4 to 20 mol%, Pt: 5 to 25 mol%, and B: It contains 0.5 to 8 mol%, and is mixed and mixed so as to have a component composition consisting of the balance: Co and inevitable impurities, and the obtained mixed powder is hot pressed at a temperature lower than usual (700 to 1050 ° C.). This prevents Co and Cr contained in the Co—Cr binary alloy powder from diffusing into the substrate, and further prevents Pt of the substrate from diffusing and penetrating into the Co—Cr binary alloy phase. preferable.
前記Co−Cr二元系合金粉末はCr:4.2〜33.3モル%を含有し、残部がCoからなる組成を有することが好まく、したがって、この発明の比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲットの素地中に分散しているCo−Cr二元系合金相もCr:4.2〜33.3モル%を含有し、残部がCoからなる組成を有している。このCo−Cr二元系合金粉末の成分組成および素地中に均一分散しているCo−Cr二元系合金相の成分組成はこの発明の比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲットの成分組成によって決定される。 The Co—Cr binary alloy powder preferably contains Cr: 4.2 to 33.3 mol%, and the balance is preferably composed of Co. Therefore, the perpendicular magnetic field with low relative permeability of the present invention is preferable. The Co—Cr binary alloy phase dispersed in the substrate of the sputtering target for forming the recording medium film also contains Cr: 4.2 to 33.3 mol%, and the balance is composed of Co. . The component composition of the Co—Cr binary alloy powder and the component composition of the Co—Cr binary alloy phase uniformly dispersed in the substrate are the sputtering target for forming a perpendicular magnetic recording medium film having a low relative magnetic permeability according to the present invention. It is determined by the component composition.
この発明の比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲットを用いると、マグネトロンスパッタリングを効率よく行なうことができ、コンピューター並びにデジタル家電等の産業の発展に大いに貢献し得るものである。 When the sputtering target for forming a perpendicular magnetic recording medium film having a low relative magnetic permeability according to the present invention is used, magnetron sputtering can be performed efficiently, which can greatly contribute to the development of industries such as computers and digital home appliances.
原料粉末として、表1に示される成分組成を有する平均粒径:20μmのCo−Cr二元系合金粉末A〜I、平均粒径:25μmのPt粉末、平均粒径:5μmのB粉末、平均粒径:5μmのCo粉末、平均粒径:15μmのCr粉末を用意し、さらに非磁性酸化物粉末としていずれも平均粒径:3μmのSiO2粉末、TiO2粉末、Ta2O5粉末およびAl2O3粉末を用意した。 As raw material powders, the average particle size having the composition shown in Table 1: Co-Cr binary alloy powders A to I of 20 μm, the average particle size: Pt powder of 25 μm, the average particle size: B powder of 5 μm, the average Co powder having a particle size of 5 μm and Cr powder having an average particle size of 15 μm are prepared. Further, as nonmagnetic oxide powders, the average particle size is 3 μm of SiO 2 powder, TiO 2 powder, Ta 2 O 5 powder and Al. 2 O 3 powder was prepared.
実施例1
表1に示されるCo−Cr二元系合金粉末A、Pt粉末およびSiO2粉末を、Cr:10.8%、Pt:15.3%、SiO2:10.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで12時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:900℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する本発明ターゲット1を作製した。さらにこの本発明ターゲット1を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Pt相、SiO2相およびCo−Cr二元系合金相が見られ、Co−Cr二元系合金相の周囲に拡散層が見られた。
この本発明ターゲット1についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Example 1
Co-Cr binary alloy powder A, Pt powder and SiO 2 powder shown in Table 1 contain Cr: 10.8%, Pt: 15.3%, SiO 2 : 10.0%, the balance being Compounding so as to have a component composition consisting of Co and inevitable impurities, the obtained blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in this container is replaced with an Ar gas atmosphere, Thereafter, the container was sealed. This container was rotated with a ball mill for 12 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
The target 1 of the present invention having a diameter of 152.4 mm and a thickness of 5 mm was produced by cutting the plate-like hot press body. Further, when the target 1 of the present invention was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method, a Pt phase, a SiO 2 phase and a Co—Cr binary alloy phase were observed. A diffusion layer was observed around the Co—Cr binary alloy phase.
The maximum relative magnetic permeability in the target in-plane direction was measured for the target 1 of the present invention, and the results are shown in Table 2.
従来例1
先に用意したCo粉末、Cr粉末、Pt粉末およびSiO2粉末を、Cr:10.8%、Pt:15.3%、SiO2:10.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する従来ターゲット1を作製した。さらにこの従来ターゲット1を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Co−Cr−Pt合金相中にSiO2粒子が均一分散している組織が見られた。この従来ターゲット1についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Conventional example 1
The previously prepared Co powder, Cr powder, Pt powder and SiO 2 powder contain Cr: 10.8%, Pt: 15.3%, SiO 2 : 10.0%, and the remainder from Co and inevitable impurities The resulting blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, the atmosphere in the container is replaced with an Ar gas atmosphere, and then the container is sealed. did. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
By cutting this plate-like hot press body, a conventional target 1 having a diameter of 152.4 mm and a thickness of 5 mm was produced. Further, when this conventional target 1 was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method, a structure in which SiO 2 particles were uniformly dispersed in the Co—Cr—Pt alloy phase. It was observed. The maximum relative permeability in the target in-plane direction of this conventional target 1 was measured, and the results are shown in Table 2.
実施例2
表1に示されるCo−Cr二元系合金粉末B、Pt粉末、SiO2粉末およびB粉末を、Cr:10.8%、Pt:15.3%、SiO2:10.0%、B:1.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:900℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する本発明ターゲット2を作製した。さらにこの本発明ターゲット2を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、PtとBの合金相、SiO2相およびCo−Cr二元系合金相が均一分散している組織が見られ、Co−Cr二元系合金相の周囲に拡散層が見られた。この本発明ターゲット2についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Example 2
Co-Cr binary alloy powder B, Pt powder, SiO 2 powder and B powder shown in Table 1 are Cr: 10.8%, Pt: 15.3%, SiO 2 : 10.0%, B: 1.0% is contained and the remainder is blended so as to have a component composition consisting of Co and inevitable impurities, and the obtained blended powder is put into a 10 liter container together with zirconia balls serving as a grinding medium. The atmosphere was replaced in an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
By cutting this plate-like hot press body, the target 2 of the present invention having a diameter of 152.4 mm and a thickness of 5 mm was produced. Further, the target 2 of the present invention was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, an alloy phase of Pt and B, a SiO 2 phase, and a Co—Cr binary alloy A structure in which the phases were uniformly dispersed was observed, and a diffusion layer was observed around the Co—Cr binary alloy phase. The maximum relative permeability in the target in-plane direction was measured for the target 2 of the present invention, and the results are shown in Table 2.
従来例2
先に用意したCo粉末、Cr粉末、Pt粉末、SiO2粉末およびB粉末を、Cr:10.8%、Pt:15.3%、SiO2:10.0%、B:1.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する従来ターゲット2を作製した。さらにこの従来ターゲット2を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Co−Cr−Pt−B合金相中にSiO2粒子相が分散している組織が見られた。この従来ターゲット2についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Conventional example 2
Co powder, Cr powder, Pt powder, SiO 2 powder and B powder prepared earlier are Cr: 10.8%, Pt: 15.3%, SiO 2 : 10.0%, B: 1.0%. It is blended so that the balance is a component composition comprising Co and inevitable impurities, and the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is an Ar gas atmosphere Replaced in, then sealed the container. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
By cutting this plate-like hot press body, a conventional target 2 having a diameter of 152.4 mm and a thickness of 5 mm was produced. Furthermore, when this conventional target 2 was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method, the SiO 2 particle phase was dispersed in the Co—Cr—Pt—B alloy phase. Some organizations were seen. The maximum relative permeability in the target in-plane direction of this conventional target 2 was measured, and the results are shown in Table 2.
実施例3
表1に示されるCo−Cr二元系合金粉末C、Pt粉末およびTiO2粉末を、Cr:9.9%、Pt:13.5%、TiO2:10.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:900℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する本発明ターゲット3を作製した。さらにこの本発明ターゲット3を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Pt相、TiO2相およびCo−Cr二元系合金相が見られ、Co−Cr二元系合金相の周囲に拡散層が見られた。この本発明ターゲット3についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Example 3
Co-Cr binary alloy powder C, Pt powder and TiO 2 powder shown in Table 1 contain Cr: 9.9%, Pt: 13.5%, TiO 2 : 10.0%, the balance being Compounding so as to have a component composition consisting of Co and inevitable impurities, the obtained blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in this container is replaced with an Ar gas atmosphere, Thereafter, the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
By cutting this plate-like hot press body, the target 3 of the present invention having a diameter of 152.4 mm and a thickness of 5 mm was produced. Further, when the target 3 of the present invention was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method, a Pt phase, a TiO 2 phase and a Co—Cr binary alloy phase were found. A diffusion layer was observed around the Co—Cr binary alloy phase. The maximum relative permeability in the in-plane direction of the target 3 of the present invention was measured, and the results are shown in Table 2.
従来例3
先に用意したCo粉末、Cr粉末、Pt粉末およびTiO2粉末を、Cr:9.9%、Pt:13.5%、TiO2:10.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する従来ターゲット3を作製した。さらにこの従来ターゲット3を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Co−Cr−Pt合金相中にTiO2粒子相が分散している組織が見られた。この従来ターゲット3についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Conventional example 3
Co powder, Cr powder, Pt powder and TiO 2 powder prepared previously contain Cr: 9.9%, Pt: 13.5%, TiO 2 : 10.0%, and the balance from Co and inevitable impurities The resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, the atmosphere in the container is replaced with an Ar gas atmosphere, and then the container is sealed. did. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
By cutting this plate-like hot press body, a conventional target 3 having a diameter of 152.4 mm and a thickness of 5 mm was produced. Further, when this conventional target 3 was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method, a structure in which the TiO 2 particle phase was dispersed in the Co—Cr—Pt alloy phase. It was observed. The maximum relative permeability in the target in-plane direction of this conventional target 3 was measured, and the results are shown in Table 2.
実施例4
表1に示されるCo−Cr二元系合金粉末D、Pt粉末、TiO2粉末およびB粉末を、Cr:13.4%、Pt:15.3%、TiO2:10.0%、B:4.3%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:900℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する本発明ターゲット4を作製した。さらにこの本発明ターゲット4を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、PtとBの合金相、TiO2相およびCo−Cr二元系合金相が均一分散している組織が見られ、Co−Cr二元系合金相の周囲に拡散層が見られた。この本発明ターゲット4についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Example 4
Co—Cr binary alloy powder D, Pt powder, TiO 2 powder and B powder shown in Table 1 were changed to Cr: 13.4%, Pt: 15.3%, TiO 2 : 10.0%, B: It is blended so as to have a component composition comprising 4.3% and the balance consisting of Co and inevitable impurities, and the obtained blended powder is put into a 10 liter container together with zirconia balls serving as a grinding medium. The atmosphere was replaced in an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
By cutting this plate-like hot press body, the target 4 of the present invention having a diameter of 152.4 mm and a thickness of 5 mm was produced. Further, the target 4 of the present invention was cut, and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, an alloy phase of Pt and B, a TiO 2 phase and a Co—Cr binary alloy were obtained. A structure in which the phases were uniformly dispersed was observed, and a diffusion layer was observed around the Co—Cr binary alloy phase. The maximum relative permeability in the target in-plane direction of this target 4 of the present invention was measured, and the results are shown in Table 2.
従来例4
先に用意したCo粉末、Cr粉末、Pt粉末、TiO2粉末およびB粉末を、Cr:13.4%、Pt:15.3%、TiO2:10.0%、B:4.3%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する従来ターゲット4を作製した。さらにこの従来ターゲット4を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、素地中にCo−Cr−Pt−B合金素地中にTiO2が均一分散している組織が見られた。この従来ターゲット4についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Conventional example 4
Co powder, Cr powder, Pt powder, TiO 2 powder and B powder prepared earlier are Cr: 13.4%, Pt: 15.3%, TiO 2 : 10.0%, B: 4.3% It is blended so that the balance is a component composition comprising Co and inevitable impurities, and the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is an Ar gas atmosphere Replaced in, then sealed the container. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
By cutting this plate-like hot press body, the conventional target 4 having a diameter of 152.4 mm and a thickness of 5 mm was produced. Furthermore, when this conventional target 4 was cut and the cut surface was observed by the surface analysis method of an electron beam microprobe analyzer (EPMA), TiO 2 was uniformly dispersed in the Co—Cr—Pt—B alloy substrate. Organization was seen. The maximum relative permeability in the target in-plane direction of this conventional target 4 was measured, and the results are shown in Table 2.
実施例5
表1に示されるCo−Cr二元系合金粉末E、Pt粉末およびTa2O5粉末を、Cr:16.0%、Pt:15.4%、Ta2O5:5.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:900℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する本発明ターゲット5を作製した。さらにこの本発明ターゲット5を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Pt相、Ta2O5相およびCo−Cr二元系合金相が見られ、Co−Cr二元系合金相の周囲に拡散層が見られた。この本発明ターゲット5についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Example 5
Co—Cr binary alloy powder E, Pt powder and Ta 2 O 5 powder shown in Table 1 contain Cr: 16.0%, Pt: 15.4%, Ta 2 O 5 : 5.0% Then, the remainder is blended so as to have a component composition consisting of Co and inevitable impurities, and the obtained blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is placed in an Ar gas atmosphere. The container was then sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
By cutting this plate-like hot press body, the target 5 of the present invention having a diameter of 152.4 mm and a thickness of 5 mm was produced. Further cutting the invention target 5, was observed with the cut surface in the surface analysis of the electron beam microprobe analyzer (EPMA), Pt phase, Ta 2 O 5 phase and Co-Cr binary alloy phase A diffusion layer was observed around the Co—Cr binary alloy phase. The maximum relative permeability in the target in-plane direction of this target 5 of the present invention was measured, and the results are shown in Table 2.
従来例5
先に用意したCo粉末、Cr粉末、Pt粉末およびTa2O5粉末を、Cr:16.0%、Pt:15.4%、Ta2O5:5.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する従来ターゲット5を作製した。さらにこの従来ターゲット5を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Co−Cr−Pt合金相中にTa2O5粒子相が分散している組織が見られた。この従来ターゲット5についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Conventional Example 5
The previously prepared Co powder, Cr powder, Pt powder and Ta 2 O 5 powder contain Cr: 16.0%, Pt: 15.4%, Ta 2 O 5 : 5.0%, the balance being Co And the resulting blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is replaced with an Ar gas atmosphere. The container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
By cutting this plate-like hot press body, a conventional target 5 having a diameter of 152.4 mm and a thickness of 5 mm was produced. Furthermore, when this conventional target 5 was cut and the cut surface was observed by a surface analysis method of an electron beam microprobe analyzer (EPMA), Ta 2 O 5 particle phase was dispersed in the Co—Cr—Pt alloy phase. Some organizations were seen. The maximum relative magnetic permeability in the target in-plane direction of this conventional target 5 was measured, and the results are shown in Table 2.
実施例6
表1に示されるCo−Cr二元系合金粉末F、Pt粉末、Ta2O5粉末およびB粉末を、Cr:20.5%、Pt:15.3%、Ta2O5:4.0%、B:3.8%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:900℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する本発明ターゲット6を作製した。さらにこの本発明ターゲット6を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、PtとBの合金相、Ta2O5相およびCo−Cr二元系合金相が見られ、Co−Cr二元系合金相の周囲に拡散層が見られた。この本発明ターゲット6についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Example 6
Co—Cr binary alloy powder F, Pt powder, Ta 2 O 5 powder and B powder shown in Table 1 were mixed with Cr: 20.5%, Pt: 15.3%, Ta 2 O 5 : 4.0. %, B: 3.8%, with the balance being a component composition consisting of Co and inevitable impurities, the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, The atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
By cutting this plate-like hot press body, the target 6 of the present invention having a diameter of 152.4 mm and a thickness of 5 mm was produced. Further cutting the invention target 6, observation of the cut surface by a surface analysis of an electron beam microprobe analyzer (EPMA), an alloy phase of Pt and B, Ta 2 O 5 phase and Co-Cr two yuan An alloy phase was observed, and a diffusion layer was observed around the Co—Cr binary alloy phase. The maximum relative permeability in the target in-plane direction of this target 6 of the present invention was measured, and the results are shown in Table 2.
従来例6
先に用意したCo粉末、Cr粉末、Pt粉末、Ta2O5粉末およびB粉末を、Cr:20.5%、Pt:15.3%、Ta2O5:4.0%、B:3.8%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する従来ターゲット6を作製した。さらにこの従来ターゲット6を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Co−Cr−Pt−B合金相中にTa2O5粒子相が均一分散している組織が見られた。この従来ターゲット6についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Conventional Example 6
Co powder prepared in advance, Cr powder, Pt powder, a Ta 2 O 5 powder and B powder, Cr: 20.5%, Pt: 15.3%, Ta 2 O 5: 4.0%, B: 3 .8%, with the balance being a component composition consisting of Co and unavoidable impurities, the resulting blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, and the atmosphere in this container Was replaced in an Ar gas atmosphere, and then the vessel was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
By cutting this plate-like hot press body, a conventional target 6 having a diameter of 152.4 mm and a thickness of 5 mm was produced. Furthermore, when this conventional target 6 was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method, the Ta 2 O 5 particle phase was uniform in the Co—Cr—Pt—B alloy phase. A distributed organization was seen. The maximum relative permeability in the target in-plane direction of this conventional target 6 was measured, and the results are shown in Table 2.
実施例7
表1に示されるCo−Cr二元系合金粉末G、Pt粉末およびAl2O3粉末を、Cr:10.7%、Pt:14.7%、Al2O3:6.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:900℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する本発明ターゲット7を作製した。さらにこの本発明ターゲット7を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Pt相、Al2O3相およびCo−Cr二元系合金相が見られ、Co−Cr二元系合金相の周囲に拡散層が見られた。この本発明ターゲット7についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Example 7
Co-Cr binary alloy powder G, Pt powder and Al 2 O 3 powder shown in Table 1 contain Cr: 10.7%, Pt: 14.7%, Al 2 O 3 : 6.0% Then, the remainder is blended so as to have a component composition consisting of Co and inevitable impurities, and the obtained blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is placed in an Ar gas atmosphere. The container was then sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
By cutting this plate-like hot press body, the target 7 of the present invention having a diameter of 152.4 mm and a thickness of 5 mm was produced. Further, the target 7 of the present invention was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method. As a result, a Pt phase, an Al 2 O 3 phase, and a Co—Cr binary alloy phase were found. A diffusion layer was observed around the Co—Cr binary alloy phase. The maximum relative permeability in the target in-plane direction of this target 7 of the present invention was measured, and the results are shown in Table 2.
従来例7
先に用意したCo粉末、Cr粉末、Pt粉末およびAl2O3粉末を、Cr:10.7%、Pt:14.7%、Al2O3:6.0%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する従来ターゲット7を作製した。さらにこの従来ターゲット7を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Co−Cr−Pt合金相中にAl2O3粒子相が均一分散している組織が見られた。この従来ターゲット7についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Conventional Example 7
The previously prepared Co powder, Cr powder, Pt powder and Al 2 O 3 powder contain Cr: 10.7%, Pt: 14.7%, Al 2 O 3 : 6.0%, the balance being Co And the resulting blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is replaced with an Ar gas atmosphere. The container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
By cutting this plate-like hot press body, a conventional target 7 having a diameter of 152.4 mm and a thickness of 5 mm was produced. Furthermore, when this conventional target 7 was cut and the cut surface was observed by an electron beam microprobe analyzer (EPMA) surface analysis method, the Al 2 O 3 particle phase was uniformly dispersed in the Co—Cr—Pt alloy phase. The organization that has been seen. The maximum relative permeability in the target in-plane direction of this conventional target 7 was measured, and the results are shown in Table 2.
実施例8
表1に示されるCo−Cr二元系合金粉末H、Pt粉末、Al2O3粉末、B粉末を、Cr:8.5%、Pt:14.7%、Al2O3:8.0%、B:2.7%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:900℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する本発明ターゲット8を作製した。さらにこの本発明ターゲット8を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、PtとBの合金相、Al2O3相およびCo−Cr二元系合金相が見られ、Co−Cr二元系合金相の周囲に拡散層が見られた。この本発明ターゲット8についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Example 8
Table 1 shows the Co-Cr binary alloy powder H, Pt powder, Al 2 O 3 powder, the B powder, Cr: 8.5%, Pt: 14.7%, Al 2 O 3: 8.0 %, B: 2.7%, the balance is a component composition consisting of Co and inevitable impurities, the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, The atmosphere in the container was replaced with an Ar gas atmosphere, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus, and a plate-like hot press body was produced by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 900 ° C., pressure: 35 MPa, and 3 hours.
By cutting this plate-like hot press body, the target 8 of the present invention having a diameter of 152.4 mm and a thickness of 5 mm was produced. Further cutting the invention target 8 Observation of a cut surface by surface analysis of an electron beam microprobe analyzer (EPMA), an alloy phase of Pt and B, Al 2 O 3 phase and Co-Cr two yuan An alloy phase was observed, and a diffusion layer was observed around the Co—Cr binary alloy phase. The maximum relative permeability in the target in-plane direction of this target 8 of the present invention was measured, and the results are shown in Table 2.
従来例8
先に用意したCo粉末、Cr粉末、Pt粉末、Al2O3粉末、B粉末を、Cr:8.5%、Pt:14.7%、Al2O3:8.0%、B:2.7%を含有し、残部がCoおよび不可避不純物からなる成分組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1100℃、圧力:35MPa、3時間保持の条件で真空ホットプレスすることにより板状ホットプレス体を作製した。
この板状ホットプレス体を切削することによりいずれも直径:152.4mm、厚さ:5mmの寸法を有する従来ターゲット8を作製した。さらにこの従来ターゲット8を切断し、その切断面を電子線マイクロプローブアナライザ(EPMA)の面分析法にて観察したところ、Co−Cr−Pt−B合金相中にAl2O3粒子相が均一分散している組織が見られた。この従来ターゲット8についてターゲット面内方向の最大比透磁率を測定し、その結果を表2に示した。
Conventional Example 8
Co powder, Cr powder, Pt powder, Al 2 O 3 powder, and B powder prepared earlier are Cr: 8.5%, Pt: 14.7%, Al 2 O 3 : 8.0%, B: 2. .7%, with the balance being a component composition consisting of Co and inevitable impurities, the resulting blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in this container Was replaced in an Ar gas atmosphere, and then the vessel was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder. The obtained mixed powder was filled in a vacuum hot press apparatus and vacuum hot pressed in a vacuum atmosphere under conditions of temperature: 1100 ° C., pressure: 35 MPa, and 3 hours to prepare a plate-like hot press body.
By cutting the plate-like hot press body, a conventional target 8 having a diameter of 152.4 mm and a thickness of 5 mm was produced. Further cutting the conventional target 8, the cut surface was observed by a surface analysis of an electron beam microprobe analyzer (EPMA), Co-Cr- Pt-B Al 2 O 3 grain phase is homogeneous alloy phase A distributed organization was seen. The maximum relative permeability in the target in-plane direction of this conventional target 8 was measured, and the results are shown in Table 2.
表2に示される結果から、素地中にCo−Cr二元系合金相が均一分散している本発明ターゲット1〜8は従来ターゲット1〜8に比べて、比透磁率が小さいところから、スパッタリングに際して漏洩磁束密度が大きく、したがって、本発明ターゲット1〜8は従来ターゲット1〜8に比べて効率よくスパッタできることが分かる。 From the results shown in Table 2, the targets 1 to 8 of the present invention in which the Co—Cr binary alloy phase is uniformly dispersed in the substrate have a lower relative permeability than the conventional targets 1 to 8, and thus sputtering is performed. At this time, the leakage magnetic flux density is large. Therefore, it can be seen that the inventive targets 1-8 can be sputtered more efficiently than the conventional targets 1-8.
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007163828A JP2009001860A (en) | 2007-06-21 | 2007-06-21 | Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability |
TW97148773A TW201022456A (en) | 2007-06-21 | 2008-12-15 | Sputtering target for the formation of perpendicular magnetic recording media films with low relative magnetic permeability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007163828A JP2009001860A (en) | 2007-06-21 | 2007-06-21 | Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009001860A true JP2009001860A (en) | 2009-01-08 |
Family
ID=40318563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007163828A Pending JP2009001860A (en) | 2007-06-21 | 2007-06-21 | Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009001860A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010067446A1 (en) * | 2008-12-11 | 2010-06-17 | 三菱マテリアル株式会社 | Sputtering target for forming perpendicular magnetic recording medium film having low relative permeability |
WO2010101051A1 (en) * | 2009-03-03 | 2010-09-10 | 日鉱金属株式会社 | Sputtering target and process for producing same |
JP2011021254A (en) * | 2009-07-16 | 2011-02-03 | Solar Applied Materials Technology Corp | Method for producing boron-containing sputtering target, thin film and magnetic recording medium |
WO2011016365A1 (en) * | 2009-08-06 | 2011-02-10 | Jx日鉱日石金属株式会社 | Inorganic particle-dispersed sputtering target |
JP4673448B2 (en) | 2009-03-27 | 2011-04-20 | Jx日鉱日石金属株式会社 | Non-magnetic particle dispersed ferromagnetic sputtering target |
JP2011208167A (en) * | 2010-03-28 | 2011-10-20 | Mitsubishi Materials Corp | Sputtering target for forming film of magnetic recording medium and method for manufacturing the same |
JP2012036452A (en) * | 2010-08-06 | 2012-02-23 | Tanaka Kikinzoku Kogyo Kk | Target for magnetron sputtering, and method of manufacturing the same |
JP4885333B1 (en) * | 2010-09-03 | 2012-02-29 | Jx日鉱日石金属株式会社 | Ferromagnetic sputtering target |
JP2012087412A (en) * | 2011-11-17 | 2012-05-10 | Tanaka Kikinzoku Kogyo Kk | Target for magnetron sputtering and method of producing the same |
JP2012132036A (en) * | 2010-12-20 | 2012-07-12 | Jx Nippon Mining & Metals Corp | Ferromagnetic material sputtering target |
US20130175167A1 (en) * | 2010-12-15 | 2013-07-11 | Jx Nippon Mining & Metals Corporation | Ferromagnetic sputtering target and method for manufacturing same |
US8568576B2 (en) | 2008-03-28 | 2013-10-29 | Jx Nippon Mining & Metals Corporation | Sputtering target of nonmagnetic-particle-dispersed ferromagnetic material |
US8679268B2 (en) | 2010-07-20 | 2014-03-25 | Jx Nippon Mining & Metals Corporation | Sputtering target of ferromagnetic material with low generation of particles |
US9228251B2 (en) | 2010-01-21 | 2016-01-05 | Jx Nippon Mining & Metals Corporation | Ferromagnetic material sputtering target |
WO2016013334A1 (en) * | 2014-07-25 | 2016-01-28 | Jx日鉱日石金属株式会社 | Sputtering target for forming magnetic thin film |
JPWO2014125897A1 (en) * | 2013-02-15 | 2017-02-02 | Jx金属株式会社 | Sputtering target containing Co or Fe |
US9761422B2 (en) | 2012-02-22 | 2017-09-12 | Jx Nippon Mining & Metals Corporation | Magnetic material sputtering target and manufacturing method for same |
US9793099B2 (en) | 2012-03-15 | 2017-10-17 | Jx Nippon Mining & Metals Corporation | Magnetic material sputtering target and manufacturing method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04297572A (en) * | 1991-03-26 | 1992-10-21 | Hitachi Metals Ltd | Co-cr-pt series target for magnetic recording medium |
JP2000282229A (en) * | 1999-03-29 | 2000-10-10 | Hitachi Metals Ltd | CoPt SPUTTERING TARGET, ITS PRODUCTION, MAGNETIC RECORDING FILM AND CoPt MAGNETIC RECORDING MEDIUM |
JP2003178415A (en) * | 2001-12-11 | 2003-06-27 | Fuji Electric Co Ltd | Magnetic recording medium and method of manufacturing the same |
JP2004339586A (en) * | 2003-05-19 | 2004-12-02 | Mitsubishi Materials Corp | Sputtering target for forming magnetic recording film, and its production method |
JP2006120270A (en) * | 2004-10-25 | 2006-05-11 | Hitachi Global Storage Technologies Netherlands Bv | Perpendicular magnetic recording medium and manufacturing method thereof |
JP2008078496A (en) * | 2006-09-22 | 2008-04-03 | Mitsui Mining & Smelting Co Ltd | OXIDE CONTAINING Co-BASED ALLOY MAGNETIC FILM, OXIDE CONTAINING Co-BASED ALLOY TARGET, AND MANUFACTURING METHOD THEREOF |
-
2007
- 2007-06-21 JP JP2007163828A patent/JP2009001860A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04297572A (en) * | 1991-03-26 | 1992-10-21 | Hitachi Metals Ltd | Co-cr-pt series target for magnetic recording medium |
JP2000282229A (en) * | 1999-03-29 | 2000-10-10 | Hitachi Metals Ltd | CoPt SPUTTERING TARGET, ITS PRODUCTION, MAGNETIC RECORDING FILM AND CoPt MAGNETIC RECORDING MEDIUM |
JP2003178415A (en) * | 2001-12-11 | 2003-06-27 | Fuji Electric Co Ltd | Magnetic recording medium and method of manufacturing the same |
JP2004339586A (en) * | 2003-05-19 | 2004-12-02 | Mitsubishi Materials Corp | Sputtering target for forming magnetic recording film, and its production method |
JP2006120270A (en) * | 2004-10-25 | 2006-05-11 | Hitachi Global Storage Technologies Netherlands Bv | Perpendicular magnetic recording medium and manufacturing method thereof |
JP2008078496A (en) * | 2006-09-22 | 2008-04-03 | Mitsui Mining & Smelting Co Ltd | OXIDE CONTAINING Co-BASED ALLOY MAGNETIC FILM, OXIDE CONTAINING Co-BASED ALLOY TARGET, AND MANUFACTURING METHOD THEREOF |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8568576B2 (en) | 2008-03-28 | 2013-10-29 | Jx Nippon Mining & Metals Corporation | Sputtering target of nonmagnetic-particle-dispersed ferromagnetic material |
US8936707B2 (en) | 2008-03-28 | 2015-01-20 | Jx Nippon Mining & Metals Corporation | Sputtering target of nonmagnetic-particle-dispersed ferromagnetic material |
US8932444B2 (en) | 2008-03-28 | 2015-01-13 | Jx Nippon Mining & Metals Corporation | Sputtering target of nonmagnetic-particle-dispersed ferromagnetic material |
WO2010067446A1 (en) * | 2008-12-11 | 2010-06-17 | 三菱マテリアル株式会社 | Sputtering target for forming perpendicular magnetic recording medium film having low relative permeability |
WO2010101051A1 (en) * | 2009-03-03 | 2010-09-10 | 日鉱金属株式会社 | Sputtering target and process for producing same |
US9034154B2 (en) | 2009-03-03 | 2015-05-19 | Jx Nippon Mining & Metals Corporation | Sputtering target and process for producing same |
JP4846872B2 (en) * | 2009-03-03 | 2011-12-28 | Jx日鉱日石金属株式会社 | Sputtering target and manufacturing method thereof |
US9103023B2 (en) | 2009-03-27 | 2015-08-11 | Jx Nippon Mining & Metals Corporation | Nonmagnetic material particle-dispersed ferromagnetic material sputtering target |
JP4673448B2 (en) | 2009-03-27 | 2011-04-20 | Jx日鉱日石金属株式会社 | Non-magnetic particle dispersed ferromagnetic sputtering target |
JP2011021254A (en) * | 2009-07-16 | 2011-02-03 | Solar Applied Materials Technology Corp | Method for producing boron-containing sputtering target, thin film and magnetic recording medium |
JP4870855B2 (en) * | 2009-08-06 | 2012-02-08 | Jx日鉱日石金属株式会社 | Inorganic particle dispersed sputtering target |
CN102482764A (en) * | 2009-08-06 | 2012-05-30 | 吉坤日矿日石金属株式会社 | Inorganic particle-dispersed sputtering target |
WO2011016365A1 (en) * | 2009-08-06 | 2011-02-10 | Jx日鉱日石金属株式会社 | Inorganic particle-dispersed sputtering target |
US9034155B2 (en) | 2009-08-06 | 2015-05-19 | Jx Nippon Mining & Metals Corporation | Inorganic-particle-dispersed sputtering target |
US9228251B2 (en) | 2010-01-21 | 2016-01-05 | Jx Nippon Mining & Metals Corporation | Ferromagnetic material sputtering target |
JP2011208167A (en) * | 2010-03-28 | 2011-10-20 | Mitsubishi Materials Corp | Sputtering target for forming film of magnetic recording medium and method for manufacturing the same |
US8679268B2 (en) | 2010-07-20 | 2014-03-25 | Jx Nippon Mining & Metals Corporation | Sputtering target of ferromagnetic material with low generation of particles |
JP2012036452A (en) * | 2010-08-06 | 2012-02-23 | Tanaka Kikinzoku Kogyo Kk | Target for magnetron sputtering, and method of manufacturing the same |
JP4885333B1 (en) * | 2010-09-03 | 2012-02-29 | Jx日鉱日石金属株式会社 | Ferromagnetic sputtering target |
WO2012029331A1 (en) * | 2010-09-03 | 2012-03-08 | Jx日鉱日石金属株式会社 | Ferromagnetic material sputtering target |
CN103038388A (en) * | 2010-09-03 | 2013-04-10 | 吉坤日矿日石金属株式会社 | Ferromagnetic material sputtering target |
US20130175167A1 (en) * | 2010-12-15 | 2013-07-11 | Jx Nippon Mining & Metals Corporation | Ferromagnetic sputtering target and method for manufacturing same |
JP2012132036A (en) * | 2010-12-20 | 2012-07-12 | Jx Nippon Mining & Metals Corp | Ferromagnetic material sputtering target |
JP2012087412A (en) * | 2011-11-17 | 2012-05-10 | Tanaka Kikinzoku Kogyo Kk | Target for magnetron sputtering and method of producing the same |
US9761422B2 (en) | 2012-02-22 | 2017-09-12 | Jx Nippon Mining & Metals Corporation | Magnetic material sputtering target and manufacturing method for same |
US9793099B2 (en) | 2012-03-15 | 2017-10-17 | Jx Nippon Mining & Metals Corporation | Magnetic material sputtering target and manufacturing method thereof |
US10325761B2 (en) | 2012-03-15 | 2019-06-18 | Jx Nippon Mining & Metals Corporation | Magnetic material sputtering target and manufacturing method thereof |
JPWO2014125897A1 (en) * | 2013-02-15 | 2017-02-02 | Jx金属株式会社 | Sputtering target containing Co or Fe |
JP2017137570A (en) * | 2013-02-15 | 2017-08-10 | Jx金属株式会社 | Sputtering target containing Co or Fe |
WO2016013334A1 (en) * | 2014-07-25 | 2016-01-28 | Jx日鉱日石金属株式会社 | Sputtering target for forming magnetic thin film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009001860A (en) | Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability | |
US9228251B2 (en) | Ferromagnetic material sputtering target | |
JP2009132975A (en) | Sputtering target for forming film of perpendicular magnetic recording medium having low relative permeability | |
JP2009001861A (en) | Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability | |
CN102482765B (en) | Sputtering target of ferromagnetic material with low generation of particles | |
JP6359622B2 (en) | Sputtering target containing Co or Fe | |
TW201125993A (en) | Sputtering target comprising oxide phase dispersed in co or co alloy phase, magnetic material thin film comprising co or co alloy phase and oxide phase, and magnetic recording medium produced using the magnetic material thin film | |
JP4673453B1 (en) | Ferromagnetic material sputtering target | |
JP2010222639A (en) | METHOD OF MANUFACTURING Co-BASED SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM HAVING LOW MAGNETIC PERMEABILITY | |
JP2009001862A (en) | Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability | |
JP5024661B2 (en) | Co-based sintered alloy sputtering target for magnetic recording film formation with less generation of particles | |
JP2008045173A (en) | FeCoB-BASED TARGET MATERIAL TO WHICH Cr IS ADDED | |
JP2010272177A (en) | Sputtering target for forming magnetic recording medium film, and method for producing the same | |
JP2009293102A (en) | Sputtering target for depositing vertical magnetic recording medium film with low relative permeability | |
JP2011216135A (en) | Sputtering target for forming magnetic recording medium film, and manufacturing method thereof | |
JP2009132976A (en) | Sputtering target for depositing perpendicular magnetic recording medium film having low relative magnetic permeability | |
JP5024660B2 (en) | Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles | |
WO2010067446A1 (en) | Sputtering target for forming perpendicular magnetic recording medium film having low relative permeability | |
JP2009108335A (en) | MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY | |
JP4968445B2 (en) | Sputtering target for forming high-density magnetic recording medium film with less generation of particles | |
JP2009108336A (en) | MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY | |
JP5024659B2 (en) | Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles | |
JP4758522B1 (en) | Ferromagnetic sputtering target with less generation of particles | |
CN111133126B (en) | Sputtering target capable of stable discharge | |
JP2007291489A (en) | Method for manufacturing sputtering target to be used in forming film of perpendicular magnetic recording medium having low relative magnetic permeability in in-plane direction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100330 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110920 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110928 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120203 |