[go: up one dir, main page]

JP5024660B2 - Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles - Google Patents

Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles Download PDF

Info

Publication number
JP5024660B2
JP5024660B2 JP2007078224A JP2007078224A JP5024660B2 JP 5024660 B2 JP5024660 B2 JP 5024660B2 JP 2007078224 A JP2007078224 A JP 2007078224A JP 2007078224 A JP2007078224 A JP 2007078224A JP 5024660 B2 JP5024660 B2 JP 5024660B2
Authority
JP
Japan
Prior art keywords
powder
magnetic recording
oxide
recording film
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007078224A
Other languages
Japanese (ja)
Other versions
JP2007291512A (en
Inventor
荘平 野中
孝典 白井
幸也 杉内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007078224A priority Critical patent/JP5024660B2/en
Priority to US12/294,691 priority patent/US20100270146A1/en
Priority to PCT/JP2007/057223 priority patent/WO2007116834A1/en
Priority to TW096111554A priority patent/TW200808980A/en
Publication of JP2007291512A publication Critical patent/JP2007291512A/en
Application granted granted Critical
Publication of JP5024660B2 publication Critical patent/JP5024660B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

この発明は、ハードディスクの高密度磁気記録媒体に適用される磁気記録膜、特に垂直磁気記録媒体に適用される磁気記録膜を形成するためのスパッタリングターゲットの製造方法に関するものである。   The present invention relates to a method of manufacturing a sputtering target for forming a magnetic recording film applied to a high-density magnetic recording medium of a hard disk, particularly a magnetic recording film applied to a perpendicular magnetic recording medium.

ハードディスク装置は一般にコンピューターやデジタル家電等の外部記録装置として用いられており、記録密度の一層の向上が求められている。そのため、近年、超高密度の記録を実現できる垂直磁気記録方式が注目されてきた。この垂直磁気記録方式は、従来の面内記録方式と異なり、原理的に高密度化するほど記録磁化が安定すると言われており、実用化が開始された。この垂直磁気記録方式のハードディスク媒体の磁気記録層に適用する材料の有力な候補としてCoCrPt−SiOグラニュラ磁気記録膜が提案されており、この磁気記録膜は高性能な磁気記録膜であることが必要である。これに適用可能な磁気記録膜の一つとしてCoCrPt−SiOグラニュラ磁気記録膜が提案されており、このCoCrPt−SiOグラニュラ磁気記録膜はCrおよびPtを含むCo基焼結合金相と二酸化珪素相の混合相を有するCo基焼結合金スパッタリングターゲットを用いてマグネトロンスパッタ法により作製することが知られている(非特許文献1参照)。
このCo基焼結合金スパッタリングターゲットは、通常、二酸化珪素粉末、Cr粉末、Pt粉末およびCo粉末を、二酸化珪素:2〜15モル%、Cr:3〜20モル%、Pt:5〜30モル%を含有し、残部:Coからなる組成となるように配合し混合したのち、ホットプレスまたは熱間静水圧プレスなどの方法で加圧焼結することにより作製されることが知られており、前記二酸化珪素粉末として高温火炎加水分解法で製造された二酸化珪素粉末を使用し、ターゲットの素地中に分散する二酸化珪素相を10μm以下の極めて細かい組織とすることによってパーティクルの発生を少なくしている(特許文献1、特許文献2などを参照)。
さらに、前記SiOのほかにTiO、Cr、TiO、Ta、Al、BeO、MgO、ThO、ZrO、CeO、Yなどの非磁性酸化物が使用できることが知られている(特許文献3、4参照)。
「富士時報」Vol.75No.3 2002(169〜172ページ) 特開2001‐236643号公報 特開2004‐339586号公報 特開2003‐36525号公報 特開2006‐24346号公報
Hard disk devices are generally used as external recording devices such as computers and digital home appliances, and further improvement in recording density is required. Therefore, in recent years, a perpendicular magnetic recording system that can realize ultra-high-density recording has attracted attention. Unlike the conventional in-plane recording system, this perpendicular magnetic recording system is said to have a stable recording magnetization as the density is increased in principle, and its practical use has started. A CoCrPt—SiO 2 granular magnetic recording film has been proposed as a promising candidate for a material to be applied to the magnetic recording layer of this perpendicular magnetic recording type hard disk medium, and this magnetic recording film is a high-performance magnetic recording film. is necessary. As one of the magnetic recording films applicable to this, a CoCrPt—SiO 2 granular magnetic recording film has been proposed. This CoCrPt—SiO 2 granular magnetic recording film has a Co-based sintered alloy phase containing Cr and Pt and silicon dioxide. It is known to produce by a magnetron sputtering method using a Co-based sintered alloy sputtering target having a mixed phase (see Non-Patent Document 1).
This Co-based sintered alloy sputtering target usually comprises silicon dioxide powder, Cr powder, Pt powder and Co powder, silicon dioxide: 2 to 15 mol%, Cr: 3 to 20 mol%, Pt: 5 to 30 mol%. It is known that the remainder is prepared by mixing and mixing so as to be a composition consisting of Co, and then pressure sintering by a method such as hot pressing or hot isostatic pressing, Generation of particles is reduced by using silicon dioxide powder produced by a high-temperature flame hydrolysis method as silicon dioxide powder, and making the silicon dioxide phase dispersed in the target substrate a very fine structure of 10 μm or less ( (See Patent Document 1, Patent Document 2, etc.).
Further, in addition to the SiO 2 , nonmagnetic materials such as TiO, Cr 2 O 3 , TiO 2 , Ta 2 O 5 , Al 2 O 3 , BeO 2 , MgO, ThO 2 , ZrO 2 , CeO 2 , and Y 2 O 3. It is known that oxides can be used (see Patent Documents 3 and 4).
“Fuji Times” Vol. 75No. 3 2002 (pages 169-172) Japanese Patent Laid-Open No. 2001-236643 JP 2004-339586 A JP 2003-36525 A JP 2006-24346 A

しかし、前記従来の方法で作製したCo基焼結合金スパッタリングターゲットは、パーティクルの発生が避けられず、一層パーティクル発生の少ないCo基焼結合金からなるスパッタリングターゲットが求められていた。   However, the Co-based sintered alloy sputtering target produced by the conventional method inevitably generates particles, and a sputtering target made of a Co-based sintered alloy with less generation of particles has been demanded.

そこで、本発明者は、一層パーティクル発生の少ないCo基焼結合金スパッタリングターゲットを得るべく研究を行なったところ、
(イ)ターゲットの素地中に絶対最大長(粒子の輪郭線上の任意の2点間距離の最大値)が10μmを越える粗大なCrとOを主成分とする凝集体または析出物(以下、クロム酸化物凝集体という)が分散していることがパーティクル発生の一因となっていること、
(ロ)この粗大なクロム酸化物凝集体が素地中に存在しないようにするには、原料粉末として、Cr粉末の代わりに、Cr:50〜70原子%を含有し、残部がCoからなる成分組成を有するCrとCoの金属間化合物を主体とする合金粉末(以下、Cr−Co合金粉末という)を使用することが好ましいこと、などの知見を得たのである。
Therefore, the present inventor conducted research to obtain a Co-based sintered alloy sputtering target with less particle generation,
(A) Aggregates or precipitates (hereinafter referred to as chromium) whose main components are coarse Cr and O whose absolute maximum length (maximum value of the distance between any two points on the particle outline) exceeds 10 μm in the target substrate. That the dispersion of oxide aggregates) contributes to particle generation,
(B) In order to prevent the coarse chromium oxide aggregates from being present in the substrate, the raw material powder contains Cr: 50 to 70 atomic% instead of Cr powder, with the balance being Co. The inventors have obtained knowledge that it is preferable to use an alloy powder mainly composed of an intermetallic compound of Cr and Co having a composition (hereinafter referred to as a Cr—Co alloy powder).

この発明は、かかる知見に基づいてなされたものであって、
(1)原料粉末として、Cr:50〜70原子%を含有し、残部がCoからなる成分組成のCr−Co合金粉末、Pt粉末、非磁性酸化物粉末およびCo粉末を用意し、これら原料粉末を非磁性酸化物:2〜15モル%、Cr:3〜20モル%、Pt:5〜30モル%を含有し、残部:Coからなる成分組成となるように配合し混合したのち、加圧焼結するパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、
(2)前記非磁性酸化物は、二酸化珪素、酸化タンタル、酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化トリウム、酸化ジルコニウム、酸化セリウムおよび酸化イットリウムのうちのいずれかである前記(1)記載のパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、
(3)前記加圧焼結は、ホットプレスまたは熱間静水圧プレスである前記(1)記載のパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法、に特徴を有するものである。
This invention has been made based on such knowledge,
(1) Cr—Co alloy powder, Pt powder, nonmagnetic oxide powder, and Co powder having a component composition containing Cr: 50 to 70 atomic% and the balance being Co are prepared as raw material powder. Nonmagnetic oxide: 2 to 15 mol%, Cr: 3 to 20 mol%, Pt: 5 to 30 mol%, balance: component composition consisting of Co, mixed and mixed, then pressed A method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with less generation of particles to be sintered,
(2) The particle according to (1), wherein the nonmagnetic oxide is any one of silicon dioxide, tantalum oxide, titanium oxide, aluminum oxide, magnesium oxide, thorium oxide, zirconium oxide, cerium oxide, and yttrium oxide. A method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with less generation,
(3) The pressure sintering is characterized by the method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with less particle generation according to (1), which is hot pressing or hot isostatic pressing. Is.

この発明のパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法で使用するCr−Co合金粉末の成分組成を前記のごとく限定した理由は、Crが50原子%未満または70原子%を越えて含有すると、粉末中に金属間化合物の他にCoとCrの結合が弱い固溶体Coまたは固溶体Crが存在する割合が多くなり、混合時や焼結時にCrが酸素や非磁性酸化物と反応して粗大なクロム酸化物凝集体を形成しやすくなるので好ましくないからである。Cr−Co合金粉末に含まれるCrの一層好ましい範囲は54〜67原子%である。   The reason why the component composition of the Cr—Co alloy powder used in the method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with less particle generation according to the present invention is limited as described above is that Cr is less than 50 atomic% or 70 When the content exceeds atomic%, the ratio of the solid solution Co or solid solution Cr in which the bond between Co and Cr is weak in addition to the intermetallic compound in the powder increases, and Cr is mixed with oxygen or nonmagnetic oxidation during mixing or sintering. This is because it tends to react with the product to form coarse chromium oxide aggregates, which is not preferable. A more preferable range of Cr contained in the Cr—Co alloy powder is 54 to 67 atomic%.

クロム酸化物凝集体がパーティクル発生の原因となる理由は、クロム酸化物凝集体は非常にもろく、スパッタ中に脱落したり異常放電を生じたりし、またクロム酸化物凝集体のサイズが大きい場合にはターゲットの加工中にターゲット表面から脱落し、脱落した部分に欠陥が形成されるからである。Cr−Co合金粉末を原料粉末として使用することによりクロム酸化物凝集体の生成が抑制される理由として、CrとCoの間にはCrが54〜67原子%付近に金属間化合物相が存在するが、CoとCrをこの付近の組成で合金化してCrのすべてあるいは大部分をCoとの金属間化合物の形で投入した場合、金属間化合物中のCrはCoと強固に結合された状態にあり、単体や固溶体として存在する場合よりも酸素や非磁性酸化物との反応が生じ難いためであると考えられる。 The reason why chromium oxide aggregates cause particle generation is that chromium oxide aggregates are very fragile, fall off during spattering, cause abnormal discharge, and when the size of chromium oxide aggregates is large. This is because it falls off from the target surface during processing of the target, and a defect is formed in the dropped part. The reason why the formation of chromium oxide aggregates is suppressed by using the Cr—Co alloy powder as a raw material powder is that an intermetallic compound phase exists between Cr and Co in the vicinity of 54 to 67 atomic% of Cr. However, when Co and Cr are alloyed with a composition in the vicinity and all or most of Cr is introduced in the form of an intermetallic compound with Co, the Cr in the intermetallic compound is in a state of being firmly bonded to Co. It is thought that this is because the reaction with oxygen and non-magnetic oxides is less likely to occur than when it exists as a simple substance or a solid solution.

つぎに、この発明のパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法において使用するCr−Co合金粉末の粒径は、50%粒径が150μmを越えると混合粉砕時に粉砕が十分に進まないことから、Cr−Co合金粉末の粒径は50%粒径が150μm以下であることが好ましく、微細であるほど好ましいところから分級などにより50%粒径が75μm以下にすることが一層好ましく、さらに50%粒径が45μm以下とすることがさらに一層好ましい。さらにCo粉末、Pt粉末はいずれも50%粒径が50μm以下(一層好ましくは50%粒径が40μm以下)、さらに非磁性酸化物粉末は50%粒径が20μm以下(一層好ましくは50%粒径が10μm以下)とすることが好ましい。その理由はCo粉末、Pt粉末がこれ以上大きいと混合後に均一な組織が得られにくいためである。また、非磁性酸化物粉末の粒径がこれ以上大きくなると混合粉砕工程を経てもターゲット中に10μm以上の大きな非磁性酸化物が存在しやすくなり、これがスパッタ中の異常放電やパーティクル発生の原因となるからである。
前記原料粉末の混合は不活性ガス雰囲気中で行なうことが好ましい。これは混合中にCrが酸素と結合してクロム酸化物凝集体が形成されるのをより一層防止するからである。
Next, the particle size of the Cr—Co alloy powder used in the method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with less particle generation according to the present invention is 50% larger than 150 μm. Since the pulverization does not proceed sufficiently, it is preferable that the particle size of the Cr—Co alloy powder is 50% particle size of 150 μm or less. It is more preferable that the 50% particle size be 45 μm or less. Further, both Co powder and Pt powder have 50% particle size of 50 μm or less (more preferably, 50% particle size is 40 μm or less), and nonmagnetic oxide powder has 50% particle size of 20 μm or less (more preferably 50% particle size). The diameter is preferably 10 μm or less. The reason is that if the Co powder and the Pt powder are larger than this, it is difficult to obtain a uniform structure after mixing. Further, when the particle size of the nonmagnetic oxide powder is larger than this, a large nonmagnetic oxide of 10 μm or more is likely to be present in the target even after the mixing and pulverization process, which causes abnormal discharge and particle generation during sputtering. Because it becomes.
The raw material powder is preferably mixed in an inert gas atmosphere. This is because it further prevents Cr from being combined with oxygen to form chromium oxide aggregates during mixing.

この発明は、一層パーティクル発生の少ない優れた磁気記録膜を形成することができるスパッタリングターゲットを提供することができ、コンピューター並びにデジタル家電等の産業の発展に大いに貢献し得るものである。   The present invention can provide a sputtering target capable of forming an excellent magnetic recording film with less generation of particles, and can greatly contribute to the development of industries such as computers and digital home appliances.

原料粉末として、表1に示される成分組成を有するCo−Cr合金粉末A〜Jをガスアトマイズ法により作製した。これらガスアトマイズ法により得られたCo−Cr合金粉末A〜Jは50%粒径が95μmであったので、これらCo−Cr合金粉末A〜Jを45μmの目開きを持つ篩により分級し、レーザー回折法により測定される50%粒径がいずれも35μmとなるように分級した。さらに市販の50%粒径:10μmのCo粉末、50%粒径::15μmのPt粉末、50%粒径:3μmのSiO粉末、50%粒径:3μmのTiO粉末、50%粒径:3μmのTa粉末および50%粒径:10μmのCr粉末を用意した。 As raw material powders, Co—Cr alloy powders A to J having the component compositions shown in Table 1 were prepared by a gas atomization method. Since the Co-Cr alloy powders A to J obtained by the gas atomization method had a 50% particle size of 95 μm, the Co—Cr alloy powders A to J were classified by a sieve having an opening of 45 μm, and laser diffraction was performed. The 50% particle size measured by the method was all classified to 35 μm. Further, commercially available 50% particle size: 10 μm Co powder, 50% particle size: 15 μm Pt powder, 50% particle size: 3 μm SiO 2 powder, 50% particle size: 3 μm TiO 2 powder, 50% particle size : 3 μm Ta 2 O 5 powder and 50% particle size: 10 μm Cr powder were prepared.

Figure 0005024660
Figure 0005024660

実施例1
これら原料粉末を表2に示される配合組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。
得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1200℃、圧力:15MPa、3時間保持の条件で真空ホットプレスすることにより表2に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:152.4mm、厚さ:3mmの寸法を有するターゲットを作製することにより本発明法1〜8、比較法1〜2および従来法1を実施した。
Example 1
These raw material powders were blended so as to have the blending composition shown in Table 2, and the obtained blended powder was put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in the container was placed in an Ar gas atmosphere. After replacement, the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder.
The obtained mixed powder is filled into a vacuum hot press apparatus, and hot press having the component composition shown in Table 2 by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1200 ° C., pressure: 15 MPa, and 3 hours. The present invention methods 1-8, comparative methods 1-2, and conventional method 1 are prepared by cutting the hot press body to produce a target having dimensions of diameter: 152.4 mm and thickness: 3 mm. Carried out.

前記本発明法1〜8、比較法1〜2および従来法1で作製したターゲットの素地中に分散するクロム酸化物凝集体の絶対最大長(粒子の輪郭線上の任意の2点間距離の最大値)をEPMAにより測定し、絶対最大長が10μmを越える粗大なクロム酸化物凝集体の存在の有無を表2に示した。
EPMAによるクロム酸化物凝集体の絶対最大長の測定は、次のようにして行なった。前記本発明法1〜8、比較法1〜2および従来法1で作製したホットプレス体から試料を切り出して断面を樹脂に埋め、鏡面研磨した。この断面組織についてフィールドエミッションEPMA(日本電子社製JXA−8500F)により、加速電圧:15kV、照射電流:5×10−8Aの条件で1000倍の倍率にて面分析を実施し、Crの元素マッピング像を得た。このCrの元素マッピング像は出来るだけCrが富化した領域(すなわちクロム酸化物凝集体)を明確に判別できるよう、コントラストおよび色調をつけた画像とした。得られたCrの元素マッピング像を画質を落とさずにビットマップ形式の画像ファイルとして保存し、この画像を別途パソコンの画像処理ソフト(三谷商事社製、Win Roof)に読み込ませて二値化し、マトリックスよりCrが富化している領域の絶対最大長を画像処理により計測した。二値化の際にはCr富化領域の大きさが元の画像と変化しないようにしきい値を選んだ。計測時の長さのキャリブレーションについては元のEPMAによるCrの元素マッピング像に表示されたスケールバーを用いた。
The absolute maximum length of the chromium oxide aggregates dispersed in the substrate of the target prepared by the above-described inventive methods 1 to 8, comparative methods 1 and 2 and conventional method 1 (maximum of the distance between any two points on the particle contour) Value) was measured by EPMA, and the presence or absence of coarse chromium oxide aggregates having an absolute maximum length exceeding 10 μm was shown in Table 2.
The absolute maximum length of the chromium oxide aggregates by EPMA was measured as follows. A sample was cut out from the hot press body produced by the present invention methods 1 to 8, comparative methods 1 and 2, and conventional method 1, the cross section was filled in resin, and mirror-polished. This cross-sectional structure was subjected to surface analysis at 1000 times magnification under the conditions of acceleration voltage: 15 kV, irradiation current: 5 × 10 −8 A by field emission EPMA (JXA-8500F manufactured by JEOL Ltd.), and Cr element A mapping image was obtained. The element mapping image of Cr was an image with contrast and color tone so that the Cr-enriched region (that is, the chromium oxide aggregate) could be clearly discriminated. The obtained Cr element mapping image is saved as an image file in bitmap format without degrading the image quality, and this image is separately read into a personal computer image processing software (Mitani Corp., Win Roof) and binarized, The absolute maximum length of the region enriched with Cr from the matrix was measured by image processing. In binarization, a threshold value was selected so that the size of the Cr-enriched area did not change from the original image. For the calibration of the length at the time of measurement, a scale bar displayed on the element mapping image of Cr by the original EPMA was used.

さらに、前記本発明法1〜8、比較法1〜2および従来法1で得られたターゲットを有機溶剤により脱脂し、ついで真空中、150℃、8時間保持真空乾燥を行なったのち銅製のバッキングプレートに接合して市販のスパッタ装置に装着し、
到達真空度:5×10−5Pa、
電力:直流800W、
Arガス圧:6.0Pa、
ターゲット基板間距離:60mm、
基板加熱:なし、
の条件でプレスパッタを行い、ターゲット表面加工層を除去したのち、一旦チャンバーを大気開放して、防着板などのチャンバー部材の清掃を行った。その後、再び上記真空度に達するまで真空引きを行い、真空引き後、30分のプレスパッタを行ってターゲット表面の大気吸着成分や金属酸化層の除去を行ったのち、4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜した。同じ条件で合計25枚の4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜し、成膜後のウエハについて市販の異物検査装置によりウエハ表面に付着した1.0μm以上のパーティクル数を計測し、25枚の平均値を算出し、その結果を表2に示した。
Further, after degreasing the targets obtained in the above-mentioned inventive methods 1 to 8, comparative methods 1 and 2 and conventional method 1 with an organic solvent, and then vacuum-drying at 150 ° C. for 8 hours in a vacuum, a copper backing Join the plate and attach it to a commercially available sputtering device.
Ultimate vacuum: 5 × 10 −5 Pa,
Power: DC 800W,
Ar gas pressure: 6.0 Pa,
Target substrate distance: 60mm,
Substrate heating: None,
Pre-sputtering was performed under the conditions described above, and after the target surface processed layer was removed, the chamber was once opened to the atmosphere, and chamber members such as a deposition prevention plate were cleaned. Thereafter, vacuuming is performed again until the degree of vacuum is reached, and after vacuuming, pre-sputtering is performed for 30 minutes to remove the air adsorbing components and the metal oxide layer on the target surface. S: A magnetic recording film of 100 nm was formed. Under the same conditions, a magnetic recording film having a thickness of 100 nm is formed on a total of 25 4-inch Si wafers, and the number of particles of 1.0 μm or more adhering to the wafer surface by a commercially available foreign substance inspection apparatus for the formed wafers. The average value of 25 sheets was calculated, and the result is shown in Table 2.

Figure 0005024660
Figure 0005024660

表2に示される結果から、Cr:50〜70原子%を含有し、残部がCoからなるCo−Cr合金粉末A〜Hを原料粉末として配合して作製した本発明法1〜8で作製したターゲットは、Co−Cr合金粉末を添加することなく50%粒径:10μmのCo粉末、50%粒径:10μmのCr粉末、50%粒径:15μmのPt粉末および50%粒径:3μmのSiO粉末を配合し混合して作製する従来法1により作製したターゲットに比べて、パーティクルの発生が少ないことが分かる。しかし、Co−Cr合金粉末がこの発明の範囲から外れた成分組成を有するCo−Cr合金粉末I〜Jを使用して作製した比較法1〜2で作製したターゲットはパーティクルの発生が多くなるので好ましくないことが分かる。 From the results shown in Table 2, it was prepared by the present invention methods 1 to 8 which were prepared by blending Co: Cr alloy powders A to H containing Cr: 50 to 70 atomic% and the balance consisting of Co as raw material powders. The target was 50% particle size: 10 μm Co powder, 50% particle size: 10 μm Cr powder, 50% particle size: 15 μm Pt powder and 50% particle size: 3 μm without adding Co—Cr alloy powder. It can be seen that the generation of particles is less than that of the target prepared by the conventional method 1 prepared by mixing and mixing the SiO 2 powder. However, since the target produced by Comparative Methods 1 and 2 produced using Co-Cr alloy powders I to J having a component composition outside the scope of the present invention, the Co-Cr alloy powder generates more particles. It turns out that it is not preferable.

実施例2
先に用意した原料粉末を表3に示される配合組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。
得られた混合粉末をSUS製の容器に充填し、550度、12時間保持の真空脱ガス処理を行なったのち、SUS容器を密封して混合粉末を真空封入した。この混合粉末を充填したSUS容器について、温度:1200℃、圧力:100MPa、3時間保持の条件で熱間静水圧プレスを施し、その後、SUS容器を開封して表3に示される成分組成を有する熱間静水圧プレス体を作製し、この熱間静水圧プレス体を切削加工して直径:152.4mm、厚さ:3mmの寸法を有するターゲットを作製することにより本発明法9〜16、比較法3〜4および従来法2を実施した。
Example 2
The raw material powder prepared previously is blended so as to have the blending composition shown in Table 3, and the obtained blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is filled with Ar gas. The atmosphere was replaced, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder.
The obtained mixed powder was filled in a SUS container and subjected to vacuum degassing treatment held at 550 ° C. for 12 hours, and then the SUS container was sealed and the mixed powder was vacuum sealed. The SUS container filled with this mixed powder is subjected to hot isostatic pressing under conditions of temperature: 1200 ° C., pressure: 100 MPa, 3 hours, and then the SUS container is opened to have the component composition shown in Table 3. A hot isostatic press body was prepared, and the hot isostatic press body was cut to produce a target having dimensions of diameter: 152.4 mm and thickness: 3 mm. Methods 3-4 and Conventional Method 2 were performed.

前記本発明法9〜16、比較法3〜4および従来法2で作製したターゲットの素地中に分散するクロム酸化物凝集体の絶対最大長(粒子の輪郭線上の任意の2点間距離の最大値)をEPMAにより測定し、絶対最大長が10μmを越える粗大なクロム酸化物凝集体の存在の有無を表3に示した。
EPMAによるクロム酸化物凝集体の絶対最大長の測定は、次のようにして行なった。前記本発明法9〜16、比較法3〜4および従来法2で作製したターゲットから試料を切り出して断面を樹脂に埋め、鏡面研磨した。この断面組織についてフィールドエミッションEPMA(日本電子社製JXA−8500F)により、加速電圧:15kV、照射電流:5×10−8Aの条件で1000倍の倍率にて面分析を実施し、Crの元素マッピング像を得た。このCrの元素マッピング像は出来るだけCrが富化した領域(すなわちクロム酸化物凝集体)を明確に判別できるよう、コントラストおよび色調をつけた画像とした。得られたCrの元素マッピング像を画質を落とさずにビットマップ形式の画像ファイルとして保存し、この画像を別途パソコンの画像処理ソフト(三谷商事社製、Win Roof)に読み込ませて二値化し、マトリックスよりCrが富化している領域の絶対最大長を画像処理により計測した。二値化の際にはCr富化領域の大きさが元の画像と変化しないようにしきい値を選んだ。計測時の長さのキャリブレーションについては元のEPMAによるCrの元素マッピング像に表示されたスケールバーを用いた。
The absolute maximum length of the chromium oxide aggregates dispersed in the substrate of the target produced by the above-mentioned inventive methods 9 to 16, comparative methods 3 to 4 and conventional method 2 (maximum of the distance between any two points on the particle outline) Value) was measured by EPMA, and the presence or absence of coarse chromium oxide aggregates having an absolute maximum length exceeding 10 μm was shown in Table 3.
The absolute maximum length of the chromium oxide aggregates by EPMA was measured as follows. A sample was cut out from the targets prepared in the present invention methods 9 to 16, comparative methods 3 to 4, and the conventional method 2, the cross section was filled in resin, and mirror polished. This cross-sectional structure was subjected to surface analysis at 1000 times magnification under the conditions of acceleration voltage: 15 kV, irradiation current: 5 × 10 −8 A by field emission EPMA (JXA-8500F manufactured by JEOL Ltd.), and Cr element A mapping image was obtained. The element mapping image of Cr was an image with contrast and color tone so that the Cr-enriched region (that is, the chromium oxide aggregate) could be clearly discriminated. The obtained Cr element mapping image is saved as an image file in bitmap format without degrading the image quality, and this image is separately read into a personal computer image processing software (Mitani Corp., Win Roof) and binarized, The absolute maximum length of the region enriched with Cr from the matrix was measured by image processing. In binarization, a threshold value was selected so that the size of the Cr-enriched area did not change from the original image. For the calibration of the length at the time of measurement, a scale bar displayed on the element mapping image of Cr by the original EPMA was used.

さらに、前記本発明法9〜16、比較法3〜4および従来法2で得られたターゲットを有機溶剤により脱脂し、ついで真空中、150℃、8時間保持真空乾燥を行なったのち銅製のバッキングプレートに接合して市販のスパッタ装置に装着し、
到達真空度:5×10−5Pa、
電力:直流800W、
Arガス圧:6.0Pa、
ターゲット基板間距離:60mm、
基板加熱:なし、
の条件でプレスパッタを行い、ターゲット表面加工層を除去したのち、一旦チャンバーを大気開放して、防着板などのチャンバー部材の清掃を行った。その後、再び上記真空度に達するまで真空引きを行い、真空引き後、30分のプレスパッタを行ってターゲット表面の大気吸着成分や金属酸化層の除去を行ったのち、4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜した。同じ条件で合計25枚の4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜し、成膜後のウエハについて市販の異物検査装置によりウエハ表面に付着した1.0μm以上のパーティクル数を計測し、25枚の平均値を算出し、その結果を表3に示した。
Further, after degreasing the targets obtained by the above-mentioned inventive methods 9 to 16, comparative methods 3 to 4 and conventional method 2 with an organic solvent, followed by vacuum drying at 150 ° C. for 8 hours in a vacuum, a copper backing Join the plate and attach it to a commercially available sputtering device.
Ultimate vacuum: 5 × 10 −5 Pa,
Power: DC 800W,
Ar gas pressure: 6.0 Pa,
Target substrate distance: 60mm,
Substrate heating: None,
Pre-sputtering was performed under the conditions described above, and after the target surface processed layer was removed, the chamber was once opened to the atmosphere, and chamber members such as a deposition prevention plate were cleaned. Thereafter, vacuuming is performed again until the degree of vacuum is reached, and after vacuuming, pre-sputtering is performed for 30 minutes to remove the air adsorbing components and the metal oxide layer on the target surface. S: A magnetic recording film of 100 nm was formed. Under the same conditions, a magnetic recording film having a thickness of 100 nm is formed on a total of 25 4-inch Si wafers, and the number of particles of 1.0 μm or more adhering to the wafer surface by a commercially available foreign substance inspection apparatus for the formed wafers. The average value of 25 sheets was calculated, and the results are shown in Table 3.

Figure 0005024660
Figure 0005024660

表3に示される結果から、Cr:50〜70原子%を含有し、残部がCoからなるCo−Cr合金粉末A〜Hを原料粉末として配合して作製した本発明法9〜16で作製したターゲットは、Co−Cr合金粉末を添加することなく50%粒径:10μmのCo粉末、50%粒径:10μmのCr粉末、50%粒径:15μmのPt粉末および50%粒径:3μmのSiO粉末を配合し混合して作製する従来法2により作製したターゲットに比べて、パーティクルの発生が少ないことが分かる。しかし、Co−Cr合金粉末がこの発明の範囲から外れた成分組成を有するCo−Cr合金粉末I〜Jを使用して作製した比較法3〜4で作製したターゲットはパーティクルの発生が多くなるので好ましくないことが分かる。
From the results shown in Table 3, it was prepared by the present invention methods 9 to 16 which were prepared by blending Co: Cr alloy powders A to H containing Cr: 50 to 70 atomic% and the balance being Co, as raw material powders. The target was 50% particle size: 10 μm Co powder, 50% particle size: 10 μm Cr powder, 50% particle size: 15 μm Pt powder and 50% particle size: 3 μm without adding Co—Cr alloy powder. It can be seen that the generation of particles is less than that of the target prepared by the conventional method 2 prepared by mixing and mixing the SiO 2 powder. However, since the Co-Cr alloy powder produced using the Co-Cr alloy powders I to J having a component composition outside the scope of the present invention produced the comparative methods 3 to 4, the generation of particles increases. It turns out that it is not preferable.

実施例3
先に用意した原料粉末を表4に示される配合組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。
得られた混合粉末を真空ホットプレス装置に充填し、真空雰囲気中、温度:1200℃、圧力:15MPa、3時間保持の条件で真空ホットプレスすることにより表4に示される成分組成を有するホットプレス体を作製し、このホットプレス体を切削加工して直径:152.4mm、厚さ:3mmの寸法を有するターゲットを作製することにより本発明法17〜24、比較法5〜6および従来法3を実施した。
Example 3
The raw material powder prepared previously is blended so as to have the blending composition shown in Table 4, and the obtained blended powder is put into a 10 liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is filled with Ar gas. The atmosphere was replaced, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder.
The obtained mixed powder is filled in a vacuum hot press apparatus, and hot press having the component composition shown in Table 4 by vacuum hot pressing in a vacuum atmosphere under conditions of temperature: 1200 ° C., pressure: 15 MPa, and 3 hours. The hot-pressed body is cut to produce a target having the dimensions of diameter: 152.4 mm and thickness: 3 mm, whereby the present invention methods 17 to 24, comparative methods 5 to 6 and conventional method 3 are prepared. Carried out.

前記本発明法17〜24、比較法5〜6および従来法3で作製したターゲットの素地中に分散するクロム酸化物凝集体の絶対最大長(粒子の輪郭線上の任意の2点間距離の最大値)をEPMAにより測定し、絶対最大長が10μmを越える粗大なクロム酸化物凝集体の存在の有無を表4に示した。
EPMAによるクロム酸化物凝集体の絶対最大長の測定は、次のようにして行なった。前記本発明法17〜24、比較法5〜6および従来法3で作製したターゲットから試料を切り出して断面を樹脂に埋め、鏡面研磨した。この断面組織についてフィールドエミッションEPMA(日本電子社製JXA−8500F)により、加速電圧:15kV、照射電流:5×10−8Aの条件で1000倍の倍率にて面分析を実施し、Crの元素マッピング像を得た。このCrの元素マッピング像は出来るだけCrが富化した領域(すなわちクロム酸化物凝集体)を明確に判別できるよう、コントラストおよび色調をつけた画像とした。得られたCrの元素マッピング像を画質を落とさずにビットマップ形式の画像ファイルとして保存し、この画像を別途パソコンの画像処理ソフト(三谷商事社製、Win Roof)に読み込ませて二値化し、マトリックスよりCrが富化している領域の絶対最大長を画像処理により計測した。二値化の際にはCr富化領域の大きさが元の画像と変化しないようにしきい値を選んだ。計測時の長さのキャリブレーションについては元のEPMAによるCrの元素マッピング像に表示されたスケールバーを用いた。
The absolute maximum length of the chromium oxide aggregates dispersed in the substrate of the target produced by the above-mentioned inventive methods 17 to 24, comparative methods 5 to 6 and conventional method 3 (maximum of the distance between any two points on the particle outline) Value) was measured by EPMA, and the presence or absence of coarse chromium oxide aggregates having an absolute maximum length exceeding 10 μm was shown in Table 4.
The absolute maximum length of the chromium oxide aggregates by EPMA was measured as follows. Samples were cut out from the targets prepared in the present invention methods 17 to 24, comparative methods 5 to 6, and conventional method 3, the cross section was filled in resin, and mirror polished. This cross-sectional structure was subjected to surface analysis at 1000 times magnification under the conditions of acceleration voltage: 15 kV, irradiation current: 5 × 10 −8 A by field emission EPMA (JXA-8500F manufactured by JEOL Ltd.), and Cr element A mapping image was obtained. The element mapping image of Cr was an image with contrast and color tone so that the Cr-enriched region (that is, the chromium oxide aggregate) could be clearly discriminated. The obtained Cr element mapping image is saved as an image file in bitmap format without degrading the image quality, and this image is separately read into a personal computer image processing software (Mitani Corp., Win Roof) and binarized, The absolute maximum length of the region enriched with Cr from the matrix was measured by image processing. In binarization, a threshold value was selected so that the size of the Cr-enriched area did not change from the original image. For the calibration of the length at the time of measurement, a scale bar displayed on the element mapping image of Cr by the original EPMA was used.

さらに、前記本発明法17〜24、比較法5〜6および従来法3で得られたターゲットを有機溶剤により脱脂し、ついで真空中、150℃、8時間保持真空乾燥を行なったのち銅製のバッキングプレートに接合して市販のスパッタ装置に装着し、
到達真空度:5×10−5Pa、
電力:直流800W、
Arガス圧:6.0Pa、
ターゲット基板間距離:60mm、
基板加熱:なし、
の条件でプレスパッタを行い、ターゲット表面加工層を除去したのち、一旦チャンバーを大気開放して、防着板などのチャンバー部材の清掃を行った。その後、再び上記真空度に達するまで真空引きを行い、真空引き後、30分のプレスパッタを行ってターゲット表面の大気吸着成分や金属酸化層の除去を行ったのち、4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜した。同じ条件で合計25枚の4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜し、成膜後のウエハについて市販の異物検査装置によりウエハ表面に付着した1.0μm以上のパーティクル数を計測し、25枚の平均値を算出し、その結果を表4に示した。
Further, after degreasing the targets obtained in the above-mentioned inventive methods 17 to 24, comparative methods 5 to 6 and conventional method 3 with an organic solvent, followed by vacuum drying at 150 ° C. for 8 hours in a vacuum, a copper backing Join the plate and attach it to a commercially available sputtering device.
Ultimate vacuum: 5 × 10 −5 Pa,
Power: DC 800W,
Ar gas pressure: 6.0 Pa,
Target substrate distance: 60mm,
Substrate heating: None,
Pre-sputtering was performed under the conditions described above, and after the target surface processed layer was removed, the chamber was once opened to the atmosphere, and chamber members such as a deposition prevention plate were cleaned. Thereafter, vacuuming is performed again until the degree of vacuum is reached, and after vacuuming, pre-sputtering is performed for 30 minutes to remove the air adsorbing components and the metal oxide layer on the target surface. S: A magnetic recording film of 100 nm was formed. Under the same conditions, a magnetic recording film having a thickness of 100 nm is formed on a total of 25 4-inch Si wafers, and the number of particles of 1.0 μm or more adhering to the wafer surface by a commercially available foreign substance inspection apparatus for the formed wafers. The average value of 25 sheets was calculated, and the result is shown in Table 4.

Figure 0005024660
Figure 0005024660

表4に示される結果から、Cr:50〜70原子%を含有し、残部がCoからなるCo−Cr合金粉末A〜Hを原料粉末として配合して作製した本発明法17〜24で作製したターゲットは、Co−Cr合金粉末を添加することなく50%粒径:10μmのCo粉末、50%粒径:10μmのCr粉末、50%粒径:15μmのPt粉末および50%粒径:3μmのTiO粉末を配合し混合して作製する従来法3により作製したターゲットに比べて、パーティクルの発生が少ないことが分かる。しかし、Co−Cr合金粉末がこの発明の範囲から外れた成分組成を有するCo−Cr合金粉末I〜Jを使用して作製した比較法5〜6で作製したターゲットはパーティクルの発生が多くなるので好ましくないことが分かる。
From the results shown in Table 4, Cr: 50 to 70 atomic% was produced by the present invention methods 17 to 24, which were prepared by blending Co—Cr alloy powders A to H containing Co as the raw material powder. The target was 50% particle size: 10 μm Co powder, 50% particle size: 10 μm Cr powder, 50% particle size: 15 μm Pt powder and 50% particle size: 3 μm without adding Co—Cr alloy powder. It can be seen that the generation of particles is less than that of the target prepared by the conventional method 3 prepared by mixing and mixing TiO 2 powder. However, since the Co-Cr alloy powder produced using Comparative Methods 5 to 6 using Co-Cr alloy powders I to J having a component composition outside the scope of the present invention, the generation of particles increases. It turns out that it is not preferable.

実施例4
先に用意した原料粉末を表5に示される配合組成となるように配合し、得られた配合粉末を粉砕媒体となるジルコニアボールと共に10リットルの容器に投入し、この容器内の雰囲気をArガス雰囲気中で置換し、その後、容器を密閉した。この容器をボールミルで16時間回転させ、混合粉末を作製した。
得られた混合粉末をSUS製の容器に充填し、550度、12時間保持の真空脱ガス処理を行なったのち、SUS容器を密封して混合粉末を真空封入した。この混合粉末を充填したSUS容器について、温度:1200℃、圧力:100MPa、3時間保持の条件で熱間静水圧プレスを施し、その後、SUS容器を開封して表5に示される成分組成を有する熱間静水圧プレス体を作製し、この熱間静水圧プレス体を切削加工して直径:152.4mm、厚さ:3mmの寸法を有するターゲットを作製することにより本発明法25〜32、比較法7〜8および従来法4を実施した。
Example 4
The raw material powder prepared previously is blended so as to have the blending composition shown in Table 5, and the obtained blended powder is put into a 10-liter container together with zirconia balls as a grinding medium, and the atmosphere in the container is filled with Ar gas. The atmosphere was replaced, and then the container was sealed. This container was rotated with a ball mill for 16 hours to produce a mixed powder.
The obtained mixed powder was filled in a SUS container and subjected to vacuum degassing treatment held at 550 ° C. for 12 hours, and then the SUS container was sealed and the mixed powder was vacuum sealed. The SUS container filled with this mixed powder was subjected to hot isostatic pressing under conditions of temperature: 1200 ° C., pressure: 100 MPa, 3 hours, and then the SUS container was opened to have the component composition shown in Table 5. A hot isostatic press body is prepared, and the hot isostatic press body is cut to produce a target having a diameter of 152.4 mm and a thickness of 3 mm. Methods 7-8 and Conventional Method 4 were performed.

前記本発明法25〜32、比較法7〜8および従来法4で作製したターゲットの素地中に分散するクロム酸化物凝集体の絶対最大長(粒子の輪郭線上の任意の2点間距離の最大値)をEPMAにより測定し、絶対最大長が10μmを越える粗大なクロム酸化物凝集体の存在の有無を表5に示した。
EPMAによるクロム酸化物凝集体の絶対最大長の測定は、次のようにして行なった。前記本発明法25〜32、比較法7〜8および従来法4で作製したターゲットから試料を切り出して断面を樹脂に埋め、鏡面研磨した。この断面組織についてフィールドエミッションEPMA(日本電子社製JXA−8500F)により、加速電圧:15kV、照射電流:5×10−8Aの条件で1000倍の倍率にて面分析を実施し、Crの元素マッピング像を得た。このCrの元素マッピング像は出来るだけCrが富化した領域(すなわちクロム酸化物凝集体)を明確に判別できるよう、コントラストおよび色調をつけた画像とした。得られたCrの元素マッピング像を画質を落とさずにビットマップ形式の画像ファイルとして保存し、この画像を別途パソコンの画像処理ソフト(三谷商事社製、Win Roof)に読み込ませて二値化し、マトリックスよりCrが富化している領域の絶対最大長を画像処理により計測した。二値化の際にはCr富化領域の大きさが元の画像と変化しないようにしきい値を選んだ。計測時の長さのキャリブレーションについては元のEPMAによるCrの元素マッピング像に表示されたスケールバーを用いた。
The absolute maximum length of the chromium oxide aggregates dispersed in the substrate of the target prepared by the above-described inventive methods 25-32, comparative methods 7-8 and conventional method 4 (maximum of the distance between any two points on the particle contour) Value) was measured by EPMA, and the presence or absence of coarse chromium oxide aggregates having an absolute maximum length exceeding 10 μm was shown in Table 5.
The absolute maximum length of the chromium oxide aggregates by EPMA was measured as follows. A sample was cut out from the targets prepared in the present invention methods 25 to 32, comparative methods 7 to 8 and conventional method 4, the cross section was filled in resin, and mirror polished. This cross-sectional structure was subjected to surface analysis at 1000 times magnification under the conditions of acceleration voltage: 15 kV, irradiation current: 5 × 10 −8 A by field emission EPMA (JXA-8500F manufactured by JEOL Ltd.), and Cr element A mapping image was obtained. The element mapping image of Cr was an image with contrast and color tone so that the Cr-enriched region (that is, the chromium oxide aggregate) could be clearly discriminated. The obtained Cr element mapping image is saved as an image file in bitmap format without degrading the image quality, and this image is separately read into a personal computer image processing software (Mitani Corp., Win Roof) and binarized, The absolute maximum length of the region enriched with Cr from the matrix was measured by image processing. In binarization, a threshold value was selected so that the size of the Cr-enriched area did not change from the original image. For the calibration of the length at the time of measurement, a scale bar displayed on the element mapping image of Cr by the original EPMA was used.

さらに、前記本発明法25〜32、比較法7〜8および従来法4で得られたターゲットを有機溶剤により脱脂し、ついで真空中、150℃、8時間保持真空乾燥を行なったのち銅製のバッキングプレートに接合して市販のスパッタ装置に装着し、
到達真空度:5×10−5Pa、
電力:直流800W、
Arガス圧:6.0Pa、
ターゲット基板間距離:60mm、
基板加熱:なし、
の条件でプレスパッタを行い、ターゲット表面加工層を除去したのち、一旦チャンバーを大気開放して、防着板などのチャンバー部材の清掃を行った。その後、再び上記真空度に達するまで真空引きを行い、真空引き後、30分のプレスパッタを行ってターゲット表面の大気吸着成分や金属酸化層の除去を行ったのち、4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜した。同じ条件で合計25枚の4インチSiウエハ上に厚さ:100nmの磁気記録膜を成膜し、成膜後のウエハについて市販の異物検査装置によりウエハ表面に付着した1.0μm以上のパーティクル数を計測し、25枚の平均値を算出し、その結果を表5に示した。
Furthermore, after degreasing the targets obtained by the above-mentioned inventive methods 25-32, comparative methods 7-8, and conventional method 4 with an organic solvent, and then vacuum-drying at 150 ° C. for 8 hours in a vacuum, a copper backing Join the plate and attach it to a commercially available sputtering device.
Ultimate vacuum: 5 × 10 −5 Pa,
Power: DC 800W,
Ar gas pressure: 6.0 Pa,
Target substrate distance: 60mm,
Substrate heating: None,
Pre-sputtering was performed under the conditions described above, and after the target surface processed layer was removed, the chamber was once opened to the atmosphere, and chamber members such as a deposition prevention plate were cleaned. Thereafter, vacuuming is performed again until the degree of vacuum is reached, and after vacuuming, pre-sputtering is performed for 30 minutes to remove the air adsorbing components and the metal oxide layer on the target surface. S: A magnetic recording film of 100 nm was formed. Under the same conditions, a magnetic recording film having a thickness of 100 nm is formed on a total of 25 4-inch Si wafers, and the number of particles of 1.0 μm or more adhering to the wafer surface by a commercially available foreign substance inspection apparatus for the formed wafers. The average value of 25 sheets was calculated, and the results are shown in Table 5.

Figure 0005024660
Figure 0005024660

表5に示される結果から、Cr:50〜70原子%を含有し、残部がCoからなるCo−Cr合金粉末A〜Hを原料粉末として配合して作製した本発明法25〜32で作製したターゲットは、Co−Cr合金粉末を添加することなく50%粒径:10μmのCo粉末、50%粒径:10μmのCr粉末、50%粒径:15μmのPt粉末および50%粒径:3μmのTa粉末を配合し混合して作製する従来法4により作製したターゲットに比べて、パーティクルの発生が少ないことが分かる。しかし、Co−Cr合金粉末がこの発明の範囲から外れた成分組成を有するCo−Cr合金粉末I〜Jを使用して作製した比較法7〜8で作製したターゲットはパーティクルの発生が多くなるので好ましくないことが分かる。 From the results shown in Table 5, it was prepared by the present invention method 25 to 32, which was prepared by blending Co: Cr alloy powders A to H containing Cr: 50 to 70 atomic% and the balance being Co, as raw material powders. The target was 50% particle size: 10 μm Co powder, 50% particle size: 10 μm Cr powder, 50% particle size: 15 μm Pt powder and 50% particle size: 3 μm without adding Co—Cr alloy powder. It can be seen that the generation of particles is less than that of the target prepared by the conventional method 4 prepared by mixing and mixing the Ta 2 O 5 powder. However, since the Co-Cr alloy powder produced using the Co-Cr alloy powders I to J having a component composition outside the scope of the present invention, the targets produced by the comparative methods 7 to 8 generate more particles. It turns out that it is not preferable.

Claims (4)

原料粉末としてCr:50〜70原子%を含有し、残部がCoからなるCr−Co合金粉末、Pt粉末、非磁性酸化物粉末およびCo粉末を用意し、これら原料粉末を非磁性酸化物:2〜15モル%、Cr:3〜20モル%、Pt:5〜30モル%を含有し、残部:Coからなる成分組成となるように配合し混合したのち、加圧焼結することを特徴とするパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法。 Cr—Co alloy powder, Pt powder, nonmagnetic oxide powder and Co powder containing Cr: 50 to 70 atomic% as the raw material powder and the balance being Co are prepared. These raw material powders are nonmagnetic oxide: 2 -15 mol%, Cr: 3 to 20 mol%, Pt: 5 to 30 mol%, balance: component composition consisting of Co, mixed and mixed, then pressure sintered For producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with less generation of particles. 前記非磁性酸化物は、二酸化珪素、酸化タンタル、酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化トリウム、酸化ジルコニウム、酸化セリウムおよび酸化イットリウムのうちのいずれかであることを特徴とする請求項1記載のパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法。 The nonmagnetic oxide is any one of silicon dioxide, tantalum oxide, titanium oxide, aluminum oxide, magnesium oxide, thorium oxide, zirconium oxide, cerium oxide, and yttrium oxide. A method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with less generation of particles. 前記加圧焼結は、ホットプレスまたは熱間静水圧プレスであることを特徴とする請求項1記載のパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法。 2. The method for producing a Co-based sintered alloy sputtering target for forming a magnetic recording film with less generation of particles according to claim 1, wherein the pressure sintering is hot pressing or hot isostatic pressing. 請求項1、2または3記載の方法で製造したことを特徴とするパーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲット。 A Co-based sintered alloy sputtering target for forming a magnetic recording film with less generation of particles, produced by the method according to claim 1, 2 or 3.
JP2007078224A 2006-03-31 2007-03-26 Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles Expired - Fee Related JP5024660B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007078224A JP5024660B2 (en) 2006-03-31 2007-03-26 Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles
US12/294,691 US20100270146A1 (en) 2006-03-31 2007-03-30 Method for manufacturing co-base sintered alloy sputtering target for formation of magnetic recording film which is less likely to generate partricles, and co-base sintered alloy sputtering target for formation of magnetic recording film
PCT/JP2007/057223 WO2007116834A1 (en) 2006-03-31 2007-03-30 METHOD FOR MANUFACTURING Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMATION OF MAGNETIC RECORDING FILM WHICH IS LESS LIKELY TO GENERATE PARTICLES, AND Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMATION OF MAGNETIC RECORDING FILM
TW096111554A TW200808980A (en) 2006-03-31 2007-03-30 Method for producing Co-based sintered alloy sputtering target used for forming magnetic recording film with reduced generation of particles, and Co-based sintered alloy sputtering target used for forming magnetic recording film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006097227 2006-03-31
JP2006097227 2006-03-31
JP2007078224A JP5024660B2 (en) 2006-03-31 2007-03-26 Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles

Publications (2)

Publication Number Publication Date
JP2007291512A JP2007291512A (en) 2007-11-08
JP5024660B2 true JP5024660B2 (en) 2012-09-12

Family

ID=38762400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078224A Expired - Fee Related JP5024660B2 (en) 2006-03-31 2007-03-26 Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles

Country Status (1)

Country Link
JP (1) JP5024660B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5155565B2 (en) * 2007-01-04 2013-03-06 三井金属鉱業株式会社 CoCrPt-based sputtering target and method for producing the same
US8404370B2 (en) * 2009-03-31 2013-03-26 Wd Media (Singapore) Pte. Ltd. Perpendicular magnetic recording medium and method of manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3494302B2 (en) * 1991-03-26 2004-02-09 日立金属株式会社 Co-Cr-Pt magnetic recording medium target
JPH0598433A (en) * 1991-08-30 1993-04-20 Mitsubishi Materials Corp Manufacture of target for sputtering
JP2001236643A (en) * 2000-02-23 2001-08-31 Fuji Electric Co Ltd Sputtering target for manufacturing magnetic recording medium, method for manufacturing magnetic recording medium using the same, and magnetic recording medium
JP2004339586A (en) * 2003-05-19 2004-12-02 Mitsubishi Materials Corp Sputtering target for forming magnetic recording film, and its production method
JP2005097657A (en) * 2003-09-24 2005-04-14 Mitsubishi Materials Corp Sputtering target for forming magnetic layer having reduced production of particle

Also Published As

Publication number Publication date
JP2007291512A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
TWI496905B (en) A sputtering target having an oxide phase dispersed in a Co or Co alloy phase, a magnetic thin film composed of a Co or Co alloy phase and an oxide phase, and a magnetic recording medium using the magnetic thin film
CN102482765B (en) Sputtering target of ferromagnetic material with low generation of particles
US20100270146A1 (en) Method for manufacturing co-base sintered alloy sputtering target for formation of magnetic recording film which is less likely to generate partricles, and co-base sintered alloy sputtering target for formation of magnetic recording film
JP2009001860A (en) Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
JP5024661B2 (en) Co-based sintered alloy sputtering target for magnetic recording film formation with less generation of particles
CN106029943B (en) Sputtering target
JP2009132975A (en) Sputtering target for forming film of perpendicular magnetic recording medium having low relative permeability
TWI537407B (en) Co-Cr-Pt sputtering target and its manufacturing method
JP2009001861A (en) Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
JP5428995B2 (en) Sputtering target for forming a magnetic recording medium film and method for producing the same
JP2010222639A (en) METHOD OF MANUFACTURING Co-BASED SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM HAVING LOW MAGNETIC PERMEABILITY
JP2009001862A (en) Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability
JP5024660B2 (en) Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles
JP6713489B2 (en) Sputtering target and magnetic thin film for magnetic recording medium
JP2006176808A (en) METHOD FOR PRODUCING CoCrPt-SIO2 SPUTTERING TARGET FOR DEPOSITING MAGNETIC RECORDING FILM
TWI582250B (en) A magnetite sputtering target containing chromium oxide
WO2017141558A1 (en) Sputtering target for magnetic recording medium, and magnetic thin film
JP5024659B2 (en) Method for producing Co-based sintered alloy sputtering target for forming magnetic recording film with less generation of particles
JP4553136B2 (en) Sputtering target for forming magnetic recording film with less generation of particles
JP4968445B2 (en) Sputtering target for forming high-density magnetic recording medium film with less generation of particles
JP2009293102A (en) Sputtering target for depositing vertical magnetic recording medium film with low relative permeability
JP2006176810A (en) METHOD FOR PRODUCING CoCrPt-SiO2 SPUTTERING TARGET FOR DEPOSITING MAGNETIC RECORDING FILM
JP7625109B1 (en) Magnetic target and magnetic target assembly
JP4968449B2 (en) Sputtering target for forming high-density magnetic recording medium film with less generation of particles
JP2009108335A (en) MANUFACTURING METHOD OF Co-BASE SINTERED ALLOY SPUTTERING TARGET FOR FORMING MAGNETIC RECORDING FILM OF LOW RELATIVE MAGNETIC PERMEABILITY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees