JP2008311373A - 磁性多層膜通電素子 - Google Patents
磁性多層膜通電素子 Download PDFInfo
- Publication number
- JP2008311373A JP2008311373A JP2007156848A JP2007156848A JP2008311373A JP 2008311373 A JP2008311373 A JP 2008311373A JP 2007156848 A JP2007156848 A JP 2007156848A JP 2007156848 A JP2007156848 A JP 2007156848A JP 2008311373 A JP2008311373 A JP 2008311373A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- magnetic
- thin film
- conductor
- insulating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 221
- 239000010409 thin film Substances 0.000 claims abstract description 252
- 239000010408 film Substances 0.000 claims abstract description 225
- 239000004020 conductor Substances 0.000 claims abstract description 188
- 125000006850 spacer group Chemical group 0.000 claims abstract description 122
- 230000000694 effects Effects 0.000 claims abstract description 78
- 230000005294 ferromagnetic effect Effects 0.000 claims description 73
- 230000010355 oscillation Effects 0.000 claims description 45
- 229910052751 metal Inorganic materials 0.000 claims description 38
- 239000002184 metal Substances 0.000 claims description 38
- 230000006870 function Effects 0.000 claims description 37
- 230000005415 magnetization Effects 0.000 claims description 29
- 229910052802 copper Inorganic materials 0.000 claims description 19
- 229910052737 gold Inorganic materials 0.000 claims description 17
- 229910052804 chromium Inorganic materials 0.000 claims description 15
- 229910052742 iron Inorganic materials 0.000 claims description 13
- 229910052759 nickel Inorganic materials 0.000 claims description 12
- 229910052735 hafnium Inorganic materials 0.000 claims description 10
- 229910052726 zirconium Inorganic materials 0.000 claims description 10
- 229910052741 iridium Inorganic materials 0.000 claims description 9
- 229910052762 osmium Inorganic materials 0.000 claims description 9
- 229910052763 palladium Inorganic materials 0.000 claims description 9
- 229910052702 rhenium Inorganic materials 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 239000012528 membrane Substances 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 238000009792 diffusion process Methods 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 806
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 88
- 239000010949 copper Substances 0.000 description 85
- 239000000463 material Substances 0.000 description 52
- 230000001419 dependent effect Effects 0.000 description 42
- 230000008859 change Effects 0.000 description 34
- 239000013078 crystal Substances 0.000 description 31
- 230000008878 coupling Effects 0.000 description 30
- 238000010168 coupling process Methods 0.000 description 30
- 238000005859 coupling reaction Methods 0.000 description 30
- 238000010586 diagram Methods 0.000 description 29
- 239000000956 alloy Substances 0.000 description 26
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 26
- 230000005290 antiferromagnetic effect Effects 0.000 description 25
- 229910002546 FeCo Inorganic materials 0.000 description 21
- 239000003302 ferromagnetic material Substances 0.000 description 20
- 230000001965 increasing effect Effects 0.000 description 20
- 229910045601 alloy Inorganic materials 0.000 description 19
- 230000003647 oxidation Effects 0.000 description 19
- 238000007254 oxidation reaction Methods 0.000 description 19
- 230000005540 biological transmission Effects 0.000 description 13
- 230000007246 mechanism Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 239000000203 mixture Substances 0.000 description 11
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 10
- 230000006854 communication Effects 0.000 description 9
- 238000004891 communication Methods 0.000 description 9
- 239000000696 magnetic material Substances 0.000 description 9
- 229910003321 CoFe Inorganic materials 0.000 description 8
- 239000002772 conduction electron Substances 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 8
- 239000002356 single layer Substances 0.000 description 7
- 229910019041 PtMn Inorganic materials 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000009413 insulation Methods 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 229910000531 Co alloy Inorganic materials 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910018979 CoPt Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 230000005381 magnetic domain Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 229910005335 FePt Inorganic materials 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000010301 surface-oxidation reaction Methods 0.000 description 2
- 229910018516 Al—O Inorganic materials 0.000 description 1
- 230000005330 Barkhausen effect Effects 0.000 description 1
- 229910019236 CoFeB Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000002885 antiferromagnetic material Substances 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000007175 bidirectional communication Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical group [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000005418 spin wave Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/398—Specially shaped layers
- G11B5/3983—Specially shaped layers with current confined paths in the spacer layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/093—Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/03—Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
- G01S7/032—Constructional details for solid-state radar subsystems
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/398—Specially shaped layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/06—Systems determining position data of a target
- G01S13/08—Systems for measuring distance only
- G01S13/32—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
- G01S13/34—Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9316—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles combined with communication equipment with other vehicles or with base stations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
- H10B61/10—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B61/00—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
- H10B61/20—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
- H10B61/22—Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Radar, Positioning & Navigation (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Computer Networks & Wireless Communication (AREA)
- Hall/Mr Elements (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
Abstract
【課題】高いMR比を実現できる磁気抵抗効果素子などの磁性多層膜通電素子を提供する。
【解決手段】第1の開口部を有する第1の絶縁層、第2の開口部を有する第2の絶縁層及び前記第1の絶縁層及び前記第2の絶縁層の間に位置した導電体を含み、前記第2の絶縁層の、前記第2の開口部及び前記第1の絶縁層間の距離Aが、前記第1の絶縁層及び前記第2の絶縁層間の最近接距離Bよりも大きくなっており、バレル形状を呈する少なくとも1つの薄膜構造体を、第1の磁性層、第2の磁性層、及び前記第1および第2の磁性層間に形成されたスペーサ層の少なくとも一部に配置する。
【選択図】図2
【解決手段】第1の開口部を有する第1の絶縁層、第2の開口部を有する第2の絶縁層及び前記第1の絶縁層及び前記第2の絶縁層の間に位置した導電体を含み、前記第2の絶縁層の、前記第2の開口部及び前記第1の絶縁層間の距離Aが、前記第1の絶縁層及び前記第2の絶縁層間の最近接距離Bよりも大きくなっており、バレル形状を呈する少なくとも1つの薄膜構造体を、第1の磁性層、第2の磁性層、及び前記第1および第2の磁性層間に形成されたスペーサ層の少なくとも一部に配置する。
【選択図】図2
Description
本発明は、特に磁気抵抗効果素子として使用することが可能な磁性多層膜通電素子に関する。
近年、ハードディスクドライブ(HDD:Hard Disk Drive)の急速な小型化・高密度化が進行し、今後もさらなる高密度化が見込まれている。記録トラック幅を狭くしてトラック密度を高めることで、HDDの高密度化を実現できる。しかし、トラック幅が狭くなると、記録される磁化の大きさ、すなわち記録信号が小さくなり、媒体信号を再生するMRヘッドの再生感度の向上が必要となる。
最近では、巨大磁気抵抗効果(GMR:Giant Magneto-Resistance effect)を利用した高感度なスピンバルブ膜を含むGMRヘッドが採用されている。スピンバルブ膜は、2層の強磁性層の間に非磁性スペーサ層を挟んだサンドイッチ構造を有する積層膜であり、抵抗変化を生ずる積層膜構造部位はスピン依存散乱ユニットとも呼ばれる。2層の強磁性層の一方の強磁性層(「ピン層」あるいは「磁化固着層」という)の磁化方向は反強磁性層などで固着される。他方の強磁性層(「フリー層」あるいは「磁化自由層」という)の磁化方向は外部磁界により変化可能である。スピンバルブ膜では、2層の強磁性層の磁化
方向の相対角度の変化によって、大きな磁気抵抗効果が得られる。
方向の相対角度の変化によって、大きな磁気抵抗効果が得られる。
スピンバルブ膜を用いた磁気抵抗効果素子には、CIP(Current In Plane)−GMR素子、CPP(Current Perpendicular to Plane)−GMR素子、TMR(Tunneling Magneto-Resistance)素子がある。CIP−GMR素子ではスピンバルブ膜の面に平行にセンス電流を通電し、CPP−GMR、TMR素子ではスピンバルブ膜の面にほぼ垂直方向にセンス電流を通電する。
膜面垂直に通電する方式においては、通常のCPP−GMRではスペーサ層として金属層を用い、TMR素子ではスペーサ層として絶縁層を用いる。
しかしながら、上述したような磁気ヘッドやMRAMデバイスの高密度化に伴う磁気抵抗効果素子のさらなる微細化の要求に伴って、磁気抵抗効果素子は微細化された場合においても十分に高いMR比を有することが求められる。
本発明は、高いMR比を実現できる磁気抵抗効果素子などの磁性多層膜通電素子を提供することを目的とする。
上記目的を達成すべく、本発明の一態様は、
少なくとも1つの磁性層と、
第1の開口部を有する第1の絶縁層、第2の開口部を有する第2の絶縁層及び前記第1の絶縁層及び前記第2の絶縁層の間に位置した導電体を含み、前記第2の絶縁層の、前記第2の開口部及び前記第1の絶縁層間の距離Aが、前記第1の絶縁層及び前記第2の絶縁層間の最近接距離Bよりも大きい、少なくとも1つの薄膜構造体と、
前記磁性層、前記薄膜構造体を含む磁性多層膜に対して、その積層方向に電流を流すための一対の電極と、
を具えることを特徴とする、磁性多層膜通電素子に関する。
少なくとも1つの磁性層と、
第1の開口部を有する第1の絶縁層、第2の開口部を有する第2の絶縁層及び前記第1の絶縁層及び前記第2の絶縁層の間に位置した導電体を含み、前記第2の絶縁層の、前記第2の開口部及び前記第1の絶縁層間の距離Aが、前記第1の絶縁層及び前記第2の絶縁層間の最近接距離Bよりも大きい、少なくとも1つの薄膜構造体と、
前記磁性層、前記薄膜構造体を含む磁性多層膜に対して、その積層方向に電流を流すための一対の電極と、
を具えることを特徴とする、磁性多層膜通電素子に関する。
また、本発明の一実施形態においては、前記距離A及び前記最近接距離Bが、A/2>Bなる関係を満たすようにすることができる。また、前記最近接距離B=0であって、前記第1の絶縁層及び前記第2の絶縁層が部分的に接合するようにすることができる。
また、本発明の一態様は、
少なくとも1つの磁性層と、
第1の開口部を有する第1の絶縁層、第2の開口部を有する第2の絶縁層及び前記第1の絶縁層及び第2の絶縁層の間に位置した導電体を含み、前記第1の絶縁層及び前記第2の絶縁層が部分的に接合しており、前記導電体の膜面内の面積が、前記第1の開口部よりも大きく、かつ前記第2の開口部よりも大きい、少なくとも1つの薄膜構造体と、
前記磁性層、前記薄膜構造体を含む磁性多層膜に対して、その積層方向に電流を流すための一対の電極と、
を具えることを特徴とする、磁性多層膜通電素子に関する。
少なくとも1つの磁性層と、
第1の開口部を有する第1の絶縁層、第2の開口部を有する第2の絶縁層及び前記第1の絶縁層及び第2の絶縁層の間に位置した導電体を含み、前記第1の絶縁層及び前記第2の絶縁層が部分的に接合しており、前記導電体の膜面内の面積が、前記第1の開口部よりも大きく、かつ前記第2の開口部よりも大きい、少なくとも1つの薄膜構造体と、
前記磁性層、前記薄膜構造体を含む磁性多層膜に対して、その積層方向に電流を流すための一対の電極と、
を具えることを特徴とする、磁性多層膜通電素子に関する。
なお、本発明の作用効果及び詳細、並びにその他の特徴に関しては、以下において詳述する。
以上説明したように、本発明の上記態様によれば、高いMR比を実現できる磁気抵抗効果素子などの磁性多層膜通電素子を提供することができる。
以下、本発明の実施形態について、図面を参照しつつ詳細に説明する。なお、以下の実施の形態においては、合金の組成は原子%(atomic%)で表される。
(薄膜構造体)
最初に、本発明の磁性多層膜通電素子を構成する薄膜構造体について説明する。
最初に、本発明の磁性多層膜通電素子を構成する薄膜構造体について説明する。
(薄膜構造体の第1の実施形態)
図1は、本実施形態に係る薄膜構造体を表す断面図である。なお、図1および以降の図は全て模式図であり、図上での膜厚同士の比率と、実際の膜厚同士の比率は必ずしも一致しない。
図1は、本実施形態に係る薄膜構造体を表す断面図である。なお、図1および以降の図は全て模式図であり、図上での膜厚同士の比率と、実際の膜厚同士の比率は必ずしも一致しない。
図1において破線で示す薄膜構造体10は、第1の絶縁層11、第2の絶縁層12及び第1の絶縁層11及び第2の絶縁層12の間に位置した第1の導電体13を含んでいる。また、第1の絶縁層11及び第2の絶縁層12には、それぞれ互いに対向するようにして第1の開口部11A及び第2の開口部12Aが形成されている。また、第2の絶縁層12の、第2の開口部12A及び第1の絶縁層11(開口部11A)間の距離Aが、第1の絶縁層11及び第2の絶縁層12間の最近接距離Bよりも大きくなっており、その結果、薄膜構造体10はバレル形状を呈する。
なお、本実施形態においては、第1の開口部11A及び第2の開口部12Aに対してそれぞれ第2の導電体14及び第3の導電体15が形成されている。このため、第1の絶縁層11及び第2の導電体14、並びに第2の絶縁層12及び第3の導電体15は、薄膜構造体10に対してその厚さ方向に電圧を印加して電流を流す場合において電流狭窄層として機能する。
図1に示す例では、バレル形状の薄膜構造体10が横方向に複数形成されている場合を示しているが、薄膜構造体10の数は、目的とする磁性多層膜通電素子の種類などに応じて適宜に設定することができる。
なお、以下に詳述するように、図1に示す薄膜構造体10は、その大きさ(直径及び高さなど)がナノメートルオーダの極微小構造体であるため、種々の特異な性質を呈する。例えば、薄膜構造体10の厚さ方向に電流を通電した場合、電子は、第1の絶縁層11、および第2の絶縁層12は通過せずに導電体13〜15を通過し、ナノサイズの形状効果を利用した特異な通電特性が期待できる。
また、上記バレル形状とは、いわゆる樽型の形状を意味するものである。図1に示すような薄膜構造体10が樽型形状を呈することから、本発明者らによって命名されたものである。
(薄膜構造体の第2の実施形態)
図2は、本実施形態に係る薄膜構造体を表す断面図である。なお、図1に示す構造体の構成要素と同一あるいは類似の構成要素に関しては、同じ参照数字を用いて表している。
図2は、本実施形態に係る薄膜構造体を表す断面図である。なお、図1に示す構造体の構成要素と同一あるいは類似の構成要素に関しては、同じ参照数字を用いて表している。
図2において破線で示す薄膜構造体20は、第1の絶縁層11、第2の絶縁層12及び第1の絶縁層11及び第2の絶縁層12の間に位置した第1の導電体13を含んでいる。また、第1の絶縁層11及び第2の絶縁層12には、それぞれ互いに対向するようにして第1の開口部11A及び第2の開口部12Aが形成されている。また、第2の絶縁層12の、第2の開口部12A及び第1の絶縁層11(開口部11A)間の距離Aは、以下の詳述するように、例えばナノメートルのオーダに保持されており、第1の絶縁層11及び第2の絶縁層12間の、第1の開口部11A及び第2の開口部12Aの両側に位置する端部では、第1の絶縁層11及び第2の絶縁層12が互いに接合している。
また、図2に示すように、第1の導電体13の面積Sは、第1の開口部11A及び第2の開口部12Aの大きさよりも大きくなるように設定されている。
したがって、本実施形態における薄膜構造体20は、第1の導電体13が、第1の絶縁層11及び第2の絶縁層12で囲まれ、それによってバレル形状を呈するように構成されている。
なお、本実施形態においても、第1の開口部11A及び第2の開口部12Aに対してそれぞれ第2の導電体14及び第3の導電体15が形成されている。このため、第1の絶縁層11及び第2の導電体14、並びに第2の絶縁層12及び第3の導電体15は、薄膜構造体10に対してその厚さ方向に電圧を印加して電流を流す場合において電流狭窄層として機能する。
図2に示す例でも、バレル形状の薄膜構造体20が横方向に複数形成されている場合を示しているが、薄膜構造体20の数は、目的とする磁性多層膜通電素子の種類などに応じて適宜に設定することができる。
なお、以下に詳述するように、図2に示す薄膜構造体20は、その大きさ(直径及び高さなど)がナノメートルオーダの極微小構造体であるため、種々の特異な性質を呈する。例えば、薄膜構造体20の厚さ方向に電流を通電した場合、電子は、第1の絶縁層11、および第2の絶縁層12は通過せずに導電体13〜15を通過し、ナノサイズの形状効果を利用した特異な通電特性が期待できる。
また、上記バレル形状とは、いわゆる樽型の形状を意味するものである。図2に示すような薄膜構造体20が樽型形状を呈することから、本発明者らによって命名されたものである。
(薄膜構造体の詳細)
次に、上述した実施形態に係る薄膜構造体の詳細について説明する。なお、以降の説明は、上述した実施形態における双方の薄膜構造体に適用可能である。
次に、上述した実施形態に係る薄膜構造体の詳細について説明する。なお、以降の説明は、上述した実施形態における双方の薄膜構造体に適用可能である。
上述のように、第1の絶縁層11及び第1の導電体14、並びに第2の絶縁層12及び第2の導電体15は、それぞれ第1の電流狭窄層及び第2の電流狭窄層として機能する。従って、以下においては、第1の絶縁層11及び第1の導電体14からなる第1の電流狭窄層、並びに第1の絶縁層12及び第2の導電体15からなる第2の電流狭窄層の観点から詳細な説明を加えるとともに、第1の絶縁層11などの各構成要素毎に詳細な説明を加える。
第1の電流狭窄層と第2の電流狭窄層、すなわち第1の絶縁層11及び第2の絶縁層12の膜厚は、以下の三つの要求により適正な範囲が決まる。第1は、電流狭窄層の構造を作製するにあたり、作製可能な膜厚に上限がある。電流狭窄層の膜厚が4nmを超えると、上下に貫通した導電が困難となるため望ましくない。
第2は、電流狭窄層を介した磁気結合の要求である。上述した薄膜構造体10,20を例えば磁気抵抗効果膜などに適用する場合、その膜中のどの部位に挿入するかで、薄膜構造体10,20に隣接する層と薄膜構造体10,20の第1の導電体13の間で磁気結合させる場合と、逆に磁気結合を切らなくてはいけない場合とがある。第1の導電体13と隣接する層との磁気結合は、電子が通過する第2の導電体14及び第3の導電体15を介して行われる。そのため、第2の導電体14及び第3の導電体15が強磁性体で形成されている場合は、第1の絶縁層11及び第2の絶縁層12が厚くとも比較的簡単に結合する。
一方、第2の導電体14及び第3の導電体15が非磁性体で形成されている場合、第1の絶縁層11及び第2の絶縁層12が厚い場合には磁気結合は分断される。ただし、第2の導電体14及び第3の導電体15が非磁性体の場合でも、電流狭窄層の膜厚が薄ければ、磁気結合させることは十分に可能である。
第3は、絶縁層の絶縁機能の要求である。電流狭窄層が薄すぎると、それを構成する絶縁層が十分に絶縁機能を発揮することができなくなる。十分な絶縁機能を発揮するには少なくとも0.5nm以上の膜厚が必要である。
このように、第1の電流狭窄層と第2の電流狭窄層の膜厚は、十分に絶縁機能を維持できる範囲で、かつ薄膜構造体10,20の磁気結合の有無により適宜調整する必要がある。例えば、第1の導電体13を強磁性体で構成して、第2の導電体14及び第3の導電体15を強磁性体とし、磁気結合させる場合には、厚くとも3.0nm以下、絶縁機能を維持するために膜厚0.5nm以上が望ましい。つまり、0.5nm以上3.0nm以下が望ましい。
また、例えば、第3の導電体15を強磁性体で構成して、第1の導電体13及び第2の導電体14を非磁性体とし、磁気結合させる場合には、厚くとも1.5nm以下が望ましい。十分な絶縁機能をもたせるためには、0.5nm以上が望ましいので、あわせて0.5nm以上1.5nm以下が望ましい。また、同様の構成で磁気結合させない場合には、上下に貫通した導電体を形成できる範囲で厚くすることが出来る。つまり、1.5nm以上4nm以下が望ましい。
第1の絶縁層11及び第2の絶縁層12は、Al、Ta、Hf、Cr、Zr、Ti、Si、W、V、Mg、Mo、Fe、Ni、Coからなる群より少なくともひとつの元素を含む、酸化物、窒化物、酸窒化物で構成することができる。
第2の導電体14及び第3の導電体15は、後述するように、例えば薄膜構造体10,20が磁気抵抗効果膜に適用する場合などには、そのどの部位に配置されるかで、好ましい材料が異なる。本発明では、第1の導電体14及び第3の導電体15は、非磁性元素で構成される場合と、強磁性元素で構成される場合とがある。第1の導電体14及び第2の導電体15を非磁性元素で構成する場合、Cu、Au、Ag、Rh、Ru、Mn、Cr、Re、Os、Ir、Pdなどを用いることができる。これらの材料のなかでも、酸化エネルギーの低く、電気的良電体であるCu、Au、Agなどの金属を用いるのが望ましい。第1の導電体14及び第2の導電体15を強磁性元素で構成する場合、Co、Fe、Niからなる群より少なくともひとつの元素を含む金属を用いることができる。
第1の導電体13は、どの材料を用いるかによって、薄膜構造体10,20の機能が異なる。例えば、磁気抵抗効果膜に適用した場合に、そのどの部位に配置して、どの機能を持たせるかの目的によって、好ましい材料が異なる。例えば、第1の導電体13を非磁性元素で構成する場合、Cu、Au、Ag、Rh、Ru、Mn、Cr、Re、Os、Ir、Pdなどを用いることができる。これらの材料のなかでも、酸化エネルギーの低く、電気的良電体であるCu、Au、Agなどの金属を用いるのが望ましい。また、第1の導電体13を強磁性元素で構成する場合、Co、Fe、Niからなる群より少なくともひとつの元素を含む金属を用いることができる。
図2に示すような薄膜構造体20の場合、第1の絶縁層11の開口部11Aに形成された第2の導電体14の膜面内方向の面積、及び第2の絶縁層12の開口部12Aに形成された第3の導電体15の膜面内方向の面積は、第1の導電体13の膜面内方向の最大面積よりも十分に小さくなければならない。この要件を満足しないと、以下に詳述する特異な伝導特性は期待されない。実際、第2の導電体14及び第3の導電体15の面積(直径)が大きすぎると、薄膜構造体20の内部で散乱された電子が、薄膜構造体20の内壁に当たらずにそのまま通過してしまい、特異な伝導を得ることが出来ない。結果として、薄膜構造体20を磁気抵抗効果膜などに適用した場合において、高いMR変化率を得ることができない。そのため、第2の導電体14と第3の導電体15の直径は5nm以下であることが望ましい。
また、薄膜構造体20のナノサイズの形状効果を利用した特異な導電特性を効率よく得るためには、図2の薄膜構造体20のように、第1の導電体13が膜面内方向にも絶縁層で遮られているほうが好ましい。また、この場合の第1の導電体の面積は大きすぎるとナノサイズの形状効果を利用した特異な導電特性を効率よく得ることができない。よって、第1の導電体の面積は、上記の要件を満たした上でその直径が10nm以下であることが望ましい。
なお、第2の導電体14及び第3の導電体15の膜面内方向の面積は、開口部11A及び12Aの大きさ(直径)によって画定されるので、薄膜構造体20を図2に示すような態様で構成する限りは、上記要件は必然的に満足される。
図1に示すような薄膜構造体10の場合においても、上述した図2に示す薄膜構造体20と同じ要件が課される。但し、薄膜構造体10においては、図2に示す薄膜構造体20と異なり、第1の導電体13が第1の絶縁層11及び第2の絶縁層12で囲まれたような構成を呈しておらず、開口部11A及び12Aの両端部において所定の距離で離隔している。したがって、この場合においては、距離A/2>距離Bなる関係を満足することが好ましい。
また、第1の導電体13の膜厚は、5nm以下であることが望ましい。第1の導電体の膜厚が厚すぎると、距離A/2>距離Bなる関係を満たすバレル形状の作製が困難となる。また、第1の導電体13の膜厚は、1nm以上であることが望ましい。第1の導電体の膜厚が薄くなると、それに伴って第1の導電体の直径も小さくなる。第2の導電体14及び第3の導電体15の面積は、第1の導電体の直径よりも小さくする必要があるため、第1の導電体の直径が小さくなりすぎると、それよりも小さい直径の第2の導電体14と第3の導電体15を作製することが困難となる。上述する理由から、第1の導電体13の膜厚は、1nm以上であることが望ましい。
上記要件を満足しない場合、例えば、第1の絶縁層11の第1の開口部11A内に形成した第2の導電体14を介して電子が第1の導電体13内に取り込まれることになった場合に、前記電子は、同じ薄膜構造体10に形成された第2の絶縁層12の第2の開口部12A内に形成した第3の導電体15を介してではなく、隣接する薄膜構造体10に形成された第3の導電体15を介して外部に取り出されるような場合が生じる。したがって、このような場合は、薄膜構造体10の内部で散乱された電子が、薄膜構造体10の内壁に当たらずにそのまま通過してしまい、特異な伝導を得ることが出来ない。結果として、薄膜構造体10を磁気抵抗効果膜などに適用した場合において、高いMR変化率を得ることができない。
次に、薄膜構造体10,20の具体的な配置例について、第1の導電体13を中心に説明する。図3〜7は、薄膜構造体10,20の具体的な配置例を示す構成図である。なお、以下の説明に関連した図面においては、薄膜構造体20を代表的に用いているが、当然に薄膜構造体10を用いることもできる。
図3において、第1の導電体13は、積層構造として構成している。例えば、薄膜構造体10,20を後述のような磁気抵抗効果膜に対して適用する場合、ピン層/スペーサ層にまたがって薄膜構造体10,20を配置する場合、第1の導電体13の内部にピン層/スペーサ層の界面を設ける構成も適用可能である。この場合、第1の導電体13は、ピン層を構成する強磁性層FMとスペーサ層を構成する非磁性層NMの積層とすることが出来る。
また、図4に示すように、第1の導電体13、多数の層からなる積層構造とすることができる。例えば、磁気抵抗効果膜への適用を考慮した場合、薄膜構造体10,20をピン層またはフリー層内部に配置して、第1の導電体13に強磁性体を用いる場合、第1の導電体13を(強磁性層FM/非磁性層NM)xN/強磁性層FMのような積層構造を用いることができる。このように強磁性層FMに非磁性層を挿入することにより、強磁性層のスピン依存バルク散乱を増強する効果がある。
また、薄膜構造体10,20を強磁性層と隣接して配置する場合に、薄膜構造体10,20と強磁性層FMの間に非磁性層NMを挿入しても良い。
図5に示す例では、薄膜構造体10,20の上下に非磁性層NMが設けられた構造を表している。すなわち、薄膜構造体10,20がピン層Pやフリー層Fなどを構成する強磁性層FM中に挿入され、さらにその上下両方ともに非磁性層NMが挿入された構造を表す。この非磁性層NMは、薄膜構造体NBの上下にある強磁性層FMが酸化することを防ぐ、酸素バリア層として機能する。この非磁性層NMは、Cu、Au、Ag、Rh、Ru、Mn、Cr、Re、Os、Ir、Pdなどを用いることができる。これらの材料のなかでも、酸化エネルギーの低く、電気的良電体であるCu、Au、Agなどの金属を用いるのが望ましい。
図6に示す例では、薄膜構造体10,20の下に非磁性層NMが設けられた構造を表している。すなわち、薄膜構造体10,20がピン層Pやフリー層Fの強磁性層FMとスペーサ層Sの非磁性層NMとの間に挿入され、さらにその下に非磁性層NMが挿入された構造を表す。この非磁性層NMは、上述したように薄膜構造体NBの下にある強磁性層FMが酸化することを防ぐ、酸素バリア層として機能する。
図7は、薄膜構造体10,20の上に非磁性層NMが設けられた構造を示す図である。すなわち、スペーサ層Sの非磁性層NMと薄膜構造体NBがピン層Pやフリー層Fの強磁性層FMとの間に挿入され、さらにその上に非磁性層NMが挿入された構造を表す。この非磁性層NMは、上述したように薄膜構造体NBの上にある強磁性層FMが酸化することを防ぐ、酸素バリア層として機能する。
(薄膜構造体を設けた磁気抵抗効果膜)
上述した薄膜構造体10,20は、磁気抵抗効果膜に対して適用することができる。この場合は、以下に詳述する原理に基づいて高いMR変化率を得ることができる。
上述した薄膜構造体10,20は、磁気抵抗効果膜に対して適用することができる。この場合は、以下に詳述する原理に基づいて高いMR変化率を得ることができる。
図8は、上述した薄膜構造体10,20を磁気抵抗効果膜に組み込んだ様子を示す図である。図8に示すように、薄膜構造体10,20は、ピン層P、スペーサ層S、フリー層Fのスピン依存散乱ユニットに配置することができる。図8では、ピン層P、スペーサ層S、フリー層Fそれぞれの内部に薄膜構造体10,20を設けた場合を例として図示している。また、薄膜構造体10,20は、ピン層Pの内部に複数層配置してもよく、同様にスペーサ層S、フリー層Fの内部に複数層配置してもよい。
なお、薄膜構造体10,20は、ピン層P及びスペーサ層Sに跨り、ピン層Pとスペーサ層Sとの界面を含むようにして配置することもできる。また、スペーサ層S及びフリー層Fに跨り、スペーサ層Sとフリー層Fとの界面を含むようにして配置することもできる。さらに、ピン層P,スペーサ層S及びフリー層Fに跨り、これら層間の界面を含むようにして配置することもできる。なお、これらの具体例については以下において詳述する。
(薄膜構造体を設けた磁気抵抗効果膜の詳細)
以降、磁気抵抗効果膜に適用する薄膜構造体の詳細を説明する。
図9及び10は、薄膜構造体10,20がピン層Pまたはフリー層Fに設けられる場合の配置例を示す。なお、薄膜構造体10,20の具体的な構造は、図1〜7に示したようないずれの構造をも採ることができるが、これらに限られるものではない。
以降、磁気抵抗効果膜に適用する薄膜構造体の詳細を説明する。
図9及び10は、薄膜構造体10,20がピン層Pまたはフリー層Fに設けられる場合の配置例を示す。なお、薄膜構造体10,20の具体的な構造は、図1〜7に示したようないずれの構造をも採ることができるが、これらに限られるものではない。
ピン層Pまたはフリー層Fに薄膜構造体10,20を設ける場合、第1の導電体13は、ピン層Pまたはフリー層Fの機能を持たせるために強磁性体で構成する。ただし、強磁性層/非磁性層の積層構造を用いて、スピン依存バルク散乱の向上を図っても良い。積層順序は、(強磁性層/非磁性層)xN/強磁性層の順でも、(非磁性層/強磁性層)xN/非磁性層でもよい。また、(強磁性層/非磁性層)xN、(非磁性層/強磁性層)xNでもよい。
ピン層Pまたはフリー層Fに薄膜構造体10,20を設けた場合の第1の導電体13の一例として、Fe50Co50[1nm]/Cu[0.25nm]/Fe50Co50[1nm]のような積層型導電体を用いることができる。
第1の導電体13を構成するFe50Co50はbcc構造をもつ。なお、FeCo系合金として、FexCo100−x(x=30〜100%)や、FexCo100−xに添加元素を加えたものが挙げられる。ここでは、第1の導電体13として、極薄Cu積層を含むFe50Co50を用いている。ここで、第1の導電体13は、全膜厚が2nmのFeCoと、1nmのFeCo毎に積層された0.25nmのCuとからなり、トータル膜厚2.25nmである。
第1の導電体13には、bcc構造をもつ磁性材料の代わりに、従来の磁気抵抗効果素子で広く用いられているfcc構造を有するCo90Fe10合金や、hcp構造をもつコバルト合金を用いることができる。第1の導電体13として、Co、Fe、Niなどの単体金属、またはこれらのいずれか一つの元素を含む合金材料はすべて用いることができる。第3の導電体の磁性材料として、大きなMR変化率を得るのに有利なものから並べると、bcc構造をもつFeCo合金材料、50%以上のコバルト組成をもつコバルト合金、50%以上のNi組成をもつニッケル合金の順になる。
上述した磁性層(FeCo層)と非磁性層(極薄Cu層)とを交互に積層したものから第1の導電体13を構成する場合、極薄Cu層によって、スピン依存バルク散乱効果を向上させることができる。なお、バルク散乱効果を得るための極薄Cu層の膜厚は、0.1〜1nmが好ましく、0.2〜0.5nmがより好ましい。Cu層の膜厚が薄すぎると、バルク散乱効果を向上させる効果が弱くなる。Cu層の膜厚が厚すぎると、バルク散乱効果が減少することがあるうえに、非磁性のCu層を介した上下磁性層の磁気結合が弱くなり、第3の導電体の特性が不十分となる。そこで、好ましい一例として挙げたものでは、0.25nmのCuを用いた。
磁性層間の非磁性層の材料として、Cuの換わりに、Hf、Zr、Tiなどを用いてもよい。一方、これら極薄の非磁性層を挿入した場合、FeCoなど磁性層の一層あたりの膜厚は0.5〜2nmが好ましく、1〜1.5nm程度がより好ましい。
第1の導電体13として、FeCo層とCu層との交互積層構造に換えて、FeCoとCuを合金化した層を用いてもよい。このようなFeCoCu合金として、例えば、(FexCo100−x)100−yCuy(x=30〜100%、y=3〜15%程度)が挙げられるが、これ以外の組成範囲を用いてもよい。ここで、FeCoに添加する元素として、Cuの代わりに、Hf、Zr,Tiなど他の元素を用いてもよい。
第1の導電体13には、Co、Fe、Niや、これらの合金材料からなる単層膜を用いてもよい。例えば、最も単純な構造として、従来から広く用いられている、Co90Fe10単層を用いてもよい。この材料に他の元素を添加してもよい。
第1の導電体13は、結晶性金属の代わりにアモルファス金属を用いてもかまわない。具体的には、CoFeB、CoZrNb、FeZrN、FeAlSiなどを用いることができる。
第1の導電体13は、垂直磁化膜を用いてもかまわない。具体的には、FePt、CoPt、SmCoなどを用いることができる。この材料に他の元素を添加してもよい。
図9(a)は、ピン層Pまたはフリー層Fを強磁性体FM/薄膜構造体10,20/強磁性体FMで構成した場合の模式図である。図9(b)は、ピン層Pまたはフリー層Fを薄膜構造体10,20/強磁性体FMで構成した場合の模式図である。図9(c)は、ピン層Pまたはフリー層Fを強磁性体FM/薄膜構造体10,20で構成した場合の模式図である。図9(d)は、ピン層Pまたはフリー層Fを薄膜構造体10,20の単層で構成した場合の模式図である。
図10(a)〜(d)は、それぞれ図9(a)〜(d)に対応しており、スペーサ層Sの位置とピン層P又はフリー層Fの位置とが逆転したものである。
薄膜構造体10,20をピン層Pまたはフリー層Fに設ける場合、上述した図9(a)〜(d)及び図10(a)〜(d)のいずれの構成をも採用することができる。
図11は、薄膜構造体10,20がスペーサ層Sに設けられる場合の配置例を示す。なお、薄膜構造体10,20の具体的な構造は、図1〜7に示したようないずれの構造をも採ることができるが、これらに限られるものではない。
スペーサSに薄膜構造体10,20を設ける場合、第1の導電体13、さらには第2の導電体14及び第3の導電体15は、スペーサ層としての機能を持たせるために、非磁性金属体で構成する。例えば、Cu、Au、Ag、Rh、Ru、Mn、Cr、Re、Os、Ir、Pdなどを用いることができる。これらの材料のなかでも、酸化エネルギーの低く、電気的良電体であるCu、Au、Agなどの金属を用いるのが望ましい。
一方、スペーサ層Sに薄膜構造体10,20を設ける場合、スペーサ層Sを磁性スペーサ層として構成することもできる。磁性スペーサ層を用いる場合、第1の導電体13、第2の導電体14、第3の導電体15はCo、Fe、Niなどの単体金属、またはこれらのいずれか一つの元素を含む合金材料はすべて用いることができる。
図11(a)は、スペーサ層Sを非強磁体NM/薄膜構造体10,20/非磁性体NMで構成した場合の模式図である。図11(b)は、スペーサ層Sを薄膜構造体10,20/非磁性体HMで構成した場合の模式図である。図11(c)は、スペーサ層Sを非磁性体NM/薄膜構造体10,20で構成した場合の模式図である。図11(d)は、スペーサ層Sを薄膜構造体10,20の単層で構成した場合の模式図である。薄膜構造体10,20をスペーサ層Sに設ける場合、上述した図11(a)、(b)、(c)、(d)のいずれの構成をも採用することができる。
図12は、薄膜構造体10、20がスペーサ層Sと、フリー層F又はピン層Pとに跨り、これらの界面を含むようにして形成された場合の配置例を示す。なお、薄膜構造体10,20の具体的な構造は、図1〜7に示したようないずれの構造をも採ることができるが、これらに限られるものではない。
本態様では、図12に示すように、薄膜構造体10,20の第1の導電体13が、スペーサ層Sと、フリー層F又はピン層Pとに跨るようになるので、第1の導電体13の、スペーサ層Sに属する部分は、スペーサ層Sとしての機能を持たせるために非磁性金属体から構成し、第1の導電体13の、フリー層F又はピン層Pに属する部分は、ピン層Pまたはフリー層Fの機能を持たせるために強磁性体で構成する。
第1の導電体13の、スペーサ層Sに属する部分は、上述したように、例えば、Cu、Au、Ag、Rh、Ru、Mn、Cr、Re、Os、Ir、Pdなどを用いることができる。これらの材料のなかでも、酸化エネルギーの低く、電気的良電体であるCu、Au、Agなどの金属を用いるのが望ましい。また、第1の導電体13の、フリー層F又はピン層Pに属する部分は、上述の、図9に関連して説明した態様で述べたような構成及び材料から構成することができる。例えば、スピン依存バルク散乱の向上を図るべく、強磁性層/非磁性層の積層構造を用いることができ、具体的に、Fe50Co50[1nm]/Cu[0.25nm]/Fe50Co50[1nm]のような積層型導電体を用いることができる。
なお、図12(a)は、フリー層F又はピン層Pがスペーサ層Sの上側に位置する場合を示し、図12(b)は、フリー層F又はピン層Pがスペーサ層Sの下側に位置する場合を示している。薄膜構造体10,20をスペーサ層Sと、フリー層F又はピン層Pとに跨るようにして形成する場合、図12(a)及び(b)のいずれの構成をも採ることができる。
図13は、同じく薄膜構造体10,20がスペーサ層Sと、フリー層F又はピン層Pとに跨り、これらの界面を含むようにして形成された場合の配置例を示すものである。図13に関連する例では、薄膜構造体10,20を構成する第1の導電体13が、フリー層F又はピン層Pのいずれかに総て含まれるような場合を示している。図13(a)及び(b)に示す例では、第1の導電体13がスペーサ層Sの上部に設けられたフリー層F又はピン層P内に含まれる場合を示しており、図13(c)及び(d)に示す例では、第1の導電体13がスペーサ層Sの下部に設けられたフリー層F又はピン層P内に含まれる場合を示している。
図13(a)及び(b)の場合は、第1の絶縁層11及び第2の導電体14がスペーサ層Sを構成しており、スペーサ層S自身が電流狭窄層として機能する。図13(c)及び(d)の場合は、第2の絶縁層12及び第2の導電体15がスペーサ層Sを構成しており、スペーサ層S自身が電流狭窄層として機能する。
なお、図13(a)では、フリー層F又はピン層Pは、薄膜構造体10,20の第1の導電体13、第2の絶縁膜12及び第3の導電体15からなる部分と、強磁性体FMとから構成されている。図13(b)では、フリー層F又はピン層Pは、薄膜構造体10,20の第1の導電体13、第2の絶縁膜12及び第3の導電体15から構成されている。図13(c)では、フリー層F又はピン層Pは、薄膜構造体10,20の第1の導電体13、第1の絶縁膜11及び第2の導電体14からなる部分と、強磁性体FMとから構成されている。図13(d)では、フリー層F又はピン層Pは、薄膜構造体10,20の第1の導電体13、第1の絶縁膜11及び第2の導電体14から構成されている。
薄膜構造体10,20をスペーサ層Sと、フリー層F又はピン層Pとに跨るようにして形成する場合、図13(a)〜(d)に示すような構造をも採ることができる。
図14は、薄膜構造体10,20が、スペーサ層Sと、フリー層F及びピン層Pとに跨り、これらの界面を含むようにして形成された場合の配置例を示すものである。
本態様では、図14に示すように、薄膜構造体10,20の第1の導電体13が、スペーサ層S、フリー層F及びピン層Pに跨るようになるので、第1の導電体13の、スペーサ層Sに属する部分は、スペーサ層Sとしての機能を持たせるために非磁性金属体から構成し、第1の導電体13の、フリー層F及びピン層Pに属する部分は、ピン層P及びフリー層Fの機能を持たせるために強磁性体で構成する。
第1の導電体13の、スペーサ層Sに属する部分は、上述したように、例えば、Cu、Au、Ag、Rh、Ru、Mn、Cr、Re、Os、Ir、Pdなどを用いることができる。これらの材料のなかでも、酸化エネルギーの低く、電気的良電体であるCu、Au、Agなどの金属を用いるのが望ましい。また、第1の導電体13の、フリー層F及びピン層Pに属する部分は、上述の、図9に関連して説明した態様で述べたような構成及び材料から構成することができる。例えば、スピン依存バルク散乱の向上を図るべく、強磁性層/非磁性層の積層構造を用いることができ、具体的に、Fe50Co50[1nm]/Cu[0.25nm]/Fe50Co50[1nm]のような積層型導電体を用いることができる。
なお、磁気抵抗効果膜の基本的な構成は、図15(a)に示すように、スペーサ層Sの上方にフリー層Fが位置し、スペーサ層Sの下方にピン層Pが位置するようなボトム型、図15(b)に示すように、スペーサ層Sの下方にフリー層Fが位置し、スペーサ層Sの上方にピン層Pが位置するようなトップ型、図15(c)に示すように、中心にフリー層Sが配置され、その上方及び下方に、スペーサ層S及びピン層Pが順次に配置されてなるいわゆるデュアル型の構成を採ることができる。
また、図16は、ピニング層を設けたスピンバルブ構造を例示する模式図である。ピニング層は、図16(a)に示すように、ピン層Pの磁化方向を反強磁性膜AF又はハード磁性膜HMなどにより直接固着する方法や、図16(b)に示すように、いわゆる「シンセティック構造」と称される方法もある。シンセティック構造においては、反強磁性膜AFによって強磁性層FMを固着し、その上にRuなどからなる反強磁性的結合膜ACを介して、ピン層Pに反強磁性的に結合させてその磁化を固着する。
なお、図16では、図15(a)に示すような、いわゆるボトム型の磁気抵抗効果膜に対してピニング層を設けている場合について示しているが、図15(b)及び(c)に示すような、トップ型及びデュアル型の磁気抵抗効果膜についても同様にして設けることができる。
(高いMR比の発現メカニズム)
次に、図8〜14に示すような、薄膜構造体10,20を含む磁気抵抗効果膜において、高いMR比が発現する物理的メカニズムについて説明する。ただし現時点では、高いMR比が発現する物理メカニズムは完全に把握し切れていない部分もある。
次に、図8〜14に示すような、薄膜構造体10,20を含む磁気抵抗効果膜において、高いMR比が発現する物理的メカニズムについて説明する。ただし現時点では、高いMR比が発現する物理メカニズムは完全に把握し切れていない部分もある。
A.高いMR比の発現メカニズム(1)
最初に、薄膜構造体10,20を設けていない、従来のCPP−GMR膜のMR発現原理を説明する。GMR効果とは、非磁性層のスペーサを介して積層された少なくとも二つ以上の強磁性層において、非磁性を介した強磁性層の相対角度の変化により電気抵抗が変化する現象である。GMR効果は、アップスピンをもつアップスピン電子とダウンスピンをもつダウンスピン電子がそれぞれ独立に伝導に寄与するとした二電流モデルで説明される。伝導電子のスピンが強磁性層を通過するときに、強磁性層の磁化と同じ向きのスピンある場合(Majorityスピン電子と呼ぶ)と逆向きである場合(Minorityスピン電子と呼ぶ)とで、強磁性層からうける散乱が異なること(スピン依存散乱)がGMR効果の起源である。
最初に、薄膜構造体10,20を設けていない、従来のCPP−GMR膜のMR発現原理を説明する。GMR効果とは、非磁性層のスペーサを介して積層された少なくとも二つ以上の強磁性層において、非磁性を介した強磁性層の相対角度の変化により電気抵抗が変化する現象である。GMR効果は、アップスピンをもつアップスピン電子とダウンスピンをもつダウンスピン電子がそれぞれ独立に伝導に寄与するとした二電流モデルで説明される。伝導電子のスピンが強磁性層を通過するときに、強磁性層の磁化と同じ向きのスピンある場合(Majorityスピン電子と呼ぶ)と逆向きである場合(Minorityスピン電子と呼ぶ)とで、強磁性層からうける散乱が異なること(スピン依存散乱)がGMR効果の起源である。
CPP−GMR膜に二電流モデルを適用してスピン依存散乱による抵抗の変化を考える場合、スピン依存バルク散乱とスピン依存界面散乱の両方を考える必要がある。スピン依存バルク散乱とは、強磁性層の内部のスピン依存散乱のことであり、スピン依存界面散乱は、強磁性層と非磁性層の界面で起こるスピン依存散乱のことである。
まず、スピン依存バルク散乱について考えると、Majorityスピン電子の強磁性層内部のバルク抵抗率をρ F↑、Minorityスピン電子の強磁性層内部のバルク抵抗率をρ F↓とすると、次式で表される。
ρ F↑=2ρF/(1+β)
ρ F↓=2ρF/(1−β)
ここで、ρFは強磁性層の抵抗率であり、βはスピン依存バルク散乱パラメータである。スピン依存バルク散乱パラメータβの絶対値の大きさが大きいほどρ F↑とρ F↓の差が大きい。バルク散乱の場合は、上記の式に強磁性層の膜厚をかけることで、同じ向きである場合の強磁性層内部のバルク抵抗ARF↑と逆向きである場合の強磁性層内部のバルク抵抗ARF↓が次式のように表される。
ARF↑ = ρ F↑・tF = 2ρF・tF/(1+β)
ARF↓ = ρ F↓・tF = 2ρF・tF/(1−β)
ρ F↑=2ρF/(1+β)
ρ F↓=2ρF/(1−β)
ここで、ρFは強磁性層の抵抗率であり、βはスピン依存バルク散乱パラメータである。スピン依存バルク散乱パラメータβの絶対値の大きさが大きいほどρ F↑とρ F↓の差が大きい。バルク散乱の場合は、上記の式に強磁性層の膜厚をかけることで、同じ向きである場合の強磁性層内部のバルク抵抗ARF↑と逆向きである場合の強磁性層内部のバルク抵抗ARF↓が次式のように表される。
ARF↑ = ρ F↑・tF = 2ρF・tF/(1+β)
ARF↓ = ρ F↓・tF = 2ρF・tF/(1−β)
次に、スピン依存界面散乱も同様に考えると、伝導電子のスピンが強磁性層の磁化と同じ向きである場合の強磁性層とスペーサ層の界面抵抗をRAF/S↑、逆向きである場合の強磁性層とスペーサ層の界面抵抗をRAF/S↓とすると、次式で表される。
ARF/S↑ = 2ARF/S/(1+α)
ARF/S↓ = 2ARF/S/(1−α)
ここで、ARF/Sは強磁性層とスペーサ層の界面抵抗であり、αはスピン依存バルク散乱パラメータである。スピン依存界面散乱パラメータαの絶対値の大きさが大きいほどARF/S↑とARF/S↓の差が大きい。
ARF/S↑ = 2ARF/S/(1+α)
ARF/S↓ = 2ARF/S/(1−α)
ここで、ARF/Sは強磁性層とスペーサ層の界面抵抗であり、αはスピン依存バルク散乱パラメータである。スピン依存界面散乱パラメータαの絶対値の大きさが大きいほどARF/S↑とARF/S↓の差が大きい。
上述したスピン依存バルク散乱によるARF↑とARF↓の差、およびスピン依存界面散乱によるRAF/S↑とRAF/S↓の差がCPP−GMR膜のMR発現の起源であり、それぞれの差が大きいほど高いMR変化率が得られる。
ここで高いMR変化率を得るための手段の一つとして、強磁性層のスピン依存バルク抵抗率のρ F↑とρ F↓の差を大きくする、すなわちスピン依存バルク散乱パラメータβの大きい材料を用いることが挙げられる。同様にスピン依存界面抵抗ARF/S↑とARF/S↓の差が大きくする、すなわちスピン依存界面散乱パラメータγの大きい材料を用いることが挙げられる。しかし、これらの値は材料依存であり従来材料を上回る材料を発見することが精力的に検討されているが、スピンバルブに必要な特性を満たしたまま従来材料を大きく超えるスピン依存散乱パラメータを有する材料を見つけることは困難である。
高いMR変化率を得るための手段の一つとして、強磁性層の膜厚tFを厚くして大きいスピン依存バルク散乱を得る方法がある。しかし、磁気抵抗効果膜の総膜厚を厚くすることは、読み取りヘッドのギャップ長を長くすること、ピン層を厚くするとピン固着が弱まること、フリー層を厚くすると読み取り感度が落ちること、など様々な原因から好ましくない。
高いMR変化率の有効な手段の一つとして、強磁性層とスペーサ層の界面の数を増やして、スピン依存界面散乱効果を有効に用いる方法がある。スピンバルブ膜のスピン依存界面散乱ユニットを増やすために、ピン層/スペーサ層とフリー層/スペーサ層の界面を増やそうとすると、ピン層/スペーサ層/フリー層/スペーサ層/ピン層といった、デュアルスピンバルブ構造での4つの界面数が限界である。また、デュアルスピンバルブ構造では、比較的厚いピニング層を2層設ける必要があるため、やはり総膜厚が厚くなり、前述した理由で好ましくない。
次に、薄膜構造体10,20を設けた磁気抵抗効果膜について考える。図17〜19には、薄膜構造体10,20を設けた磁気抵抗効果膜の高いMR変化率の発現メカニズム(1)の模式図を示す。図17〜19には、ピン層P、スペーサ層S、フリー層Fのスピン依存散乱ユニットのみを図示している。図17は薄膜構造体を設けていない場合、図18はピン層Pの内部に薄膜構造体10,20を設けた例であり、図19はピン層P/スペーサ層S/フリー層Fにまたがって薄膜構造体10,20を設けた例である。なお、これらの図には、代表的に薄膜構造体20の構成のみを示しているが、当然に薄膜構造体10の構成をも採用することができる。
フリー層Fからピン層Pの向きの膜垂直方向に電流を流した場合、薄膜構造体10,20を通過する際に電子は第2の導電体14、第1の導電体13、及び第3の導電体15を通過する。ここで、薄膜構造体10,20の第2の導電体13の膜厚tNBが、伝導電子が散乱されずに通過する距離である平均自由行程の長さに対して十分に大きいといえない場合、電子が絶縁体で構成される内壁に衝突して、反射することが考えられる。第2の導電体14から入った電子が第3の導電体15を抜けていくまでに、絶縁層の内壁で反射する平均の回数をNと仮定すると、電子が第2の導電体の内部を通過する距離は(N+1)・tNBとなる。すなわち、物理的な膜厚は薄いままで、伝導電子が強磁性層の内部を通過する行程距離を長くすることが期待される。
図18は、ピン層Pの内部に薄膜構造体10,20を設け、第1の導電体13、第2の導電体14及び第3の導電体15がピン層Pの強磁性層FMと同じ強磁性材料で構成されている場合である。上述したように、図18の場合の伝導電子がピン層Pを通過するときの行程距離tF effは、反射の効果が加わってtPIN−tNB+(N+1)・tNBとなる。つまり、Majorityスピン電子の強磁性層内部のバルク抵抗率ARF↑、Minorityスピン電子の強磁性層内部のバルク抵抗ARF↓とすると、次式で表される。
ARF↑ = ρ F↑・tF eff
=2ρF・{tPIN−tNB+(N+1)・tNB}/(1+β)
ARF↓ = ρ F↓・tF eff
= 2ρF・{tPIN−tNB+(N+1)・tNB}/(1−β)
ARF↑ = ρ F↑・tF eff
=2ρF・{tPIN−tNB+(N+1)・tNB}/(1+β)
ARF↓ = ρ F↓・tF eff
= 2ρF・{tPIN−tNB+(N+1)・tNB}/(1−β)
一方、図17の薄膜構造体10,20を設けていない場合は、伝導電子がピン層Pを通過するときの行程距離はピン膜厚tPINとほぼ同じである。つまり、図17と図18とでは、ピン層が同じ物理膜厚であるにもかかわらず、図18の薄膜構造体10,20を設けた場合の方が、図17の薄膜構造体10,20を設けていない場合に比べて、ピン層P内部における伝導電子の行程距離が長くなり、スピン依存バルク抵抗ARF↑とARF↓の差が大きくなる、つまり、高いMR変化率が得られることが期待される。
また、図19は、薄膜構造体10,20をピン層P/スペーサ層P/フリー層Fに跨って設け、薄膜構造体10,20の第2の導電体14をピン層Pと同じ強磁性層材料から構成し、第3の導電体15をフリー層と同じ強磁性層材料から構成し、第1の導電体13をピン層P/スペーサ層S/フリー層Fとした場合である。図19のように、薄膜構造体10、20の第1の導電体13に強磁性層/スペーサ層を設けた場合、反射効果により、スピン依存散乱界面を通過する回数を増やすことができると期待される。すなわち、前述したデュアルスピンバルブ構造のように膜厚の厚い構成を用いなくとも、スピン依存散乱界面を通過する回数を増やすことができる、つまり、高いMR変化率が得られることが期待される。
また、図19の第1の導電体13には、ピン層Pとフリー層Fも含まれているため、図18と同じ理由でスピン依存バルク抵抗ARF↑とARF↓の差を大きくなることが期待される。
B.高いMR比の発現メカニズム(2)
A.で述べた高いMR比の発現メカニズム(1)では、薄膜構造体10,20の中の電子の伝導について、半古典的な現象のみで考えている。一方、本発明に係る薄膜構造体10,20のサイズはナノオーダーであるため、薄膜構造体10,20を通過する電子の振る舞いは、量子的な伝導を示す可能性がある。このような半古典的な伝導特性と量子的な伝導特性をあわせもつ伝導はメゾスコピック伝導と呼ばれている。
A.で述べた高いMR比の発現メカニズム(1)では、薄膜構造体10,20の中の電子の伝導について、半古典的な現象のみで考えている。一方、本発明に係る薄膜構造体10,20のサイズはナノオーダーであるため、薄膜構造体10,20を通過する電子の振る舞いは、量子的な伝導を示す可能性がある。このような半古典的な伝導特性と量子的な伝導特性をあわせもつ伝導はメゾスコピック伝導と呼ばれている。
図20には、高いMR比の発現メカニズム(2)として、薄膜構造体10,20のサイズ効果によるメゾスコピック伝導の模式図を示す。
例えば、図20(b)のように薄膜構造体10,20のサイズが、強磁性体や非磁性体などの金属中の電子が散乱されずに直進する距離(平均自由行程と呼ぶ)に比べて十分大きい場合、その伝導特性は、散乱過程の統計的平均の範囲を逸せず、図20(a)のような通常の薄膜構造体10,20を設けていない場合の伝導特性とほぼ変わらない。
一方、本発明のように、図20(c)に示すような薄膜構造体10,20のサイズが強磁性体や非磁性体などの金属中の電子の平均自由行程に比べて、十分に大きいといえない場合、薄膜構造体10,20を通過する電子が薄膜構造体10,20の中の導電体で散乱される回数が少ないため、その散乱過程は平均化されず、その伝導特性は薄膜構造体10,20の第1、第3、第2の導電体の形状から大きく影響をうけることが考えられる。このような薄膜構造体NBを磁気抵抗効果膜(たとえばCPP−GMR膜)の中に設けた場合、従来のCPP−GMR膜のようにMajorityスピン電子とMinorityスピン電子の散乱過程の統計的平均によるMR現象に加えて、薄膜構造体10,20の形状により決定される量子的なMR現象が期待される。
例えば、薄膜構造体10,20が、例えばピン層の内部に配置され、薄膜構造体10,20の第1の導電体13が強磁性体で構成される場合について考える。第1の導電体13の強磁性層と同じスピンの向きのMajorityスピン電子と逆向きのMinorityスピン電子の平均自由行程について考えると、スピン依存バルク散乱パラメータβが正の場合、強磁性層の磁化と同じ向きのスピンを持ったMajorityスピン電子の抵抗率ρ F↑は、逆向きのMinorityスピン電子の抵抗率ρ F↓よりも小さくなる。つまり、Majorityスピン電子の平均自由工程λF↑は、Minorityスピン電子の平均自由工程λF↓よりも長くなる。
ここで、薄膜構造体10,20のサイズ(第1の導電体の膜厚tF)が、強磁性層内における電子の平均自由行程に対して十分に大きいといえない場合、薄膜構造体10,20の形状に起因して、Majorityスピン電子とMinorityスピン電子とで、薄膜構造体10,20内の強磁性体で散乱される確率が変わることが考えられる。すると、Majorityスピン電子のほうが、薄膜構造体10,20内で一度も散乱されずに直進して通過する確率が高い。ナノオーダーのサイズの薄膜構造体10,20内部で散乱された電子は、薄膜構造体10,20の内壁に衝突して、薄膜構造体10,20内部でさらに散乱すると考えられる。その結果、Majorityスピン電子とMinorityスピン電子が薄膜構造体10,20を通過するときの抵抗の差は、薄膜構造体10,20と同じ膜厚の強磁性層を通過するときよりも大きくなることが考えられる。
また、このようにMajorityスピン電子とMinorityスピン電子とで、薄膜構造体10,20内の強磁性体で散乱される確率が変り、Majorityスピン電子の方が、薄膜構造体10,20内で一度も散乱されずに直進して通過する電子が多い場合、薄膜構造体10,20を通過する電子の数がMajorityスピン電子のほうが多くなることが考えられる。例えば、ピン層内部に薄膜構造体10,20を設けて、ピン層、スペーサ層、フリー層の順に電子が通過する方向に電流を流した場合、上記のようにして起こったアップスピン電子とダウンスピン電子の数の偏りは、スピンフリップが起こらない限り、そのままフリー層Fに流れる。アップスピン電子とダウンスピン電子の偏りは、ピン層Pとフリー層Fの磁化の平行・反平行で生じるMR変化率をさらに大きくする可能性がある。
さらに、例えば、薄膜構造体10,20が、スペーサ層内部に配置され、薄膜構造体10,20NBの第1の導電体13が、非磁性体で構成される場合について考える。通常のCPP−GMR膜では、スペーサ層Sの非磁性層NM内で電子が散乱されることは、スピンに依存しない抵抗成分を増大するため、望ましくない。また、非磁性層NB内で電子が散乱されると、散乱された電子のなかにはアップスピン電子とダウンスピン電子間のスピンフリップが起こるものが現れ、ピン層通過後の電子がフリー層に到達する前にスピン情報を失い、MR現象を阻害する。
ここで、薄膜構造体10,20内部を電子が通過するときに、薄膜構造体10,20内部の非磁性体で一度も散乱されなかった電子は、そのまま直進して、薄膜構造体10,20を通過し、散乱された電子は薄膜構造体10,20の内壁に衝突し、薄膜構造体10,20の内部で散乱され通過確率が下がることが考えられる。一度も散乱されなかった電子は、スピン情報を失っておらず、高いMR比を得るために望ましい電子であるため、結果、上記の現象はMR変化率を大きくする可能性がある。
本実施形態の薄膜構造体10,20は、上述したようにナノメートルのオーダであって、金属中の電子の平均自由行程に比べて十分に大きいとはいえないナノオーダーのサイズであるため、上述したような特異なメゾスコピック伝導を利用したMR変化率の向上効果が期待される。
(薄膜構造体の製造方法)
次に、薄膜構造体10,20の製造方法について説明する。
まず、第1の電流狭窄層を形成する。第2の導電体14の母材料となる金属層m11(非磁性体とする場合は例えばCu、強磁性体とする場合は例えばCo)を成膜し、次に第1の絶縁層11に変換される金属層m12(例えばAl)を成膜する。
次に、薄膜構造体10,20の製造方法について説明する。
まず、第1の電流狭窄層を形成する。第2の導電体14の母材料となる金属層m11(非磁性体とする場合は例えばCu、強磁性体とする場合は例えばCo)を成膜し、次に第1の絶縁層11に変換される金属層m12(例えばAl)を成膜する。
次いで、第1の絶縁層11に変換される金属層m12表面に、絶縁層と導電体を有する電流狭窄層の一部を形成するための、表面酸化処理あるいは表面窒化処理を行う。この表面酸化処理および表面窒化処理は、金属層m12中に金属層m11の一部を侵入させるとともに、金属層m12を第1の絶縁層に変換するために行われる工程である。具体的には、m12のなかにm11を侵入させるためには、原子の移動エネルギーを与える必要がある。そのために、酸化処理又は窒化処理を行うときには酸素ガスまたは窒素ガスを単純にチャンバーにフローするだけの自然酸化や置全窒化プロセスではなく、イオンやプラズマ状態のガスを照射することによるエネルギーを用いることが望ましい。またm12を酸化、窒化、酸窒化物として良好な絶縁耐性を有するものにするためには、酸化処理および窒化処理もエネルギーを与えられた状態で形成することが望ましい。
このような観点から、前記酸化および窒化処理はAr、Kr、Heなどのガスをイオン化あるいはプラズマ化し、このようなイオンあるいはプラズマ雰囲気中に酸素ガスや窒素ガスを供給し、前記イオンあるいはプラズマのアシストを受けた状態で、行うことが望ましい。
また、上記酸化処理や窒化処理において、上述したアシストを効果的に行うために、上述した処理の後、もしくは前に、上述した希ガスのイオン、もしくはプラズマを膜表面に照射することが望ましい。酸化・窒化処理の後に、上記の希ガスのイオンもしくはプラズマの照射を行った場合、上記酸化処理、窒化処理を事後的にアシストすることができ、第1の絶縁層と良好に分離された第1の導電体を形成することができる。酸化・窒化処理の前に、上記の希ガスのイオンもしくはプラズマの照射を行った場合、m12にあらかじめ移動エネルギーを付与することができ、後の酸化処理などを経ることによって、良好に分離した第2の導電体14を形成することができる。
上述した酸化処理、窒化処理前後の希ガスのイオンまたはプラズマ照射は、前後の両方行っても良い。
上述した酸化処理では、イオンまたはプラズマの照射条件は、加速電圧Vを+40〜200V、ビーム電流Ibを30〜300mA程度に設定することが望ましい。
次に、上記形成された第1の電流狭窄層上に第1の導電体13を成膜する。第1の導電体13を積層構造とする場合は、各々の層を順に成膜する。
次に、第1の導電体13上に、第2の電流狭窄層を形成する。まず、第1の導電体13上に、第3の導電体15の母材料となる金属層m21(非磁性体とする場合は例えばCu、強磁性体とする場合は例えばCo)を成膜し、次に第2の絶縁層12に変換される金属層m22(例えばAl)を成膜する。次いで、第1の電流狭窄層を形成する場合と、同様に、酸化処理および窒化処理を行う。
上述した工程のなかで、第1の導電体13の成膜膜厚が厚い場合は、図1のような薄膜構造体10が形成され、第1の導電体13の成膜膜厚が薄い場合は、図2のような薄膜構造体20が形成される。
(薄膜構造体以外の磁気抵抗効果膜の構成要素)
次に、上述した磁気抵抗効果膜の代表的な構成に関し、上記薄膜構造体の構成と関連づけて説明する。
次に、上述した磁気抵抗効果膜の代表的な構成に関し、上記薄膜構造体の構成と関連づけて説明する。
図21は、磁気抵抗効果膜の構成の一例を示す斜視図である。図21の磁気抵抗効果膜100は、図示しない基板上に形成された、下電極110、下地層120、ピニング層130、ピン層140、スペーサ層160、フリー層180、キャップ層190及び上電極200を有する。この内、ピン層140、スペーサ層160及びフリー層180が、2つの強磁性層の間に非磁性のスペーサ層160を挟んでなるスピンバルブ膜(スピン依存散乱ユニット)に対応する。
下電極110は、磁気抵抗効果膜100の膜面垂直方向に通電するための電極である。下電極110と上電極200の間に電圧が印加されることで、磁気抵抗効果膜内部をその膜垂直方向に沿って電流が流れる。このセンス電流によって、磁気抵抗効果に起因する抵抗の変化を検出することで、磁気が検知される。下電極110には、電流を磁気抵抗効果膜に通電するために、電気抵抗が比較的小さい金属層が用いられる。
下地層120は、例えば、バッファ層120a、シード層120bに区分することができる。バッファ層120aは下電極11表面の荒れを緩和したりするための層である。シード層120bは、その上に成膜されるスピンバルブ膜の結晶配向および結晶粒径を制御するための層である。
バッファ層120aとしては、Ta、Ti、W、Zr、Hf、Crまたはこれらの合金を用いることができる。バッファ層120aの膜厚は2〜10nm程度が好ましく、3〜5nm程度がより好ましい。バッファ層120aの厚さが薄すぎるとバッファ効果が失われる。一方、バッファ層120aの厚さが厚すぎるとMR変化率に寄与しない直列抵抗を増大させることになる。なお、バッファ層120a上に成膜されるシード層120bがバッファ効果を有する場合には、バッファ層120aを必ずしも設ける必要はない。上記のなかの好ましい一例として、Ta[3nm]を用いることができる。
シード層120bは、その上に成膜される層の結晶配向を制御できる材料であればよい。シード層120bとして、fcc構造(face-centered cubic structure:面心立方格子構造)またはhcp構造(hexagonal close-packed structure:六方最密格子構造)やbcc構造(body-centered cubic structure:体心立方格子構造)を有する金属層などが好ましい。例えば、シード層120bとして、hcp構造を有するRuや、fcc構造を有するNiFeを用いることにより、その上のスピンバルブ膜の結晶配向をfcc(111)配向にすることができる。また、ピニング層130(例えば、PtMn)の結晶配向を規則化したfct構造(face-centered tetragonal structure:面心正方構造)、あるいはbcc(body-centered cubic structure:体心立方構造)(110)配向とすることができる。
結晶配向を向上させるシード層120bとしての機能を十分発揮するために、シード層120bの膜厚としては、1〜5nmが好ましく、より好ましくは、1.5〜3nmが好ましい。上記のなかの好ましい一例として、Ru[2nm]を用いることができる。
スピンバルブ膜やピニング層130の結晶配向性は、X線回折により測定できる。スピンバルブ膜のfcc(111)ピーク、ピニング層130(PtMn)のfct(111)ピークまたはbcc(110)ピークでのロッキングカーブの半値幅を3.5〜6度として、良好な配向性を得ることができる。なお、この配向の分散角は断面TEMを用いた回折スポットからも判別することができる。
スピンバルブ膜やピニング層130の結晶配向性は、X線回折により測定できる。スピンバルブ膜のfcc(111)ピーク、ピニング層130(PtMn)のfct(111)ピークまたはbcc(110)ピークでのロッキングカーブの半値幅を3.5〜6度として、良好な配向性を得ることができる。なお、この配向の分散角は断面TEMを用いた回折スポットからも判別することができる。
シード層120bとして、Ruの代わりに、NiFeベースの合金(例えば、NixFe100−x(x=90〜50%、好ましくは75〜85%)や、NiFeに第3元素Xを添加して非磁性にした(NixFe100−x)100−yXy(X=Cr、V、Nb、Hf、Zr、Mo))を用いることもできる。NiFeベースのシード層120bでは、良好な結晶配向性を得るのが比較的容易であり、上記と同様に測定したロッキングカーブの半値幅を3〜5度とすることができる。
シード層120bには、結晶配向を向上させる機能だけでなく、スピンバルブ膜の結晶粒径を制御する機能もある。具体的には、スピンバルブ膜の結晶粒径を5〜40nmに制御することができ、磁気抵抗効果素子のサイズが小さくなっても、特性のばらつきを招くことなく高いMR変化率を実現できる。
ここでの結晶粒径は、シード層120bの上に形成された結晶粒の粒径によって判別することができ、断面TEMなどによって決定することができる。ピン層140がスペーサ層160よりも下層に位置するボトム型スピンバルブ膜の場合には、シード層120bの上に形成される、ピニング層130(反強磁性層)や、ピン層140(磁化固着層)の結晶粒径によって判別することができる。
高密度記録に対応した再生ヘッドでは、素子サイズが、例えば、100nm以下である。素子サイズに対する結晶粒径の比が大きいことは、素子の特性がばらつく原因となる。スピンバルブ膜の結晶粒径が40nmよりも大きいことは好ましくない。具体的には、結晶粒径が5〜40nmの範囲が好ましく、5〜20nmの範囲がさらに好ましい範囲である。
素子面積あたりの結晶粒の数が少なくなると、結晶数が少ないことに起因した特性のばらつきの原因となりうるため、結晶粒径を大きくすることはあまり好ましくない。特に電流パスを形成している薄膜構造体10、20を含む磁気抵抗効果膜では結晶粒径を大きくすることはあまり好ましくない。一方、結晶粒径が小さくなりすぎても、良好な結晶配向を維持することが一般的には困難になる。これら、結晶粒径の上限、および下限を考慮した結晶粒径の好ましい範囲が、5〜20nmである。
しかしながら、MRAM用途などでは、素子サイズが100nm以上の場合があり、結晶粒径が40nm程度と大きくてもそれほど問題とならない場合もある。即ち、シード層120bを用いることで、結晶粒径が粗大化しても差し支えない場合もある。
上述した5〜20nmの結晶粒径を得るためには、シード層120bとして、Ru2nmや、(NixFe100−x)100−yXy(X=Cr、V、Nb、Hf、Zr、Mo))層の場合には、第3元素Xの組成yを0〜30%程度とすることが好ましい(yが0%の場合も含む)。
一方、結晶粒径を40nmよりも粗大化させて用いるためには、さらに多量の添加元素を用いることが好ましい。シード層12bの材料が、例えば、NiFeCrの場合にはCr量を35〜45%程度とし、fccとbccの境界相を示す組成を用いて、bcc構造を有するNiFeCr層を用いることが好ましい。
前述したように、シード層120bの膜厚は1nm〜5nm程度が好ましく、1.5〜3nmがより好ましい。シード層120bの厚さが薄すぎると結晶配向制御などの効果が失われる。一方、シード層120bの厚さが厚すぎると、直列抵抗の増大を招き、さらにスピンバルブ膜の界面の凹凸の原因となることがある。
ピニング層130は、その上に成膜されるピン層140となる強磁性層に一方向異方性(unidirectional anisotropy)を付与して磁化を固着する機能を有する。ピニング層130の材料としては、PtMn、PdPtMn、IrMn、RuRhMnなどの反強磁性材料を用いることができる。この内、高記録密度対応のヘッドの材料として、IrMnが有利である。IrMnは、PtMnよりも薄い膜厚で一方向異方性を印加することができ、高密度記録の為に必要な狭ギャップ化に適している。
十分な強さの一方向異方性を付与するために、ピニング層130の膜厚を適切に設定する。ピニング層130の材料がPtMnやPdPtMnの場合には、膜厚として、8〜20nm程度が好ましく、10〜15nmがより好ましい。ピニング層130の材料がIrMnの場合には、PtMnなどより薄い膜厚でも一方向異方性を付与可能であり、4〜18nmが好ましく、5〜15nmがより好ましい。上記のなかの好ましい一例として、IrMn[7nm]を用いることができる。
ピニング層130として、反強磁性層の代わりに、ハード磁性層を用いることができる。ハード磁性層として、例えば、CoPt(Co=50〜85%)、(CoxPt100−x)100−yCry(x=50〜85%、y=0〜40%)、FePt(Pt=40〜60%)を用いることができる。ハード磁性層(特に、CoPt)は比抵抗が比較的小さいため、直列抵抗および面積抵抗RAの増大を抑制できる。
ピン層140は、下部ピン層141(例えば、Co90Fe10[3.5nm])、磁気結合層142(例えば、Ru)、および上部ピン層143(例えば、Fe50Co50[1nm]/Cu[0.25nm])×2/Fe50Co50[1nm])からなるシンセティックピン層とすることが好ましい一例である。ピニング層130(例えば、IrMn)とその直上の下部ピン層141は一方向異方性(unidirectional anisotropy)をもつように交換磁気結合している。磁気結合層142の上下の下部ピン層141および上部ピン層143は、磁化の向きが互いに反平行になるように強く磁気結合している。
下部ピン層141の材料として、例えば、CoxFe100−x合金(x=0〜100%)、NixFe100−x合金(x=0〜100%)、またはこれらに非磁性元素を添加したものを用いることができる。また、下部ピン層141の材料として、Co、Fe、Niの単元素やこれらの合金を用いても良い。
下部ピン層141の磁気膜厚(飽和磁化Bs×膜厚t(Bs・t積))が、上部ピン層143の磁気膜厚とほぼ等しいことが好ましい。つまり、上部ピン層143の磁気膜厚と下部ピン層141の磁気膜厚とが対応することが好ましい。一例として、上部ピン層143が(Fe50Co50[1nm]/Cu[0.25nm])×2/Fe50Co50[1nm]の場合、薄膜でのFeCoの飽和磁化が約2.2Tであるため、磁気膜厚は2.2T×3nm=6.6Tnmとなる。Co90Fe10の飽和磁化が約1.8Tなので、上記と等しい磁気膜厚を与える下部ピン層141の膜厚tは6.6Tnm/1.8T=3.66nmとなる。したがって、膜厚が約3.6nmのCo90Fe10を用いることが望ましい。
下部ピン層141に用いられる磁性層の膜厚は2〜5nm程度が好ましい。ピニング層130(例えば、IrMn)による一方向異方性磁界強度および磁気結合層142(例えば、Ru)を介した下部ピン層141と上部ピン層143との反強磁性結合磁界強度の観点に基づく。下部ピン層141が薄すぎるとMR変化率が小さくなる。一方、下部ピン層141が厚すぎるとデバイス動作に必要な十分な一方向性異方性磁界を得ることが困難になる。好ましい一例として、膜厚3.4nmのCo75Fe25が挙げられる。
磁気結合層142(例えば、Ru)は、上下の磁性層(下部ピン層141および上部ピン層143)に反強磁性結合を生じさせてシンセティックピン構造を形成する機能を有する。磁気結合層142としてのRu層の膜厚は0.8〜1nmであることが好ましい。なお、上下の磁性層に十分な反強磁性結合を生じさせる材料であれば、Ru以外の材料を用いてもよい。RKKY(Ruderman-Kittel- Kasuya-Yosida)結合の2ndピークに対応する膜厚0.8〜1nmの換わりに、RKKY結合の1stピークに対応する膜厚0.3〜0.6nmを用いることもできる。ここでは、より高信頼性の結合を安定して特性が得られる、0.9nmのRuが一例として挙げられる。
次に、上部ピン層143としてここで用いた、bcc構造をもつFe50Co50を用いる効果について述べる。上部ピン層143として、bcc構造をもつ磁性材料を用いた場合、スピン依存界面散乱効果が大きいため、大きなMR変化率を実現することができる。bcc構造をもつFeCo系合金として、FexCo100−x(x=30〜100%)や、FexCo100−xに添加元素を加えたものが挙げられる。そのなかでも、諸特性を満たしたFe40Co60〜Fe60Co40が使いやすい材料の一例である。
上部ピン層143が、高MR変化率を実現しやすいbcc構造をもつ磁性層から形成されている場合には、この磁性層の全膜厚が1.5nm以上であることが好ましい。bcc構造を安定に保つためである。スピンバルブ膜に用いられる金属材料は、fcc構造またはfct構造であることが多いため、ピン層Pのみがbcc構造を有することがあり得る。このため、ピン層Pの膜厚が薄すぎると、bcc構造を安定に保つことが困難になり、高いMR変化率が得られなくなる。
ここでは、上部ピン層143として、極薄Cu積層を含むFe50Co50を用いている。ここで、上部ピン層Pは、全膜厚が3nmのFeCoと、1nmのFeCo毎に積層された0.25nmのCuとからなり、トータル膜厚3.5nmである。
上部ピン層143の膜厚は5nm以下であることが好ましい。大きなピン固着磁界を得るためである。大きなピン固着磁界と、bcc構造の安定性の両立のため、bcc構造をもつ上部ピン層143の膜厚は、2.0nm〜4nm程度であることが好ましいということになる。
上部ピン層143には、bcc構造をもつ磁性材料の代わりに、従来の磁気抵抗効果素子で広く用いられているfcc構造を有するCo90Fe10合金や、hcp構造をもつコバルト合金を用いることができる。上部ピン層143として、Co、Fe、Niなどの単体金属、またはこれらのいずれか一つの元素を含む合金材料はすべて用いることができる。上部ピン層143の磁性材料として、大きなMR変化率を得るのに有利なものから並べると、bcc構造をもつFeCo合金材料、50%以上のコバルト組成をもつコバルト合金、50%以上のNi組成をもつニッケル合金の順になる。
ここでの一例として挙げたものは、上部ピン層143として、磁性層(FeCo層)と非磁性層(極薄Cu層)とを交互に積層したものを用いることができる。このような構造を有する上部ピン層143では、極薄Cu層によって、スピン依存バルク散乱効果を向上させることができる。
バルク散乱効果を得るための極薄Cu層の膜厚は、0.1〜1nmが好ましく、0.2〜0.5nmがより好ましい。Cu層の膜厚が薄すぎると、バルク散乱効果を向上させる効果が弱くなる。Cu層の膜厚が厚すぎると、バルク散乱効果が減少することがあるうえに、非磁性のCu層を介した上下磁性層の磁気結合が弱くなり、ピン層14の特性が不十分となる。そこで、好ましい一例として挙げたものでは、0.25nmのCuを用いた。
磁性層間の非磁性層の材料として、Cuの換わりに、Hf、Zr、Tiなどを用いてもよい。一方、これら極薄の非磁性層を挿入した場合、FeCoなど磁性層の一層あたりの膜厚は0.5〜2nmが好ましく、1〜1.5nm程度がより好ましい。
上部ピン層143として、FeCo層とCu層との交互積層構造に換えて、FeCoとCuを合金化した層を用いてもよい。このようなFeCoCu合金として、例えば、(FexCo100−x)100−yCuy(x=30〜100%、y=3〜15%程度)が挙げられるが、これ以外の組成範囲を用いてもよい。ここで、FeCoに添加する元素として、Cuの代わりに、Hf、Zr,Tiなど他の元素を用いてもよい。
上部ピン層143には、Co、Fe、Niや、これらの合金材料からなる単層膜を用いてもよい。例えば、最も単純な構造の上部ピン層143として、従来から広く用いられている、2〜4nmのCo90Fe10単層を用いてもよい。この材料に他の元素を添加してもよい。
スペーサ層160は、ピン層140とフリー層180とを磁気的に分断する機能を有する。スペーサ層160の材料としては、Cu、Au、Ag、Rh、Ru、Mn、Cr、Re、Os、Ir、Pdなどを用いることができる。これらの材料のなかでも、電気的良電体であるCu、Au、Agなどの金属を用いるのが望ましい。スペーサ層160の膜厚としては、ピン層140やフリー層180でのスピン拡散長よりも短い膜厚であることが必要とされる。例えばNiFeのスピン拡散長は5nm程度である。その観点から、スペーサ層160は薄ければ薄いほど望ましい。
また、スペーサ層160を伝導電子が通過するときの抵抗が高くなると、MR変化率が低下するという問題もあるため、薄ければ薄いほど望ましい。
一方、フリー層180の磁化方向が媒体磁界によって変化したときにも、ピン層140の磁化方向に変化が生じないように、ピン層140とフリー層180との間の磁気結合が実用上問題ないぐらいに分断されていなければない。このようにピン層140とフリー層180の磁気結合を分断するという観点からすると、スペーサ層160はある一定以上厚い膜厚とすることが必要である。
金属だけで形成されたスペーサ層160の場合には、その膜厚は、1.5nm程度がその膜厚の下限である。そのため、スペーサ層160の膜厚としては、1.5nm〜5nmが望ましく、2nm〜4nmがさらに望ましい。
ただし、後の実施例で上げるように、スペーサ160はCCP構造とすることもできる。CCP構造とは、絶縁層を上下に貫通した導電体が2次元的に存在する構造であり、垂直方向に通電された電流を絞り込む機能を有する。この構造を用いるとスピン依存界面散乱を有効に用いることができ、高MR化に有効である。CCP構造を用いる場合には、CCP効果を生み出す酸化物層の存在によってピン層140とフリー層180との磁気結合がきれやすくなっているため、スペーサ層160の膜厚を1.5nmよりも薄くすることが可能となる。CCP用酸化物の上下には、Cu層を設けて、Cu層/CCP構造/Cu層とすることができる。この場合の上下のCu層の膜厚は0〜1[nm]が好ましい。
CCP効果を生み出す酸化物層としては、Ta、Cr,Ti、Zr、Hf、Al、Si、Mg、V、W、Moなどの酸化物を挙げることができる。このときの酸化物層の膜厚は、1nm〜3nm程度が望ましい。また、スペーサ層160は、磁性スペーサを用いても良い。
フリー層180は、磁化方向が外部磁界によって変化する強磁性体を有する層である。例えば、界面にCoFeを挿入してNiFeを用いたCo90Fe10[1nm]/Ni83Fe17[3.5nm]という二層構成がフリー層180の一例として挙げられる。この場合、スペーサ層160との界面には、NiFe合金よりもCoFe合金を設けることが好ましい。高いMR変化率を得るためには、スペーサ層Sの界面に位置するフリー層Fの磁性材料の選択が重要である。なお、NiFe層を用いない場合には、Co90Fe10[4nm]単層を用いることができる。また、CoFe/NiFe/CoFeなどの三層構成からなるフリー層を用いても構わない。
CoFe合金のなかでも、軟磁気特性が安定であることから、Co90Fe10が好ましい。Co90Fe10近傍のCoFe合金を用いる場合には、膜厚を0.5〜4nmとすることが好ましい。その他、CoxFe100−x(x=70〜90)が好ましい。
また、フリー層180として、1〜2nmのCoFe層またはFe層と、0.1〜0.8nm程度の極薄Cu層とを、複数層交互に積層したものを用いてもよい。
スペーサ層160がCu層から形成される場合には、ピン層140と同様に、フリー層180でも、bccのFeCo層をスペーサ層160との界面材料として用いると、MR変化率が大きくなる。スペーサ層160との界面材料として、fccのCoFe合金に換えて、bccのFeCo合金を用いることもできる。この場合、bcc層が形成されやすい、FexCo100−x(x=30〜100)や、これに添加元素を加えた材料を用いることができる。これらの構成のうち、好ましい実施例の一例として、Co90Fe10[1nm]/Ni83Fe17[3.5nm]を用いることができる。
キャップ層190は、スピンバルブ膜を保護する機能を有する。キャップ層190は、例えば、複数の金属層、例えば、Cu層とRu層の2層構造(Cu[1nm]/Ru[10nm])とすることができる。また、キャップ層190として、Ruをフリー層190側に配置したRu/Cu層なども用いることができる。この場合、Ruの膜厚は0.5〜2nm程度が好ましい。この構成のキャップ層190は、特に、フリー層180がNiFeからなる場合に望ましい。RuはNiと非固溶な関係にあるので、フリー層180とキャップ層190の間に形成される界面ミキシング層の磁歪を低減できるからである。
キャップ層190が、Cu/Ru、Ru/Cu、いずれの場合も、Cu層の膜厚は0.5〜10nm程度が好ましく、Ru層の膜厚は0.5〜5nm程度とすることができる。Ruは比抵抗値が高いため、あまり厚いRu層を用いることは好ましくないため、このような膜厚範囲にしておくことが好ましい。
キャップ層190として、Cu層やRu層の代わりに他の金属層を設けてもよい。キャップ層190の構成は特に限定されず、キャップとしてスピンバルブ膜を保護可能なものであれば、他の材料を用いてもよい。但し、キャップ層の選択によってMR変化率や長期信頼性が変わる場合があるので、注意が必要である。CuやRuはこれらの観点からも望ましいキャップ層の材料の例である。
上電極200は、スピンバルブ膜の垂直方向に通電するための電極である。下電極110と上電極200との間に電圧が印加されることで、スピンバルブ膜内部にその膜の垂直方向の電流が流れる。上部電極層200には、電気的に低抵抗な材料(例えば、Cu,Au)が用いられる。
上述したように、本実施形態では、磁気抵抗効果膜100はシンセティックスピンバルブ構造をとっており、ピン層140、スペーサ層160、及びフリー層180の少なくとも一部に薄膜構造体10,20を設けることが出来る。上述したように、薄膜構造体10,20は、ピン層140、スペーサ層160及びフリー層180の内部に設けることが出来る。また、ピン層140及びスペーサ層160跨るようにして設けてもよいし、スペーサ層160及びフリー層180に跨るようにして設けても良い。さらには、ピン層140/スペーサ層160/フリー層180に跨るようにして設けてもよい。
(薄膜構造体10,20を設けた高周波発振素子)
上述した薄膜構造体10,20は、高周波発振素子に対して適用することができる。この場合、図21に示す磁気抵抗効果素子の構造をそのまま高周波発振素子に転用することができる。このとき、磁気抵抗効果膜ではフリー層180として機能した層が磁性発振層181に入れ替わる。
上述した薄膜構造体10,20は、高周波発振素子に対して適用することができる。この場合、図21に示す磁気抵抗効果素子の構造をそのまま高周波発振素子に転用することができる。このとき、磁気抵抗効果膜ではフリー層180として機能した層が磁性発振層181に入れ替わる。
図22では、図示しない基板上に形成された、下電極110、下地層120、ピニング層130、ピン層140、スペーサ層160、磁性発振層181、キャップ層190及び上電極200を有し、このような構成によって高周波発振素子500を構成する。下電極110と上電極200の間で、ピン層140、スペーサ層160及び磁性発振層181を含む積層膜の膜面に垂直に電流を流すと、スピントランスファートルクにより磁性発振層181のスピン波励起(磁化の歳差運動)が起こり、ある周波数の高周波発振が得られる。
上記の高周波発振素子500は、上述した磁気抵抗効果膜のフリー層180が磁性発振層181として機能する以外は、磁気抵抗効果膜の構成をそのまま転用できる。よって、図1、図2、図3、図4、図5、図6、図7に示す薄膜構造体10,20の構造もそのまま転用できる。図8、図9、図10、図11、図12、図13、図14に示す薄膜構造体10,20の配置例もフリー層180を磁性発振層181としてそのまま転用できる。図15、図16に示すスピンバルブ膜構造もフリー層180を磁性発振層181としてそのまま転用できる。
本実施形態に係る高周波発振素子500では、上述した薄膜構造体10,20にのナノサイズの形状効果を利用した特異な通電特性により、通常のCPP発振素子よりも効率的に発振することができる。特に、薄膜構造体10,20を磁性発振層181の内部に設けた場合、第1の導電体13が磁性発振部分となるため、ナノサイズの形状効果を利用した特異な通電特性が発振効率に対して最もよく機能する。
(実施例1)
以下、本発明の実施例につき説明する。以下に、本発明の実施例に係る磁気抵抗効果膜の構成を示す。
・下電極
・下地層(バッファ層/シード層):Ta[1nm]/Ru[2nm]
・ピニング層
反強磁性層AC:IrMn[7nm]
強磁性層FM:Co75Fe25[3.4nm]
反強磁性的磁気結合層AC:Ru[0.85nm]
・ピン層P:Fe50Co50[0.5nm]/薄膜構造体20/Fe50Co50[0.5nm]
・スペーサ層S:Cu[3nm]
・フリー層F:Co90Fe10[1.0nm]/Ni83Fe17[3.5nm]
・キャップ層:Cu[1nm]/Ta[5nm]
本実施例では、薄膜構造体20として、下記の表に表す構造を用いた。
以下、本発明の実施例につき説明する。以下に、本発明の実施例に係る磁気抵抗効果膜の構成を示す。
・下電極
・下地層(バッファ層/シード層):Ta[1nm]/Ru[2nm]
・ピニング層
反強磁性層AC:IrMn[7nm]
強磁性層FM:Co75Fe25[3.4nm]
反強磁性的磁気結合層AC:Ru[0.85nm]
・ピン層P:Fe50Co50[0.5nm]/薄膜構造体20/Fe50Co50[0.5nm]
・スペーサ層S:Cu[3nm]
・フリー層F:Co90Fe10[1.0nm]/Ni83Fe17[3.5nm]
・キャップ層:Cu[1nm]/Ta[5nm]
本実施例では、薄膜構造体20として、下記の表に表す構造を用いた。
(実施例2)
以下、本発明の実施例につき説明する。以下に、本発明の実施例に係る磁気抵抗効果膜の構成を示す。
・下電極
・下地層(バッファ層/シード層):Ta[1nm]/Ru[2nm]
・ピニング層
反強磁性層AC:IrMn[7nm]
強磁性層FM:Co75Fe25[3.4nm]
反強磁性的磁気結合層AC:Ru[0.85nm]
・ピン層P/スペーサ層S:Fe50Co50[1.0nm]/薄膜構造体20
・フリー層F:Co90Fe10[1.0nm]/Ni83Fe17[3.5nm]
・キャップ層:Cu[1nm]/Ta[5nm]
本実施例では、薄膜構造体20として、下記の表に表す構造を用いた。
以下、本発明の実施例につき説明する。以下に、本発明の実施例に係る磁気抵抗効果膜の構成を示す。
・下電極
・下地層(バッファ層/シード層):Ta[1nm]/Ru[2nm]
・ピニング層
反強磁性層AC:IrMn[7nm]
強磁性層FM:Co75Fe25[3.4nm]
反強磁性的磁気結合層AC:Ru[0.85nm]
・ピン層P/スペーサ層S:Fe50Co50[1.0nm]/薄膜構造体20
・フリー層F:Co90Fe10[1.0nm]/Ni83Fe17[3.5nm]
・キャップ層:Cu[1nm]/Ta[5nm]
本実施例では、薄膜構造体20として、下記の表に表す構造を用いた。
(実施例3)
以下、本発明の実施例につき説明する。以下に、本発明の実施例に係る磁気抵抗効果膜の構成を示す。
・下電極
・下地層(バッファ層/シード層):Ta[1nm]/Ru[2nm]
・ピニング層
反強磁性層AC :IrMn[7nm]
強磁性層FM :Co75Fe25[3.4nm]
反強磁性的磁気結合層AC :Ru[0.85nm]
・ピン層P:Fe50Co50[1.5nm]/Cu[0.25nm]/Fe50Co50[1.5nm]
・スペーサ層S:Cu[3nm]
・フリー層F:薄膜構造体20/Ni83Fe17[3.5nm]
・キャップ層:Cu[1nm]/Ta[5nm]
本実施例では、薄膜構造体20として、下記の表に表す構造を用いた。
以下、本発明の実施例につき説明する。以下に、本発明の実施例に係る磁気抵抗効果膜の構成を示す。
・下電極
・下地層(バッファ層/シード層):Ta[1nm]/Ru[2nm]
・ピニング層
反強磁性層AC :IrMn[7nm]
強磁性層FM :Co75Fe25[3.4nm]
反強磁性的磁気結合層AC :Ru[0.85nm]
・ピン層P:Fe50Co50[1.5nm]/Cu[0.25nm]/Fe50Co50[1.5nm]
・スペーサ層S:Cu[3nm]
・フリー層F:薄膜構造体20/Ni83Fe17[3.5nm]
・キャップ層:Cu[1nm]/Ta[5nm]
本実施例では、薄膜構造体20として、下記の表に表す構造を用いた。
(実施例4)
以下、本発明の実施例につき説明する。以下に、本発明の実施例に係る磁気抵抗効果膜の構成を示す。
・下電極
・下地層(バッファ層/シード層):Ta[1nm]/Ru[2nm]
・ピニング層
反強磁性層AC:IrMn[7nm]
強磁性層FM:Co75Fe25[3.4nm]
反強磁性的磁気結合層AC:Ru[0.85nm]
・ピン層P:Fe50Co50[1.5nm]/Cu[0.25nm]/Fe50Co50[1.5nm]
・スペーサ層S/フリー層F:薄膜構造体20/Ni83Fe17[3.5nm]
・キャップ層:Cu[1nm]/Ta[5nm]
本実施例では、薄膜構造体20として、下記の表に表す構造を用いた。
以下、本発明の実施例につき説明する。以下に、本発明の実施例に係る磁気抵抗効果膜の構成を示す。
・下電極
・下地層(バッファ層/シード層):Ta[1nm]/Ru[2nm]
・ピニング層
反強磁性層AC:IrMn[7nm]
強磁性層FM:Co75Fe25[3.4nm]
反強磁性的磁気結合層AC:Ru[0.85nm]
・ピン層P:Fe50Co50[1.5nm]/Cu[0.25nm]/Fe50Co50[1.5nm]
・スペーサ層S/フリー層F:薄膜構造体20/Ni83Fe17[3.5nm]
・キャップ層:Cu[1nm]/Ta[5nm]
本実施例では、薄膜構造体20として、下記の表に表す構造を用いた。
(実施例5)
以下、本発明の実施例につき説明する。以下に、本発明の実施例に係る磁気抵抗効果膜の構成を示す。
・下電極
・下地層(バッファ層/シード層):Ta[1nm]/Ru[2nm]
・ピニング層
反強磁性層AC:IrMn[7nm]
強磁性層FM:Co75Fe25[3.4nm]
反強磁性的磁気結合層AC:Ru[0.85nm]
・ピン層P:Fe50Co50[1.5nm]/Cu[0.25nm]/Fe50Co50[1.5nm]
・スペーサ層S:Cu[0.5nm]/薄膜構造体20/Cu[0.5nm]
・フリー層F:Co90Fe10[1nm]/Ni83Fe17[3.5nm]
・キャップ層:Cu[1nm]/Ta[5nm]
本実施例では、薄膜構造体20として、下記の表に表す構造を用いた。
以下、本発明の実施例につき説明する。以下に、本発明の実施例に係る磁気抵抗効果膜の構成を示す。
・下電極
・下地層(バッファ層/シード層):Ta[1nm]/Ru[2nm]
・ピニング層
反強磁性層AC:IrMn[7nm]
強磁性層FM:Co75Fe25[3.4nm]
反強磁性的磁気結合層AC:Ru[0.85nm]
・ピン層P:Fe50Co50[1.5nm]/Cu[0.25nm]/Fe50Co50[1.5nm]
・スペーサ層S:Cu[0.5nm]/薄膜構造体20/Cu[0.5nm]
・フリー層F:Co90Fe10[1nm]/Ni83Fe17[3.5nm]
・キャップ層:Cu[1nm]/Ta[5nm]
本実施例では、薄膜構造体20として、下記の表に表す構造を用いた。
(実施例6)
以下、本発明の実施例につき説明する。以下に、本発明の実施例に係る磁気抵抗効果膜の構成を示す。
・下電極
・下地層(バッファ層/シード層):Ta[1nm]/Ru[2nm]
・ピニング層
反強磁性層AC:IrMn[7nm]
強磁性層FM:Co75Fe25[3.4nm]
反強磁性的磁気結合層AC:Ru[0.85nm]
・ピン層P/スペーサ層:Fe50Co50[1.0nm]/薄膜構造体20/Cu[1nm]
・フリー層F:Co90Fe10[1nm]/Ni83Fe17[3.5nm]
・キャップ層:Cu[1nm]/Ta[5nm]
本実施例では、薄膜構造体20として、下記の表に表す構造を用いた。
以下、本発明の実施例につき説明する。以下に、本発明の実施例に係る磁気抵抗効果膜の構成を示す。
・下電極
・下地層(バッファ層/シード層):Ta[1nm]/Ru[2nm]
・ピニング層
反強磁性層AC:IrMn[7nm]
強磁性層FM:Co75Fe25[3.4nm]
反強磁性的磁気結合層AC:Ru[0.85nm]
・ピン層P/スペーサ層:Fe50Co50[1.0nm]/薄膜構造体20/Cu[1nm]
・フリー層F:Co90Fe10[1nm]/Ni83Fe17[3.5nm]
・キャップ層:Cu[1nm]/Ta[5nm]
本実施例では、薄膜構造体20として、下記の表に表す構造を用いた。
(実施例7)
以下、本発明の実施例につき説明する。以下に、本発明の実施例に係る磁気抵抗効果膜の構成を示す。
・下電極
・下地層(バッファ層/シード層):Ta[1nm]/Ru[2nm]
・ピニング層
反強磁性層AC:IrMn[7nm]
強磁性層FM:Co75Fe25[3.4nm]
反強磁性的磁気結合層AC:Ru[0.85nm]
・ピン層P/スペーサ層/フリー層:
・Fe50Co50[2.0nm]/薄膜構造体20/Ni83Fe17[3.5nm]
・キャップ層:Cu[1nm]/Ta[5nm]
本実施例では、薄膜構造体20として、下記の表に表す構造を用いた。
以下、本発明の実施例につき説明する。以下に、本発明の実施例に係る磁気抵抗効果膜の構成を示す。
・下電極
・下地層(バッファ層/シード層):Ta[1nm]/Ru[2nm]
・ピニング層
反強磁性層AC:IrMn[7nm]
強磁性層FM:Co75Fe25[3.4nm]
反強磁性的磁気結合層AC:Ru[0.85nm]
・ピン層P/スペーサ層/フリー層:
・Fe50Co50[2.0nm]/薄膜構造体20/Ni83Fe17[3.5nm]
・キャップ層:Cu[1nm]/Ta[5nm]
本実施例では、薄膜構造体20として、下記の表に表す構造を用いた。
(実施例8)
以下、本発明の実施例につき説明する。以下に、本発明の実施例に係る磁気抵抗効果膜の構成を示す。
・下電極
・下地層(バッファ層/シード層):Ta[1nm]/Ru[2nm]
・ピニング層
反強磁性層AC:IrMn[7nm]
強磁性層FM:Co75Fe25[3.4nm]
反強磁性的磁気結合層AC:Ru[0.85nm]
・ピン層P:Fe50Co50[0.5nm]/薄膜構造体20/Fe50Co50[0.5nm]
・スペーサ層:Cu[0.6nm]/Cu導電バスを含むAl−O絶縁層/Cu[0.4nm]
・フリー層F:Co90Fe10[1nm]/Ni83Fe17[3.5nm]
・キャップ層:Cu[1nm]/Ta[5nm]
本実施例では、薄膜構造体20として、下記の表に表す構造を用いた。
以下、本発明の実施例につき説明する。以下に、本発明の実施例に係る磁気抵抗効果膜の構成を示す。
・下電極
・下地層(バッファ層/シード層):Ta[1nm]/Ru[2nm]
・ピニング層
反強磁性層AC:IrMn[7nm]
強磁性層FM:Co75Fe25[3.4nm]
反強磁性的磁気結合層AC:Ru[0.85nm]
・ピン層P:Fe50Co50[0.5nm]/薄膜構造体20/Fe50Co50[0.5nm]
・スペーサ層:Cu[0.6nm]/Cu導電バスを含むAl−O絶縁層/Cu[0.4nm]
・フリー層F:Co90Fe10[1nm]/Ni83Fe17[3.5nm]
・キャップ層:Cu[1nm]/Ta[5nm]
本実施例では、薄膜構造体20として、下記の表に表す構造を用いた。
(磁気抵抗効果素子の応用)
以下、本発明の実施形態に係る磁気抵抗効果素子の応用について説明する。
以下、本発明の実施形態に係る磁気抵抗効果素子の応用について説明する。
本実施形態において、磁気抵抗効果素子の素子抵抗RAは、高密度対応の観点から、500mΩ/μm2以下が好ましく、300mΩ/μm2以下がより好ましい。素子抵抗RAを算出する場合には、磁気抵抗効果素子の抵抗Rにスピンバルブ膜の通電部分の実効面積Aを掛け合わせる。ここで、素子抵抗Rは直接測定できる。一方、スピンバルブ膜の通電部分の実効面積Aは素子構造に依存する値であるため、その決定には注意を要する。
例えば、スピンバルブ膜の全体を実効的にセンシングする領域としてパターニングしている場合には、スピンバルブ膜全体の面積が実効面積Aとなる。この場合、素子抵抗を適度に設定する観点から、スピンバルブ膜の面積を少なくとも0.04μm2以下にし、200Gbpsi以上の記録密度では0.02μm2以下にする。
しかし、スピンバルブ膜に接してスピンバルブ膜より面積の小さい下電極11または上電極20を形成した場合には、下電極11または上電極20の面積がスピンバルブ膜の実効面積Aとなる。下電極11または上電極20の面積が異なる場合には、小さい方の電極の面積がスピンバルブ膜の実効面積Aとなる。この場合、素子抵抗を適度に設定する観点から、小さい方の電極の面積を少なくとも0.04μm2以下にする。
後に詳述する図23、図24の実施例の場合、図23でスピンバルブ膜10の面積が一番小さいところは上電極20と接触している部分なので、その幅をトラック幅Twとして考える。また、ハイト方向に関しては、図24においてやはり上電極20と接触している部分が一番小さいので、その幅をハイト長Dとして考える。スピンバルブ膜の実効面積Aは、A=Tw×Dとして考える。
本実施形態に係る磁気抵抗効果素子では、電極間の抵抗Rを100Ω以下にすることができる。この抵抗Rは、例えばヘッドジンバルアセンブリー(HGA)の先端に装着した再生ヘッド部の2つの電極パッド間で測定される抵抗値である。
本実施形態に係る磁気抵抗効果素子において、ピン層140またはフリー層180がfcc構造である場合には、fcc(111)配向性をもつことが望ましい。ピン層14またはフリー層180がbcc構造をもつ場合には、bcc(110)配向性をもつことが望ましい。ピン層140またはフリー層180がhcp構造をもつ場合には、hcp(001)配向またはhcp(110)配向性をもつことが望ましい。
本実施形態に係る磁気抵抗効果素子の結晶配向性は、配向のばらつき角度で4.0度以内が好ましく、3.5度以内がより好ましく、3.0度以内がさらに好ましい。これは、X線回折のθ−2θ測定により得られるピーク位置でのロッキングカーブの半値幅として求められる。また、素子断面からのナノディフラクションスポットでのスポットの分散角度として検知することができる。
(磁気ヘッド)
図23および図24は、上記磁気抵抗効果素子を磁気ヘッドに組み込んだ状態を示している。図23は、磁気記録媒体(図示せず)に対向する媒体対向面に対してほぼ平行な方向に磁気抵抗効果素子を切断した断面図である。図24は、この磁気抵抗効果素子を媒体対向面ABSに対して垂直な方向に切断した断面図である。
図23および図24は、上記磁気抵抗効果素子を磁気ヘッドに組み込んだ状態を示している。図23は、磁気記録媒体(図示せず)に対向する媒体対向面に対してほぼ平行な方向に磁気抵抗効果素子を切断した断面図である。図24は、この磁気抵抗効果素子を媒体対向面ABSに対して垂直な方向に切断した断面図である。
図23および図24に例示した磁気ヘッドは、いわゆるハード・アバッテッド(hard abutted)構造を有する。磁気抵抗効果膜100の上下には、下電極110と上電極200とがそれぞれ設けられている。図24において、磁気抵抗効果膜10の両側面には、バイアス磁界印加膜41と絶縁膜42とが積層して設けられている。図24に示すように、磁気抵抗効果膜10の媒体対向面には保護層43が設けられている。
磁気抵抗効果膜100に対するセンス電流は、その上下に配置された下電極110、上電極200によって矢印Aで示したように、膜面に対してほぼ垂直方向に通電される。また、左右に設けられた一対のバイアス磁界印加膜41、41により、磁気抵抗効果膜100にはバイアス磁界が印加される。このバイアス磁界により、磁気抵抗効果膜100のフリー層180の磁気異方性を制御して単磁区化することによりその磁区構造が安定化し、磁壁の移動に伴うバルクハウゼンノイズ(Barkhausen noise)を抑制することができる。
磁気抵抗効果膜100のS/N比が向上しているので、磁気ヘッドに応用した場合に高感度の磁気再生が可能となる。
(ハードディスクおよびヘッドジンバルアセンブリー)
図23および図24に示した磁気ヘッドは、記録再生一体型の磁気ヘッドアセンブリに組み込んで、磁気記録再生装置に搭載することができる。
図23および図24に示した磁気ヘッドは、記録再生一体型の磁気ヘッドアセンブリに組み込んで、磁気記録再生装置に搭載することができる。
図25は、このような磁気記録再生装置の概略構成を例示する要部斜視図である。すなわち、本実施形態の磁気記録再生装置150は、ロータリーアクチュエータを用いた形式の装置である。同図において、磁気ディスク159は、スピンドル152に装着され、図示しない駆動装置制御部からの制御信号に応答する図示しないモータにより矢印Aの方向に回転する。本実施形態の磁気記録再生装置150は、複数の磁気ディスク159を備えてもよい。
磁気ディスク159に格納する情報の記録再生を行うヘッドスライダ153は、薄膜状のサスペンション154の先端に取り付けられている。ヘッドスライダ153は、上述したいずれかの実施形態に係る磁気抵抗効果素子を含む磁気ヘッドをその先端付近に搭載している。
磁気ディスク159が回転すると、ヘッドスライダ153の媒体対向面(ABS)は磁気ディスク159の表面から所定の浮上量をもって保持される。あるいはスライダが磁気ディスク159と接触するいわゆる「接触走行型」でもよい。
サスペンション154はアクチュエータアーム155の一端に接続されている。アクチュエータアーム155の他端には、リニアモータの一種であるボイスコイルモータ156が設けられている。ボイスコイルモータ156は、ボビン部に巻かれた図示しない駆動コイルと、このコイルを挟み込むように対向して配置された永久磁石および対向ヨークからなる磁気回路とから構成される。
アクチュエータアーム155は、スピンドル157の上下2箇所に設けられた図示しないボールベアリングによって保持され、ボイスコイルモータ156により回転摺動が自在にできるようになっている。
図26は、アクチュエータアーム155から先のヘッドジンバルアセンブリーをディスク側から眺めた拡大斜視図である。すなわち、アセンブリ160は、アクチュエータアーム155を有し、アクチュエータアーム155の一端にはサスペンション154が接続されている。サスペンション154の先端には、上述したいずれかの実施形態に係る磁気抵抗効果素子を含む磁気ヘッドを具備するヘッドスライダ153が取り付けられている。サスペンション154は信号の書き込みおよび読み取り用のリード線164を有し、このリード線164とヘッドスライダ153に組み込まれた磁気ヘッドの各電極とが電気的に接続されている。図中165はアセンブリ160の電極パッドである。
本実施形態によれば、上述の磁気抵抗効果素子を含む磁気ヘッドを具備することにより、高い記録密度で磁気ディスク159に磁気的に記録された情報を確実に読み取ることが可能となる。
(磁気メモリ)
次に、本発明の実施形態に係る磁気抵抗効果素子を搭載した磁気メモリについて説明する。すなわち、本発明の実施形態に係る磁気抵抗効果素子を用いて、例えばメモリセルがマトリクス状に配置されたランダムアクセス磁気メモリ(MRAM: magnetic random access memory)などの磁気メモリを実現できる。
次に、本発明の実施形態に係る磁気抵抗効果素子を搭載した磁気メモリについて説明する。すなわち、本発明の実施形態に係る磁気抵抗効果素子を用いて、例えばメモリセルがマトリクス状に配置されたランダムアクセス磁気メモリ(MRAM: magnetic random access memory)などの磁気メモリを実現できる。
図27は、本発明の実施形態に係る磁気メモリのマトリクス構成の一例を示す図である。この図は、メモリセルをアレイ状に配置した場合の回路構成を示す。アレイ中の1ビットを選択するために、列デコーダ350、行デコーダ351が備えられており、ビット線334とワード線332によりスイッチングトランジスタ330がオンになり一意に選択され、センスアンプ352で検出することにより磁気抵抗効果膜100中の磁気記録層(フリー層)に記録されたビット情報を読み出すことができる。ビット情報を書き込むときは、特定の書き込みワード線323とビット線322に書き込み電流を流して発生する磁場を印加する。
図28は、本発明の実施形態に係る磁気メモリのマトリクス構成の他の例を示す図である。この場合、マトリクス状に配線されたビット線322とワード線334とが、それぞれデコーダ360、361により選択されて、アレイ中の特定のメモリセルが選択される。それぞれのメモリセルは、磁気抵抗効果素子100とダイオードDとが直列に接続された構造を有する。ここで、ダイオードDは、選択された磁気抵抗効果素子100以外のメモリセルにおいてセンス電流が迂回することを防止する役割を有する。書き込みは、特定のビット線322と書き込みワード線323とにそれぞれに書き込み電流を流して発生する磁場により行われる。
図29は、本発明の実施形態に係る磁気メモリの要部を示す断面図である。図30は、図29のA−A’線に沿う断面図である。これらの図に示した構造は、図27または図28に示した磁気メモリに含まれる1ビット分のメモリセルに対応する。このメモリセルは、記憶素子部分311とアドレス選択用トランジスタ部分312とを有する。
記憶素子部分311は、磁気抵抗効果素子100と、これに接続された一対の配線322、324とを有する。磁気抵抗効果素子100は、上述した実施形態に係る磁気抵抗効果素子である。
一方、アドレス選択用トランジスタ部分312には、ビア326および埋め込み配線328を介して接続されたトランジスタ330が設けられている。このトランジスタ330は、ゲート332に印加される電圧に応じてスイッチング動作をし、磁気抵抗効果素子100と配線334との電流経路の開閉を制御する。
また、磁気抵抗効果素子100の下方には、書き込み配線323が、配線322とほぼ直交する方向に設けられている。これら書き込み配線322、323は、例えばアルミニウム(Al)、銅(Cu)、タングステン(W)、タンタル(Ta)あるいはこれらいずれかを含む合金により形成することができる。
このような構成のメモリセルにおいて、ビット情報を磁気抵抗効果素子100に書き込むときは、配線322、323に書き込みパルス電流を流し、それら電流により誘起される合成磁場を印加することにより磁気抵抗効果素子の記録層の磁化を適宜反転させる。
また、ビット情報を読み出すときは、配線322と、磁気記録層を含む磁気抵抗効果素子100と、下電極324とを通してセンス電流を流し、磁気抵抗効果素子10の抵抗値または抵抗値の変化を測定する。
本発明の実施形態に係る磁気メモリは、上述した実施形態に係る磁気抵抗効果素子(CCP−CPP素子)を用いることにより、セルサイズを微細化しても、記録層の磁区を確実に制御して確実な書き込みを確保でき、且つ、読み出しも確実に行うことができる。
(高周波発振素子の応用例)
次に、上述した高周波発信素子の応用例について説明する。
次に、上述した高周波発信素子の応用例について説明する。
(高周波集積回路)
最初に、複数の高周波発振素子を並列に接続した高周波集積回路について説明する。図31(a)および(b)に、本実施形態における高周波集積回路の平面図および積層構造を示す。図31(b)に示すように、Si基板51上に増幅器としてのCMOSトランジスタ52が形成され、CMOSトランジスタ52上にCCP−CPP発振素子500が形成されている。なお、図31(a)に示すように、Si基板51の表面には複数のCCP−CPP発振素子500が規則的に配列されている。通常、CMOS製造プロセスはCCP−CPP発振素子の製造プロセスに比較して、高温の工程を含むので、図31(b)のような積層構造が採用される。すなわち、Si基板51上にCMOSトランジスタ52を形成し、表面の平坦化やコンタクトの形成を行った後、高周波発振素子500を形成する。本実施例による高周波集積回路を用いれば、安価にシステムを構築でき、ミリ波やマイクロ波を扱う高周波機器を民生用途で普及させることができる。
最初に、複数の高周波発振素子を並列に接続した高周波集積回路について説明する。図31(a)および(b)に、本実施形態における高周波集積回路の平面図および積層構造を示す。図31(b)に示すように、Si基板51上に増幅器としてのCMOSトランジスタ52が形成され、CMOSトランジスタ52上にCCP−CPP発振素子500が形成されている。なお、図31(a)に示すように、Si基板51の表面には複数のCCP−CPP発振素子500が規則的に配列されている。通常、CMOS製造プロセスはCCP−CPP発振素子の製造プロセスに比較して、高温の工程を含むので、図31(b)のような積層構造が採用される。すなわち、Si基板51上にCMOSトランジスタ52を形成し、表面の平坦化やコンタクトの形成を行った後、高周波発振素子500を形成する。本実施例による高周波集積回路を用いれば、安価にシステムを構築でき、ミリ波やマイクロ波を扱う高周波機器を民生用途で普及させることができる。
なお、図31に示す構成の高周波集積回路を基本として、並列接続及び直列接続の高周波回路を作製することができる。図33は、並列接続の高周波集積回路の一例を示す回路図である。図31に示すように、高周波発振発振素子500a、500b、500c、500d、500eは、電源54に対して並列に接続されている。図32に示す並列接続の高周波集積回路の具体的な構造は、図31(a)および(b)に示す場合と同様である。すなわち、Si基板上にCMOSトランジスタおよびCCP−CPP発振素子が形成されており、Si基板の表面に複数の高周波発振発振素子が規則的に配列される。
図33は、直列接続の高周波集積回路の一例を示す回路図である。この場合は、図33に示すように、複数の高周波発振素子500a、500b、500c、500d、500eが、電源54と直列に接続されて高周波集積回路を形成している。このように複数の高周波発振素子を直列に接続すると発振出力を上げることができる。
(車載レーダー及び車間通信装置)
図34は、本発明に係る高周波発振素子を用いたミリ波(またはマイクロ波)帯域の車載レーダーのシステム構成を示す図である。このシステムは、本発明に係る高周波発振素子を有するミリ波送受信モジュール61、送受信モジュール61の信号を処理するアナログ回路62、A/D(アナログ・ディジタル)変換およびD/A(ディジタル・アナログ)変換を行うコンバーター63、ディジタルシグナルプロセッサー(DSP)64、および外部との送受信を行う通信機構65を有する。
図34は、本発明に係る高周波発振素子を用いたミリ波(またはマイクロ波)帯域の車載レーダーのシステム構成を示す図である。このシステムは、本発明に係る高周波発振素子を有するミリ波送受信モジュール61、送受信モジュール61の信号を処理するアナログ回路62、A/D(アナログ・ディジタル)変換およびD/A(ディジタル・アナログ)変換を行うコンバーター63、ディジタルシグナルプロセッサー(DSP)64、および外部との送受信を行う通信機構65を有する。
図35に、より具体的なFM−CWレーダー方式の車載レーダーの回路図を示す。図36に、このレーダーによる信号波形を示す。この信号波形は、レーダーが目標に近づく場合を想定している。
発生器71からの送信波と発振器72からの搬送波は出力電圧に比例するFM変調波として送信アンテナ73から放射される。送信波はレーダー信号解析器80へ送られる。反射物から反射され受信アンテナ74で受信された受信波と送信波の一部とはミキサ75で合成されビート信号が得られる。このビート信号は前置増幅器76、中間周波増幅器77、フィルタ78、検波器79を経てレーダー信号解析器80へ送られる。
ビート信号には目標までの距離に比例する位相遅れ(図36のDt)とレーダー及び目標間の相対速度より生じるドップラー周波数偏移(図36のDf)が含まれている。DtおよびDfは変調周波数増加時および減少時のビート信号の周波数差(δfu、δfd)から計算でき、これらをもとに目標までの距離と相対速度を求めることができる。
図37に具体的な周波数で動作するFM−CW方式のミリ波車載レーダーの構成例を示す。送信時には19GHz帯の発振器81、19GHz帯の電力増幅器82、19/38GHzの周波数逓倍器83、38GHz帯の電力増幅器84、38/76GHzの周波数逓倍器85、76GHz帯の電力増幅器86を経て送信出力を放射する。受信時には受信入力を76GHz帯のスイッチ87で受信し、76GHz帯の低雑音増幅器88、受信用のミキサ89を経てIF帯出力を得る。
図38に具体的な周波数で動作するパルスドップラー方式のミリ波車載レーダーの構成例を示す。送信時には19GHz帯の発振器91、19GHz帯の電力増幅器92、19/38GHzの周波数逓倍器93、38GHz帯の電力増幅器94、38/76GHzの周波数逓倍器95、76GHz帯の電力増幅器96、76GHz帯のスイッチ97を経て送信出力を放射する。受信時には受信入力を76GHz帯のスイッチ97で受信し、76GHz帯の低雑音増幅器98、受信用のミキサ99を経てIF帯出力を得る。
図37および図38の発振器81、91として図22のような高周波発振素子を用いることにより、従来の発振素子を用いたものよりもはるかに小型で回路構成も簡単で安価な車載レーダーを実現することができる。周波数としては上記の周波数に限られるものではなく、使用可能周波数の割り当てに応じて、数十GHzから数百GHz、数THzといった広い周波数レンジにおいて、本発明の高周波発振素子は動作可能である。
図39に本実施形態に係る車載レーダー装置600を装着した自動車610を示す。上述した原理により、自動車610から障害物615までの距離と相対速度を求めることができる。
従来の車載レーダーは、小型化が困難なため装着位置が限られていた。たとえばフロントグリルに取り付けた場合には位置が低すぎて、トラックなどの位置をうまく検知できなかった。これに対して、本発明に係る車載レーダーは小型化が可能なので、フロントグリルやフロントボンネットに限らず、運転室内のフロントガラスなどに装着することもできる。このように運転室内に装着した場合、風雨雪を避けるための特別な保護構造を設ける必要もなくなり、価格を大幅に低減できる。このため本発明に係る車載レーダーは大衆車にも装着できる。
図40に本実施形態に係る車間通信装置を示す。各自動車610のフロントおよびバックに、本発明に係る高周波発振素子を含む車載レーダー装置600をそれぞれ一機ずつ装着する。この装置では、自動車610間で双方向通信を行い、車間距離を一定に保って各車が走行するよう制御でき、ITS(Intelligent Transport System)を実現できる。本実施形態に係る送受信装置は小型化が可能なので、装着位置の自由度が非常に大きく、風雨雪を避けるための特別な保護構造を設ける必要もなくなり、価格を大幅に低減できる。
(情報端末間通信装置)
図41に本実施形態に係る情報端末間通信装置を示す。本発明に係る高周波発振素子を含む送受信装置605を個々の携帯情報端末620に装着し、双方向の簡易近距離通信を行うことができる。高周波を用いるため情報量が大きく、近距離で高速な無線データ通信を行うのは非常に便利である。
図41に本実施形態に係る情報端末間通信装置を示す。本発明に係る高周波発振素子を含む送受信装置605を個々の携帯情報端末620に装着し、双方向の簡易近距離通信を行うことができる。高周波を用いるため情報量が大きく、近距離で高速な無線データ通信を行うのは非常に便利である。
(高周波アシスト磁気ヘッドへの応用例)
本発明に係る高周波発振素子は、高周波アシスト磁気ヘッドへの応用が可能である。高周波アシスト磁気ヘッドとは、上述する高周波発振素子から生ずる磁界を媒体への書き込み磁界のアシスト磁界として利用する方法である(非特許文献1参照)。
(非特許文献1:The Magnetic Recording Conference (TMRC 2007), , Session B, Monday PM : Write Heads, B6, Microwave Assisted Magnetic Recording, Jian-Gang ZHU and Xiaochun ZHU.)
本発明に係る高周波発振素子は、高周波アシスト磁気ヘッドへの応用が可能である。高周波アシスト磁気ヘッドとは、上述する高周波発振素子から生ずる磁界を媒体への書き込み磁界のアシスト磁界として利用する方法である(非特許文献1参照)。
(非特許文献1:The Magnetic Recording Conference (TMRC 2007), , Session B, Monday PM : Write Heads, B6, Microwave Assisted Magnetic Recording, Jian-Gang ZHU and Xiaochun ZHU.)
以上、本発明を上記具体例に基づいて詳細に説明したが、本発明は上記具体例に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。
例えば、上記具体例では、第1の絶縁体11の第1の開口部11A及び第2の絶縁体12の第2の開口部12Aは、互いに対向するようにして配置しているが、これらの開口部は必ずしも対向して配置する必要はない。例えば、第1の開口部11A内に形成した第2の導電体14を介して薄膜構造体10,20内に流入した電子が、第2の開口部12A内に形成した第3の導電体15を介して放出されるような配置であれば、必ずしも開口部11A及び12A同士が対向している必要はない。
10、20 薄膜構造体
11 第1の絶縁層
12 第2の絶縁層
13 第1の導電体
14 第2の導電体
15 第3の導電体
11 第1の絶縁層
12 第2の絶縁層
13 第1の導電体
14 第2の導電体
15 第3の導電体
Claims (33)
- 少なくとも1つの磁性層と、
第1の開口部を有する第1の絶縁層、第2の開口部を有する第2の絶縁層及び前記第1の絶縁層及び前記第2の絶縁層の間に位置した導電体を含み、前記第2の絶縁層の、前記第2の開口部及び前記第1の絶縁層間の距離Aが、前記第1の絶縁層及び前記第2の絶縁層間の最近接距離Bよりも大きい、少なくとも1つの薄膜構造体と、
前記磁性層、前記薄膜構造体を含む磁性多層膜に対して、その積層方向に電流を流すための一対の電極と、
を具えることを特徴とする、磁性多層膜通電素子。 - 前記距離A及び前記最近接距離Bが、A/2>Bなる関係を満たすことを特徴とする、請求項1に記載の磁性多層膜通電素子。
- 前記最近接距離B=0であって、前記第1の絶縁層及び前記第2の絶縁層が部分的に接合していることを特徴とする、請求項2に記載の磁性多層膜通電素子。
- 少なくとも1つの磁性層と、
第1の開口部を有する第1の絶縁層、第2の開口部を有する第2の絶縁層及び前記第1の絶縁層及び第2の絶縁層の間に位置した導電体を含み、前記第1の絶縁層及び前記第2の絶縁層が部分的に接合しており、前記導電体の膜面内の面積が、前記第1の開口部よりも大きく、かつ前記第2の開口部よりも大きい、少なくとも1つの薄膜構造体と、
前記磁性層、前記薄膜構造体を含む磁性多層膜に対して、その積層方向に電流を流すための一対の電極と、
を具えることを特徴とする、磁性多層膜通電素子。 - 前記導電体は強磁性金属を含むことを特徴とする、請求項1〜4のいずれか一に記載の磁性多層膜通電素子。
- 前記導電体は非磁性金属を含むことを特徴する、請求項1〜4のいずれか一に記載の磁性多層膜通電素子。
- 前記導電体は、強磁性金属と非磁性金属の積層体を含むことを特徴する、請求項1〜4のいずれか一に記載の磁性多層膜通電素子。
- 前記導電体は、Co、Fe、Niからなる群より選択される少なくとも1つの元素を含有することを特徴とする、請求項1〜4、5、7のいずれか一に記載の磁性多層膜通電素子。
- 前記導電体は、Cu、Au、Ag、Rh、Ru、Mn、Cr、Re、Os、Ir、Pdからなる群より選択される少なくとも1つの元素を含有することを特徴とする、請求項1〜4、6、7のいずれか一に記載の磁性多層膜通電素子。
- 前記導電体は結晶性金属を含むことを特徴とする、請求項1〜9のいずれか一に記載の磁性多層膜通電素子。
- 前記導電体の厚さが、前記導電体内における電子のスピン拡散長以下であることを特徴とする、請求項1〜10のいずれか一に記載の磁性多層膜通電素子。
- 前記導電体の膜厚が5nm以下であることを特徴とする、請求項1〜11のいずれか一に記載の磁性多層膜通電素子。
- 前記導電体の膜面内方向の直径が10nm以下であることを特徴とする、請求項3〜11のいずれか一に記載の磁性多層膜通電素子。
- 前記第1の絶縁層、または第2の絶縁層の膜厚が0.5nm以上4nm以下であることを特徴とする、請求項1〜13のいずれか一に記載の磁性多層膜通電素子。
- 前記第1の絶縁層、または第2の絶縁層が、Al、Ta、Hf、Cr、Zr、Ti、Si、W、V、Mg、Mo、Fe、Ni、Coからなる群より少なくともひとつの元素を含む、酸化物、窒化物、酸窒化物で形成されていることを特徴とする、請求項1〜14のいずれか一に記載の磁性多層膜通電素子。
- 前記第1の開口部、または前記第2の開口部が、Co、Fe、Niからなる群より選択される少なくとも1つの元素を含有することを特徴とする、請求項1〜15のいずれか一に記載の磁性多層膜通電素子。
- 前記第1の開口部、または前記第2の開口部が、Cu、Au、Ag、Rh、Ru、Mn、Cr、Re、Os、Ir、Pdからなる群より選択される少なくとも1つの元素を含有することを特徴とする、請求項1〜16のいずれか一に記載の磁性多層膜通電素子。
- 前記第1の開口部及び前記第2の開口部の直径が5nm以下であることを特徴とする、請求項1〜17のいずれか一に記載の磁性多層膜通電素子。
- 第1の磁性層と、
前記第1の磁性層上に形成された形成されたスペーサ層と、
前記スペーサ層上に形成された第2の磁性層と、
前記薄膜構造体と、
前記第1の磁性層、前記第2の磁性層、前記スペーサ層及び前記薄膜構造体を含む磁性多層膜に対して、その積層方向に電流をながすための一対の電極と、
を具えることを特徴とする、請求項1〜18のいずれか一に記載の磁性多層膜通電素子。 - 前記薄膜構造体は、前記第1の磁性層、前記スペーサ層及び前記第2の磁性層の少なくとも一部内に位置することを特徴とする、請求項1〜19のいずれか一に記載の磁性多層膜通電素子。
- 前記薄膜構造体は、前記第1の磁性層及び前記第2の磁性層の少なくとも一方の内に位置することを特徴とする、請求項20に記載の磁性多層膜通電素子。
- 前記薄膜構造体は、前記スペーサ層の内に位置することを特徴とする、請求項21に記載の磁性多層膜通電素子。
- 前記薄膜構造体は、前記第1の磁性層及び前記スペーサ層に跨って、または、前記第2の磁性層及び前記スペーサ層に跨って、これら層間の界面を含むようにして位置することを特徴とする、請求項20に記載の磁性多層膜通電素子。
- 前記薄膜構造体は、前記第1の磁性層、前記スペーサ層及び前記第2の磁性層に跨って、これら層間の界面を含むようにして位置することを特徴とする、請求項20に記載の磁性多層膜通電素子。
- 前記磁性多層膜通電素子は、
前記第1の磁性層及び前記第2の磁性層の一方が、磁化方向が実質的に一方向に固着される磁化固着層として機能し、前記第1の磁性層及び前記第2の磁性層の他方が、前記第2の磁性層が、外部磁界に応じて変化する磁化自由層として機能する、外部磁界に応じて抵抗が変化する磁気抵抗効果素子であることを特徴とする、請求項19〜24のいずれか一に記載の磁性多層膜通電素子。 - 前記磁性多層膜通電素子は、
前記第1の磁性層及び前記第2の磁性層の一方が、磁化方向が実質的に一方向に固着される磁化固着層として機能し、前記第1の磁性層及び前記第2の磁性層の他方が、電流を流すことにより磁化の発振現象を起こす磁性発振層として機能する、高周波発振素子であることを特徴とする、請求項19〜24のいずれか一に記載の磁性多層膜通電素子。 - 請求項25記載の磁気抵抗効果素子を具備することを特徴とする磁気ヘッド。
- 請求項27記載の磁気ヘッドを具備することを特徴とする磁気ディスク装置。
- 請求項25記載の磁気抵抗効果素子を具備することを特徴とする磁気メモリ。
- 請求項26記載の高周波発振素子を具備することを特徴とする磁気ヘッド。
- 請求項27記載の磁気ヘッドを具備することを特徴とする磁気ディスク装置。
- 同一基板上に形成され、電気的に直列に接続された複数の請求項26記載の高周波発振素子を具備することを特徴とする高周波集積回路。
- 請求項26記載の高周波発振素子を含む車載レーダー装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007156848A JP2008311373A (ja) | 2007-06-13 | 2007-06-13 | 磁性多層膜通電素子 |
US12/155,924 US8111488B2 (en) | 2007-06-13 | 2008-06-11 | Magnetic multilayered film current element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007156848A JP2008311373A (ja) | 2007-06-13 | 2007-06-13 | 磁性多層膜通電素子 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008311373A true JP2008311373A (ja) | 2008-12-25 |
Family
ID=40132635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007156848A Withdrawn JP2008311373A (ja) | 2007-06-13 | 2007-06-13 | 磁性多層膜通電素子 |
Country Status (2)
Country | Link |
---|---|
US (1) | US8111488B2 (ja) |
JP (1) | JP2008311373A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011039843A1 (ja) * | 2009-09-29 | 2011-04-07 | 株式会社 東芝 | 磁性発振素子 |
JP2012105248A (ja) * | 2010-11-09 | 2012-05-31 | Samsung Electronics Co Ltd | 発振器及び該発振器の動作方法 |
JP2014212428A (ja) * | 2013-04-18 | 2014-11-13 | Tdk株式会社 | 発振器、整流器および送受信装置 |
US8984757B2 (en) | 2011-07-12 | 2015-03-24 | Kabushiki Kaisha Toshiba | Tracking apparatus |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4690675B2 (ja) * | 2004-07-30 | 2011-06-01 | 株式会社東芝 | 磁気抵抗効果素子、磁気ヘッド、および磁気記録再生装置 |
JP2007299880A (ja) | 2006-04-28 | 2007-11-15 | Toshiba Corp | 磁気抵抗効果素子,および磁気抵抗効果素子の製造方法 |
JP4550777B2 (ja) * | 2006-07-07 | 2010-09-22 | 株式会社東芝 | 磁気抵抗効果素子の製造方法、磁気抵抗効果素子、磁気ヘッド、磁気記録再生装置及び磁気メモリ |
JP2008152835A (ja) * | 2006-12-15 | 2008-07-03 | Hitachi Global Storage Technologies Netherlands Bv | 磁気抵抗効果ヘッド、磁気記録再生装置及び磁気ヘッドの製造方法 |
JP4388093B2 (ja) * | 2007-03-27 | 2009-12-24 | 株式会社東芝 | 磁気抵抗効果素子、磁気ヘッド、磁気記録再生装置 |
JP5039007B2 (ja) | 2008-09-26 | 2012-10-03 | 株式会社東芝 | 磁気抵抗効果素子の製造方法、磁気抵抗効果素子、磁気ヘッドアセンブリ及び磁気記録再生装置 |
JP5039006B2 (ja) | 2008-09-26 | 2012-10-03 | 株式会社東芝 | 磁気抵抗効果素子の製造方法、磁気抵抗効果素子、磁気ヘッドアセンブリ及び磁気記録再生装置 |
DE102010020022A1 (de) * | 2010-05-10 | 2011-11-10 | Valeo Schalter Und Sensoren Gmbh | Fahrerassistenzeinrichtung für ein Fahrzeug, Fahrzeug und Verfahren zum Betreiben eines Radargeräts |
US9391266B1 (en) | 2015-03-26 | 2016-07-12 | International Business Machines Corporation | Perpendicular magnetic anisotropy BCC multilayers |
DE102015217744A1 (de) * | 2015-09-16 | 2017-03-16 | Nanogate PD Systems GmbH | Radom |
WO2017090728A1 (ja) | 2015-11-27 | 2017-06-01 | Tdk株式会社 | スピン流磁化反転素子、磁気抵抗効果素子、および磁気メモリ |
US11081154B1 (en) * | 2020-01-27 | 2021-08-03 | Rongfu Xiao | Synthetic magnetic pinning element having strong antiferromagnetic coupling |
US11088200B1 (en) * | 2020-02-10 | 2021-08-10 | Rongfu Xiao | Lattice matched seed layer to improve PMA for perpendicular magnetic pinning |
Family Cites Families (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5304975A (en) | 1991-10-23 | 1994-04-19 | Kabushiki Kaisha Toshiba | Magnetoresistance effect element and magnetoresistance effect sensor |
FR2685489B1 (fr) | 1991-12-23 | 1994-08-05 | Thomson Csf | Capteur de champ magnetique faible a effet magnetoresistif. |
US5448515A (en) | 1992-09-02 | 1995-09-05 | Mitsubishi Denki Kabushiki Kaisha | Magnetic thin film memory and recording/reproduction method therefor |
US5549978A (en) | 1992-10-30 | 1996-08-27 | Kabushiki Kaisha Toshiba | Magnetoresistance effect element |
JP3184352B2 (ja) | 1993-02-18 | 2001-07-09 | 松下電器産業株式会社 | メモリー素子 |
WO1995010123A1 (en) | 1993-10-06 | 1995-04-13 | Philips Electronics N.V. | Magneto-resistance device, and magnetic head employing such a device |
US6002553A (en) | 1994-02-28 | 1999-12-14 | The United States Of America As Represented By The United States Department Of Energy | Giant magnetoresistive sensor |
US6084752A (en) | 1996-02-22 | 2000-07-04 | Matsushita Electric Industrial Co., Ltd. | Thin film magnetic head |
US5768183A (en) | 1996-09-25 | 1998-06-16 | Motorola, Inc. | Multi-layer magnetic memory cells with improved switching characteristics |
US5768181A (en) | 1997-04-07 | 1998-06-16 | Motorola, Inc. | Magnetic device having multi-layer with insulating and conductive layers |
US6069820A (en) * | 1998-02-20 | 2000-05-30 | Kabushiki Kaisha Toshiba | Spin dependent conduction device |
US20020004128A1 (en) * | 1998-05-28 | 2002-01-10 | Anthony Forte | Method and system for sealing electrical connection using sealant-impregnated foam |
US6542342B1 (en) | 1998-11-30 | 2003-04-01 | Nec Corporation | Magnetoresistive effect transducer having longitudinal bias layer directly connected to free layer |
JP2000215414A (ja) | 1999-01-25 | 2000-08-04 | Hitachi Ltd | 磁気センサ― |
US6560077B2 (en) * | 2000-01-10 | 2003-05-06 | The University Of Alabama | CPP spin-valve device |
US6603642B1 (en) | 2000-03-15 | 2003-08-05 | Tdk Corporation | Magnetic transducer having a plurality of magnetic layers stacked alternately with a plurality of nonmagnetic layers and a fixed-orientation-of-magnetization layer and thin film magnetic head including the magnetic transducer |
JP3462832B2 (ja) | 2000-04-06 | 2003-11-05 | 株式会社日立製作所 | 磁気抵抗センサ並びにこれを用いた磁気ヘッド及び磁気記録再生装置 |
US6522507B1 (en) | 2000-05-12 | 2003-02-18 | Headway Technologies, Inc. | Single top spin valve heads for ultra-high recording density |
GB0012845D0 (en) * | 2000-05-26 | 2000-07-19 | Lancaster Fibre Technology Gro | Fire resistant material |
JP3559513B2 (ja) | 2000-09-05 | 2004-09-02 | 株式会社東芝 | 磁気抵抗効果素子、その製造方法及び製造装置並びに磁気再生装置 |
US6853520B2 (en) | 2000-09-05 | 2005-02-08 | Kabushiki Kaisha Toshiba | Magnetoresistance effect element |
JP3618654B2 (ja) | 2000-09-11 | 2005-02-09 | 株式会社東芝 | 磁気抵抗効果素子、磁気ヘッド及び磁気記録再生装置 |
US6937446B2 (en) | 2000-10-20 | 2005-08-30 | Kabushiki Kaisha Toshiba | Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system |
JP3833512B2 (ja) | 2000-10-20 | 2006-10-11 | 株式会社東芝 | 磁気抵抗効果素子 |
US7059201B2 (en) | 2000-12-20 | 2006-06-13 | Fidelica Microsystems, Inc. | Use of multi-layer thin films as stress sensors |
US6905780B2 (en) | 2001-02-01 | 2005-06-14 | Kabushiki Kaisha Toshiba | Current-perpendicular-to-plane-type magnetoresistive device, and magnetic head and magnetic recording-reproducing apparatus using the same |
JP2004022614A (ja) * | 2002-06-13 | 2004-01-22 | Alps Electric Co Ltd | 磁気検出素子及びその製造方法 |
US6686068B2 (en) * | 2001-02-21 | 2004-02-03 | International Business Machines Corporation | Heterogeneous spacers for CPP GMR stacks |
JP3565268B2 (ja) | 2001-06-22 | 2004-09-15 | 株式会社東芝 | 磁気抵抗効果素子、磁気ヘッド及び磁気再生装置 |
JP3590006B2 (ja) | 2001-06-22 | 2004-11-17 | 株式会社東芝 | 磁気抵抗効果素子、磁気ヘッド及び磁気再生装置 |
JP4024499B2 (ja) | 2001-08-15 | 2007-12-19 | 株式会社東芝 | 磁気抵抗効果素子、磁気ヘッド及び磁気再生装置 |
JP2003178407A (ja) * | 2001-12-11 | 2003-06-27 | Hitachi Ltd | 磁気抵抗効果型ヘッドならびにその製造方法、および磁気記録再生装置 |
JP2003198004A (ja) | 2001-12-27 | 2003-07-11 | Fujitsu Ltd | 磁気抵抗効果素子 |
JP4184668B2 (ja) | 2002-01-10 | 2008-11-19 | 富士通株式会社 | Cpp構造磁気抵抗効果素子 |
US6930864B2 (en) * | 2002-03-22 | 2005-08-16 | International Business Machines Corporation | Methods and apparatus for defining the track width of a magnetic head having a flat sensor profile |
JP3749873B2 (ja) | 2002-03-28 | 2006-03-01 | 株式会社東芝 | 磁気抵抗効果素子、磁気ヘッド及び磁気再生装置 |
US7042683B1 (en) * | 2002-04-05 | 2006-05-09 | Maxtor Corporation | Slider-level reader isolation measurement technique for advanced GMR heads |
JP3648504B2 (ja) | 2002-09-06 | 2005-05-18 | 株式会社東芝 | 磁気抵抗効果素子、磁気ヘッドおよび磁気再生装置 |
JP2004103769A (ja) * | 2002-09-09 | 2004-04-02 | Fujitsu Ltd | Cpp構造磁気抵抗効果素子 |
US7218484B2 (en) | 2002-09-11 | 2007-05-15 | Kabushiki Kaisha Toshiba | Magnetoresistance effect element, magnetic head, and magnetic reproducing apparatus |
JP4435521B2 (ja) | 2002-09-11 | 2010-03-17 | 株式会社東芝 | 磁気抵抗効果素子の製造方法 |
US7428127B2 (en) * | 2002-12-24 | 2008-09-23 | Fujitsu Limited | CPP magnetoresistive effect element and magnetic storage device having a CPP magnetoresistive effect element |
US7423851B2 (en) * | 2003-09-30 | 2008-09-09 | Tdk Corporation | Magneto-resistive element and device being provided with magneto-resistive element having magnetic nano-contact |
US7390529B2 (en) | 2004-05-26 | 2008-06-24 | Headway Technologies, Inc. | Free layer for CPP GMR having iron rich NiFe |
US7331100B2 (en) | 2004-07-07 | 2008-02-19 | Headway Technologies, Inc. | Process of manufacturing a seed/AFM combination for a CPP GMR device |
JP4617111B2 (ja) * | 2004-07-30 | 2011-01-19 | キヤノン株式会社 | ズームレンズ及びそれを有する撮像装置 |
JP4822680B2 (ja) | 2004-08-10 | 2011-11-24 | 株式会社東芝 | 磁気抵抗効果素子の製造方法 |
KR100790978B1 (ko) | 2006-01-24 | 2008-01-02 | 삼성전자주식회사 | 저온에서의 접합 방법, 및 이를 이용한 반도체 패키지 실장 방법 |
-
2007
- 2007-06-13 JP JP2007156848A patent/JP2008311373A/ja not_active Withdrawn
-
2008
- 2008-06-11 US US12/155,924 patent/US8111488B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011039843A1 (ja) * | 2009-09-29 | 2011-04-07 | 株式会社 東芝 | 磁性発振素子 |
US8553372B2 (en) | 2009-09-29 | 2013-10-08 | Kabushiki Kaisha Toshiba | Magnetic oscillator |
US8982514B2 (en) | 2009-09-29 | 2015-03-17 | Kabushiki Kaisha Toshiba | Magnetic oscillator |
JP2012105248A (ja) * | 2010-11-09 | 2012-05-31 | Samsung Electronics Co Ltd | 発振器及び該発振器の動作方法 |
KR101777264B1 (ko) * | 2010-11-09 | 2017-09-12 | 삼성전자 주식회사 | 발진기 및 상기 발진기의 동작 방법 |
US8984757B2 (en) | 2011-07-12 | 2015-03-24 | Kabushiki Kaisha Toshiba | Tracking apparatus |
JP2014212428A (ja) * | 2013-04-18 | 2014-11-13 | Tdk株式会社 | 発振器、整流器および送受信装置 |
Also Published As
Publication number | Publication date |
---|---|
US20080311431A1 (en) | 2008-12-18 |
US8111488B2 (en) | 2012-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008311373A (ja) | 磁性多層膜通電素子 | |
JP4886268B2 (ja) | 高周波発振素子、ならびにそれを用いた車載レーダー装置、車間通信装置および情報端末間通信装置 | |
JP4550777B2 (ja) | 磁気抵抗効果素子の製造方法、磁気抵抗効果素子、磁気ヘッド、磁気記録再生装置及び磁気メモリ | |
JP6414250B2 (ja) | 下地積層体とそれを含む積層素子、並びに磁気センサ及びマイクロ波アシスト磁気ヘッド | |
JP4490950B2 (ja) | 磁気抵抗効果素子の製造方法、及び磁気抵抗効果素子 | |
JP4550778B2 (ja) | 磁気抵抗効果素子の製造方法 | |
JP4822680B2 (ja) | 磁気抵抗効果素子の製造方法 | |
JP4975335B2 (ja) | 磁気抵抗効果素子,磁気ヘッド,および磁気記録再生装置 | |
JP5361201B2 (ja) | 磁気抵抗効果素子の製造方法 | |
JP2009182129A (ja) | 磁気抵抗効果素子およびその製造方法 | |
JP2004260149A (ja) | 固定層に半金属強磁性体ホイスラー合金を有する交換結合構造の磁気抵抗素子 | |
JP2007173476A (ja) | 磁気抵抗効果素子およびその製造方法 | |
JP2012253344A (ja) | 3端子スピントルク発振素子(sto) | |
JP2007299880A (ja) | 磁気抵抗効果素子,および磁気抵抗効果素子の製造方法 | |
JP2008252008A (ja) | 磁気抵抗効果素子、およびその製造方法 | |
GB2390168A (en) | CPP magnetic sensor | |
JP2007299512A (ja) | 反平行フリー層構造および低電流誘起ノイズの面直電流型(cpp)磁気抵抗センサ | |
JP2008085202A (ja) | 磁気抵抗効果素子、磁気メモリ、磁気ヘッド、および磁気記録再生装置 | |
JP2006005185A (ja) | 磁気検出素子 | |
JP2006049358A (ja) | 磁気抵抗効果素子、磁気ヘッド、磁気記録再生装置、および磁気メモリ | |
JP2009283499A (ja) | 磁気抵抗効果素子、磁気抵抗効果ヘッド、磁気記録再生装置および磁気メモリ | |
JP3729498B2 (ja) | 磁気抵抗効果ヘッドおよび磁気記録再生装置 | |
JP6054479B2 (ja) | 磁気抵抗効果素子、磁気ヘッド、磁気記録再生装置、磁気メモリ、磁界センサ | |
JP5162021B2 (ja) | 磁気抵抗効果素子、磁気メモリ、磁気抵抗効果ヘッド、および磁気記録再生装置 | |
JP5814898B2 (ja) | 磁気抵抗効果素子、およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20100907 |