[go: up one dir, main page]

JP2008245475A - Moving coil linear motor - Google Patents

Moving coil linear motor Download PDF

Info

Publication number
JP2008245475A
JP2008245475A JP2007085566A JP2007085566A JP2008245475A JP 2008245475 A JP2008245475 A JP 2008245475A JP 2007085566 A JP2007085566 A JP 2007085566A JP 2007085566 A JP2007085566 A JP 2007085566A JP 2008245475 A JP2008245475 A JP 2008245475A
Authority
JP
Japan
Prior art keywords
permanent magnet
linear motor
yoke
stator
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007085566A
Other languages
Japanese (ja)
Other versions
JP5240543B2 (en
Inventor
Hiroaki Munakata
浩昭 宗像
Yukie Akagi
幸英 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neomax Kiko Co Ltd
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Neomax Kiko Co Ltd
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Neomax Kiko Co Ltd, Neomax Co Ltd filed Critical Hitachi Metals Ltd
Priority to JP2007085566A priority Critical patent/JP5240543B2/en
Publication of JP2008245475A publication Critical patent/JP2008245475A/en
Application granted granted Critical
Publication of JP5240543B2 publication Critical patent/JP5240543B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Linear Motors (AREA)

Abstract

【課題】 小型かつ軽量で、組立てが容易な可動コイル形リニアモータを提供する。
【解決手段】 所定方向に沿って正弦波状の磁束密度分布が現出する磁気空隙gを有する固定子と、磁気空隙内に配置され、多相コイル82を含む可動子8とを有する可動コイル型リニアモータ1において、固定子2は、強磁性材料からなるヨーク6aに固着され、可動子8の移動方向に沿って磁化方向の異なる永久磁石7a、70aが交互に配列された永久磁石部材5aと、磁気空隙gを介して対向する少なくとも一対の永久磁石部材5aを包持し、ヨークより比重の小なる金属材料からなる非磁性フレーム4とを有する分割ユニット3aを複数個備えるとともに、非磁性フレーム4は、可動子8の移動方向に沿って伸長する多相コイル82の一部が挿入される溝43を有するベース部材41と、永久磁石部材5aを支持し、ベース部材41の両側面に固定されるサイド部材42を含む。
【選択図】図3
PROBLEM TO BE SOLVED: To provide a moving coil linear motor which is small and light and can be easily assembled.
A movable coil type having a stator having a magnetic gap g in which a sinusoidal magnetic flux density distribution appears along a predetermined direction, and a mover 8 disposed in the magnetic gap and including a multiphase coil 82. In the linear motor 1, the stator 2 is fixed to a yoke 6 a made of a ferromagnetic material, and permanent magnet members 5 a in which permanent magnets 7 a and 70 a having different magnetization directions are alternately arranged along the moving direction of the mover 8. A plurality of divided units 3a having at least a pair of permanent magnet members 5a opposed via a magnetic gap g and having a nonmagnetic frame 4 made of a metal material having a specific gravity smaller than that of the yoke, and a nonmagnetic frame 4 supports the base member 41 having the groove 43 into which a part of the multiphase coil 82 extending along the moving direction of the mover 8 is inserted, and the permanent magnet member 5a. The side member 42 fixed to the both sides | surfaces of this is included.
[Selection] Figure 3

Description

本発明は、例えば半導体製造装置のステージ駆動手段として使用される可動コイル型リニアモータに関する。   The present invention relates to a moving coil type linear motor used as a stage driving unit of a semiconductor manufacturing apparatus, for example.

半導体の製造設備においては、ガラスなどの基板を所定位置まで搬送する手段として、ベースに対して所定方向に移動するXステージとXステージをそのステージに対して別の方向(直交する方向)に移動するYステージを備えたX−Yステージ装置が使用されている。2軸のステージ装置では、長いストロークにわたって精密な位置決め動作と高速駆動が必要とされるので、各ステージの駆動手段として、多極形リニア直流モータ(以下単にリニアモータという。)を使用するのが一般的であり、特に応答性と高い位置決め精度が要求される場合には、可動コイル型リニアモータが使用される。この可動コイル型リニアモータは、同一の磁化方向を有する永久磁石を、ストローク方向に沿ってN極とS極が交互に並ぶようにかつ異極が対向するように一対のヨークの各々に固定した磁気回路を有する固定子と、磁気空隙に配置された多相コイルを有する可動子を備えている。   In a semiconductor manufacturing facility, as a means for transporting a substrate such as glass to a predetermined position, the X stage that moves in a predetermined direction with respect to the base and the X stage move in another direction (orthogonal direction) with respect to the stage. An XY stage apparatus having a Y stage is used. Since a two-axis stage device requires a precise positioning operation and high-speed driving over a long stroke, a multipolar linear DC motor (hereinafter simply referred to as a linear motor) is used as a driving means for each stage. In general, when a responsiveness and high positioning accuracy are required, a moving coil linear motor is used. In this moving coil type linear motor, a permanent magnet having the same magnetization direction is fixed to each of a pair of yokes so that N poles and S poles are alternately arranged along the stroke direction and opposite poles face each other. A stator having a magnetic circuit and a mover having a multi-phase coil arranged in a magnetic gap are provided.

特にX軸用のリニアモータは、Y軸ステージに搭載され、小型でかつ軽量であることが必要とされるので、固定子を構成する磁気回路を小型化することがまず考えられる。しかしながら同じ磁化方向の永久磁石を組み合わせただけの磁気回路では、磁気空隙の磁束密度分布を正弦波状としかつ磁気空隙における磁束密度を高めるために複雑な形状でかつ大型の永久磁石を使用することが必要となる。そこで複数の永久磁石を極性方向を90°ずつ回転させながら移動方向に沿って配列した磁気回路構造が提案されている(特許文献1参照)。   In particular, since the X-axis linear motor is mounted on the Y-axis stage and needs to be small and light, it is conceivable to first reduce the size of the magnetic circuit constituting the stator. However, in a magnetic circuit in which only permanent magnets having the same magnetization direction are combined, a large-sized permanent magnet having a complicated shape may be used in order to make the magnetic flux density distribution in the magnetic gap sinusoidal and to increase the magnetic flux density in the magnetic gap. Necessary. Therefore, a magnetic circuit structure in which a plurality of permanent magnets are arranged along the moving direction while rotating the polarity direction by 90 ° has been proposed (see Patent Document 1).

また通常の磁気回路では、磁束の飽和を防止するために必要以上に厚みの大なるヨークを使用するので、磁気回路の重量が増大するとともに、ヨークが外気に露出しているので、磁束の漏洩が発生しやすい。そこで固定子を構成するヨークを塑性加工によってU字状に形成し、このヨークをU字状の非磁性材料(例えばアルミ)からなるフレームの中に収容した構造が提案されている(特許文献2参照)。   Also, in a normal magnetic circuit, a yoke that is thicker than necessary is used to prevent saturation of the magnetic flux, so that the weight of the magnetic circuit increases and the yoke is exposed to the outside air. Is likely to occur. Therefore, a structure has been proposed in which a yoke constituting the stator is formed into a U shape by plastic working, and this yoke is housed in a frame made of a U-shaped nonmagnetic material (for example, aluminum) (Patent Document 2). reference).

特開平9−308218号公報(第2〜3頁、図1)JP-A-9-308218 (pages 2 and 3, FIG. 1) 特開2000−299973号公報(第4〜5頁、図1)Japanese Unexamined Patent Publication No. 2000-299973 (pages 4-5, FIG. 1)

しかしながら特許文献1に記載されたように、いわゆるハルバッハ形磁気回路を備えたリニアモータとした場合には、ヨークを薄くできるので、幾分かは固定子を軽量化できるが、それだけでは軽量化が十分でなくまた磁気回路の小型化(特に可動子の移動方向と直交する方向の幅寸法の低減)という点では十分とはいえない。また特許文献2に記載されているようにU字状アルミフレームの内部に磁気回路を収容することにより、固定子の軽量化を図ることができるが、アルミフレーム内にハルバッハ形磁気回路を形成するために多大な工数を要するという問題がある。これは、ハルバッハ形磁気回路においては、同極性の磁極が隣接するような磁極配置となるので、磁気的反発力により総ての永久磁石をヨークに固着することが極めて困難となるからである。   However, as described in Patent Document 1, in the case of a linear motor having a so-called Halbach magnetic circuit, the yoke can be made thin, so that the stator can be reduced in weight somewhat, but that alone can reduce the weight. This is not sufficient, and it is not sufficient in terms of downsizing the magnetic circuit (particularly, reducing the width dimension in the direction perpendicular to the moving direction of the mover). Further, as described in Patent Document 2, the magnetic circuit is housed in the U-shaped aluminum frame to reduce the weight of the stator. However, the Halbach magnetic circuit is formed in the aluminum frame. For this reason, there is a problem that a great number of man-hours are required. This is because, in the Halbach magnetic circuit, the magnetic poles are arranged so that the magnetic poles of the same polarity are adjacent to each other, so that it is extremely difficult to fix all the permanent magnets to the yoke due to the magnetic repulsive force.

従って本発明の目的は、小型かつ軽量で、固定子の組立てが容易な可動コイル型リニアモータを提供することである。   Accordingly, an object of the present invention is to provide a moving coil type linear motor that is small and light in weight and that allows easy assembly of a stator.

上記目的を達成するために、本発明の可動コイル型リニアモータは、所定方向に沿って正弦波状の磁束密度分布が現出する磁気空隙を有する固定子と、前記磁気空隙内に配置される多相コイルを含む可動子とを有する可動コイル型リニアモータにおいて、
前記固定子は、強磁性材料からなるヨークに固着され、前記可動子の移動方向に沿って磁化方向の異なる永久磁石が交互に配列された永久磁石部材と、前記磁気空隙を介して対向する少なくとも一対の前記永久磁石部材を包持し、前記ヨークより比重の小なる金属材料からなる非磁性フレームとを有する分割ユニットを複数個備えるとともに、
前記非磁性フレームは、前記多相コイルの一部が挿入される溝を有するベース部材と、前記永久磁石部材を支持し、前記ベース部材の両側面に固定されるサイド部材を含むことを特徴とするものである。
In order to achieve the above object, a moving coil linear motor according to the present invention includes a stator having a magnetic gap in which a sinusoidal magnetic flux density distribution appears along a predetermined direction, and a multi-pole arranged in the magnetic gap. In a moving coil type linear motor having a mover including a phase coil,
The stator is fixed to a yoke made of a ferromagnetic material, and is opposed to at least a permanent magnet member in which permanent magnets having different magnetization directions are arranged along the moving direction of the mover via the magnetic gap. A plurality of divided units having a pair of the permanent magnet members and having a nonmagnetic frame made of a metal material having a specific gravity smaller than that of the yoke,
The non-magnetic frame includes a base member having a groove into which a part of the multiphase coil is inserted, and side members that support the permanent magnet member and are fixed to both side surfaces of the base member. To do.

本発明において、前記ヨークは鉄鋼材料からなり、前記非磁性フレームはアルミニウム又はその合金からなることが好ましい。   In the present invention, the yoke is preferably made of a steel material, and the nonmagnetic frame is preferably made of aluminum or an alloy thereof.

本発明において、前記永久磁石は、R(RはNd等の希土類元素のうちの一種又は2種以上の元素である。)、T(TはFe又はFe及びCoである。)及びBを必須成分とするR−T−B系焼結磁石からなることが好ましい。   In the present invention, the permanent magnet must include R (R is one or more elements of rare earth elements such as Nd), T (T is Fe or Fe and Co), and B. It is preferably made of an RTB-based sintered magnet as a component.

本発明によれば、固定子は、強磁性材料からなるヨークに可動子の移動方向に沿って磁化方向の異なる永久磁石を交互に配列して形成した永久磁石部材で磁気回路を構成するので、ヨークを薄くすることができるとともに、複数の磁気回路部材を記ヨークより比重の小なる金属材料からなる非磁性フレームで包持するので、リニアモータの小型化と軽量化を達成することができる。   According to the present invention, the stator constitutes a magnetic circuit with permanent magnet members formed by alternately arranging permanent magnets having different magnetization directions along the moving direction of the mover on the yoke made of a ferromagnetic material. The yoke can be made thin, and a plurality of magnetic circuit members are held by a nonmagnetic frame made of a metal material having a specific gravity smaller than that of the yoke, so that the linear motor can be reduced in size and weight.

しかも、非磁性フレームは磁気回路を支持するベース部材と、その側面に固定されるサイド部材とで形成されるので、磁気回路の組立てを容易に行うことができる。   In addition, since the nonmagnetic frame is formed of a base member that supports the magnetic circuit and a side member that is fixed to the side surface thereof, the magnetic circuit can be easily assembled.

さらに、非磁性フレームのベース部材には、可動コイルの一部が挿入される凹溝が設けられており、リニアモータの巾寸法を小さくすることができるので、より小型化が可能となる。   Further, the base member of the nonmagnetic frame is provided with a concave groove into which a part of the movable coil is inserted, and the width dimension of the linear motor can be reduced, so that the size can be further reduced.

以下本発明の詳細を添付図面により説明する。図1は本発明の実施の形態に係わるリニアモータを備えたXYステージの側面図、図2は図1をA方向から見た矢視図、図3は図2のB−B線断面図、図4は永久磁石部材の組立て手順を説明するための図、図5〜7は固定子の組立て手順を説明するための図である。   Details of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a side view of an XY stage provided with a linear motor according to an embodiment of the present invention, FIG. 2 is an arrow view of FIG. 1 viewed from the direction A, and FIG. FIG. 4 is a diagram for explaining the assembly procedure of the permanent magnet member, and FIGS. 5 to 7 are diagrams for explaining the assembly procedure of the stator.

図1に示すXYステージは、Y軸方向に沿って駆動される移動テーブル10と、その両端部に設置される固定子2と、X軸方向(紙面に垂直な方向)に沿って移動する可動子8とを有するリニアモータ1により駆動される移動テーブル11を備えている。移動テーブル11は、その両端に固設されたアーム12を介して可動子8に連結されている。   The XY stage shown in FIG. 1 is a movable table 10 driven along the Y-axis direction, a stator 2 installed at both ends thereof, and a movable that moves along the X-axis direction (direction perpendicular to the paper surface). A moving table 11 driven by a linear motor 1 having a child 8 is provided. The moving table 11 is connected to the mover 8 via arms 12 fixed at both ends thereof.

図2に示すように、リニアモータ1は、複数の分割ユニット3a、3b、3cがX軸方向に沿って連接された固定子2と、その内部に形成された磁気空隙g内をX軸方向に沿って移動する可動子8を備えている。図3に示すように、可動子8は、ホルダ81に固定された多相コイル82を備えている。多相コイル82は、複数の偏平コイル(不図示)をX軸方向に沿って配列するとともに、各偏平コイル(例えば3相コイル)は、各相のコイルに通電された時にX軸方向の推力が発生するように結線されている。このリニアモータ1は、可動子に設けた磁界検出素子(例えばホール素子)により、固定子を構成する永久磁石の磁極位置を検出し、各コイルに流れる電流の向きを変えることにより、可動子8をX軸方向に移動するように駆動される。   As shown in FIG. 2, the linear motor 1 includes a stator 2 in which a plurality of divided units 3 a, 3 b, 3 c are connected along the X-axis direction, and a magnetic gap g formed inside the stator 2 in the X-axis direction. Is provided with a movable element 8 that moves along the axis. As shown in FIG. 3, the mover 8 includes a multiphase coil 82 fixed to a holder 81. The multi-phase coil 82 has a plurality of flat coils (not shown) arranged in the X-axis direction, and each flat coil (for example, a three-phase coil) is thrust in the X-axis direction when the coil of each phase is energized. It is wired so as to occur. The linear motor 1 detects a magnetic pole position of a permanent magnet constituting a stator by a magnetic field detection element (for example, a Hall element) provided on the mover, and changes the direction of the current flowing in each coil, thereby moving the mover 8. Is driven to move in the X-axis direction.

本発明の特徴部分である固定子2の構成を図2及び3により説明する。固定子1は、複数(例えば3個)の分割ユニット3a、3b、3cをX軸方向に沿って接続して形成されている(図2参照)。各分割ユニットは、図3に示す状態で組立てられた後、図1に示す姿勢となるように移動ステージ10に設置される。各分割ユニットは同様の構造を有するので(但し長さは同一である必要はない)、分割ユニット3aについて説明し、他の分割ユニットについてはその説明を省略する。   The structure of the stator 2, which is a characteristic part of the present invention, will be described with reference to FIGS. The stator 1 is formed by connecting a plurality of (for example, three) divided units 3a, 3b, and 3c along the X-axis direction (see FIG. 2). Each divided unit is assembled in the state shown in FIG. 3 and then installed on the moving stage 10 so as to have the posture shown in FIG. Since each divided unit has the same structure (however, the lengths need not be the same), the divided unit 3a will be described, and the description of the other divided units will be omitted.

分割ユニット3aは、鉄鋼材料よりも比重の小さい材料からなる非磁性フレーム4(長さL1)と、その内側に設けられた、長さL2の永久磁石部材5a、5bを備えている。永久磁石部材5a(5b)は、鉄鋼材料(例えばSS材)等の強磁性材料からなる平板状に形成されたヨーク6a(6b)の一方の表面に、厚さ方向に磁化されたメイン磁石7a(7b)とその磁化方向と直交する方向(X軸方向)に磁化されたスペーサ磁石70a(70b)を交互に配設することにより形成されている。またメイン磁石7a(7b)はN極とS極がX軸方向に沿って交互に並びかつスペーサ磁石70a(70b)はメイン磁石7a(7b)を挟んで同極性の磁極が向き合うように配設されている。さらに、磁気空隙gを挟んで対向するメイン磁石7a(7b)及びスペーサ磁石70a(70b)は、異極性の磁極が向き合うように配設されている。   The division unit 3a includes a nonmagnetic frame 4 (length L1) made of a material having a specific gravity smaller than that of the steel material, and permanent magnet members 5a and 5b having a length L2 provided on the inside thereof. The permanent magnet member 5a (5b) is a main magnet 7a magnetized in the thickness direction on one surface of a yoke 6a (6b) formed in a flat plate shape made of a ferromagnetic material such as a steel material (for example, SS material). (7b) and spacer magnets 70a (70b) magnetized in the direction orthogonal to the magnetization direction (X-axis direction) are formed alternately. The main magnet 7a (7b) has N and S poles arranged alternately along the X-axis direction, and the spacer magnet 70a (70b) is arranged so that the same polarity magnetic poles face each other across the main magnet 7a (7b). Has been. Further, the main magnet 7a (7b) and the spacer magnet 70a (70b) that are opposed to each other with the magnetic gap g interposed therebetween are arranged so that magnetic poles of different polarities face each other.

上記の永久磁石部材は、いわゆるハルバッハ形磁気回路を形成するので、永久磁石の厚さに対してヨークの厚さをその半分以下と薄くしても、磁気空隙gに高い(例えば0.8〜0.9Tの)磁束密度を得ることができ、高い推力を得ることができる。またこの磁気回路によれば、単純な直方体状の永久磁石を使用しても、磁気空隙gに正弦波に近似した磁束密度分布を得ることができる。なお、一端側の永久磁石の長さを他の永久磁石よりも短くしてもよく、これにより磁気空隙gにおける磁束密度分布(X軸方向)を正弦波により近づけることができる。   Since the permanent magnet member forms a so-called Halbach magnetic circuit, the magnetic gap g is high (for example, 0.8 to 0.8) even if the thickness of the yoke is less than half that of the permanent magnet. A magnetic flux density (0.9 T) can be obtained, and a high thrust can be obtained. Further, according to this magnetic circuit, a magnetic flux density distribution approximating a sine wave can be obtained in the magnetic gap g even if a simple rectangular permanent magnet is used. Note that the length of the permanent magnet on one end side may be shorter than that of other permanent magnets, whereby the magnetic flux density distribution (X-axis direction) in the magnetic gap g can be made closer to a sine wave.

図3に示すように非磁性フレーム4は、鉄鋼材料よりも比重の小さい材料からなり、角柱状のベース部材41とその両側に固着された平板状のサイド部材42を含むコ字形状の部材である。ベース部材41には、X軸方向(紙面に垂直な方向)に伸びる凹溝43が設けられ、凹溝の幅W3はそこに多相コイル82の一部(扁平コイルのうち推力に寄与しない無効導体部)が入り込むような寸法に設定される。サイド部材42の幅W1は、永久磁石部材5bの幅Wmとベース部材31の幅W2の和となるように設定されている。分割ユニット2の厚さt(固定子の厚さ)は、推力を高めるために、永久磁石がコイルユニットと接触せずに、磁気空隙gの寸法{t−2(tm+t3+t2)}ができるだけ狭くなるような寸法に設定される。この分割ユニットによれば、ベース部材41には、X軸方向(紙面に垂直な方向)に伸びる凹溝43が設けられているので、移動テーブル11の長さLaを短くでき、ステージの占有スペースを狭くすることができる。   As shown in FIG. 3, the nonmagnetic frame 4 is made of a material having a specific gravity smaller than that of a steel material, and is a U-shaped member including a prismatic base member 41 and flat side members 42 fixed to both sides thereof. is there. The base member 41 is provided with a concave groove 43 extending in the X-axis direction (a direction perpendicular to the paper surface), and the width W3 of the concave groove is a part of the multiphase coil 82 (ineffective of the flat coil that does not contribute to thrust). The dimension is set such that the conductor portion) enters. The width W1 of the side member 42 is set to be the sum of the width Wm of the permanent magnet member 5b and the width W2 of the base member 31. The thickness t (stator thickness) of the split unit 2 is such that the dimension {t−2 (tm + t3 + t2)} of the magnetic gap g becomes as narrow as possible without increasing the thrust so that the permanent magnet does not contact the coil unit. It is set to such a dimension. According to this divided unit, since the base member 41 is provided with the concave groove 43 extending in the X-axis direction (direction perpendicular to the paper surface), the length La of the movable table 11 can be shortened, and the space occupied by the stage Can be narrowed.

上記の分割ユニットは、例えば図4〜7に示す手順で組立てることにより組立て工数を低減することができる。まず図4(a)に示すように、各ヨーク6aの一方の表面にメイン磁石7aを所定長さ(磁石幅)だけ間隔をあけて固着し、非磁性材料(例えばプラスチック)からなる平板状(厚さts)のスペーサ10を挟んで異極性の磁極を対向させることにより、相対するメイン磁石7aは磁気的に吸着されて、一体化される。次いで図4(b)に示すように、メイン磁石7aの間にスペーサ磁石70aを挿入することにより、厚さtaを有する永久磁石部材5aが組立てられる。   The above-mentioned division unit can reduce the assembly man-hour by assembling in the procedure shown in FIGS. First, as shown in FIG. 4 (a), a main magnet 7a is fixed to one surface of each yoke 6a with a predetermined length (magnet width) at a predetermined interval, and is a flat plate made of a non-magnetic material (for example, plastic). The opposing main magnets 7a are magnetically attracted and integrated by opposing the magnetic poles of different polarities across the spacer 10 having a thickness ts). Next, as shown in FIG. 4B, the permanent magnet member 5a having the thickness ta is assembled by inserting the spacer magnet 70a between the main magnets 7a.

また図5に示すように、ベース部材31と各2列のキリ孔421及びキリ孔422を有する2枚の側板42を準備し(b)、キリ孔421からベース部材41の側面に形成されたメネジにボルト(いずれも不図示)をネジ込むことにより、非磁性フレーム4を組立てておく。   Further, as shown in FIG. 5, the base member 31 and two side plates 42 each having two rows of drill holes 421 and drill holes 422 are prepared (b), and formed on the side surface of the base member 41 from the drill holes 421. The nonmagnetic frame 4 is assembled by screwing bolts (not shown) into the female screws.

次に図6に示すように、ヨーク6aに固着された永久磁石7a、永久磁石7b(不図示)の間にスペーサ10が挟持された一対の永久磁石部材5aを、非磁性フレーム4の上方から白抜き矢印で示す方向に下ろす。この場合、永久磁石部材5aの厚さtaは、ベース部材31の厚さt1よりも狭くしておくことにより、永久磁石部材5aはベース部材41の上面に戴置される。この状態で、図7に示すように、きり孔422(一点鎖線で示す)からボルト(不図示)をヨーク6aのめねじ61にねじ込み(a)、永久磁石部材5aをサイド部材42側(白抜き矢印方向)に引っ張ることにより、永久磁石の間隔t5が広がり(t5>tsとなる)、スペーサ9がベース部材41の凹溝43に入り込む状態が現出する。従ってスペーサ9を紙面に垂直な方向に引き出すことにより、固定子2の一部を組立てることができる。他の永久磁石部材5bも上記と同様の手順で非磁性フレーム4に組込むことにより、分割ユニット3aが得られる。これと同様の手順で他の分割ユニット3b、3cを組立て、これらを直列に接続することにより固定子2が作製される。   Next, as shown in FIG. 6, a pair of permanent magnet members 5 a in which a spacer 10 is sandwiched between a permanent magnet 7 a and a permanent magnet 7 b (not shown) fixed to the yoke 6 a are attached from above the nonmagnetic frame 4. Lower it in the direction indicated by the white arrow. In this case, the permanent magnet member 5 a is placed on the upper surface of the base member 41 by making the thickness ta of the permanent magnet member 5 a smaller than the thickness t 1 of the base member 31. In this state, as shown in FIG. 7, a bolt (not shown) is screwed into the female screw 61 of the yoke 6a (a) from a drill hole 422 (shown by a one-dot chain line), and the permanent magnet member 5a is moved to the side member 42 side (white By pulling in the direction of the pulling arrow), the interval t5 between the permanent magnets is increased (t5> ts), and the state where the spacer 9 enters the concave groove 43 of the base member 41 appears. Therefore, a part of the stator 2 can be assembled by pulling out the spacer 9 in a direction perpendicular to the paper surface. The other permanent magnet member 5b is also incorporated into the nonmagnetic frame 4 in the same procedure as described above, whereby the divided unit 3a is obtained. The stator 2 is manufactured by assembling the other divided units 3b and 3c and connecting them in series in the same procedure.

上記の固定子によれば、永久磁石部材5a(5b)を他の部材(ヨーク及び永久磁石)よりも軽量な非磁性フレーム4で包持するので、単純にヨークと永久磁石で形成した固定子よりも小型化及び軽量化することができるとともに、非磁性フレーム4に可動子の一部(推力に寄与しない部分)を収容する凹溝43を設けるので、モータの全幅を抑えることができ、ステージ装置の省スペース化を図ることができる。   According to the stator described above, the permanent magnet member 5a (5b) is held by the nonmagnetic frame 4 that is lighter than the other members (yoke and permanent magnet). Therefore, the stator simply formed by the yoke and the permanent magnet. In addition to being able to be smaller and lighter than the above, the non-magnetic frame 4 is provided with the concave groove 43 that accommodates a part of the mover (part that does not contribute to thrust), so that the entire width of the motor can be suppressed, and the stage Space saving of the apparatus can be achieved.

また、非磁性フレームをベース部材とその両側面に固定されるサイド部材とで形成するとともに、一対の永久磁石間にスペーサを挟着した状態で永久磁石部材を組立てるので、ハルバッハ形磁気回路を容易に組立てることができ、さらにこの磁気回路をフレームの内部に容易に装着することができる。   In addition, the non-magnetic frame is formed of a base member and side members fixed to both side surfaces of the base member, and the permanent magnet member is assembled with a spacer sandwiched between a pair of permanent magnets. In addition, the magnetic circuit can be easily mounted inside the frame.

なお、凹溝43の寸法t4は、図3に示すように多相コイル82より広い(接触しない)寸法であればよく、この寸法を大きくすることにより、固定子をより軽量化することができる。但し、この寸法が例えば図3のt5程度まで大きくなると、サイド部材42がコイル側に倒れることが予測されるので、サイド部材42の倒れが生じないような寸法に設定する必要がある。   The dimension t4 of the concave groove 43 may be any dimension that is wider (not in contact with) the multiphase coil 82 as shown in FIG. 3, and the stator can be made lighter by increasing this dimension. . However, when this dimension is increased to, for example, about t5 in FIG. 3, it is predicted that the side member 42 will fall to the coil side. Therefore, it is necessary to set the dimension so that the side member 42 does not fall.

上記の固定子は、非磁性フレーム4をアルミニウム合金(例えばA5052)で形成するとともに、各部の寸法を例えば次の範囲で設定することにより、より確実にリニアモータの小型化と軽量化を達成することができる。ベース部材41はw2=50〜60mm、t1=90〜100mm、溝幅w3=20〜30mmとし、サイド部材42は厚さt2=10〜20mm、幅w1=150〜160mmとする。また永久磁石部材5a(5b)は、厚さtm=20〜30mm、幅Wm=90〜100mm、長さLm=20〜30mmの永久磁石(R−Fe−B系焼結磁石)と厚さt3=10〜15mmのヨーク(SS材)で形成する。   In the above stator, the non-magnetic frame 4 is formed of an aluminum alloy (for example, A5052), and the size of each part is set in the following range, for example, so that the linear motor can be reduced in size and weight more reliably. be able to. The base member 41 has w2 = 50 to 60 mm, t1 = 90 to 100 mm, the groove width w3 = 20 to 30 mm, and the side member 42 has a thickness t2 = 10 to 20 mm and a width w1 = 150 to 160 mm. The permanent magnet member 5a (5b) has a thickness tm = 20 to 30 mm, a width Wm = 90 to 100 mm, and a length Lm = 20 to 30 mm and a thickness t3. = 10-15 mm yoke (SS material).

固定子をこのように構成することにより、最大推力が1100N以上、ストロークが2100mm以上のモータ性能を得ることができる。また固定子は厚さt=120〜130mm、幅w1=150〜160mmで、その全重量は250〜260kgとなり、しかも可動子(例えば長さ1200mm)と併せた重量も300kgを大きく下回り、またリニアモータの全幅wは210〜220mmに抑えることができ、ステージ装置の大幅な小型化と軽量化が可能となる。   By configuring the stator in this way, motor performance with a maximum thrust of 1100 N or more and a stroke of 2100 mm or more can be obtained. The stator has a thickness t = 120 to 130 mm, a width w1 = 150 to 160 mm, the total weight is 250 to 260 kg, and the weight combined with the mover (for example, length 1200 mm) is much less than 300 kg. The total width w of the motor can be suppressed to 210 to 220 mm, and the stage device can be greatly reduced in size and weight.

本発明において、非磁性フレームは、ヨーク材料(例えば炭素鋼、比重は7.85)よりも比重の小さい材料で形成すればよいが、実用的見地(コスト及び剛性など)から、アルミニウム合金(比重2.8)で形成することが好ましい。但し、これ以外の非磁性金属材料(例えばMg合金:比重はアルミニウム合金の約2/3)で形成することは可能で、またプラスチック材料(例えばFRP、比重1.5〜1.9)やセラミックス材料(例えばジルコニア:比重3.8)で形成することも可能である。   In the present invention, the nonmagnetic frame may be formed of a material having a specific gravity smaller than that of the yoke material (for example, carbon steel, specific gravity is 7.85). However, from a practical standpoint (cost, rigidity, etc.), an aluminum alloy (specific gravity) It is preferable to form in 2.8). However, other non-magnetic metal materials (for example, Mg alloy: specific gravity is about 2/3 that of aluminum alloy) can be used, and plastic materials (for example, FRP, specific gravity 1.5 to 1.9) or ceramics can be used. It is also possible to form with a material (for example, zirconia: specific gravity 3.8).

本発明において、前記永久磁石は、公知の永久磁石、例えば希土類磁石で形成することができるが、特にR(Rは、Nd等の希土類元素から選択された一種又は二種以上の元素である。)、T(TはFe又はFe及びCoである。)及びBを必須成分とするR−T−B系焼結磁石が好適である。   In the present invention, the permanent magnet can be formed of a known permanent magnet, for example, a rare earth magnet, and in particular, R (R is one or more elements selected from rare earth elements such as Nd. ), T (T is Fe or Fe and Co.) and R-T-B based sintered magnets containing B as essential components are suitable.

本発明の実施の形態に係わるリニアモータを備えたXYステージの側面図である。It is a side view of the XY stage provided with the linear motor concerning embodiment of this invention. 図1をA方向から見た矢視図である。It is the arrow line view which looked at FIG. 1 from A direction. 図2のB−B線断面図である。FIG. 3 is a sectional view taken along line B-B in FIG. 2. (a)は永久磁石部材の組立途中の状態を示す図で、(b)は永久磁石部材を組立てた状態を示す図である。(A) is a figure which shows the state in the middle of the assembly of a permanent magnet member, (b) is a figure which shows the state which assembled the permanent magnet member. 固定子の組立開始時の状態を示す図で、(a)は正面図、(b)は側面図である。It is a figure which shows the state at the time of the assembly start of a stator, (a) is a front view, (b) is a side view. 固定子の組立途中の状態を示す図で、(a)は正面図、(b)は側面図である。It is a figure which shows the state in the middle of the assembly of a stator, (a) is a front view, (b) is a side view. 固定子の組立終了時の状態を示す図で、(a)は正面図、(b)は側面図である。It is a figure which shows the state at the time of completion | finish of an assembly of a stator, (a) is a front view, (b) is a side view.

符号の説明Explanation of symbols

1:リニアモータ、2:固定子、3a、3b、3c:分割ユニット、
4:非磁性フレーム、41:ベース部材、42:サイド部材、421、422:キリ孔、43:凹溝、
5a、5b:永久磁石部材、6a、6b:ヨーク、61:めねじ
7a、7b:メイン磁石、70a、70b:スペーサ磁石、
8:可動子、81:コイルホルダ、82:多相コイル、
9:スペーサ、
10、11:移動テーブル、12:アーム
1: linear motor, 2: stator, 3a, 3b, 3c: divided unit,
4: non-magnetic frame, 41: base member, 42: side member, 421, 422: drill hole, 43: concave groove,
5a, 5b: permanent magnet member, 6a, 6b: yoke, 61: female screw 7a, 7b: main magnet, 70a, 70b: spacer magnet,
8: Movable element, 81: Coil holder, 82: Multi-phase coil,
9: Spacer,
10, 11: Moving table, 12: Arm

Claims (3)

所定方向に沿って正弦波状の磁束密度分布が現出する磁気空隙を有する固定子と、前記磁気空隙内に配置される多相コイルを含む可動子とを有する可動コイル型リニアモータにおいて、
前記固定子は、強磁性材料からなるヨークに固着され、前記可動子の移動方向に沿って磁化方向の異なる永久磁石が交互に配列された永久磁石部材と、前記磁気空隙を介して対向する少なくとも一対の前記永久磁石部材を包持し、前記ヨークより比重の小なる金属材料からなる非磁性フレームとを有する分割ユニットを複数個備えるとともに、
前記非磁性フレームは、前記多相コイルの一部が挿入される溝を有するベース部材と、前記永久磁石部材を支持し、前記ベース部材の両側面に固定されるサイド部材を含むことを特徴とする可動コイル型リニアモータ。
In a movable coil linear motor having a stator having a magnetic gap in which a sinusoidal magnetic flux density distribution appears along a predetermined direction, and a mover including a multiphase coil disposed in the magnetic gap,
The stator is fixed to a yoke made of a ferromagnetic material, and is opposed to at least a permanent magnet member in which permanent magnets having different magnetization directions are arranged along the moving direction of the mover via the magnetic gap. A plurality of divided units having a pair of the permanent magnet members and having a nonmagnetic frame made of a metal material having a specific gravity smaller than that of the yoke,
The nonmagnetic frame includes a base member having a groove into which a part of the multiphase coil is inserted, and a side member that supports the permanent magnet member and is fixed to both side surfaces of the base member. Moving coil type linear motor.
前記ヨークは鉄鋼材料からなり、前記非磁性フレームはアルミニウム又はその合金からなることを特徴とする請求項1に記載の可動コイル型リニアモータ。 The moving coil linear motor according to claim 1, wherein the yoke is made of a steel material, and the non-magnetic frame is made of aluminum or an alloy thereof. 前記永久磁石は、R(RはNd等の希土類元素から選択された一種又は二種以上の元素である。)、T(TはFe又はFe及びCoである。)及びBを必須成分とするR−T−B系焼結磁石からなることを特徴とする請求項1に記載の可動コイル型リニアモータ。 The permanent magnet contains R (R is one or more elements selected from rare earth elements such as Nd), T (T is Fe or Fe and Co), and B as essential components. 2. The moving coil linear motor according to claim 1, wherein the moving coil linear motor is made of an RTB-based sintered magnet.
JP2007085566A 2007-03-28 2007-03-28 Assembly method of moving coil type linear motor Active JP5240543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007085566A JP5240543B2 (en) 2007-03-28 2007-03-28 Assembly method of moving coil type linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007085566A JP5240543B2 (en) 2007-03-28 2007-03-28 Assembly method of moving coil type linear motor

Publications (2)

Publication Number Publication Date
JP2008245475A true JP2008245475A (en) 2008-10-09
JP5240543B2 JP5240543B2 (en) 2013-07-17

Family

ID=39916133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007085566A Active JP5240543B2 (en) 2007-03-28 2007-03-28 Assembly method of moving coil type linear motor

Country Status (1)

Country Link
JP (1) JP5240543B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208031A (en) * 2012-03-29 2013-10-07 Toyo Tire & Rubber Co Ltd Power generation element
JP2014068472A (en) * 2012-09-26 2014-04-17 Hitachi Automotive Systems Ltd Rotary electric machine and process of manufacturing magnetic pole piece
JP2015027208A (en) * 2013-07-27 2015-02-05 株式会社アテック Electromagnetic induction device
CN106067714A (en) * 2015-04-21 2016-11-02 普罗蒂恩电子有限公司 For magnet is installed on the device of motor
WO2017163978A1 (en) * 2016-03-23 2017-09-28 住友重機械工業株式会社 Linear motor and stage device
JP2019103260A (en) * 2017-12-04 2019-06-24 住友重機械工業株式会社 Linear motor
WO2019131908A1 (en) * 2017-12-28 2019-07-04 株式会社デンソー Rotary electric machine
JP2020018129A (en) * 2018-07-26 2020-01-30 株式会社デンソー Dynamo-electric machine
CN111566904A (en) * 2017-12-28 2020-08-21 株式会社电装 Rotating electrical machine
US20200395878A1 (en) 2017-12-28 2020-12-17 Denso Corporation Rotating electrical machine
US11110793B2 (en) 2017-12-28 2021-09-07 Denso Corporation Wheel driving apparatus
EP3973622A1 (en) * 2019-05-20 2022-03-30 Physik Instrumente (PI) GmbH & Co. Kg Biaxial positioning device
US11368073B2 (en) 2017-12-28 2022-06-21 Denso Corporation Rotating electrical machine
US11374465B2 (en) 2017-07-21 2022-06-28 Denso Corporation Rotating electrical machine
US11664708B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine
US11979063B2 (en) 2017-12-28 2024-05-07 Denso Corporation Rotating electric machine
US11984778B2 (en) 2020-03-05 2024-05-14 Denso Corporation Rotating electric machine
US12074477B2 (en) 2017-12-28 2024-08-27 Denso Corporation Rotating electrical machine system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102370251B1 (en) * 2019-12-30 2022-03-04 주식회사 온이엔지 Linear motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032996A (en) * 2001-07-18 2003-01-31 Hitachi Metals Ltd Linear motor and assembling method therefor
JP2004080938A (en) * 2002-08-20 2004-03-11 Yaskawa Electric Corp Coreless linear motor
JP2006054974A (en) * 2004-08-13 2006-02-23 Shin Etsu Chem Co Ltd Linear motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003032996A (en) * 2001-07-18 2003-01-31 Hitachi Metals Ltd Linear motor and assembling method therefor
JP2004080938A (en) * 2002-08-20 2004-03-11 Yaskawa Electric Corp Coreless linear motor
JP2006054974A (en) * 2004-08-13 2006-02-23 Shin Etsu Chem Co Ltd Linear motor

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208031A (en) * 2012-03-29 2013-10-07 Toyo Tire & Rubber Co Ltd Power generation element
JP2014068472A (en) * 2012-09-26 2014-04-17 Hitachi Automotive Systems Ltd Rotary electric machine and process of manufacturing magnetic pole piece
JP2015027208A (en) * 2013-07-27 2015-02-05 株式会社アテック Electromagnetic induction device
CN106067714B (en) * 2015-04-21 2021-04-06 普罗蒂恩电子有限公司 Device for mounting a magnet to an electric machine
CN106067714A (en) * 2015-04-21 2016-11-02 普罗蒂恩电子有限公司 For magnet is installed on the device of motor
WO2017163978A1 (en) * 2016-03-23 2017-09-28 住友重機械工業株式会社 Linear motor and stage device
TWI647895B (en) * 2016-03-23 2019-01-11 日商住友重機械工業股份有限公司 Linear motor, stage device
JP2017175764A (en) * 2016-03-23 2017-09-28 住友重機械工業株式会社 Linear motor and stage device
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
US11984795B2 (en) 2017-07-21 2024-05-14 Denso Corporation Rotating electrical machine
US11962228B2 (en) 2017-07-21 2024-04-16 Denso Corporation Rotating electrical machine
US11831228B2 (en) 2017-07-21 2023-11-28 Denso Corporation Rotating electrical machine
US11824428B2 (en) 2017-07-21 2023-11-21 Denso Corporation Rotating electrical machine
US11664707B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11664708B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11374465B2 (en) 2017-07-21 2022-06-28 Denso Corporation Rotating electrical machine
JP2019103260A (en) * 2017-12-04 2019-06-24 住友重機械工業株式会社 Linear motor
JP7088667B2 (en) 2017-12-04 2022-06-21 住友重機械工業株式会社 Linear motor
US11368073B2 (en) 2017-12-28 2022-06-21 Denso Corporation Rotating electrical machine
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine
US11664693B2 (en) 2017-12-28 2023-05-30 Denso Corporation Rotating electrical machine
US11110793B2 (en) 2017-12-28 2021-09-07 Denso Corporation Wheel driving apparatus
US20200395878A1 (en) 2017-12-28 2020-12-17 Denso Corporation Rotating electrical machine
CN111566904A (en) * 2017-12-28 2020-08-21 株式会社电装 Rotating electrical machine
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US12074477B2 (en) 2017-12-28 2024-08-27 Denso Corporation Rotating electrical machine system
US12028004B2 (en) 2017-12-28 2024-07-02 Denso Corporation Rotating electrical machine
US11979063B2 (en) 2017-12-28 2024-05-07 Denso Corporation Rotating electric machine
WO2019131908A1 (en) * 2017-12-28 2019-07-04 株式会社デンソー Rotary electric machine
JP2020018129A (en) * 2018-07-26 2020-01-30 株式会社デンソー Dynamo-electric machine
EP3973622A1 (en) * 2019-05-20 2022-03-30 Physik Instrumente (PI) GmbH & Co. Kg Biaxial positioning device
US11984778B2 (en) 2020-03-05 2024-05-14 Denso Corporation Rotating electric machine

Also Published As

Publication number Publication date
JP5240543B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5240543B2 (en) Assembly method of moving coil type linear motor
US7696654B2 (en) Linear motor not requiring yoke
US8044541B2 (en) Multi-degree-of-freedom actuator and stage device
US7339290B2 (en) Linear motor
JP2002064968A (en) Slide device with moving coil type linear motor
US10381911B2 (en) Linear motor, magnet unit, and stage device
JP2002325421A5 (en)
JP2005184878A (en) Linear motor and attraction offset linear motor
US20020079997A1 (en) Linear brushless DC motor with ironless armature assembly
CN103973072A (en) Linear motor
US7482716B2 (en) Linear motor with claw-pole armature units
JP2005117856A (en) Moving magnet linear actuator
JP5088536B2 (en) Assembly method of moving coil type linear motor
JP2006174583A (en) Linear motor
JP2014516236A (en) Method for locally improving the coercivity of a permanent magnet in a linear motor
JP2011155757A (en) Linear motor
JP4534194B2 (en) Moving coil type linear motor and magnetic circuit assembling method thereof
CN203352411U (en) Linear slider
US20040150269A1 (en) Linear motor, its controlling method, and XY table
JP5365775B2 (en) Manufacturing method of linear motor system and linear motor system
JP3409223B2 (en) Linear motor
US7250696B2 (en) Linear motor and X-Y stage
JP2003032996A (en) Linear motor and assembling method therefor
JP2001197717A (en) Field component of linear motor and method of magnetizing permanent magnet for field
JP2024042354A (en) Moving coil type linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5240543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350