JP2008207066A - Treatment method of organic wastewater - Google Patents
Treatment method of organic wastewater Download PDFInfo
- Publication number
- JP2008207066A JP2008207066A JP2007043884A JP2007043884A JP2008207066A JP 2008207066 A JP2008207066 A JP 2008207066A JP 2007043884 A JP2007043884 A JP 2007043884A JP 2007043884 A JP2007043884 A JP 2007043884A JP 2008207066 A JP2008207066 A JP 2008207066A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- treatment
- organic wastewater
- tank
- biological treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011282 treatment Methods 0.000 title claims abstract description 70
- 238000000034 method Methods 0.000 title claims abstract description 45
- 239000002351 wastewater Substances 0.000 title claims abstract description 23
- 239000010802 sludge Substances 0.000 claims abstract description 132
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 22
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims abstract description 15
- 239000007788 liquid Substances 0.000 claims abstract description 11
- 150000003839 salts Chemical class 0.000 claims abstract description 10
- 230000003381 solubilizing effect Effects 0.000 claims abstract description 10
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims abstract description 9
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims abstract description 4
- 239000005416 organic matter Substances 0.000 claims abstract description 4
- 150000002500 ions Chemical class 0.000 claims abstract 2
- 238000005063 solubilization Methods 0.000 claims description 38
- 230000007928 solubilization Effects 0.000 claims description 38
- 238000004065 wastewater treatment Methods 0.000 claims description 10
- 239000003513 alkali Substances 0.000 claims description 5
- 239000010815 organic waste Substances 0.000 claims description 5
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910001424 calcium ion Inorganic materials 0.000 claims description 2
- 159000000000 sodium salts Chemical class 0.000 claims description 2
- 238000000926 separation method Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 150000001875 compounds Chemical class 0.000 abstract 1
- 238000005273 aeration Methods 0.000 description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 8
- 229910052938 sodium sulfate Inorganic materials 0.000 description 8
- 235000011152 sodium sulphate Nutrition 0.000 description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical group OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 235000011121 sodium hydroxide Nutrition 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- -1 alkali metal salts Chemical class 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 235000017557 sodium bicarbonate Nutrition 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 238000004042 decolorization Methods 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 229940045872 sodium percarbonate Drugs 0.000 description 1
- PFUVRDFDKPNGAV-UHFFFAOYSA-N sodium peroxide Chemical compound [Na+].[Na+].[O-][O-] PFUVRDFDKPNGAV-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
本発明は、有機性排水を生物処理する方法に関し、さらに詳しくは該有機性排水の生物処理に汚泥の可溶化処理を組み込み、発生する余剰汚泥の発生量を低減させることが可能な有機性排水の処理方法に関する。 The present invention relates to a method for biologically treating organic wastewater, and more specifically, organic wastewater capable of incorporating sludge solubilization into the biological treatment of the organic wastewater to reduce the amount of generated excess sludge. It relates to the processing method.
従来、活性汚泥法などの生物処理で発生する余剰汚泥は、脱水、乾燥、焼却などの汚泥処理によって処分されているが、その処分に多大な経費と設備費がかかる点が最大の問題となっている。従来の活性汚泥法の余剰汚泥の発生量は、一般に、除去されるBOD1kg当たり、0.6〜0.8kg・ss(汚泥)であり、非常に多量の余剰汚泥が発生することが良く知られている。しかも、余剰汚泥は質的にも難脱水性であるため、ますますその処分が困難になっている。 Conventionally, surplus sludge generated by biological treatment such as the activated sludge method has been disposed of by sludge treatment such as dehydration, drying, and incineration, but the biggest problem is that the disposal requires significant expenses and equipment costs. ing. The amount of excess sludge generated by the conventional activated sludge method is generally 0.6 to 0.8 kg · ss (sludge) per 1 kg of BOD to be removed, and it is well known that a very large amount of excess sludge is generated. Moreover, since the excess sludge is qualitatively difficult to dehydrate, its disposal becomes increasingly difficult.
余剰汚泥の発生量を低減させる方法として、余剰汚泥を可溶化して生物処理槽(曝気槽)に戻して処理する方法が数多く提案されている。例えば、余剰汚泥をアルカリで処理することで可溶化して生物処理槽に戻す方法(特許文献1参照)、余剰汚泥の超音波、ホモジナイザー、ミキサー、又は急激な圧力変動による破壊や、オゾンガスによる酸化分解をすることにより可溶化して生物処理槽に戻す方法(特許文献2参照)が提案されている。
一方、余剰汚泥の発生を減少させる方法として、有機性排水処理工程に余剰汚泥の一部又は全部を可溶化する可溶化処理手段を設け、その可溶化をアルカリ剤による処理にホモジナイザー、ミキサー等による処理を組み合わせて行う方法も知られている(特許文献3参照)。
これらの処理における、余剰汚泥を可溶化して生物処理槽で処理する方法では、汚泥を再基質化する際、より短時間・低いエネルギーで高い可溶化率が得られた方が有利であり、汚泥をより効率的に可溶化し得る方法が求められていた。
On the other hand, as a method of reducing the generation of surplus sludge, a solubilization means for solubilizing a part or all of the surplus sludge is provided in the organic wastewater treatment process, and the solubilization is treated with an alkaline agent by using a homogenizer, a mixer or the like. A method of combining processing is also known (see Patent Document 3).
In these treatments, the method of solubilizing excess sludge and treating it in a biological treatment tank is advantageous when a high solubilization rate is obtained in a shorter time and with lower energy when sludge is re-substrateed. There has been a demand for a method that can solubilize sludge more efficiently.
本発明は、有機性排水の生物処理に伴って発生する余剰汚泥の発生量を顕著に減少させることができ、且つ有機性排水の処理液性状への影響が少ない新規な有機性排水の処理方法を提供することを目的とする。 The present invention is a novel organic wastewater treatment method that can remarkably reduce the amount of surplus sludge generated during biological treatment of organic wastewater and that has little effect on the treatment liquid properties of organic wastewater. The purpose is to provide.
本発明者は、斯かる実情に鑑み鋭意研究を行った結果、特定量の硫酸、炭酸、炭酸水素又はそれらの塩の存在下に、固液分離された汚泥の可溶化処理を行うことで、汚泥の可溶化率が向上し、余剰汚泥の発生量を顕著に減少させることができることを見出し、本発明を完成した。 As a result of earnest research in view of such circumstances, the present inventor performed solubilization treatment of solid-liquid separated sludge in the presence of a specific amount of sulfuric acid, carbonic acid, hydrogen carbonate or a salt thereof, The present inventors have found that the sludge solubilization rate is improved and the amount of surplus sludge generated can be significantly reduced.
すなわち、本発明は、生物処理槽において有機性排水を生物処理した後、該生物処理混合物を処理水と汚泥に固液分離し、該汚泥の一部又は全部に対して、その中の有機物を可溶化する可溶化処理を施した後、前記生物処理槽に返送する有機性排水の処理方法において、汚泥が循環する系内に、硫酸、炭酸、炭酸水素及びそれらの塩から選ばれる1種又は2種以上を、硫酸イオン、炭酸イオン又は炭酸水素イオン基準で、原水量に対して1mmol/L〜30mmol/Lの範囲になるように添加することを特徴とする有機性排水の処理方法を提供するものである。 That is, in the present invention, after biologically treating organic wastewater in a biological treatment tank, the biological treatment mixture is solid-liquid separated into treated water and sludge, and the organic matter in the sludge is partially or wholly contained. In the method for treating organic wastewater to be solubilized and then returned to the biological treatment tank, one type selected from sulfuric acid, carbonic acid, hydrogen carbonate and salts thereof in the system in which sludge circulates An organic wastewater treatment method is provided, wherein two or more kinds are added so as to be in a range of 1 mmol / L to 30 mmol / L with respect to the amount of raw water on the basis of sulfate ion, carbonate ion or bicarbonate ion. To do.
本発明の有機性排水の処理方法によれば、有機性排水の生物処理に伴って発生する余剰汚泥を効果的に可溶化し得ることで、より少ない投入エネルギーにより余剰汚泥発生量を顕著に減少させることができる。 According to the organic wastewater treatment method of the present invention, surplus sludge generated with biological treatment of organic wastewater can be effectively solubilized, thereby significantly reducing the amount of surplus sludge generated with less input energy. Can be made.
本発明の有機性排水の処理方法は、余剰汚泥を発生する各種の有機性排水の生物処理に適用し得て、この生物処理は、好気性生物処理でも良いし、嫌気性生物処理でも良い。
好気性生物処理としては、活性汚泥法、生物膜法などが挙げられる。活性汚泥法は、有機性排水を活性汚泥の存在下に好気性生物処理する処理法であり、有機性排水を曝気槽で活性汚泥と混合して曝気し、混合液を濃縮装置で濃縮し、濃縮汚泥の一部を曝気槽に返送する標準活性汚泥法が一般的であるが、これを変形した処理法であっても良い。また、生物膜法は、担体に生物膜を形成して好気性下に有機性排水と接触させる処理法である。
嫌気性生物処理としては、所謂嫌気性消化法、高負荷嫌気性処理法などが挙げられる。
上記各種の有機性排水の生物処理の中でも、有機性排水の処理に多用されている活性汚泥法に好適に適用することができる。以下、活性汚泥法を例にとり、添付図面に関連して本発明を詳しく説明する。
The organic wastewater treatment method of the present invention can be applied to biological treatment of various organic wastewaters that generate excess sludge. This biological treatment may be an aerobic biological treatment or an anaerobic biological treatment.
Examples of the aerobic biological treatment include an activated sludge method and a biofilm method. The activated sludge process is an aerobic biological treatment of organic wastewater in the presence of activated sludge. Organic wastewater is mixed with activated sludge in an aeration tank and aerated, and the mixture is concentrated with a concentrator. A standard activated sludge method is generally used in which a part of the concentrated sludge is returned to the aeration tank. However, a modified treatment method may be used. The biofilm method is a treatment method in which a biofilm is formed on a carrier and brought into contact with organic waste water under aerobic conditions.
Examples of the anaerobic biological treatment include a so-called anaerobic digestion method and a high-load anaerobic treatment method.
Among the biological treatments of the above various organic wastewaters, it can be suitably applied to the activated sludge method that is frequently used for the treatment of organic wastewaters. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings, taking the activated sludge method as an example.
従来の標準活性汚泥法の処理系の一般的なフローは、図1に示すとおりである。図1の処理系のフローにおいては、ライン1から有機性排水が曝気槽2に供給され、曝気槽2において曝気されて活性汚泥により好気性生物処理を受け、次いでライン3を経て汚泥沈降槽4に送られる。そして、固液分離後、汚泥沈降槽4の上澄み液が処理水としてライン5から排出、放流され、一方、汚泥沈降槽4の沈殿汚泥が返送汚泥としてライン6を経て曝気槽2に戻される。この返送汚泥の一部が分取されて余剰汚泥としてライン7を経て、必要に応じて汚泥濃縮工程8に供給されて固形物濃度が一層高められた後、ライン9を経て汚泥脱水工程10に導かれて脱水され、得られた脱水余剰汚泥11が系外に排出される。
A general flow of a conventional standard activated sludge process system is as shown in FIG. In the flow of the treatment system of FIG. 1, organic waste water is supplied from the line 1 to the aeration tank 2, aerated in the aeration tank 2, subjected to aerobic biological treatment with activated sludge, and then through the line 3 to the sludge settling tank 4 Sent to. After the solid-liquid separation, the supernatant liquid of the sludge settling tank 4 is discharged and discharged from the
上記のような従来の標準活性汚泥法に可溶化処理を施し、しかる後、前記生物処理槽に返送する処理系のフローを図示すれば、図2のとおりである。この図2に関連して本発明を説明する。
図2に示す本発明の実施態様例の処理系のフローでは、ライン1から有機性排水が曝気槽2に供給され、曝気槽2において曝気されて活性汚泥により好気性生物処理を受け、次いでライン3を経て汚泥沈降槽4に送られる。そして、固液分離後、汚泥沈降槽4の上澄み液が処理水としてライン5から排出、放流され、一方、汚泥沈降槽4の沈殿汚泥が返送汚泥としてライン6を経て曝気槽2に戻される。そして、前記返送汚泥の一部が分取されて余剰汚泥としてライン7を経て、必要に応じて汚泥濃縮工程8に供給されて固形物濃度を0.5〜5重量%程度に濃縮された後、この余剰汚泥の一部がライン9を経て汚泥脱水工程10に導かれて脱水され、得られた脱水余剰汚泥11が系外に排出される。ここまでのフローは、上記従来の標準活性汚泥法の処理系のフローと同様である。
返送汚泥の一部または濃縮槽で濃縮された汚泥の一部または全部は、ライン12を経て汚泥可溶化槽13に導かれて可溶化処理され、該可溶化処理物がライン14を経て曝気槽2に戻され、活性汚泥によって生物処理される。ただし、返送汚泥から分取された余剰汚泥の固形物濃度が高い場合は、汚泥濃縮工程8を設けて余剰汚泥の濃縮を行う必要はない。
また、この処理系の処理条件を、可溶化処理しない条件での余剰汚泥発生量の約2〜3.5倍の沈殿汚泥を可溶化処理することによって、系外に排出される余剰汚泥をなくすこともできる。
FIG. 2 shows the flow of the treatment system in which the conventional standard activated sludge method as described above is subjected to the solubilization treatment and then returned to the biological treatment tank. The present invention will be described with reference to FIG.
In the flow of the treatment system of the embodiment of the present invention shown in FIG. 2, organic waste water is supplied from the line 1 to the aeration tank 2, aerated in the aeration tank 2, and subjected to aerobic biological treatment with activated sludge, and then the line 3 is sent to the sludge settling tank 4. After the solid-liquid separation, the supernatant liquid of the sludge settling tank 4 is discharged and discharged from the
A part of the returned sludge or a part or all of the sludge concentrated in the concentration tank is led to the sludge solubilization tank 13 via the
Moreover, the surplus sludge discharged | emitted out of the system is eliminated by solubilizing the sedimentation sludge about 2 to 3.5 times the surplus sludge generation amount in the condition where this treatment system is not solubilized. You can also.
本発明において、曝気槽2、汚泥沈降槽4としては従来から用いられているものを適宜用いることができる。また、汚泥濃縮工程8の濃縮手段としても、従来から用いられている濃縮手段、例えば重力沈降分離機、浮上分離機、遠心分離機、膜分離機、スクリュー脱水機等を定義用いることができる。また、汚泥脱水工程10の脱水手段としても、従来から用いられている脱水手段、例えば遠心分離機、ベルトフィルター脱水機、スクリュープレス脱水機等を適宜用いることができる。 In the present invention, conventionally used aeration tank 2 and sludge settling tank 4 can be appropriately used. Further, as the concentration means in the sludge concentration step 8, conventionally used concentration means such as gravity sedimentation separators, flotation separators, centrifuges, membrane separators, screw dehydrators and the like can be defined and used. Further, as the dewatering means of the sludge dewatering step 10, conventionally used dewatering means such as a centrifugal separator, a belt filter dehydrator, a screw press dehydrator and the like can be appropriately used.
本発明において、有機物の可溶化を促進するために添加する硫酸、炭酸、炭酸水素又はそれらの塩の添加位置としては、汚泥が循環する系内であれば特に限定されない。ここで、汚泥が循環する系内とは、生物処理槽(曝気槽)及び固液分離槽を含む、汚泥が循環する系内であることを意味する。例えば、図2に示すライン1、曝気槽2、ライン3、ライン6、ライン12、汚泥可溶化槽13、ライン14などが挙げられ、汚泥濃縮工程から汚泥可溶化槽に汚泥を送液する場合は、ライン7、汚泥濃縮工程8などが挙げられる。これらのうち、可溶化率向上の観点から、ライン1、曝気槽2、ライン3、ライン12、ライン7、汚泥濃縮工程8の位置が好ましく、特にライン1、ライン12、汚泥濃縮工程8が好ましい。
In the present invention, the addition position of sulfuric acid, carbonic acid, hydrogen carbonate or a salt thereof added to promote solubilization of organic substances is not particularly limited as long as it is in a system in which sludge circulates. Here, the system in which the sludge circulates means the system in which the sludge circulates, including a biological treatment tank (aeration tank) and a solid-liquid separation tank. For example, the line 1, the aeration tank 2, the line 3, the line 6, the
硫酸、炭酸、炭酸水素又はそれらの塩としては、その形態は特に限定されないが、添加した際に溶解する形態のものを用いるのが好ましい。塩としては、例えばナトリウム、カリウムなどのアルカリ金属塩などが挙げられる。これらのうち、好ましい形態としてはアルカリ金属塩であり、特にナトリウム塩である硫酸ナトリウム、炭酸ナトリウム、炭酸水素ナトリウムが好ましい。これらは1種又は2種以上を組み合わせて用いてもよい。 The form of sulfuric acid, carbonic acid, hydrogen carbonate or a salt thereof is not particularly limited, but it is preferable to use a form that dissolves when added. Examples of the salt include alkali metal salts such as sodium and potassium. Among these, a preferable form is an alkali metal salt, and sodium sulfate, sodium carbonate, and sodium hydrogen carbonate, which are sodium salts, are particularly preferable. These may be used alone or in combination of two or more.
硫酸、炭酸、炭酸水素又はそれらの塩の添加量は、可溶化率向上の観点から、硫酸イオン、炭酸イオン又は炭酸水素イオン基準で、原水量に対して1mmol/L〜30mmol/Lの範囲が好ましく、特に1.5mmol/L〜25mmolが好ましい。硫酸、炭酸、炭酸水素又はそれらの塩を2種以上用いる場合は、全量として前記添加量になるように添加すればよい。また、原水に硫酸塩、炭酸塩、炭酸水素塩等が含有されている場合は、その量を勘案して、全量として前記添加量の範囲になるように、調節して添加すればよい。 From the viewpoint of improving the solubilization rate, the amount of sulfuric acid, carbonic acid, hydrogen carbonate or a salt thereof added ranges from 1 mmol / L to 30 mmol / L with respect to the amount of raw water on the basis of sulfate ion, carbonate ion or hydrogen carbonate ion. Particularly preferred is 1.5 mmol / L to 25 mmol. When using 2 or more types of sulfuric acid, carbonic acid, hydrogen carbonate, or their salts, it should just add so that it may become the said addition amount as a whole quantity. In addition, when sulfate, carbonate, hydrogen carbonate, or the like is contained in the raw water, the total amount may be adjusted and added so that the total amount falls within the range of the addition amount.
汚泥可溶化槽13における可溶化処理方法は限定されないが、特に、アルカリ剤を用いた可溶化、物理的な破砕による可溶化、アルカリ剤と物理的な破砕を組み合わせた可溶化処理方法が好適である。
アルカリ剤としては、特に限定されないが、例えば水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム等が挙げられ、特に水酸化ナトリウムが好ましい。アルカリ剤の添加量は、特に限定されないが、可溶化処理する余剰汚泥に対して0.005〜0.1Nであればよく、好ましくは0.01〜0.05Nである。
物理的な破砕としては、ミキサー、ミル、超音波による破砕が挙げられ、特にミキサー、ミルが好ましい。
The solubilization treatment method in the sludge solubilization tank 13 is not limited, but a solubilization treatment method combining solubilization using an alkali agent, solubilization by physical crushing, and alkali agent and physical crushing is particularly suitable. is there.
Although it does not specifically limit as an alkaline agent, For example, sodium hydroxide, sodium carbonate, sodium hydrogencarbonate etc. are mentioned, Especially sodium hydroxide is preferable. Although the addition amount of an alkali agent is not specifically limited, 0.005-0.1N should just be sufficient with respect to the excess sludge to solubilize, Preferably it is 0.01-0.05N.
Examples of physical crushing include crushing by a mixer, a mill, and an ultrasonic wave, and a mixer and a mill are particularly preferable.
可溶化処理の時間としては、特に限定されないが、1分〜300分が好ましく、特に3分〜250分、更に10分〜200分が好ましい。
可溶化処理後の汚泥可溶化液(以下、「可溶化液」という)は、必要に応じて中和処理又は酸化剤による脱色処理を行ってもよい。脱色処理を行うことによって、余剰汚泥の減容化を行う際に発生する可溶化処理物の着色、それに起因する処理水の色相への悪影響を削減することができる。この脱色処理と中和処理とは併用できるが、その場合、中和処理を行う前に脱色処理を行うことが好ましい。中和処理には、硫酸等の鉱酸、使用済みの廃酸などを使用できる。酸化剤としては、酸化力が強く、そのものが分解後、活性汚泥にとって無害なものに変化する過酸化水素、過酸化ナトリウム、過炭酸ナトリウム等が好ましく、過酸化水素が特に好ましい。
同じ可溶化処理量の場合、可溶化率を高くすることで余剰汚泥発生量の削減率を高くすることが可能となる。
The time for the solubilization treatment is not particularly limited, but is preferably 1 minute to 300 minutes, particularly preferably 3 minutes to 250 minutes, and more preferably 10 minutes to 200 minutes.
The sludge solubilizing solution after the solubilization treatment (hereinafter referred to as “solubilizing solution”) may be subjected to neutralization treatment or decolorization treatment with an oxidizing agent as necessary. By performing the decolorization treatment, it is possible to reduce the adverse effect on the color of the solubilized treatment product generated when the volume of excess sludge is reduced and the hue of the treated water resulting therefrom. Although the decoloring treatment and the neutralization treatment can be used in combination, it is preferable to perform the decoloring treatment before the neutralization treatment. For the neutralization treatment, a mineral acid such as sulfuric acid, a spent waste acid or the like can be used. The oxidizing agent is preferably hydrogen peroxide, sodium peroxide, sodium percarbonate, etc., which have strong oxidizing power and change itself to be harmless to activated sludge after decomposition, and hydrogen peroxide is particularly preferable.
In the case of the same solubilization amount, it is possible to increase the reduction rate of the excess sludge generation amount by increasing the solubilization rate.
本発明の有機性排水の処理方法は、活性汚泥において処理する原水中のカルシウムイオン濃度が、10ppm〜200ppmの範囲、好ましくは20ppm〜100ppmの範囲の原水に対して、特に有用である。 The method for treating organic waste water of the present invention is particularly useful for raw water in which the calcium ion concentration in raw water to be treated in activated sludge is in the range of 10 ppm to 200 ppm, preferably in the range of 20 ppm to 100 ppm.
以下に、実施例を挙げてこの発明を更に具体的に説明するが、この発明の技術的範囲はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to these examples.
実施例1
工場排水(COD=80〜120mg/L(試験期間平均100mg/L)、Ca濃度30ppm〜50ppm(試験期間平均40ppm))を曝気時間12時間、活性汚泥MLSS=3000mg/Lの40L曝気槽(COD容積負荷0.20(kgCOD/m3・day))に供給した後、20L沈降槽において活性汚泥を沈降分離し、固形物濃度0.5〜1重量%の沈殿汚泥を得た。原水の硫酸イオン濃度は0.3mmol/L、炭酸水素イオン濃度は0.1mmol/L、炭酸イオン濃度は0.1mmol/Lであった。また、原水の三価金属量は、1ppm以下であった。
この排水処理において、硫酸ナトリウムを沈殿槽の入り口に原水量に対して、硫酸イオン濃度2mmol/Lとなるように添加して運転を行った。
上記工場排水処理量において、工場排水処理量を0.08m3/dayとし、沈殿汚泥の1.2〜2.4L/day(dry-base 12.0g/day)を抜き出して、残りの沈殿汚泥は曝気槽に返送した。次に、この抜き出した沈殿汚泥を、回分式タイプの汚泥可溶化槽に導き、インラインミキサー(特殊機化製パイプラインホモミクサーPL-SL)にて、回転数8,000rpmに設定して、苛性ソーダを0.025Nになるように添加して、10分間処理して、汚泥を可溶化した。その可溶化液を前記曝気槽に一定速度で添加して、好気的な生物処理を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は38%であった。さらに、その間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、22g(乾燥重量)であった。
Example 1
Factory wastewater (COD = 80-120mg / L (test period average 100mg / L), Ca concentration 30ppm-50ppm (test period average 40ppm))
In this wastewater treatment, sodium sulfate was added to the inlet of the precipitation tank so that the sulfate ion concentration was 2 mmol / L with respect to the amount of raw water.
In the above factory wastewater treatment amount, the factory wastewater treatment amount is set to 0.08 m 3 / day, 1.2 to 2.4 L / day (dry-base 12.0 g / day) of the precipitated sludge is extracted, and the remaining precipitated sludge is returned to the aeration tank. did. Next, this extracted sludge is introduced into a batch-type sludge solubilization tank, and set to a rotation speed of 8,000 rpm with an in-line mixer (a pipeline homomixer made by Special Machine), and caustic soda is added. It was added to 0.025N and treated for 10 minutes to solubilize sludge. The solubilized solution was added to the aeration tank at a constant rate to perform aerobic biological treatment. As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 38%. Furthermore, the total surplus amount of sludge extracted so that the MLSS of the activated sludge tank was kept constant during that period was 22 g (dry weight).
実施例2
実施例1のうち、硫酸ナトリウムを原水量に対して硫酸イオン濃度20mmol/Lとなるように添加して運転を行う以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は44%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、10g(乾燥重量)であった。
Example 2
In Example 1, the operation was performed in the same manner except that sodium sulfate was added so as to have a sulfate ion concentration of 20 mmol / L with respect to the amount of raw water. As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 44%. Furthermore, the total amount of excess sludge extracted during this period so that the MLSS in the activated sludge tank was kept constant was 10 g (dry weight).
比較例1
実施例1のうち、硫酸ナトリウムを添加せずに運転を行う以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は20%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、68g(乾燥重量)であった。
Comparative Example 1
In Example 1, the operation was performed in the same manner except that the operation was performed without adding sodium sulfate. As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 20%. Furthermore, the total amount of excess sludge extracted so that the MLSS of the activated sludge tank was kept constant during that period was 68 g (dry weight).
実施例3
実施例1のうち、硫酸ナトリウムの添加位置を濃縮槽の入り口に変更して運転を行う以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は37%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、30g(乾燥重量)であった。
Example 3
In Example 1, the operation was performed in the same manner except that the operation was performed by changing the addition position of sodium sulfate to the entrance of the concentration tank. As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 37%. Furthermore, the total surplus amount of sludge extracted so that the MLSS in the activated sludge tank was kept constant during that period was 30 g (dry weight).
実施例4
実施例3のうち、硫酸ナトリウムに替えて、炭酸水素ナトリウムを添加して運転を行う以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は33%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、35g(乾燥重量)であった。
Example 4
In Example 3, the operation was performed in the same manner except that sodium bicarbonate was added instead of sodium sulfate. As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 33%. Further, during this period, the total amount of excess sludge extracted from the activated sludge tank so as to be constant was 35 g (dry weight).
実施例5
実施例3のうち、硫酸ナトリウムに替えて、炭酸ナトリウムを添加して運転を行う以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は35%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、30g(乾燥重量)であった。
Example 5
In Example 3, the operation was performed in the same manner except that sodium carbonate was added instead of sodium sulfate. As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 35%. Furthermore, the total surplus amount of sludge extracted so that the MLSS in the activated sludge tank was kept constant during that period was 30 g (dry weight).
実施例6
実施例2のうち、可溶化処理の操作を、インラインミキサーに替えて、インラインミル(IKA製ラボパイロット2000/4)にて、回転数6,000rpmに設定して10分間処理する以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は42%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、10g(乾燥重量)であった。
Example 6
In Example 2, the operation of the solubilization process was changed to an in-line mill (IKA Lab Pilot 2000/4) instead of the in-line mixer, except that the rotation speed was set to 6,000 rpm and the process was performed for 10 minutes in the same manner. Drove. As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 42%. Furthermore, the total amount of excess sludge extracted during this period so that the MLSS in the activated sludge tank was kept constant was 10 g (dry weight).
実施例7
実施例2のうち、可溶化処理の操作を、インラインミキサーに替えて、超音波(超音波発生器、出力100W)にて10分間処理する以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は48%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、4g(乾燥重量)であった。
Example 7
In Example 2, the operation was performed in the same manner except that the solubilization treatment was carried out for 10 minutes with ultrasonic waves (ultrasonic wave generator, output 100 W) instead of the in-line mixer. As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 48%. Furthermore, the total excess sludge amount extracted so that the MLSS of the activated sludge tank was kept constant during that period was 4 g (dry weight).
実施例8
実施例2のうち、可溶化処理の操作を、インラインミキサーに替えて、超音波(超音波発生器、出力100W)にて苛性ソーダを添加しないで10分間処理する以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は38%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、35g(乾燥重量)であった。
Example 8
In Example 2, the operation of the solubilization treatment was performed in the same manner except that the treatment was carried out for 10 minutes without adding caustic soda with ultrasonic waves (ultrasonic wave generator, output 100 W) instead of the in-line mixer. . As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 38%. Further, during this period, the total amount of excess sludge extracted from the activated sludge tank so as to be constant was 35 g (dry weight).
比較例2
実施例8のうち、硫酸ナトリウムを添加せずに運転を行う以外は、同様に運転を行った。30日間、上記条件に従って運転を続けた結果、可溶化率の平均は14%であった。さらにその間に活性汚泥槽のMLSSを一定になるように抜き出した全余剰汚泥量は、90g(乾燥重量)であった。
Comparative Example 2
In Example 8, the operation was performed in the same manner except that the operation was performed without adding sodium sulfate. As a result of continuing the operation according to the above conditions for 30 days, the average solubilization rate was 14%. Furthermore, the total surplus amount of sludge extracted so that the MLSS of the activated sludge tank was kept constant during that period was 90 g (dry weight).
以上の実施例及び比較例をまとめたものを次表に示す。 The table below summarizes the above examples and comparative examples.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007043884A JP5118358B2 (en) | 2007-02-23 | 2007-02-23 | Organic wastewater treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007043884A JP5118358B2 (en) | 2007-02-23 | 2007-02-23 | Organic wastewater treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008207066A true JP2008207066A (en) | 2008-09-11 |
JP5118358B2 JP5118358B2 (en) | 2013-01-16 |
Family
ID=39783840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007043884A Active JP5118358B2 (en) | 2007-02-23 | 2007-02-23 | Organic wastewater treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5118358B2 (en) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57150492A (en) * | 1981-03-10 | 1982-09-17 | Ebara Infilco Co Ltd | Removing method for phosphorus and nitrogen in waste water |
JPH03118891A (en) * | 1989-10-02 | 1991-05-21 | Tokyo Metropolis | Treatment of organic sewage |
JPH11188399A (en) * | 1997-12-26 | 1999-07-13 | Toray Ind Inc | Drainage treatment method |
JP2002113487A (en) * | 2000-08-03 | 2002-04-16 | Cosmo Oil Co Ltd | Method for treating organic wastewater |
JP2004141746A (en) * | 2002-10-23 | 2004-05-20 | Kurita Water Ind Ltd | Aerobic treatment method and device |
JP2004181349A (en) * | 2002-12-03 | 2004-07-02 | Mitsubishi Heavy Ind Ltd | Apparatus and method for sludge treatment |
JP2005137969A (en) * | 2003-11-04 | 2005-06-02 | Cosmo Oil Co Ltd | Organic wastewater treatment apparatus |
JP2005137968A (en) * | 2003-11-04 | 2005-06-02 | Cosmo Oil Co Ltd | Sludge solubilization device and organic wastewater treatment apparatus |
JP2005186022A (en) * | 2003-12-26 | 2005-07-14 | Japan Organo Co Ltd | Treatment apparatus and treatment method for organic waste water |
JP2006142256A (en) * | 2004-11-24 | 2006-06-08 | Hitachi Kiden Kogyo Ltd | Organic wastewater treatment method |
JP2006334593A (en) * | 2000-08-03 | 2006-12-14 | Cosmo Oil Co Ltd | Method for treating organic waste water |
WO2007086240A1 (en) * | 2006-01-25 | 2007-08-02 | Kuraray Co., Ltd. | Method of treating drainage water using fixation support |
JP2007253004A (en) * | 2006-03-22 | 2007-10-04 | Petroleum Energy Center | Organic wastewater treatment method |
-
2007
- 2007-02-23 JP JP2007043884A patent/JP5118358B2/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57150492A (en) * | 1981-03-10 | 1982-09-17 | Ebara Infilco Co Ltd | Removing method for phosphorus and nitrogen in waste water |
JPH03118891A (en) * | 1989-10-02 | 1991-05-21 | Tokyo Metropolis | Treatment of organic sewage |
JPH11188399A (en) * | 1997-12-26 | 1999-07-13 | Toray Ind Inc | Drainage treatment method |
JP2006334593A (en) * | 2000-08-03 | 2006-12-14 | Cosmo Oil Co Ltd | Method for treating organic waste water |
JP2002113487A (en) * | 2000-08-03 | 2002-04-16 | Cosmo Oil Co Ltd | Method for treating organic wastewater |
JP2004141746A (en) * | 2002-10-23 | 2004-05-20 | Kurita Water Ind Ltd | Aerobic treatment method and device |
JP2004181349A (en) * | 2002-12-03 | 2004-07-02 | Mitsubishi Heavy Ind Ltd | Apparatus and method for sludge treatment |
JP2005137969A (en) * | 2003-11-04 | 2005-06-02 | Cosmo Oil Co Ltd | Organic wastewater treatment apparatus |
JP2005137968A (en) * | 2003-11-04 | 2005-06-02 | Cosmo Oil Co Ltd | Sludge solubilization device and organic wastewater treatment apparatus |
JP2005186022A (en) * | 2003-12-26 | 2005-07-14 | Japan Organo Co Ltd | Treatment apparatus and treatment method for organic waste water |
JP2006142256A (en) * | 2004-11-24 | 2006-06-08 | Hitachi Kiden Kogyo Ltd | Organic wastewater treatment method |
WO2007086240A1 (en) * | 2006-01-25 | 2007-08-02 | Kuraray Co., Ltd. | Method of treating drainage water using fixation support |
JP2007253004A (en) * | 2006-03-22 | 2007-10-04 | Petroleum Energy Center | Organic wastewater treatment method |
Also Published As
Publication number | Publication date |
---|---|
JP5118358B2 (en) | 2013-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Technologies for reducing sludge production in wastewater treatment plants: State of the art | |
JP2004058047A (en) | Treatment method and equipment for organic waste liquid | |
JP3873643B2 (en) | Organic wastewater treatment method | |
US4913826A (en) | Fat, oil and grease flotation treatment of poultry and food industry waste water utilizing hydrogen peroxide | |
JP5118572B2 (en) | Sewage treatment method | |
JP5174360B2 (en) | Organic wastewater treatment method | |
JP5066340B2 (en) | Organic wastewater treatment method | |
JP5118358B2 (en) | Organic wastewater treatment method | |
JP5174359B2 (en) | Organic wastewater treatment method | |
JP2006334593A (en) | Method for treating organic waste water | |
JP2001079584A (en) | Cleaning method of organic waste water | |
JP2002326078A (en) | Dredge shell processing method and apparatus | |
JP2005137968A (en) | Sludge solubilization device and organic wastewater treatment apparatus | |
KR101075592B1 (en) | Wasted water teatment method at the food waste recycling facilities connected with a communitysewage disposal plant | |
JP2001179233A (en) | Method for treating jellyfishes | |
JP4457391B2 (en) | Organic sludge treatment method and treatment apparatus | |
FR2864069A1 (en) | PROCESS FOR REDUCING SLURRY FROM WASTEWATER TREATMENT BY OXYGENATION AND MECHANICAL ACTION | |
CN215627371U (en) | Waste water treatment system for fly ash landfill | |
JP3969144B2 (en) | Biological treatment method and biological treatment apparatus | |
JP3853922B2 (en) | Method for removing phosphorus from organic sludge | |
JPH10128376A (en) | Method for treating organic waste water | |
JP2007061773A (en) | Organic sludge treatment method and apparatus | |
JP4266329B2 (en) | Organic waste liquid processing method and processing apparatus | |
JP7134595B2 (en) | Sludge treatment system and sludge treatment method | |
JP2005137969A (en) | Organic wastewater treatment apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090625 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101028 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120724 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120919 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121016 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121019 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5118358 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151026 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |