JP2007330929A - Method for manufacturing civil engineering and construction material - Google Patents
Method for manufacturing civil engineering and construction material Download PDFInfo
- Publication number
- JP2007330929A JP2007330929A JP2006168027A JP2006168027A JP2007330929A JP 2007330929 A JP2007330929 A JP 2007330929A JP 2006168027 A JP2006168027 A JP 2006168027A JP 2006168027 A JP2006168027 A JP 2006168027A JP 2007330929 A JP2007330929 A JP 2007330929A
- Authority
- JP
- Japan
- Prior art keywords
- coal
- civil engineering
- building material
- combustion
- coal ash
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Processing Of Solid Wastes (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
Description
本発明は、土木建築材料の製造方法に関し、より詳しくは、石炭灰を用いた土木建築材料の製造方法に関する。 The present invention relates to a method for manufacturing a civil engineering building material, and more particularly to a method for manufacturing a civil engineering building material using coal ash.
石炭火力発電システムにおいて石炭を燃焼させる方法としては種々の方式があるが、なかでも、石炭を微粉砕した粒子を炉内に吹き込んで燃焼させる、いわゆる微粉炭燃焼が主に採用されている。そして、燃焼後の残渣となる石炭灰は、資源の有効利用の観点から、コンクリートや土壌改良材等の土木建築材料の原料の一部として使用されている。 There are various methods for burning coal in a coal-fired power generation system. Among them, so-called pulverized coal combustion in which particles obtained by finely pulverizing coal are blown into a furnace and burned is mainly employed. And the coal ash used as the residue after combustion is used as a part of raw materials of civil engineering building materials, such as concrete and a soil improvement material, from a viewpoint of effective use of resources.
ところで、石炭は、炭素以外にも、ホウ素、フッ素、セレン、ヒ素、六価クロムなどの有害な元素を微量ながら含んでいる。このため、環境への配慮から、石炭灰からの有害微量元素の溶出について、その許容濃度が法律で規定されている。 By the way, coal contains a trace amount of harmful elements such as boron, fluorine, selenium, arsenic and hexavalent chromium in addition to carbon. For this reason, in consideration of the environment, the allowable concentration of harmful trace elements from coal ash is regulated by law.
しかしながら、日本に輸出される石炭種は、年間100炭種以上あり、それらのすべてが、上記の規制値を満足するわけではない。このため、石炭灰に含まれている有害微量元素の溶出濃度を規制値以下に低減するための技術が検討されている。 However, there are over 100 coal types exported to Japan per year, and not all of them meet the above-mentioned regulatory values. For this reason, the technique for reducing the elution density | concentration of the harmful trace element contained in coal ash to below a regulation value is examined.
例えば、石炭灰にキレート剤等の微量元素溶出抑制剤を添加する方法や、石炭灰をセメント等により固化処理する方法が行われている(特許文献1〜3参照)。
しかしながら、上記の従来技術には以下のような問題があった。
石炭灰に添加剤を加えて混合するために、サイロ、水タンク、混合装置などの大規模設備及び設備スペースが必要となる。このため、多額の初期投資が必要となる。また、石炭灰に加える添加剤が高価であるため、製造コストが高騰する。
However, the above prior art has the following problems.
In order to add additives to coal ash and mix them, large-scale facilities such as silos, water tanks, and mixing devices and equipment space are required. For this reason, a large initial investment is required. Moreover, since the additive added to coal ash is expensive, manufacturing cost rises.
更に、重金属の溶出防止は検討されているものの、ホウ素やフッ素などの軽元素の溶出防止についての検討が不充分である。 Further, although prevention of elution of heavy metals has been studied, studies on prevention of elution of light elements such as boron and fluorine are insufficient.
本発明は、以上のような問題に鑑みてなされたものであり、初期投資額を低減でき、安価に製造でき、且つ、有害微量元素の溶出を抑制できる土木建築材料の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a method for manufacturing a civil engineering building material that can reduce the initial investment amount, can be manufactured at low cost, and can suppress the elution of harmful trace elements. With the goal.
本発明者らは、石炭へ石灰石を添加することで、アルカリ性の石炭灰を安価に製造できることを見出し、本発明を完成するに至った。本発明は、具体的には以下のようなものを提供する。 The present inventors have found that alkaline coal ash can be produced at low cost by adding limestone to coal, and have completed the present invention. Specifically, the present invention provides the following.
(1) 石炭火力発電システムにおいて燃料となる石炭の燃焼残渣である石炭灰を用いた土木建築材料製造方法であって、
前記石炭を燃焼させ、燃焼残渣としての石炭灰を回収する石炭灰回収工程と、この石炭灰及び土木建築材料原料から前記土木建築材料を生成する土木建築材料生成工程と、を備え、
前記石炭灰回収工程は、石灰石からなる溶出抑制剤を前記石炭に添加する石灰石添加工程を有する土木建築材料製造方法。
(1) A civil engineering and building material manufacturing method using coal ash, which is a combustion residue of coal as fuel in a coal-fired power generation system,
A coal ash recovery step of burning the coal and recovering coal ash as a combustion residue, and a civil engineering and building material generation step of generating the civil engineering and building material from the coal ash and a civil engineering and building material raw material,
The said coal ash collection | recovery process is a civil engineering building material manufacturing method which has a limestone addition process which adds the elution inhibitor consisting of limestone to the said coal.
(1)の発明によれば、まず、石炭火力発電システムにおける石炭の燃焼残渣である石炭灰を回収し、この石炭灰及び土木建築材料原料から土木建築材料を生成する。 According to the invention of (1), first, coal ash which is a combustion residue of coal in a coal-fired power generation system is recovered, and civil engineering and building materials are generated from the coal ash and civil engineering and building material raw materials.
ここで、石炭に石灰石からなる溶出抑制剤を添加したので、ホウ素、フッ素、セレン、ヒ素、六価クロムなどの有害微量元素、なかでもホウ素、フッ素、セレン、ヒ素の溶出を効果的に抑制できる。しかも、石灰石は安価に入手できるため、土木建築材料を安価に製造できる。 Here, since an elution inhibitor made of limestone was added to coal, elution of harmful trace elements such as boron, fluorine, selenium, arsenic, and hexavalent chromium, especially boron, fluorine, selenium, and arsenic can be effectively suppressed. . Moreover, since limestone can be obtained at low cost, civil engineering and building materials can be manufactured at low cost.
また、溶出抑制剤を、燃焼後の石炭灰状態時において添加し反応させるとなると、添加し反応するための設備を新たに設置する必要がある。
そこで、(1)の発明によれば、溶出抑制剤を燃焼中又は燃焼前の石炭状態時において添加したので、既存の設備を改良するだけで簡単に対応できる。このため、初期投資額を低減できる。
Moreover, when an elution inhibitor is added and reacted in the coal ash state after combustion, it is necessary to newly install equipment for adding and reacting.
Therefore, according to the invention of (1), since the elution inhibitor is added during combustion or in the state of coal before combustion, it can be dealt with simply by improving the existing equipment. For this reason, the initial investment amount can be reduced.
なお、石灰石の添加は、石炭状態時での添加であれば特に限定されず、後述する石炭供給部、微粉炭生成部、微粉炭燃焼部のいずれにおいて行われてもよい。この微粉炭燃焼部には、燃焼ボイラの下流に配置される熱交換ユニット(いわゆる節炭器)付近まで含まれる。 The addition of limestone is not particularly limited as long as it is an addition in a coal state, and may be performed in any of a coal supply unit, a pulverized coal generation unit, and a pulverized coal combustion unit described later. This pulverized coal combustion section includes the vicinity of a heat exchange unit (so-called economizer) disposed downstream of the combustion boiler.
また、「土木建築材料」とは、土木建築に使用され得る材料であれば特に限定されず、具体的には、土壌改良材、人工骨材等が挙げられる。なお、本発明の製造方法の過程で得られる石炭灰は、水質改良材等の環境浄化材として使用することもできる。 Further, the “civil engineering building material” is not particularly limited as long as it is a material that can be used for civil engineering construction, and specifically includes a soil improvement material, an artificial aggregate, and the like. In addition, the coal ash obtained in the process of the manufacturing method of this invention can also be used as environmental purification materials, such as a water quality improvement material.
(2) (1)記載の土木建築材料製造方法において、
前記石炭火力発電システムを、微粉炭燃焼方式の発電システムとし、
前記石灰石添加工程は、前記溶出抑制剤を燃焼ボイラ内に添加する工程である土木建築材料製造方法。
(2) In the civil engineering and building material manufacturing method according to (1),
The coal thermal power generation system is a pulverized coal combustion type power generation system,
The said limestone addition process is a civil engineering building material manufacturing method which is a process of adding the said elution inhibitor in a combustion boiler.
(2)の発明によれば、溶出抑制剤を燃焼ボイラ内に添加したので、溶出抑制剤が石炭燃焼により高温に加熱される。これにより、石炭灰が溶融化され、石炭灰中の有害微量元素を封入する。また、炭酸カルシウムから生成される酸化カルシウムにより、有害微量元素が不溶化される。以上のような作用により、有害微量元素の溶出を更に抑制できる。 According to invention of (2), since the elution inhibitor was added in the combustion boiler, the elution inhibitor is heated to a high temperature by coal combustion. Thereby, coal ash is melted and harmful trace elements in coal ash are enclosed. In addition, harmful trace elements are insolubilized by calcium oxide generated from calcium carbonate. Due to the above action, the elution of harmful trace elements can be further suppressed.
ここで、「燃焼ボイラ内」は、燃焼ボイラが排ガスの再循環を行う態様である場合には、その配管も包含する。 Here, “inside the combustion boiler” includes the piping in the case where the combustion boiler is in an embodiment in which the exhaust gas is recirculated.
(3) (1)又は(2)記載の土木建築材料製造方法において、
前記石炭火力発電システムを、微粉炭燃焼方式の発電システムとし、
前記石灰石添加工程は、前記溶出抑制剤を燃焼ボイラよりも上流に添加する工程である土木建築材料製造方法。
(3) In the civil engineering and building material manufacturing method according to (1) or (2),
The coal thermal power generation system is a pulverized coal combustion type power generation system,
The said limestone addition process is a civil engineering building material manufacturing method which is a process of adding the said elution inhibitor upstream from a combustion boiler.
(3)の発明によれば、溶出抑制剤を燃焼ボイラ内に添加したので、溶出抑制剤が石炭燃焼により高温に加熱される。これにより、石炭灰が溶融化され、石炭灰中の有害微量元素を封入する。また、炭酸カルシウムから生成される酸化カルシウムにより、有害微量元素が不溶化される。以上のような作用により、有害微量元素の溶出を更に抑制できる。 According to the invention of (3), since the elution inhibitor is added into the combustion boiler, the elution inhibitor is heated to a high temperature by coal combustion. Thereby, coal ash is melted and harmful trace elements in coal ash are enclosed. In addition, harmful trace elements are insolubilized by calcium oxide generated from calcium carbonate. Due to the above action, the elution of harmful trace elements can be further suppressed.
また、原料石炭又は微粉炭の状態時において溶出抑制剤が添加されるので、設備をより簡便化できるとともに、既存の設備であっても容易に対応できる。 Moreover, since an elution inhibitor is added in the state of raw coal or pulverized coal, the equipment can be simplified and even existing equipment can be easily handled.
ここで、「燃焼ボイラよりも上流」とは、例えば、後述する石炭供給部、微粉炭生成部である。 Here, “upstream from the combustion boiler” is, for example, a coal supply unit and a pulverized coal generation unit described later.
(4) (1)から(3)いずれか記載の土木建築材料製造方法において、
前記石灰石添加工程は、前記溶出抑制剤を、前記石炭100質量部に対して0.1質量部以上20質量部以下の範囲で添加する工程である土木建築材料製造方法。
(4) In the civil engineering building material manufacturing method according to any one of (1) to (3),
The said limestone addition process is a civil engineering and building material manufacturing method which is a process of adding the said elution inhibitor in 0.1 to 20 mass parts with respect to 100 mass parts of said coal.
溶出抑制剤の添加量は、小さすぎると、有害微量元素の溶出抑制効果が不充分となる一方、大きすぎると、石炭灰表面の融点降下により石炭灰が火炉内壁に多量に付着(スラッギング)するおそれがあるのみならず、有害微量元素の溶出抑制効果に大きな向上が認められずコスト面で不利となる。
そこで、(4)の発明によれば、溶出抑制剤を、石炭100質量部に対して0.1質量部以上20質量部以下の範囲で添加したので、有害微量元素を充分に抑制でき、安価に土木建築材料を製造でき、しかも、スラッギングを抑制できる。
If the amount of elution inhibitor added is too small, the effect of inhibiting the elution of harmful trace elements will be insufficient, while if too large, coal ash will adhere to the inner wall of the furnace due to the melting point drop on the coal ash surface (slagging). Not only there is a fear, but a significant improvement in the elution suppression effect of harmful trace elements is not recognized, which is disadvantageous in terms of cost.
Therefore, according to the invention of (4), since the elution inhibitor is added in the range of 0.1 to 20 parts by mass with respect to 100 parts by mass of coal, harmful trace elements can be sufficiently suppressed and inexpensive. In addition, civil engineering and building materials can be manufactured, and slugging can be suppressed.
(5) (1)から(4)いずれか記載の土木建築材料製造方法において、
前記石炭火力発電システムを、微粉炭燃焼方式の発電システムとし、
前記石灰石添加工程は、燃焼ボイラよりも下流に配置された熱交換ユニット付近に添加する工程である土木建築材料製造方法。
(5) In the civil engineering and building material manufacturing method according to any one of (1) to (4),
The coal thermal power generation system is a pulverized coal combustion type power generation system,
The said limestone addition process is a civil engineering building material manufacturing method which is a process added to the heat exchange unit vicinity arrange | positioned downstream from a combustion boiler.
(5)の発明によれば、溶出抑制剤を燃料ボイラよりも下流に添加したので、石炭灰が火炉内壁に多量に付着する(スラッギング)等の問題を生じることなく、有害微量元素の溶出を抑制できる。 According to the invention of (5), since the elution inhibitor is added downstream from the fuel boiler, the leaching of harmful trace elements without causing problems such as a large amount of coal ash adhering to the furnace inner wall (slagging). Can be suppressed.
(6) (1)から(5)いずれか記載の土木建築材料製造方法により製造された土壌改良材。 (6) A soil improvement material produced by the civil engineering and building material production method according to any one of (1) to (5).
(6)記載の土壌改良材は、前述した土木建築材料製造方法により製造されたものである。よって、初期投資額を低減でき、安価に製造でき、且つ、有害微量元素の溶出を抑制できる。 (6) The soil improvement material of description is manufactured by the civil engineering and building material manufacturing method mentioned above. Therefore, it is possible to reduce the initial investment amount, to manufacture at a low cost, and to suppress the elution of harmful trace elements.
また、土壌改良材においては、酸性雨による酸性化が懸念される。そこで、(6)の発明によれば、石灰石が加熱されて産生される酸化カルシウムが含有されるため、その緩衝作用により、酸性化の進行を抑制できる。 Moreover, in the soil improvement material, there is a concern about acidification due to acid rain. Therefore, according to the invention of (6), since calcium oxide produced by heating limestone is contained, the progress of acidification can be suppressed by its buffering action.
ここで「土壌改良材」とは、主に土木建築場における土壌を改良するために使用されるものであるが、その他、農林業用土壌の改良、汚染土壌の改良等、多用途に好ましく使用できるものである。 Here, “soil improver” is mainly used for improving soil in civil engineering buildings, but is also preferably used for various purposes such as improvement of soil for agriculture and forestry, improvement of contaminated soil, etc. It can be done.
(7) (1)から(5)いずれか記載の土木建築材料製造方法により製造された人工骨材。 (7) An artificial bone produced by the method for producing civil engineering and building materials according to any one of (1) to (5).
(7)記載の人工骨材は、前述した土木建築材料製造方法により製造されたものである。よって、初期投資額を低減でき、安価に製造でき、且つ、有害微量元素の溶出を抑制できる。 The artificial aggregate described in (7) is manufactured by the above-described civil engineering and building material manufacturing method. Therefore, it is possible to reduce the initial investment amount, to manufacture at a low cost, and to suppress the elution of harmful trace elements.
「人工骨材」は、岩壁、護岸、擁壁工事等の裏こめ材、地盤改良用杭材(サンド・コンパクション・パイル、サンド・ドレーン工法用砂)、道路工事用路盤材、コンクリート用軽量骨材等の一般土木建築用骨材(砂、砂利代替物)として使用できるものである。本明細書における「人工骨材」は、必ずしも、セメントと併用されるものに限られない。 "Artificial aggregates" include back walls for rock walls, revetments, retaining walls, ground pile piles (sand compaction pile, sand for sand drain method), road base materials for road construction, lightweight for concrete It can be used as general aggregate for civil engineering and construction such as aggregate (sand, gravel substitute). The “artificial aggregate” in the present specification is not necessarily limited to those used in combination with cement.
一般に、コンクリート等の骨材含有物においては、含有される酸化ナトリウム、酸化カリウム等のアルカリ金属塩により誘発されるアルカリ骨材反応が懸念される。このアルカリ骨材反応が発生すると、骨材含有物内部が局所的に膨張し、骨材含有物のひび割れ、強度低下、弾性低下等の問題が生じる。
そこで、(7)の発明によれば、石灰石からなる溶出抑制剤を添加したので、石灰石が加熱されて産生される酸化カルシウムが骨材含有物に含有されるため、骨材含有物のひび割れ、強度低下、弾性低下等の問題を生じさせない。
In general, in an aggregate containing material such as concrete, there is a concern about an alkali aggregate reaction induced by an alkali metal salt such as sodium oxide or potassium oxide. When this alkali-aggregate reaction occurs, the inside of the aggregate-containing material locally expands, causing problems such as cracking, strength reduction, and elasticity reduction of the aggregate-containing material.
Therefore, according to the invention of (7), since the dissolution inhibitor made of limestone is added, since the calcium oxide produced by heating the limestone is contained in the aggregate-containing material, the aggregate-containing material is cracked, Does not cause problems such as reduced strength and reduced elasticity.
(8) 石炭及び石灰石を燃焼させて回収される石炭灰を用いる土壌酸性化の抑制方法。 (8) A method for suppressing soil acidification using coal ash recovered by burning coal and limestone.
(9) 石炭及び石灰石を燃焼させて回収される石炭灰を用いるアルカリ骨材反応の予防方法。 (9) A method for preventing an alkaline aggregate reaction using coal ash recovered by burning coal and limestone.
本発明によれば、石炭に石灰石からなる溶出抑制剤を添加したので、ホウ素、フッ素、セレン、ヒ素、六価クロムなどの有害微量元素、なかでもホウ素、フッ素、セレン、ヒ素の溶出を効果的に抑制できる。しかも、石灰石は安価に入手できるため、土木建築材料を安価に製造できる。
また、溶出抑制剤を燃焼中又は燃焼前の石炭状態時において添加したので、既存の設備を改良するだけで簡単に対応できる。このため、初期投資額を低減できる。
According to the present invention, since an elution inhibitor made of limestone is added to coal, it is effective for the elution of harmful trace elements such as boron, fluorine, selenium, arsenic and hexavalent chromium, especially boron, fluorine, selenium and arsenic. Can be suppressed. Moreover, since limestone can be obtained at low cost, civil engineering and building materials can be manufactured at low cost.
Moreover, since the elution inhibitor is added during combustion or in the state of coal before combustion, it can be dealt with simply by improving existing equipment. For this reason, the initial investment amount can be reduced.
以下、本発明の一実施形態について、図面を参照しながら説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
本発明で用いられる土木建築材料製造システムは、石炭を燃焼させ燃焼残渣としての石炭灰を回収する微粉炭燃焼施設1と、石炭灰及び土木建築材料原料から土木建築材料を生成する土木建築材料生成施設と、を備える。
The civil engineering and building material manufacturing system used in the present invention includes a pulverized
<A:石炭火力発電システムにおける微粉炭燃焼施設の構成>
図1は、石炭火力発電システムにおける微粉炭燃焼施設1を示すブロック図である。また、図2は、微粉炭燃焼部16における火炉161付近の拡大図である。
<A: Configuration of pulverized coal combustion facility in coal-fired power generation system>
FIG. 1 is a block diagram showing a pulverized
図1に示されるように、微粉炭燃焼施設1は、石炭を供給する石炭供給部12と、供給された石炭を微粉炭にする微粉炭生成部14と、微粉炭を燃焼する微粉炭燃焼部16と、微粉炭の燃焼により発生する燃焼残渣である石炭灰を処理する石炭灰処理部18と、を備える。
As shown in FIG. 1, a pulverized
[A−1:石炭供給部]
石炭供給部12は、石炭を貯蔵する石炭バンカ121と、この石炭バンカ121に貯蔵された石炭を供給する給炭機122と、を備える。石炭バンカ121は、給炭機122へ供給する石炭を貯蔵する。給炭機122は、石炭バンカ121から供給された石炭を連続して石炭微粉炭機141へ供給するものである。また、この給炭機122は、石炭の供給量を調整する装置を備えており、これにより、石炭微粉炭機141に供給される石炭量が調整される。また、これら石炭バンカ121と給炭機122との境界には石炭ゲートが設けられており、これにより、給炭機からの空気が石炭バンカへ流入するのを防いでいる。
[A-1: Coal supply section]
The
[A−2:微粉炭生成部]
微粉炭生成部14は、石炭を微粉炭燃焼が可能な微粉炭にする石炭微粉炭機(ミル)141と、この石炭微粉炭機141に空気を供給する空気供給機142と、を備える。
[A-2: Pulverized coal generation unit]
The pulverized
石炭微粉炭機141は、給炭機122から給炭管を介して供給された石炭を、微細な粒度に粉砕して微粉炭を形成するとともに、この微粉炭と、空気供給機142から供給された空気とを混合する。このように、微粉炭と空気とを混合することにより、微粉炭を予熱及び乾燥させ、燃焼を容易にする。形成された微粉炭には、エアーが吹きつけられて、これにより、微粉炭燃焼部16に微粉炭を供給する。
The coal pulverized
石炭微粉炭機141の種類としては、ローラミル、チューブミル、ボールミル、ビータミル、インペラーミル等が挙げられるが、これらに限定されるものではなく微粉炭燃焼で用いられるミルであればよい。
Examples of the type of the coal pulverized
[A−3:微粉炭燃焼部]
微粉炭燃焼部16は、微粉炭生成部14で生成された微粉炭を燃焼する火炉161と、この火炉161を加熱する加熱機162(熱交換ユニット)と、火炉161に空気を供給する空気供給機163と、を備える。
[A-3: Pulverized coal combustion section]
The pulverized
火炉161は、加熱機162(熱交換ユニット)により加熱されて、石炭微粉炭機141から微粉炭管を介して供給された微粉炭を、空気供給機163から供給された空気とともに燃焼する。微粉炭を燃焼することにより石炭灰が生成され、排ガスとともに石炭灰処理部18に排出される。
The
図2を参照して、火炉161について詳しく説明すると、図2において、火炉161は全体として略逆U字状をなしており、図中矢印に沿って燃焼ガスが逆U字状に移動した後、2次節炭器161hを通過後に、再度小さくU字状に反転し、火炉161の出口(図2における矢印の最後)は、図1における脱硝装置181、集塵機182に接続されている。
The
火炉161の下方には、火炉161内のバーナーゾーン161a’付近で微粉炭を燃焼するためのバーナ161aが配置されている。また、火炉161内のU字頂部付近には、ケージ壁161b、第一の過熱器161c、第一の再熱器161dが流路に沿って順次配置され、その下流には、第二の再熱器161e及び第二の過熱器161fが並列配置されている。第二の過熱器161fの終端付近からは、1次節炭器161g及び2次節炭器161hが2段階に設けられている。ここで、節炭器(ECOとも呼ばれる)は、燃焼ガスの保有する熱を利用してボイラ給水を予熱するために設けられた伝熱面群である。以上のケージ壁161b、第一の過熱器161c、第一の再熱器161d、第二の再熱器161e、第二の過熱器161f、1次節炭器161g、及び2次節炭器161hは、熱交換ユニットを構成する。
Below the
[A−4:石炭灰処理部]
石炭灰処理部18は、微粉炭燃焼部16から排出された排ガス中の窒素酸化物を除去する脱硝装置181と、排ガス中の煤塵を除去する集塵機182と、この集塵機182で収集された石炭灰を一次貯蔵する石炭灰回収サイロ183と、を備える。
[A-4: Coal ash treatment unit]
The coal
脱硝装置181は、排ガス中の窒素酸化物を除去するものである。すなわち、比較的高温(300〜400℃)の排ガス中に還元剤としてアンモニアガスを注入し、脱硝触媒との作用により排ガス中の窒素酸化物を無害な窒素と水蒸気に分解する、いわゆる乾式アンモニア接触還元法が好適に用いられる。
The
集塵機182は、排ガス中の石炭灰を電極で収集する装置である。この集塵機182により収集された石炭灰は、石炭灰回収サイロ183に搬送される。また、石炭灰が除去された排ガスは、図示しない脱硫装置を介した後に煙突から排出される。
The
石炭灰回収サイロ183は、集塵機182により収集された石炭灰を一次貯蔵する設備である。
The coal
<B:土木建築材料生成施設の構成>
土木建築材料生成施設は、石炭灰回収サイロ183に貯蔵された石炭灰を用いて、土木建築材料を生成するための施設である。このような施設は、生成すべき土木建築材料の種類等に応じて、従来公知の施設から適宜選択されてよい。なお、土壌改良材のように、石炭灰自体を使用できるものである場合には、必ずしも土木建築材料生成施設を利用する必要はない。
<B: Structure of civil engineering building material generation facility>
The civil engineering and building material generation facility is a facility for generating civil engineering and building materials using the coal ash stored in the coal
また、本発明で用いられる土木建築材料生成施設は、前述した微粉炭燃焼施設1と一体的に配置されていても、別体として配置されていてもよい。しかし、土木建築材料生成施設としては、初期投資額を更に低減できる点で、石炭火力発電システムに新設するよりも、既に設置されている設備を使用する方が好ましい。
Moreover, the civil engineering and building material generation facility used in the present invention may be disposed integrally with the pulverized
<C:土木建築材料製造方法>
本発明の土木建築材料製造方法は、石炭から石炭灰を生成する石炭灰回収工程と、この石炭灰及び土木建築材料原料から土木建築材料を生成する土木建築材料生成工程と、を備える。
<C: Civil engineering building material manufacturing method>
The civil engineering and building material manufacturing method of the present invention includes a coal ash recovery process that generates coal ash from coal, and a civil engineering and building material generation process that generates civil engineering and building materials from the coal ash and civil engineering and building materials.
[C−1:石炭灰回収工程]
この石炭灰回収工程を、上記の微粉炭燃焼施設1を用いて行う場合について、以下に説明する。
[C-1: Coal ash recovery process]
The case where this coal ash collection | recovery process is performed using said pulverized
この石炭灰回収工程は、石炭を供給する石炭供給工程S10と、供給された石炭を粉砕して微粉炭を生成する微粉炭生成工程S20と、この微粉炭を燃焼して石炭灰を生成する微粉炭燃焼工程S30と、この石炭灰を集塵しこれを収容する石炭灰処理工程S40とを含み、これら各工程は、それぞれ、上述の微粉炭燃焼施設1の石炭供給部12、微粉炭生成部14、微粉炭燃焼部16、及び石炭灰処理部18、において行われる。そして、本発明の特徴である石灰石添加工程S50は、好ましくは上記の石炭供給工程S10、微粉炭生成工程S20、微粉炭燃焼工程S30のいずれかで行われる。
The coal ash recovery step includes coal supply step S10 for supplying coal, pulverized coal generation step S20 for pulverizing the supplied coal to generate pulverized coal, and fine powder for burning coal and generating coal ash. The coal combustion step S30 and the coal ash treatment step S40 that collects and accommodates the coal ash, each of which includes the
(石炭供給工程S10)
まず、石炭供給工程では、石炭バンカ121に貯蔵された石炭が、給炭機122により、石炭微粉炭機141に供給される。なお、この石炭微粉炭機141に供給される石炭は、具体的には瀝青炭、亜瀝青炭、または褐炭等であるが、これらの石炭に限定されるものではなく微粉炭燃焼が行える石炭であればよい。
(Coal supply process S10)
First, in the coal supply process, the coal stored in the
(微粉炭生成工程S20)
次に、微粉炭生成工程では、給炭機122から供給された石炭が石炭微粉炭機141により粉砕されて、これにより、微粉炭が生成される。生成された微粉炭は、火炉161に供給される。このとき、この微粉炭生成工程で粉状に形成された微粉炭の平均の粒度は、微粉炭燃焼で一般的に用いられる粒径範囲であればよく、一般的には、74μmアンダー80wt%以上の粉砕度である。なお、この範囲は溶出抑制剤が添加された場合にも適用できる。
(Pulverized coal production process S20)
Next, in the pulverized coal generation step, the coal supplied from the
(微粉炭燃焼工程S30)
次に、微粉炭燃焼工程では、石炭微粉炭機141で生成された微粉炭が、火炉161により燃焼される。図2に示すように、バーナーゾーン161a’において微粉炭の燃焼によって生成される石炭灰は、矢印の方向に沿って上昇して排ガスとともにケージ壁161b、第一の過熱器161c、第一の再熱器161d、第二の再熱器161e、第二の過熱器161f、1次節炭器161g、及び2次節炭器161hを順次通過する。上記のように、これら第一の再熱器161d、第二の再熱器161e付近は、850℃から900℃前後が維持されている領域であり、この燃焼ガスの保有する熱を利用してボイラ給水を予熱するために設けられた伝熱面群を通過することによって熱交換され、温度が低下する。そして、その後、後段の脱硝装置181、集塵機182に送られる。この微粉炭燃焼工程で生成される石炭灰は、通常、その平均の粒度が1μmから100μmの範囲内の粉末状である。
(Pulverized coal combustion process S30)
Next, in the pulverized coal combustion process, the pulverized coal generated by the coal pulverized
(石炭灰処理工程S40)
その後、微粉炭を燃焼することにより生成された石炭灰は、排ガスとともに脱硝装置181に排出され、集塵機182を経て石炭灰回収サイロ183に送られる。この集塵機182は複数段設けられていることが好ましい。
(Coal ash treatment step S40)
Thereafter, the coal ash generated by burning pulverized coal is discharged to the
(石灰石添加工程S50)
本発明の特徴である石灰石からなる溶出抑制剤を添加する工程である石灰石添加工程S50は、図1に示すように、好ましくは上記の石炭供給工程S10、微粉炭生成工程S20、微粉炭燃焼工程S30のいずれかに対して行われる(それぞれ、図1におけるS51、S52、S53)。
(Limestone addition process S50)
As shown in FIG. 1, the limestone addition step S50, which is a step of adding an elution inhibitor made of limestone, which is a feature of the present invention, is preferably the coal supply step S10, the pulverized coal generation step S20, and the pulverized coal combustion step. This is performed for any of S30 (S51, S52, and S53 in FIG. 1 respectively).
なお、溶出抑制剤の添加場所は、石炭の状態であれば特に限定されず、例えば、石炭供給工程S10と微粉炭生成工程S20との間の移送路や、微粉炭生成工程S20と微粉炭燃焼工程S30との間の移送路などで行われてもよい。 In addition, the addition place of an elution inhibitor will not be specifically limited if it is the state of coal, For example, the transfer path between coal supply process S10 and pulverized coal production | generation process S20, pulverized coal production | generation process S20, and pulverized coal combustion You may perform by the transfer path between process S30, etc.
具体的には、例えば、給炭機122から石炭微粉炭機141に輸送する際の移送中のベルトコンベア上に溶出抑制剤を供給して混合する方法、溶出抑制剤を石炭微粉炭機141の石炭ホッパー(図示せず)に直接投入する方法、石炭微粉炭機141と火炉161の間の配管に剤投入口を設けて供給する方法、火炉161へ燃焼用空気とともに直接投入する方法、加熱機162、火炉161の一部を構成するケージ壁161b、第一の過熱器161c、第一の再熱器161d、第二の再熱器161e、第二の過熱器161f、1次節炭器161g、及び2次節炭器161hなどの熱交換ユニット付近に添加する方法、などが挙げられるが、これらに限定されるものではない。このように、本発明の方法は新たな設備を必要とせず、既存の設備の軽微な改良で適用可能であるため、既存設備を有効利用することができ、コスト的にも有利である。
Specifically, for example, a method of supplying and mixing an elution inhibitor onto a belt conveyor that is being transferred when transporting from the
本発明で用いられる溶出抑制剤は、石灰石(CaCO3)からなるものである。また、溶出抑制剤は、添加が容易となるとともに、混合が均一化されて溶出防止効果を向上できる点で、粒状又は粉末状であることが好ましい。特に、平均粒径が10μmから100μmであることが好ましく、10μmから70μmであることがより好ましい。 The elution inhibitor used in the present invention is made of limestone (CaCO 3 ). The elution inhibitor is preferably granular or powdery in that it can be easily added and the mixing can be made uniform to improve the elution prevention effect. In particular, the average particle size is preferably 10 μm to 100 μm, and more preferably 10 μm to 70 μm.
溶出抑制剤の石炭への添加量は、石炭100質量部に対して、0.1質量部以上20質量部以下の範囲であることが好ましい。
[C−2:土木建築材料生成工程]
土木建築材料生成工程では、石炭灰回収サイロ183に貯蔵された石炭灰を用いて、土木建築材料を生成する。この工程は、生成すべき土木建築材料の種類等に応じて、従来公知の手順に従って適宜行われてよい。
The amount of the dissolution inhibitor added to the coal is preferably in the range of 0.1 to 20 parts by mass with respect to 100 parts by mass of coal.
[C-2: Civil engineering building material generation process]
In the civil engineering and building material generation step, civil engineering and building material is generated using the coal ash stored in the coal
例えば、本発明の人工骨材を使用した海砂代替材は、人工骨材としての石炭灰87質量%、セメント10質量%、粘度分3質量%を混合した粉体に、この粉体量の20質量%〜24質量%の水を添加して混合し、更に、所定の圧力をかけて造粒することで製造される。ただし、本発明の人工骨材は、セメント等を必ずしも添加されるものではなく、例えば、石炭灰に、この石炭灰の約15質量%の水を添加して混合されたものを、所定の圧力をかけて造粒することで製造されてもよい。このようにして製造される海砂代替材は、優れた強度及び排水性を備えるとともに、種々の微量元素の吸着性能にも優れるものである。従って、土壌改良材(土木建築用、農林業用等)、水質改良材等、多用途に好ましく使用できる。 For example, a sea sand substitute material using the artificial aggregate of the present invention has a powder amount of 87% by mass of coal ash as an artificial aggregate, 10% by mass of cement, and 3% by mass of viscosity. It is manufactured by adding 20% by mass to 24% by mass of water, mixing them, and granulating them by applying a predetermined pressure. However, the artificial aggregate of the present invention is not necessarily added with cement or the like. For example, a mixture obtained by adding about 15% by mass of water of coal ash to coal ash and mixing it with a predetermined pressure is used. It may be manufactured by granulating with. The sea sand substitute produced in this manner has excellent strength and drainage, and also has excellent adsorption performance for various trace elements. Therefore, it can be preferably used for various purposes such as soil improvement materials (for civil engineering and construction, agriculture and forestry), water quality improvement materials and the like.
以上説明した本発明の一実施形態によれば、溶出抑制剤の添加により、ホウ素、フッ素、セレン、ヒ素、六価クロムなどの有害な微量元素の溶出を抑制できる。この機構は、まず、石灰石からなる溶出抑制剤の添加によって、石炭灰の溶融温度を低下させる。すなわち、火炉161内の高温によって、シリカ、アルミナを主成分とする石炭灰の表面を軟化(溶融)させ、粘性をもった石炭灰粒子が、微量元素に接触して石炭灰の内部に取り込まれるために、溶出濃度が低下するものと推定される。このように、本発明においては、燃焼の段階までに溶出抑制剤を添加することで、微粉炭燃焼部における火炉の高温を有効利用して、石炭灰からの微量元素の溶出を抑制するものである。
According to the embodiment of the present invention described above, the elution of harmful trace elements such as boron, fluorine, selenium, arsenic and hexavalent chromium can be suppressed by adding an elution inhibitor. This mechanism first lowers the melting temperature of coal ash by adding an elution inhibitor made of limestone. That is, the surface of the coal ash mainly composed of silica and alumina is softened (melted) by the high temperature in the
1 微粉炭燃焼施設
12 石炭供給部
14 微粉炭生成部
16 微粉炭燃焼部
18 石炭灰処理部
121 石炭バンカ
122 給炭機
141 石炭微粉炭機
142 空気供給機
161 火炉
162 加熱機
163 空気供給機
181 脱硝装置
182 集塵機
183 石炭灰回収サイロ
S10 石炭供給工程
S20 微粉炭生成工程
S30 微粉炭燃焼工程
S40 石炭灰処理工程
S50 石灰石添加工程
DESCRIPTION OF
Claims (9)
前記石炭を燃焼させ、燃焼残渣としての石炭灰を回収する石炭灰回収工程と、この石炭灰及び土木建築材料原料から前記土木建築材料を生成する土木建築材料生成工程と、を備え、
前記石炭灰回収工程は、石灰石からなる溶出抑制剤を前記石炭に添加する石灰石添加工程を有する土木建築材料製造方法。 A method for producing civil engineering and building materials using coal ash, which is a combustion residue of coal as fuel in a coal-fired power generation system,
A coal ash recovery step of burning the coal and recovering coal ash as a combustion residue, and a civil engineering and building material generation step of generating the civil engineering and building material from the coal ash and a civil engineering and building material raw material,
The said coal ash collection | recovery process is a civil engineering building material manufacturing method which has a limestone addition process which adds the elution inhibitor consisting of limestone to the said coal.
前記石炭火力発電システムを、微粉炭燃焼方式の発電システムとし、
前記石灰石添加工程は、前記溶出抑制剤を燃焼ボイラ内に添加する工程である土木建築材料製造方法。 In the civil engineering and building material manufacturing method according to claim 1,
The coal thermal power generation system is a pulverized coal combustion type power generation system,
The said limestone addition process is a civil engineering building material manufacturing method which is a process of adding the said elution inhibitor in a combustion boiler.
前記石炭火力発電システムを、微粉炭燃焼方式の発電システムとし、
前記石灰石添加工程は、前記溶出抑制剤を燃焼ボイラよりも上流に添加する工程である土木建築材料製造方法。 In the civil engineering and building material manufacturing method according to claim 1 or 2,
The coal thermal power generation system is a pulverized coal combustion type power generation system,
The said limestone addition process is a civil engineering building material manufacturing method which is a process of adding the said elution inhibitor upstream from a combustion boiler.
前記石灰石添加工程は、前記溶出抑制剤を、前記石炭100質量部に対して0.1質量部以上20質量部以下の範囲で添加する工程である土木建築材料製造方法。 In the civil engineering building material manufacturing method in any one of Claim 1 to 3,
The said limestone addition process is a civil engineering and building material manufacturing method which is a process of adding the said elution inhibitor in 0.1 to 20 mass parts with respect to 100 mass parts of said coal.
前記石炭火力発電システムを、微粉炭燃焼方式の発電システムとし、
前記石灰石添加工程は、燃焼ボイラよりも下流に配置された熱交換ユニット付近に添加する工程である土木建築材料製造方法。 In the civil engineering building material manufacturing method in any one of Claim 1 to 4,
The coal thermal power generation system is a pulverized coal combustion type power generation system,
The said limestone addition process is a civil engineering building material manufacturing method which is a process added to the heat exchange unit vicinity arrange | positioned downstream from a combustion boiler.
A method for preventing an alkali-aggregate reaction using coal ash recovered by burning coal and limestone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006168027A JP2007330929A (en) | 2006-06-16 | 2006-06-16 | Method for manufacturing civil engineering and construction material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006168027A JP2007330929A (en) | 2006-06-16 | 2006-06-16 | Method for manufacturing civil engineering and construction material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007330929A true JP2007330929A (en) | 2007-12-27 |
Family
ID=38930909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006168027A Pending JP2007330929A (en) | 2006-06-16 | 2006-06-16 | Method for manufacturing civil engineering and construction material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007330929A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011526827A (en) * | 2008-07-04 | 2011-10-20 | セラグリーン カンパニー リミテッド | Coal ash recycling apparatus and method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0445826A (en) * | 1990-06-11 | 1992-02-14 | Babcock Hitachi Kk | Flue gas desulfurization apparatus |
JPH1112000A (en) * | 1997-06-19 | 1999-01-19 | Chugoku Electric Power Co Inc:The | Admixture and concrete composition |
JPH11511107A (en) * | 1995-08-14 | 1999-09-28 | ザ チャイニーズ アカデミー オブ サイエンシーズ | Simultaneous production of steam power and cement clinker in the same equipment, products, equipment and usage |
JP2000169204A (en) * | 1998-12-03 | 2000-06-20 | Chuden Kankyo Technos Kk | Production of high-strength artificial aggregate |
JP2005134098A (en) * | 2003-10-09 | 2005-05-26 | Oji Paper Co Ltd | Method for treating burned ash |
-
2006
- 2006-06-16 JP JP2006168027A patent/JP2007330929A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0445826A (en) * | 1990-06-11 | 1992-02-14 | Babcock Hitachi Kk | Flue gas desulfurization apparatus |
JPH11511107A (en) * | 1995-08-14 | 1999-09-28 | ザ チャイニーズ アカデミー オブ サイエンシーズ | Simultaneous production of steam power and cement clinker in the same equipment, products, equipment and usage |
JPH1112000A (en) * | 1997-06-19 | 1999-01-19 | Chugoku Electric Power Co Inc:The | Admixture and concrete composition |
JP2000169204A (en) * | 1998-12-03 | 2000-06-20 | Chuden Kankyo Technos Kk | Production of high-strength artificial aggregate |
JP2005134098A (en) * | 2003-10-09 | 2005-05-26 | Oji Paper Co Ltd | Method for treating burned ash |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011526827A (en) * | 2008-07-04 | 2011-10-20 | セラグリーン カンパニー リミテッド | Coal ash recycling apparatus and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5121564B2 (en) | Hazardous trace element elution inhibitor and method of inhibiting harmful trace element elution | |
JP4644635B2 (en) | Clinker ash production promotion method and clinker ash production promoter | |
JP4744370B2 (en) | Method for improving dust collection efficiency of dust collector | |
JP2007330929A (en) | Method for manufacturing civil engineering and construction material | |
JP5063477B2 (en) | Hazardous trace element elution inhibitor and method of inhibiting harmful trace element elution | |
JP5456226B2 (en) | Methods for controlling the elution of harmful trace elements | |
JP4671976B2 (en) | Hazardous trace element elution inhibitor addition amount calculation method and harmful trace element elution suppression method using the same | |
JP4726812B2 (en) | Methods for controlling the elution of harmful trace elements | |
JP4644636B2 (en) | Clinker ash production promotion method and clinker ash production promoter | |
JP4794369B2 (en) | Method for improving dust collection efficiency of dust collector | |
JP2008170107A (en) | Oxide reducing method and oxide reducer for coal addition used in the same | |
JP5177965B2 (en) | A method for capturing harmful trace elements in exhaust gas. | |
JP5153144B2 (en) | Methods for controlling the elution of harmful trace elements | |
JP4726813B2 (en) | Methods for controlling the elution of harmful trace elements | |
JP4726810B2 (en) | Method for suppressing elution of harmful trace elements or their compounds using organic waste | |
JP5036324B2 (en) | Methods for controlling the elution of harmful trace elements | |
JP2009276000A (en) | Noxious trace element elution inhibitor and noxious trace element elution suppression method | |
JP5367048B2 (en) | Hexavalent chromium elution reduction method | |
JP6940836B1 (en) | Concrete admixtures, concrete admixture manufacturing methods and concrete products | |
JP5036467B2 (en) | Coal-fired power generation system and hexavalent chromium elution reduction method | |
JP2008275181A (en) | Method of inhibiting elution of harmful trace element | |
JP4901268B2 (en) | Method for suppressing elution of harmful trace elements and elution inhibitor for coal addition used therefor | |
JP4726811B2 (en) | Harmful trace element elution suppression method and coal thermal power generation system | |
JP2008169338A (en) | Method of reducing unburned coal | |
JP4901668B2 (en) | Coal-fired power generation system and hexavalent chromium elution control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090520 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100419 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100427 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100713 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100906 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100928 |