[go: up one dir, main page]

JP2005134098A - Method for treating burned ash - Google Patents

Method for treating burned ash Download PDF

Info

Publication number
JP2005134098A
JP2005134098A JP2004099244A JP2004099244A JP2005134098A JP 2005134098 A JP2005134098 A JP 2005134098A JP 2004099244 A JP2004099244 A JP 2004099244A JP 2004099244 A JP2004099244 A JP 2004099244A JP 2005134098 A JP2005134098 A JP 2005134098A
Authority
JP
Japan
Prior art keywords
furnace
ash
combustion furnace
coal
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004099244A
Other languages
Japanese (ja)
Inventor
Makoto Iwasaki
誠 岩崎
Noriaki Nagase
憲明 長瀬
Tamotsu Takarazaki
保 宝崎
Tadao Nakajima
忠雄 中嶋
Masayuki Kishibe
正幸 岸部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP2004099244A priority Critical patent/JP2005134098A/en
Publication of JP2005134098A publication Critical patent/JP2005134098A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Landscapes

  • Solid-Fuel Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

【課題】セメント固化や溶融と言う複雑で、手間のかかる方法に替わる簡便でかつ安価な
方法により焼却灰を処理し、ホウ素の溶出を抑制する事により、農産物の生育障害起こす
事なく、土壌改良材として利用可能とすることを目的とする。
【解決手段】石灰を燃焼炉(A)で燃焼し、その俳ガスを電器集塵器で処理し、得られた
集塵灰(EP灰)を燃焼炉(B)で、石炭を主燃料とし、カルシウム源を加えて再度燃焼
した焼却灰の、平成15年環境庁告示第18号に基づく溶出試験方法によるホウ素量を1.0mg/l以下にする焼却灰の処理方法。であり、前記燃焼炉(A)が石炭ストーカー炉であり、前記燃焼炉(B)が流動層燃焼炉であることが好ましい。



[PROBLEMS] To improve soil without causing growth disturbance of agricultural products by treating incinerated ash by a simple and inexpensive method that replaces complicated and time-consuming methods such as cement solidification and melting and suppressing boron elution. The purpose is to make it available as a material.
SOLUTION: Lime is burned in a combustion furnace (A), the haiku gas is treated with an electric dust collector, and the resulting dust collection ash (EP ash) is used as a main fuel in the combustion furnace (B). A method for treating incinerated ash by which the amount of boron in incinerated ash that has been burned again with the addition of a calcium source is reduced to 1.0 mg / l or less by a dissolution test method based on Notification No. 18 of the 2003 Environment Agency. Preferably, the combustion furnace (A) is a coal stalker furnace and the combustion furnace (B) is a fluidized bed combustion furnace.



Description

本発明は、焼却灰の処理方法に関し、更に詳しくは土壌改良材として利用可能にする焼却灰の処理方法に関する。本発明は、環境省で2003年2月に施行された土壌汚染対策法での規制対象物質の一つであるホウ素の溶出基準値に適合するため、ホウ素を多く含む石炭を、燃焼炉で燃焼し、その際に発生する排ガスを電気集塵器(EP)で処理し、そのEP灰を、石炭を主燃料とし、カルシウム源を加えることのできる燃焼炉で再度燃焼することによって、その飛灰中に含まれるホウ素の溶出量を、1.0mg/l以下にし、土壌改良材として利用可能である焼却灰にする焼却灰の処理方法に関する。 The present invention relates to a method for treating incineration ash, and more particularly to a method for treating incineration ash that can be used as a soil improvement material. Since the present invention meets the elution reference value of boron, which is one of the substances regulated by the Soil Contamination Countermeasures Law enacted in February 2003 by the Ministry of the Environment, coal containing a large amount of boron is burned in a combustion furnace. Then, the exhaust gas generated at that time is treated with an electric dust collector (EP), and the EP ash is burned again in a combustion furnace using coal as a main fuel and a calcium source can be added. The present invention relates to a method for treating incineration ash that makes the elution amount of boron contained therein 1.0 mg / l or less to make incineration ash that can be used as a soil improvement material.

ホウ素を含有する土壌は雨水等でホウ素が溶出し、地下水あるいは農業用用水に混入する。そのホウ素を植物が多量に摂取して、生長を阻害することが知られている。そのため、ホウ素を含有する土壌を持つ地域では、ホウ素の不溶化技術が重要な役割を果たすようになると考えられる。 Boron-containing soil is eluted with rainwater and mixed with groundwater or agricultural water. It is known that plants consume a large amount of boron and inhibit growth. For this reason, boron insolubilization technology will play an important role in areas with soil containing boron.

一方、家庭ゴミ焼却灰、火力発電所や製紙工場からの石炭燃焼灰(石炭灰)、下水汚泥燃焼灰、各種産業廃棄物などの焼却灰の中にもホウ素が含まれているが、中でも、石炭灰には、元来石炭にホウ素が数〜数百mg/kg含まれているため、ホウ素あるいはホウ素化合物の含有量が高い。また、その焼却灰の多くは埋め立に使用されるので、これが雨などで溶出して植物に悪影響を与えることが心配される。また、焼却灰を埋め立てる処分場も不足しているので、処分場を増やすことによる環境汚染増加を軽減するためにも、焼却灰の有効利用を図ることが望まれている。 Meanwhile, incineration ash such as household waste incineration ash, coal combustion ash (coal ash) from thermal power plants and paper mills, sewage sludge combustion ash, various industrial wastes, etc. contain boron, Since the coal ash originally contains several to several hundred mg / kg of boron in the coal, the content of boron or boron compounds is high. In addition, since most of the incinerated ash is used for landfilling, there is a concern that it will be eluted by rain or the like and adversely affect plants. In addition, since there is a shortage of landfills for incineration ash, it is desirable to make effective use of incineration ash in order to reduce the increase in environmental pollution caused by increasing the number of landfills.

焼却灰を無害化するために、例えば1500℃という高温で溶融して、これを冷却固化することが考えられる。その他、灰の安定化処理の手段としてセメント固化,薬剤による処理,酸またはその他の溶媒による抽出処理等も提案されている。 In order to render the incinerated ash harmless, it is conceivable to melt at a high temperature of 1500 ° C., for example, and to cool and solidify it. In addition, as a means for stabilizing ash, cement solidification, treatment with chemicals, extraction treatment with acid or other solvents have been proposed.

溶融固化する処理方法(例えば 特許文献 1参照 )では、灰の溶融に膨大な熱エネルギーを消費するにも拘らず、できた固形物は均一なものとはならず、埋め立てには不向きであり、埋め立て後に灰の成分が溶け出してしまい、十分とは言えない。 In the processing method for melting and solidifying (for example, refer to Patent Document 1), the solid matter produced is not uniform even though it consumes enormous heat energy to melt the ash, and is not suitable for landfill. The ash component melts after landfill, which is not enough.

灰をセメントで固化する処理方法(例えば 特許文献 2参照)では、灰の性状により固化しても、その固化物に耐久性がない場合があり、例えばセメントが風化して灰の成分が溶出し、これによる汚染が考えられる。 In the processing method of solidifying ash with cement (for example, see Patent Document 2), even if solidified due to the properties of ash, the solidified product may not be durable. For example, cement is weathered and ash components are eluted. Contamination due to this is considered.

固化材料としてカルシウム系材料、アルカリ材料、非晶質アルミナ、活性アルミナ、固着材料としてゼオライト、アロフェン、ベントナイトに水を加えて常温から200℃で一定期間養生し、固化または固着させる方法(特許文献 3参照)があるが養生に時間がかかる。 A calcium-based material, alkali material, amorphous alumina, activated alumina as a solidifying material, and water added to zeolite, allophane, bentonite as a fixing material, and cured for a certain period of time from room temperature to 200 ° C. to solidify or fix (Patent Document 3) (See below), but curing takes time.

さらに、溶融した灰にアルカリ金属およびアルカリ土類金属を含む珪酸塩化合物を主体とする混合物を加えて溶融する方法(例えば、特許文献 4参照)も提案されているが、この方法も溶融温度は低下するものの、依然として1300℃以上に加熱する必要があり、灰を土壌改良材などの安価な用途に用いるには、この方法も実用的とは言えない。 Further, a method of melting a molten ash by adding a mixture mainly composed of a silicate compound containing an alkali metal and an alkaline earth metal (see, for example, Patent Document 4) has also been proposed. Although it decreases, it still needs to be heated to 1300 ° C. or higher, and this method is not practical for using ash for inexpensive applications such as soil amendments.

一方、無機薬剤あるいは有機薬剤により灰の成分を不溶物にして安定化する方法(例えば 特許文献 5参照)では、その処理に数段の工程が必要となり、コストも高く、処理段階で使用される薬剤の後処理まで考慮する必要があって好ましくない。また、酸等の溶媒による抽出処理(例えば 非特許文献 1参照)には、長時間を要すると共に大規模な施設が必要となり実用上には不向きである。 On the other hand, in the method of making the ash component insoluble with an inorganic or organic chemical and stabilizing it (for example, see Patent Document 5), several steps are required for the treatment, the cost is high, and it is used in the treatment step. It is necessary to consider the post-treatment of the drug, which is not preferable. In addition, extraction processing with a solvent such as an acid (see, for example, Non-Patent Document 1) requires a long time and requires a large-scale facility, which is not suitable for practical use.

さらに、焼却灰を融雪剤あるいは酸性土壌を改良するために土壌改良材として用いる場合には、埋め立ての場合以上に、重金属やホウ素などの溶出を抑制する方法は限られ、例えばセメントで固めて使用するなどは論外と言わざるを得ない状況である。 以上、詳細に述べたように従来の知識で考えられる灰の処理手段には、それぞれ根本的に難点があり、とても満足できる処理は提案されていなかった。
特開2000−5727号公報 特開 2001−310175号公報 特開平 9−271738号公報 特開2001−310175号公報 特許第3005617号公報 大林組技術研究所報 No65 P96〜100 (2002)
Furthermore, when incineration ash is used as a snow-melting agent or a soil conditioner to improve acidic soil, there are limited ways to suppress elution of heavy metals and boron, etc., more than in landfills, such as cementing with cement. It is a situation that must be said to be out of the question. As described above in detail, each of the ash treatment means considered in the conventional knowledge has fundamental difficulties, and no very satisfactory treatment has been proposed.
JP 2000-5727 A JP 2001-310175 A Japanese Patent Laid-Open No. 9-271738 JP 2001-310175 A Japanese Patent No. 3005617 Obayashi Institute of Technology Report No65 P96-100 (2002)

本発明は、火力発電所などの石炭ボイラーから排出される灰からホウ素の溶出を抑制する方法を、上記のようなセメント固化や溶融という複雑で、手間のかかる方法に替わる簡便でかつ安価な方法を提供し、これにより焼却灰はホウ素による農産物の生育障害起こすことなく、土壌改良材として利用可能とすることを目的とする。 The present invention provides a simple and inexpensive method for suppressing the dissolution of boron from ash discharged from a coal boiler such as a thermal power plant instead of the complicated and time-consuming method of cement solidification and melting as described above. In this way, the incineration ash is intended to be usable as a soil conditioner without causing the growth of agricultural products due to boron.

本発明者らは、上記課題を解決すべく、炉、特に流動層燃焼炉での反応を詳細に調べた結果、脱硫用の石灰石に含まれるカルシウムが、高温領域においてホウ素と反応し、、ホウ素の固定化にも効果があることを見出した。また、この効果は、灰に含まれるホウ素の量が多いほど、効果があることもわかり、本発明に至った。
本願は以下の発明を包含する。
In order to solve the above-mentioned problems, the present inventors have investigated the reaction in a furnace, particularly in a fluidized bed combustion furnace, and as a result, calcium contained in limestone for desulfurization reacts with boron in a high temperature region, It has been found that immobilization is also effective. Further, it was found that this effect is more effective as the amount of boron contained in the ash is larger, and the present invention has been achieved.
This application includes the following inventions.

(1)石炭を燃焼炉(A)で燃焼し、その排ガスを電気集塵器(Electronic Precipitator)で処理し、得られた集塵灰(Electronic Precipitator灰、以下EP灰と略す)を燃焼炉(B)で、石炭を主燃料とし、カルシウム源を加えて再度燃焼した焼却灰の、平成15年環境庁告示第18号に基づく溶出試験方法によるホウ素量を1.0mg/l以下にする焼却灰の処理方法。 (1) Coal is burned in a combustion furnace (A), the exhaust gas is treated with an electric precipitator, and the resulting dust collection ash (Electronic Precipitator ash, hereinafter abbreviated as EP ash) is a combustion furnace ( B) Incineration ash that uses coal as the main fuel and burns again with the addition of calcium source to reduce the boron content to 1.0 mg / l or less according to the dissolution test method based on Environmental Agency Notification No. 18 of 2003 Processing method.

(2)前記燃焼炉(A)が石炭ストーカー炉であり、前記燃焼炉(B)が流動層燃焼炉である(1)記載の焼却灰の処理方法。 (2) The incineration ash treatment method according to (1), wherein the combustion furnace (A) is a coal stalker furnace, and the combustion furnace (B) is a fluidized bed combustion furnace.

(3)前記燃焼炉(B)で燃焼する際の石炭とカルシウム源(CaOとして)との重量比が、100/1から100/20である(1)又は(2)に記載の焼却灰の処理方法。 (3) The weight ratio of coal to the calcium source (as CaO) when burning in the combustion furnace (B) is 100/1 to 100/20, and the incinerated ash according to (1) or (2) Processing method.

(4)前記燃焼炉(B)で使用されるカルシウム源が石灰石、ドロマイト、帆立貝、ペーパースラッジおよび古紙粕のいずれか一つ、または、任意な比率の組み合わせであることを特徴とする(1)〜(3)のいずれか1項に記載の焼却灰の処理方法。 (4) The calcium source used in the combustion furnace (B) is any one of limestone, dolomite, scallops, paper sludge, and waste paper basket, or a combination of any ratio (1) The processing method of incineration ash of any one of-(3).

(5)前記燃焼炉Bの炉内温度が700℃以上900℃以下である(1)〜(4)のいずれか1項に記載の焼却灰の処理方法。 (5) The incineration ash treatment method according to any one of (1) to (4), wherein the furnace temperature of the combustion furnace B is 700 ° C. or higher and 900 ° C. or lower.

石炭灰(EP灰)を、カルシウム源を添加できる燃焼炉で再度燃焼することによって、焼却灰に含まれるホウ素の溶出を抑制することができるので、土壌改良材として環境への影響もなく利用できる。さらに、最初の石炭ボイラーからのEP灰に含まれる未燃カーボンを、次の石炭ボイラーの燃料として有効に利用できるので、そこでの石炭量も減少でき、経済的でもある。  By re-burning coal ash (EP ash) in a combustion furnace to which a calcium source can be added, elution of boron contained in incinerated ash can be suppressed, so it can be used as a soil improver without affecting the environment. . Furthermore, since the unburned carbon contained in the EP ash from the first coal boiler can be effectively used as the fuel for the next coal boiler, the amount of coal there can be reduced and it is economical.

本発明は焼却灰に含まれるホウ素の溶出抑制方法であり、前述の技術的課題を解決するために以下のように構成されている。すなわち、本発明は、石炭を燃焼した際に発生する排ガスを電気集塵器で集めたEP灰の中には、比較的高い濃度のホウ素およびホウ素化合物が集まる。一方、そのEP灰には多量の未燃カーボンも残っているので、それを石炭燃料の一部として、カルシウム源を直接投入できる燃焼炉Bで、石炭と共に再度燃焼する方法である。 The present invention is a method for suppressing the dissolution of boron contained in incinerated ash, and is configured as follows in order to solve the technical problems described above. That is, according to the present invention, relatively high concentrations of boron and boron compounds are collected in the EP ash obtained by collecting the exhaust gas generated when coal is burned with an electric dust collector. On the other hand, since a large amount of unburned carbon remains in the EP ash, it is used as a part of the coal fuel to burn again with the coal in the combustion furnace B in which the calcium source can be directly input.

流動層燃焼炉での脱硫用に使用される石灰石の働きは、石灰石に含まれるカルシウムが、石炭に含まれる硫黄と高温の状態で反応し、石膏になることによって達成される。一方、ホウ素との反応は十分にわかっていないが、石炭やEP灰に含まれるホウ素、あるいはホウ素化合物が気化し、それがカルシウムとも反応し、カルシウムが中心になった化合物に、ホウ素が取り込まれものと推定している。 The function of limestone used for desulfurization in a fluidized bed combustion furnace is achieved by the calcium contained in the limestone reacting with sulfur contained in the coal at a high temperature to become gypsum. On the other hand, the reaction with boron is not fully understood, but boron or boron compounds contained in coal and EP ash are vaporized, which reacts with calcium, and boron is incorporated into the compounds mainly composed of calcium. Estimated.

本発明に用いられる石炭としては、国内炭、国外炭のいずれでも良く、泥炭、褐炭、など石炭の種類も問わない。石炭中には、国内炭で数ppmから300弱ppm程度のホウ素が含まれているが、本発明では、ホウ素溶出抑制効果が優れているので、特にホウ素含有量の少ない石炭を選ぶ必要はない。 The coal used in the present invention may be either domestic coal or foreign coal, and the type of coal such as peat and lignite is not limited. Coal contains several ppm to less than 300 ppm of boron in domestic coal, but in the present invention, the boron elution suppression effect is excellent, so it is not necessary to select coal with particularly low boron content. .

本発明で使用される燃焼炉Aは、飛灰中のホウ素およびホウ素化合物の濃度を高める構造の炉が好ましく、そのためにはカルシウム源を加える構造になっていないストーカー炉が好適である。一方、微粉炭燃焼炉あるいは流動層燃焼炉はともに、脱硫用にカルシウム源として石灰石を用いる構造になっており、そのために炉底灰にはホウ素化合物は多いが、飛灰にはホウ素およびホウ素化合物の量は少なく、処理効率が低下するので、好ましくない。 The combustion furnace A used in the present invention is preferably a furnace having a structure in which the concentrations of boron and boron compounds in fly ash are increased, and for that purpose, a stalker furnace not having a structure to which a calcium source is added is suitable. On the other hand, both the pulverized coal combustion furnace and the fluidized bed combustion furnace have a structure that uses limestone as a calcium source for desulfurization. Therefore, the bottom ash contains a lot of boron compounds, but fly ash contains boron and boron compounds. This is not preferable because the amount of is small and the processing efficiency is lowered.

ストーカー炉は、いろいろな雑貨物も燃やすことができる炉であり、微粉炭燃焼炉や流動層燃焼炉などに比べて、簡便で、安価なために、多くの工場で使用される燃焼炉である。
この炉からは排出される灰(EP灰)には未燃の石炭が混じっており、そのまま排出されるには、経済的ではない。EP灰は粒径も細かいため、土壌改良材として使用するには最適であるがそのままでは気化したホウ素を多量に含むため、土壌改良剤として使用することができない。
A stalker furnace is a furnace that can burn various miscellaneous goods, and is a combustion furnace that is used in many factories because it is simpler and cheaper than pulverized coal combustion furnaces and fluidized bed combustion furnaces. .
The ash discharged from this furnace (EP ash) is mixed with unburned coal and is not economical to be discharged as it is. Since EP ash has a fine particle size, it is optimal for use as a soil conditioner. However, since it contains a large amount of vaporized boron, it cannot be used as a soil conditioner.

本発明で使用される燃焼炉Bは、カルシウム源を加えることのできる炉であれば、微粉炭燃焼炉、流動層燃焼炉、あるいは石炭ガス化炉のいずれでも良いが、好適には、石炭中の硫黄を固定化するために使われるカルシウム源を加えることのできる微粉炭燃焼炉あるいは流動層燃焼炉が良く、さらに言えば、投入が容易な構造である流動層燃焼炉が最も良い。流動層燃焼炉は、石炭などの加熱部がガスや砂などの媒体で流動化した状態で燃焼する構造になっており、熱効率の点からも優れている。 The combustion furnace B used in the present invention may be a pulverized coal combustion furnace, a fluidized bed combustion furnace, or a coal gasification furnace as long as it can add a calcium source. A pulverized coal combustion furnace or a fluidized bed combustion furnace capable of adding a calcium source used to immobilize sulfur is preferable, and more specifically, a fluidized bed combustion furnace having a structure that can be easily charged is the best. The fluidized bed combustion furnace has a structure in which a heating section such as coal is combusted in a fluidized state with a medium such as gas or sand, and is excellent in terms of thermal efficiency.

ストーカー炉の構造を変更して、石灰石を加えて、ホウ素の溶出を抑制する方法も考えられるが、ストーカー炉内に石灰石を加えることは可能でも、石灰石は炉の構造上、石炭に含まれるホウ素や硫黄との反応が少なく、炉底に落下し、焼却灰の量のみ増えるので、得策ではなく、かつストーカー炉の構造を変えるには、コストもかかるので、実用的ではない。 It is possible to change the structure of the stalker furnace and add limestone to suppress the elution of boron, but it is possible to add limestone in the stalker furnace, but limestone is boron contained in coal due to the structure of the furnace. It is not practical because it reacts little with sulfur and falls to the bottom of the furnace and only the amount of incinerated ash increases, and changing the structure of a stalker furnace is not practical.

本発明で使用される燃焼炉Aが流動層燃焼炉であり、さらに、後段の燃焼炉Bも流動層燃焼炉であっても、両炉ともに石灰石などを使用できるので、ホウ素の溶出抑制には効果がある。しかしながら、前述したように流動層燃焼炉は設備コストが高いこと、また、二つの炉に石灰石などを加えることは、廃棄される焼却灰の絶対量が増加し、ハンドリング、灰の処理およびコスト面で負荷が増す。 Even if the combustion furnace A used in the present invention is a fluidized bed combustion furnace, and the latter combustion furnace B is also a fluidized bed combustion furnace, both furnaces can use limestone, etc. effective. However, as mentioned above, fluidized bed combustion furnaces have high equipment costs, and the addition of limestone to the two furnaces increases the absolute amount of incinerated ash that is discarded, handling, ash treatment, and cost. The load increases.

流動層燃焼炉で燃焼する際の石炭と石灰石との重量比は、100/1から100/20の範囲が好ましく、より好ましくは100/2から100/10の範囲がイオウやホウ素の捕集効率が良い。100/1未満の重量比では、イオウやホウ素を十分に捕集できず、逆に100/20を越える場合には、燃料に比べて副資材の割合が増加するので、固形物あたりの燃焼量が減少し、経済的でなくなるばかりではなく、焼却灰全体量が増加し、その処理に手間がかかり、コストも増加するので実用的ではない。 The weight ratio of coal to limestone when burning in a fluidized bed combustion furnace is preferably in the range of 100/1 to 100/20, more preferably in the range of 100/2 to 100/10. Is good. If the weight ratio is less than 100/1, sulfur and boron cannot be collected sufficiently. Conversely, if the weight ratio exceeds 100/20, the proportion of secondary materials increases compared to fuel. Is not practical because it reduces not only economically, but also increases the total amount of incinerated ash, which takes time and cost.

流動層燃焼炉で使用されるカルシウム源が石灰石、ドロマイト、帆立貝などのカルシウム系材料、あるいは製紙工場から特徴的に排出されるペーパースラッジおよび古紙粕などのカルシウム含量の高い物質のいずれか一つ、または、任意な比率の組み合わせて、使用することができる。 The calcium source used in the fluidized bed combustion furnace is either one of calcium-based materials such as limestone, dolomite, scallops, or high calcium content materials such as paper sludge and waste paper lees characteristically discharged from paper mills, Alternatively, any combination of ratios can be used.

更に、ゼオライト、アロフエン、又はベントナイトのうち少なくとも何れか1つを単独または、任意な比率に組み合わせて用い、ホウ素とカルシウムとの反応を促進させる反応促進助材として使用しても、何ら問題はない。焼却灰にすでにカルシウム源又反応促進助材が含まれている時は、新たに添加するそれらの量を加減することもできる。 Further, there is no problem even if at least one of zeolite, allophane, and bentonite is used alone or in combination in any ratio and used as a reaction promoting aid for promoting the reaction between boron and calcium. . When the incinerated ash already contains a calcium source or a reaction promoting aid, the amount of these newly added can be adjusted.

本発明の燃焼炉Aでの炉内温度は600℃〜800℃が好ましい、800℃を越えるとホウ素あるいはホウ素化合物がほとんど系外に排出されるので、環境面から好ましくなく、また、電気集塵機(EP)の効率が低下するので、一層好ましくない。一方、本発明の燃焼炉Bの炉内温度は700℃以上900℃以下が良く、700℃未満では、石灰石に含まれる炭酸カルシウムが酸化カルシウムに完全変わりきっていないので、脱硫の効率のみならず、ホウ素との反応性も良くない。900℃を越えると石灰石が過焼却されて、石灰石の表面がガラス化し、表面積が減少するので、イオウやホウ素の捕集が困難となるので、好ましくない。 The furnace temperature in the combustion furnace A of the present invention is preferably 600 ° C. to 800 ° C., and if it exceeds 800 ° C., boron or boron compounds are almost discharged out of the system, which is not preferable from the environmental point of view. Since the efficiency of EP) is reduced, it is further undesirable. On the other hand, the in-furnace temperature of the combustion furnace B of the present invention is preferably 700 ° C. or more and 900 ° C. or less, and if it is less than 700 ° C., the calcium carbonate contained in the limestone has not completely changed to calcium oxide. Also, the reactivity with boron is not good. If the temperature exceeds 900 ° C., the limestone is overburned, the surface of the limestone is vitrified, and the surface area is reduced, which makes it difficult to collect sulfur and boron, which is not preferable.

本発明により得られた焼却灰は、平成15年環境庁告示第18号「土壌溶出基準の検液調整方法」に基づく溶出試験によるホウ素量が1.0mg/l以下である。
ホウ素量が1.0mg/l以下であれば、「土壌汚染対策法」基準内とされており、その範囲にホウ素の溶出が抑制された焼却灰は土壌改良材として有効に利用することが可能となる。
The incinerated ash obtained by the present invention has a boron amount of 1.0 mg / l or less by a dissolution test based on 2003 Environmental Agency Notification No. 18 “Solution Method of Soil Elution Standard”.
If the amount of boron is 1.0 mg / l or less, it is considered to be within the standards of the “Soil Contamination Countermeasures Law”, and incinerated ash whose boron elution is suppressed within that range can be effectively used as a soil conditioner. It becomes.

以下に、実施例および比較例を挙げて本発明をより具体的に説明するが、勿論、本発明はこれらの実施例によって限定されるものではなく、本発明の趣旨を逸脱しない限り、その実施態様を変更することができる。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is of course not limited by these examples, and the implementation thereof is not departed from the gist of the present invention. Aspects can be changed.

1)ホウ素の溶出方法
以下に示す各実施例および比較例では、ホウ素の溶出試験は平成15年環境庁告示第18号に準拠して行なった。すなわち、ストーカー炉の煙道にある電気集塵器(EP)で集塵された飛灰、あるいは流動層燃焼炉の煙道に設置されたバグフィルターで集塵された飛灰を風乾し、中小礫、木片などを除き、団粒を粉砕した後、非金属製の2mmの目の篩を通過させ、それらを良く混合する。この試料から50gを500ccの蓋つきのポリエチレン容器に取り、純水に塩酸を加えてpH6.0に調整したものを加え、全量が500ccになるようにする。この調製した試料液を常温、大気圧下で、産廃溶出振とう機(タイテック社製)を用いて6時間連続して振とう(振とう幅4−5cm、振動数 200回/分)した。この液を30分静置した後、毎分約3000回転で20分間遠心分離した。上澄み液を孔径
0.45μmのメンブレンフィルターでろ過し、濾液をとり、定量に必要な量を正確に計り取り、これを検液とした。
1) Boron Elution Method In each of the following examples and comparative examples, the boron elution test was conducted in accordance with Notification No. 18 of the 2003 Environment Agency. In other words, the fly ash collected by the electric dust collector (EP) in the flue of the stoker furnace or the fly ash collected by the bag filter installed in the flue of the fluidized bed combustion furnace is air-dried. After removing the gravel and wood pieces, the aggregate is pulverized and then passed through a non-metallic 2 mm sieve and mixed well. From this sample, 50 g is put into a 500 cc polyethylene container with a lid, and hydrochloric acid is added to pure water to adjust the pH to 6.0, so that the total amount becomes 500 cc. This prepared sample solution was shaken continuously (shaking width 4-5 cm, frequency 200 times / min) for 6 hours at room temperature and atmospheric pressure using an industrial waste elution shaker (manufactured by Taitec Corporation). This solution was allowed to stand for 30 minutes, and then centrifuged at about 3000 rpm for 20 minutes. The supernatant was filtered through a membrane filter having a pore size of 0.45 μm, the filtrate was taken, the amount required for quantification was accurately measured, and this was used as a test solution.

2) ホウ素の測定方法
検液を、ICP−OES(誘導結合プラズマ発光分光分析装置、リガク/SPECTORO社製、CIROS−120型)で分析し、溶出したホウ素量を定量した。
2) Measuring method of boron The test solution was analyzed with ICP-OES (inductively coupled plasma optical emission spectrometer, manufactured by Rigaku / Spectoro, CIROS-120 type), and the amount of eluted boron was quantified.

実施例1
炉Aがストーカー炉であり、炉Bは流動層燃焼炉を用いる実機で、炉Aでは石炭(豪州産)を燃焼し、炉Bには炉AのEP灰と石炭(豪州産)を燃料とし、石炭に対して石灰石をカルシウム換算の重量比で100:5になるように添加し、燃焼した。炉Aの炉内温度は750℃であり、炉Bの炉内温度は800℃にした。炉Bから排出される飛灰を供試サンプルとし、上記の溶出法と測定法で分析し、ホウ素の溶出量を求めた。その結果を表1に示す。
Example 1
Furnace A is a stalker furnace, Furnace B is an actual machine using a fluidized bed combustion furnace, Furnace A burns coal (Australia), Furnace B uses EP A ash and coal (Australia) as fuel Then, limestone was added to the coal so that the weight ratio in terms of calcium was 100: 5 and burned. The temperature inside the furnace A was 750 ° C., and the temperature inside the furnace B was 800 ° C. The fly ash discharged from the furnace B was used as a test sample, and analyzed by the above elution method and measurement method to determine the elution amount of boron. The results are shown in Table 1.

実施例2
炉Aおよび炉Bの種類は、実施例1と同じであるが、炉Aでは石炭(豪州産)を燃焼し、炉Bには炉AのEP灰と石炭(豪州産)を燃料とし、石炭に対してドロマイトとペーパースラッジをカルシウム換算の重量比で100:8になるように添加し燃焼した。炉Aの炉内温度は750℃であり、炉Bの炉内温度は780℃にした。炉Bから排出される飛灰を供試サンプルとし、上記の溶出法と測定法で分析し、ホウ素の溶出量を求めた。その結果を表1に示す。
Example 2
The types of the furnace A and the furnace B are the same as those in Example 1, but the furnace A burns coal (Australia), the furnace B uses EP ash of the furnace A and coal (Australia) as fuel, coal In contrast, dolomite and paper sludge were added and burned so that the weight ratio in terms of calcium was 100: 8. The temperature inside the furnace A was 750 ° C., and the temperature inside the furnace B was 780 ° C. The fly ash discharged from the furnace B was used as a test sample, and analyzed by the above elution method and measurement method to determine the elution amount of boron. The results are shown in Table 1.

実施例3
炉Aおよび炉Bの種類は、実施例1と同じであるが、炉Aでは石炭(中国産)を燃焼し、炉Bには炉AのEP灰と石炭(中国産)を燃料とし、石炭に対して帆立貝と古紙粕をカルシウム換算の重量比で100:2になるように添加し燃焼した。炉Aの炉内温度は740℃であり、炉Bの炉内温度は800℃にした。炉Bから排出される飛灰を供試サンプルとし、上記の溶出法と測定法で分析し、ホウ素の溶出量を求めた。その結果を表1に示す。
Example 3
The types of the furnace A and the furnace B are the same as those in Example 1. In the furnace A, coal (produced in China) is burned, and in the furnace B, EP ash of the furnace A and coal (produced in China) are used as fuel. On the other hand, scallops and waste paper cake were added and burned at a calcium-converted weight ratio of 100: 2. The temperature inside the furnace A was 740 ° C., and the temperature inside the furnace B was 800 ° C. The fly ash discharged from the furnace B was used as a test sample, and analyzed by the above elution method and measurement method to determine the elution amount of boron. The results are shown in Table 1.

比較例1
炉Aがストーカー炉であり、炉Bもストーカー炉である実機で、炉Aでは石炭(豪州産)を燃焼し、炉Bには炉AのEP灰と石炭(豪州産)を燃料とし燃焼した。炉A及び炉Bにはカルシウム源は加えていない。炉Aの炉内温度は750℃であり、炉Bの炉内温度は800℃にした。炉Bから排出される飛灰を供試サンプルとし、上記の溶出法と測定法で分析し、ホウ素の溶出量を求めた。その結果を表1に示す。
Comparative Example 1
Furnace A is a stalker furnace, and furnace B is also a stalker furnace. In furnace A, coal (Australia) was burned, and in furnace B, the EP ash of coal in furnace A and coal (Australia) were burned. . In furnace A and furnace B, no calcium source is added. The temperature inside the furnace A was 750 ° C., and the temperature inside the furnace B was 800 ° C. The fly ash discharged from the furnace B was used as a test sample, and analyzed by the above elution method and measurement method to determine the elution amount of boron. The results are shown in Table 1.

比較例2
炉Aはなく、炉Bが流動層燃焼炉の一段燃焼法であり、炉Bには石炭(インドネシア炭)に対して石灰石をカルシウム換算で100:5になるように添加し燃焼した。炉Bの温度は780℃にした。炉Bから排出される飛灰を供試サンプルとし、上記の溶出法と測定法で分析し、ホウ素の溶出量を求めた。その結果を表1に示す。
Comparative Example 2
There was no furnace A, and furnace B was a one-stage combustion method of a fluidized bed combustion furnace. In furnace B, limestone was added to coal (Indonesian coal) so as to be 100: 5 in terms of calcium and burned. The temperature of furnace B was 780 ° C. The fly ash discharged from the furnace B was used as a test sample, and analyzed by the above elution method and measurement method to determine the elution amount of boron. The results are shown in Table 1.

比較例3
炉Aの炉内温度は850℃であり、炉Bの炉内温度は680℃である以外は、実施例1と同様にした。炉Bから排出される飛灰を供試サンプルとし、上記の溶出法と測定法で分析し、ホウ素の溶出量を求めた。その結果を表1に示す。
Comparative Example 3
The temperature inside the furnace A was 850 ° C., and the temperature inside the furnace B was 680 ° C. The fly ash discharged from the furnace B was used as a test sample and analyzed by the above elution method and measurement method to determine the boron elution amount. The results are shown in Table 1.

Figure 2005134098
Figure 2005134098

表1から明らかなように、炉Aにストーカー炉、炉Bに流動層燃焼炉を用いて、炉Bで炉AのEP灰と石炭を燃焼させ、その際に、実施例1では炉Bに添加するカルシウム源は石灰石を、実施例2ではドロマイトとペーパースラッジを、実施例3では帆立貝と古紙粕を加え、石炭とカルシウム比率や炉内温度を、本発明の請求項の各項に納めた場合には、炉Bから排出される灰からのホウ素の溶出量を、1.0mg/l以下にすることができる。  As apparent from Table 1, using a stalker furnace for furnace A and a fluidized bed combustion furnace for furnace B, EP ash and coal of furnace A were burned in furnace B. The calcium source to be added is limestone, dolomite and paper sludge are added in Example 2, scallops and waste paper lees are added in Example 3, and the ratio of coal to calcium and the temperature in the furnace are stored in the respective claims of the present invention. In this case, the elution amount of boron from the ash discharged from the furnace B can be set to 1.0 mg / l or less.

一方、比較例1のように炉AおよびB共にストーカー炉で、カルシウム源を加えなかった場合には、ホウ素の溶出をほとんど抑制できないので、基準値を大幅に越える。比較例2では炉Aのない、一段燃焼法であるが、炉Bに石灰石を多く添加しても、比較例1に比べるとホウ素の溶出量は抑制できるが、それでも基準値をクリアーできない。さらに比較例3では、燃焼炉(A)を実施例1より高い温度にしたが、石灰石を投入する炉Bでの温度が低いために、石灰石が有効に作用せず、ホウ素溶出量は比較例2よりも多くなり、基準値を超えてしまう。 On the other hand, when both the furnaces A and B are stalker furnaces as in Comparative Example 1 and no calcium source is added, elution of boron can hardly be suppressed, so that the reference value is greatly exceeded. Although Comparative Example 2 is a one-stage combustion method without furnace A, even if a large amount of limestone is added to furnace B, the elution amount of boron can be suppressed as compared with Comparative Example 1, but the reference value cannot still be cleared. Furthermore, in Comparative Example 3, the temperature of the combustion furnace (A) was set higher than that in Example 1, but since the temperature in the furnace B into which limestone was charged was low, the limestone did not act effectively, and the boron elution amount was a comparative example. It becomes more than 2 and exceeds the reference value.

以上のように、簡便な方法で二段で燃焼することにより、ホウ素溶出量を1.0mg/l以下に抑制できるようになったため、2段燃焼により得られた焼却倍は土壌改良材として利用することが可能となった。  As described above, since the boron elution amount can be suppressed to 1.0 mg / l or less by burning in two stages by a simple method, the incineration double factor obtained by the two-stage combustion is used as a soil improvement material. It became possible to do.

Claims (5)

石炭を燃焼炉(A)で燃焼し、その排ガスを電気集塵器(Electronic Pre
cipitator)で処理し、得られた集塵灰(Electronic Precip
itator灰)を燃焼炉(B)で、石炭を主燃料とし、カルシウム源を加えて再度燃焼
した焼却灰の、平成15年環境庁告示第18号に基づく溶出試験方法によるホウ素量を1.0mg/l以下にする焼却灰の処理方法。
Coal is burned in a combustion furnace (A), and the exhaust gas is discharged into an electric precipitator (Electronic Pre).
Dust ash (Electronic Precip) obtained by processing with a cipitator
Iterator ash) is a combustion furnace (B), coal is the main fuel, incinerated ash burned again with the addition of calcium source, the boron content by the dissolution test method based on 2003 Environment Agency Notification No. 18 1.0mg / L or less incinerated ash treatment method.
前記燃焼炉(A)が石炭ストーカー炉であり、前記燃焼炉(B)が流動層燃焼炉であるこ
とを特徴とする請求項1記載の焼却灰の処理方法。
The method for treating incinerated ash according to claim 1, wherein the combustion furnace (A) is a coal stalker furnace, and the combustion furnace (B) is a fluidized bed combustion furnace.
前記燃焼炉(B)で燃焼する際の石炭とカルシウム源(CaOとして)との重量比が、1
00/1から100/20であることを特徴とする請求項1又は2に記載の焼却灰の処理
方法。
The weight ratio of coal to calcium source (as CaO) when burning in the combustion furnace (B) is 1
It is 00/1 to 100/20, The processing method of the incineration ash of Claim 1 or 2 characterized by the above-mentioned.
前記燃焼炉(B)で使用されるカルシウム源が石灰石、ドロマイト、帆立貝、ペーパース
ラッジおよび古紙粕のいずれか一つ、または、任意な比率の組み合わせであることを特徴
とする請求項1〜3のいずれか1項に記載の焼却灰の処理方法
The calcium source used in the combustion furnace (B) is any one of limestone, dolomite, scallops, paper sludge and waste paper cocoons, or a combination of arbitrary ratios. Incineration ash treatment method according to any one of items
前記燃焼炉Bの炉内温度が700℃以上900℃以下である請求項1〜4のいずれか1項
に記載の焼却灰の処理方法。

The method for treating incineration ash according to any one of claims 1 to 4, wherein the temperature in the furnace of the combustion furnace B is 700 ° C or higher and 900 ° C or lower.

JP2004099244A 2003-10-09 2004-03-30 Method for treating burned ash Pending JP2005134098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004099244A JP2005134098A (en) 2003-10-09 2004-03-30 Method for treating burned ash

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003350163 2003-10-09
JP2004099244A JP2005134098A (en) 2003-10-09 2004-03-30 Method for treating burned ash

Publications (1)

Publication Number Publication Date
JP2005134098A true JP2005134098A (en) 2005-05-26

Family

ID=34656035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004099244A Pending JP2005134098A (en) 2003-10-09 2004-03-30 Method for treating burned ash

Country Status (1)

Country Link
JP (1) JP2005134098A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330929A (en) * 2006-06-16 2007-12-27 Chugoku Electric Power Co Inc:The Method for manufacturing civil engineering and construction material
JP2008170111A (en) * 2007-01-12 2008-07-24 Chugoku Electric Power Co Inc:The Method of inhibiting elution of harmful trace element
JP2008168249A (en) * 2007-01-12 2008-07-24 Chugoku Electric Power Co Inc:The Method for suppressing elution of harmful trace elements
JP2011212564A (en) * 2010-03-31 2011-10-27 Nippon Paper Industries Co Ltd Method for improving whiteness of incineration ash

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330929A (en) * 2006-06-16 2007-12-27 Chugoku Electric Power Co Inc:The Method for manufacturing civil engineering and construction material
JP2008170111A (en) * 2007-01-12 2008-07-24 Chugoku Electric Power Co Inc:The Method of inhibiting elution of harmful trace element
JP2008168249A (en) * 2007-01-12 2008-07-24 Chugoku Electric Power Co Inc:The Method for suppressing elution of harmful trace elements
JP2011212564A (en) * 2010-03-31 2011-10-27 Nippon Paper Industries Co Ltd Method for improving whiteness of incineration ash

Similar Documents

Publication Publication Date Title
Zabaniotou et al. Green energy at cement kiln in Cyprus—Use of sewage sludge as a conventional fuel substitute
AU2006225140A1 (en) Reducing mercury emissions from the burning of coal
CN100569400C (en) The processing method of combustion ash
CN116921398B (en) A device and method for degrading dioxins based on two low-temperature pyrolysis processes
KR101779092B1 (en) Odor removal carrier using incinerated slag and method of manufacturing there of
CN103388825A (en) Sludge and raw coal blending boiler power generation process
CN107235709A (en) A kind of method that incineration of refuse flyash is granulated with sludge mixing low temp
JP2005134098A (en) Method for treating burned ash
JP3203335B2 (en) Detoxification method of ash from refuse incinerator
JP2005313147A (en) Combustion ash treatment method
CN100340505C (en) Simultaneous sludge method during cement production
RU2294905C2 (en) Method of reusing ashes
JP2008273749A (en) Artificial aggregate and its manufacturing method
JP2007313382A (en) Method of treating combustion ash containing fluorine and chromium
Yi et al. Emission and species distribution of mercury during thermal treatment of coal fly ash
JPH0760229A (en) Treatment of incineration ash of combustible waste
JP3764757B2 (en) Sewage sludge treatment method
RU2837926C1 (en) Method for thermal recycling of sewage sludge in “к-туо” process complex
JP2006198505A (en) Combustion ash treatment method
JP2004323255A (en) Method and system for converting soil to cement raw material
JPH1111992A (en) Cement based material to be solidified or hydraulic material of incineration ash in which harmful heavy metal is insolubilized
JP3957232B2 (en) Pretreatment equipment for reusing municipal waste incineration ash
JP3963003B2 (en) Method for treating heavy metals and dioxins in incinerated ash at low temperature
JP5599574B2 (en) Soil improver from incinerated ash and method for producing the same
JP4865199B2 (en) Method for treating boron-containing combustion ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111