[go: up one dir, main page]

JP2007273000A - Magnetic recording medium - Google Patents

Magnetic recording medium Download PDF

Info

Publication number
JP2007273000A
JP2007273000A JP2006097654A JP2006097654A JP2007273000A JP 2007273000 A JP2007273000 A JP 2007273000A JP 2006097654 A JP2006097654 A JP 2006097654A JP 2006097654 A JP2006097654 A JP 2006097654A JP 2007273000 A JP2007273000 A JP 2007273000A
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetic recording
mrt
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006097654A
Other languages
Japanese (ja)
Other versions
JP4795831B2 (en
Inventor
Kenji Ayama
兼士 阿山
Keiji Moroishi
圭二 諸石
Junichi Yasumori
順一 安森
Tokichiro Sato
籐吉郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Hoya Magnetics Singapore Pte Ltd
Original Assignee
Hoya Corp
Hoya Magnetics Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp, Hoya Magnetics Singapore Pte Ltd filed Critical Hoya Corp
Priority to JP2006097654A priority Critical patent/JP4795831B2/en
Publication of JP2007273000A publication Critical patent/JP2007273000A/en
Application granted granted Critical
Publication of JP4795831B2 publication Critical patent/JP4795831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic recording medium having a structure capable of executing high-density recording, and improving stability against thermal fluctuation. <P>SOLUTION: A texture in peripheral direction is disposed on a nonmagnetic substrate 11, and an adhesive layer 12 comprising a nonmagnetic amorphous layer is formed in the upper layer of the nonmagnetic substrate 11. Thus, Mrt-OR larger than 1.6 is achieved, and stability against thermal fluctuation of a magnetic recording disk is improved without applying an AFC structure. As Mrt is set to ≥0.350 memu/cm<SP>2</SP>in a circumferential direction, stability against thermal fluctuation is reduced to a non-problem level for a practical purpose, and a high recording density of ≥65Gbit/inch<SP>2</SP>is achieved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、長手記録(面内記録)方式の磁気記録媒体に関するものである。さらに詳しくは、磁性層にAFC(Anti−Ferromagnetic Coupling)構造を採用しなくても好適に長手記録が可能な磁気記録媒体に関するものである。   The present invention relates to a longitudinal recording (in-plane recording) type magnetic recording medium. More specifically, the present invention relates to a magnetic recording medium capable of suitably performing longitudinal recording without employing an AFC (Anti-Ferromagnetic Coupling) structure in a magnetic layer.

情報の記録や再生を行う磁気記録媒体においては、近年、記録容量の向上を達成するために、さらなる高密度記録化を図ることが急務となっている。長手記録(面内記録)方式の磁気記録媒体において高密度記録化を図るためには、磁気記録層を構成する磁性層の残留磁化(Mr)と磁性層の膜厚(t)との積(Mrt)をできるだけ小さくし、かつ、保磁力を磁気ヘッドが読み書きできる最大まで増大させる必要がある。また、高密度記録化を図るため、および磁化転移領域から発生するノイズを低減させるために、磁性層を構成する磁性粒子における粒径の微細化、孤立化、および均一化を図ることも必要である。   In recent years, magnetic recording media for recording and reproducing information have urgently required higher recording density in order to improve recording capacity. In order to achieve high density recording in a longitudinal recording (in-plane recording) magnetic recording medium, the product of the residual magnetization (Mr) of the magnetic layer constituting the magnetic recording layer and the film thickness (t) of the magnetic layer ( Mrt) should be made as small as possible and the coercive force should be increased to the maximum at which the magnetic head can read and write. In addition, in order to achieve high-density recording and to reduce noise generated from the magnetization transition region, it is also necessary to reduce the size of the magnetic particles constituting the magnetic layer, isolate them, and make them uniform. is there.

しかしながら、磁性層を構成する磁性粒子の粒径を小さくし過ぎると、「熱揺らぎ問題」が生じる。熱揺らぎ問題とは、磁性層を構成する磁性粒子の粒径を微細化し過ぎると、磁性粒子が有する熱エネルギーEt(Et=k×T(k:ボルツマン定数、T:温度))よりも磁気異方性エネルギーEp(Ep=Ku×V(Ku:磁気異方性エネルギー密度、V:磁性層を構成する磁性粒子の体積))が小さくなってしまい、これにより、磁性層内の磁気粒子の磁化が熱で反転することによって互いに打ち消し合い、全体として磁化が減少してしまう問題である。この結果として記録遷移幅が増大し、磁気ヘッドの出力の時間減少が加速されてしまう。   However, if the particle size of the magnetic particles constituting the magnetic layer is too small, a “thermal fluctuation problem” occurs. The thermal fluctuation problem is that when the particle size of the magnetic particles constituting the magnetic layer is excessively reduced, the magnetic energy differs from the thermal energy Et (Et = k × T (k: Boltzmann constant, T: temperature)) of the magnetic particles. The isotropic energy Ep (Ep = Ku × V (Ku: magnetic anisotropy energy density, V: volume of magnetic particles constituting the magnetic layer)) is reduced, and this causes magnetization of the magnetic particles in the magnetic layer. Are reversed by heat and cancel each other, and the magnetization is reduced as a whole. As a result, the recording transition width increases, and the time reduction of the output of the magnetic head is accelerated.

従来、この熱揺らぎ問題に対する対策としては、磁性層にPtを添加することにより、磁性粒子の磁気異方性エネルギー密度Kuを向上させる方法が知られている。   Conventionally, as a countermeasure against this thermal fluctuation problem, a method of improving the magnetic anisotropic energy density Ku of magnetic particles by adding Pt to the magnetic layer is known.

また、別の方法としては、磁性層の構成としてAFC構造を採用することにより、熱安定性を確保・向上させる方法も知られている(特許文献1参照)。   As another method, a method of securing and improving thermal stability by adopting an AFC structure as a configuration of the magnetic layer is also known (see Patent Document 1).

AFC構造とは、磁性層において、第1の磁性層、非磁性層(例えば、Ru層)、および第2の磁性層をこの順で積層させた構造であり、かかるAFC構造を採用すれば、非磁性層を介した2層の磁性層が互いに反強磁性的に相互作用することにより熱に対する耐久性が向上するため、熱揺らぎに対する安定性を高めることができる。
特開2001−56924号公報
The AFC structure is a structure in which a first magnetic layer, a nonmagnetic layer (for example, Ru layer), and a second magnetic layer are laminated in this order in the magnetic layer. If this AFC structure is adopted, Since the two magnetic layers through the non-magnetic layer interact antiferromagnetically with each other, durability against heat is improved, so that stability against thermal fluctuation can be improved.
Japanese Patent Laid-Open No. 2001-56924

しかしながら、磁性層にPtを添加する方法においては、添加するPtを増やすほど磁気異方性エネルギー密度Kuを上昇させることが可能であるが、Ptを過剰に添加すると、磁気記録媒体において発生するノイズが増大してしまうという問題点がある。   However, in the method of adding Pt to the magnetic layer, the magnetic anisotropy energy density Ku can be increased as the added Pt is increased. However, when Pt is added excessively, noise generated in the magnetic recording medium is increased. There is a problem that increases.

また、AFC構造を採用する方法においては、第1の磁性層および第2の磁性層に挟まれた非磁性層を1nm以下に精度よく形成する必要があり、また、磁性層の構成も第1の磁性層、非磁性層、および第2の磁性層と多層化しなければならないことから、成膜工程が複雑化してしまうという問題点がある。   In the method employing the AFC structure, the nonmagnetic layer sandwiched between the first magnetic layer and the second magnetic layer must be formed with a precision of 1 nm or less, and the configuration of the magnetic layer is also the first. Since the magnetic layer, the nonmagnetic layer, and the second magnetic layer must be multilayered, there is a problem that the film forming process becomes complicated.

以上の問題に鑑みて、本発明の課題は、高密度記録が可能で、かつ、AFC構造を採用しなくても熱揺らぎに対する安定性が高い磁気記録媒体を提供することにある。   In view of the above problems, an object of the present invention is to provide a magnetic recording medium capable of high-density recording and having high stability against thermal fluctuations without employing an AFC structure.

上記課題を解決するために、本発明では、非磁性基板上に少なくとも下地層、磁性層、保護層、および潤滑層がこの順で積層された磁気記録媒体において、前記非磁性基板と前記下地層との層間に非磁性アモルファス層からなる密着層が形成され、前記磁性層の残留磁化とその膜厚との積で求められるMrtが円周方向で0.350memu/cm2より大きく、半径方向のMrtに対する円周方向のMrtの比で求められるMrt−OR(磁気異方性比/Mrt配向比)が1.6より大きいことを特徴とする。 In order to solve the above problems, in the present invention, in a magnetic recording medium in which at least an underlayer, a magnetic layer, a protective layer, and a lubricating layer are laminated in this order on a nonmagnetic substrate, the nonmagnetic substrate and the underlayer An adhesion layer made of a nonmagnetic amorphous layer is formed between the two layers, and Mrt obtained by the product of the remanent magnetization of the magnetic layer and its film thickness is larger than 0.350 memu / cm 2 in the circumferential direction, Mrt-OR (magnetic anisotropy ratio / Mrt orientation ratio) obtained by the ratio of Mrt in the circumferential direction to Mrt is larger than 1.6.

このような構成を有する磁気記録媒体では、高いMrt−ORを実現することが可能である。このようにMrt−ORを高めると磁気異方性も高まるので、これにより、磁気異方性エネルギーも高まる。従って、AFC構造を適用しなくても、磁気記録媒体における熱揺らぎに対する安定性を高めることができる。これにより、磁気記録媒体における高耐久性が実現可能になる。   A magnetic recording medium having such a configuration can achieve a high Mrt-OR. When Mrt-OR is increased in this way, the magnetic anisotropy is also increased, thereby increasing the magnetic anisotropy energy. Therefore, the stability against thermal fluctuation in the magnetic recording medium can be improved without applying the AFC structure. Thereby, high durability in the magnetic recording medium can be realized.

本発明では、前記密着層は、第1の添加元素として、Ti、Y、Zr、Nb、Mo、Hf、Ta、W、Si、Bのうちの少なくとも1種の元素を含有することが好ましい。   In the present invention, the adhesion layer preferably contains at least one element of Ti, Y, Zr, Nb, Mo, Hf, Ta, W, Si, and B as the first additive element.

また、本発明では、前記密着層は、第2の添加元素として、Cr、V、Mn、Coのうちの少なくとも1種の元素を含有することが好ましい。前記密着層の具体的な構成としては、CrTiが挙げられる。   In the present invention, it is preferable that the adhesion layer contains at least one element selected from Cr, V, Mn, and Co as the second additive element. Specific examples of the structure of the adhesion layer include CrTi.

本発明では、前記下地層は、Crを主成分とし、Ti、Zr、Nb、Ta、Mo、W、Mn、Coのうちの少なくとも1種の元素を含有する層を、少なくとも1層有することが好ましい。前記下地層の具体的な構成としては、CoW、CrTi、CrMo、CrW等が挙げられる。   In the present invention, the underlayer has at least one layer containing Cr as a main component and containing at least one element selected from Ti, Zr, Nb, Ta, Mo, W, Mn, and Co. preferable. Specific examples of the underlayer include CoW, CrTi, CrMo, and CrW.

本発明では、前記磁気層は、少なくとも第1の磁性層および第2の磁性層の2層を有し、前記第1の磁性層はCoを主成分とし、さらに、Cr、Pt、Ta、B、Cu、Cのうちの少なくとも1種の元素を含有することが好ましい。前記第1の磁性層の具体的な構成としては、CoCrTa、CoCrPtB等が挙げられる。   In the present invention, the magnetic layer has at least two layers of a first magnetic layer and a second magnetic layer, the first magnetic layer is mainly composed of Co, and further includes Cr, Pt, Ta, B It is preferable to contain at least one element of Cu, Cu and C. Specific examples of the first magnetic layer include CoCrTa and CoCrPtB.

本発明では、前記第2の磁性層はCoを主成分とし、さらに、Cr、Pt、Ta、B、Cu、Cのうちの少なくとも1種の元素を含有することが好ましい。前記第2の磁性層の具体的な構成としては、CoCrBが挙げられる。   In the present invention, the second magnetic layer preferably contains Co as a main component and further contains at least one element selected from Cr, Pt, Ta, B, Cu, and C. A specific configuration of the second magnetic layer includes CoCrB.

本発明では、非磁性基板上にテクスチャーを設け、非磁性基板の上層には、アモルファス層からなる密着層を形成している。この構成により、高いMrt−ORを実現することが可能である。このようにMrt−ORを高めると磁気異方性も高まるので、これにより、磁気異方性エネルギーも高まる。従って、従来のようにAFC構造を適用しなくても、磁気記録媒体における熱揺らぎに対する安定性を高めることができる。これにより、磁気記録媒体における高耐久性が実現可能になる。また、本発明を適用した磁気記録媒体においては、円周方向のMrtが0.350memu/cm2より大きくなるよう構成したため、熱揺らぎに起因する信号出力の減衰を実用上、問題のないレベルにまで低減できる。さらに、本発明を適用した磁気記録媒体においては、円周方向のMrtが0.350memu/cm2より大きくなるよう構成されるため、65Gbit/inch2以上の高記録密度化を達成することができる。 In the present invention, a texture is provided on the nonmagnetic substrate, and an adhesion layer made of an amorphous layer is formed on the upper layer of the nonmagnetic substrate. With this configuration, a high Mrt-OR can be realized. When Mrt-OR is increased in this way, the magnetic anisotropy is also increased, thereby increasing the magnetic anisotropy energy. Therefore, the stability against thermal fluctuation in the magnetic recording medium can be enhanced without applying the AFC structure as in the prior art. Thereby, high durability in the magnetic recording medium can be realized. Further, in the magnetic recording medium to which the present invention is applied, since the circumferential Mrt is configured to be larger than 0.350 memu / cm 2 , the attenuation of the signal output caused by the thermal fluctuation is at a level that is practically not problematic. Can be reduced. Furthermore, since the magnetic recording medium to which the present invention is applied is configured such that the circumferential Mrt is larger than 0.350 memu / cm 2 , a high recording density of 65 Gbit / inch 2 or more can be achieved. .

以下に、図面を参照して、本発明を適用した磁気記録媒体について説明する。   A magnetic recording medium to which the present invention is applied will be described below with reference to the drawings.

(非磁性基板、磁気ディスクおよび磁気ディスク装置の構成)
図1(a)、(b)はそれぞれ、本発明を適用した磁気ディスクを示す平面図、およびその概略断面図である。図2は、磁気ディスク装置の要部構成を示す説明図である。なお、図1(b)においては、非磁性基板11の主表面110上にどのような層がどのような順で積層されているかのみを示しているのであって、各層の厚さの比率は実際の磁気記録ディスクとは対応していない。
(Configuration of non-magnetic substrate, magnetic disk and magnetic disk device)
1A and 1B are a plan view and a schematic sectional view showing a magnetic disk to which the present invention is applied, respectively. FIG. 2 is an explanatory diagram showing a main configuration of the magnetic disk device. FIG. 1B shows only what layers are stacked in what order on the main surface 110 of the nonmagnetic substrate 11, and the ratio of the thicknesses of the respective layers is as follows. It does not correspond to an actual magnetic recording disk.

図1(a)、(b)に示す磁気記録ディスク(磁気記録媒体)1は、ディスク駆動装置に用いられる情報記録媒体であり、長手記録(面内記録)方式の磁気記録媒体である。本形態の磁気記録ディスク1は、中心穴111を備えた円形の非磁性基板11の主表面110に密着層12、下地層13、磁性層14、保護層15、および潤滑層16がこの順に積層された構造を有しており、非磁性基板11と下地層13との層間に密着層12を有している。   A magnetic recording disk (magnetic recording medium) 1 shown in FIGS. 1A and 1B is an information recording medium used for a disk drive device, and is a longitudinal recording (in-plane recording) type magnetic recording medium. In the magnetic recording disk 1 of this embodiment, an adhesion layer 12, an underlayer 13, a magnetic layer 14, a protective layer 15, and a lubricating layer 16 are laminated in this order on a main surface 110 of a circular nonmagnetic substrate 11 having a center hole 111. The adhesion layer 12 is provided between the nonmagnetic substrate 11 and the underlayer 13.

非磁性基板11は、例えば、アルミノシリケートガラスなどのガラス基板からなり、非磁性基板11の主表面110には、周方向のテクスチャーが形成されている。非磁性基板11において内端部112および外端部113は各々、面取り加工が施されている。但し、図1(b)には面取り部分の図示を省略してある。このような非磁性基板11は、例えば、溶融ガラスから上型、下型、胴型を用いたダイレクトプレスにより、アルミノシリケートガラスからなるガラス基板を得、これに、形状加工工程、研磨剤スラリーなどを用いた研磨加工、化学強化処理、ダイアモンドスラリーなどを用いたテクスチャー加工などを施すことにより得られる。化学強化処理としては、ガラス基板表層に含まれる一部のイオンを、そのイオンより大きなイオン半径を有する化学強化処理液中のイオンで置換することにより化学強化を行うイオン交換による化学強化処理法や、ガラス基板表層に含まれるアルカリイオンを除去することにより化学強化を行う脱アルカリ処理による化学強化処理法等が挙げられる。テクスチャー加工としては、ポリエステル繊維布等からなるテープを基板の表面に押圧し、基板の表面とテープとの間に研磨用のスラリーを介在させ、非磁性基板を回転させることにより基板の周方向に亘ってテクスチャー(研磨痕)を形成するテープテクスチャー法が挙げられる。   The nonmagnetic substrate 11 is made of a glass substrate such as aluminosilicate glass, for example, and a circumferential texture is formed on the main surface 110 of the nonmagnetic substrate 11. In the nonmagnetic substrate 11, the inner end portion 112 and the outer end portion 113 are each chamfered. However, the chamfered portion is not shown in FIG. Such a non-magnetic substrate 11 is obtained by, for example, obtaining a glass substrate made of aluminosilicate glass from a molten glass by direct pressing using an upper die, a lower die, and a barrel die, and a shape processing step, an abrasive slurry, etc. It is obtained by applying a polishing process using a chemical, a chemical strengthening process, a texture process using a diamond slurry, or the like. As the chemical strengthening treatment, a chemical strengthening treatment method by ion exchange that performs chemical strengthening by replacing some ions contained in the surface layer of the glass substrate with ions in a chemical strengthening treatment liquid having an ion radius larger than the ions, Examples thereof include a chemical strengthening treatment method by dealkalization treatment in which chemical strengthening is performed by removing alkali ions contained in the surface layer of the glass substrate. As the texture processing, a tape made of polyester fiber cloth or the like is pressed against the surface of the substrate, a polishing slurry is interposed between the surface of the substrate and the tape, and the nonmagnetic substrate is rotated in the circumferential direction of the substrate. A tape texture method for forming a texture (polishing marks) over the entire surface can be mentioned.

以下、上述した加工処理が施された非磁性基板11に対して複数の層を順次形成して磁気記録ディスク1を製造する方法を説明しながら、磁気記録ディスク1の構成をさらに詳述する。   Hereinafter, the configuration of the magnetic recording disk 1 will be described in more detail while explaining a method of manufacturing the magnetic recording disk 1 by sequentially forming a plurality of layers on the nonmagnetic substrate 11 that has been subjected to the processing described above.

本形態の磁気記録ディスク1を製造するには、まず、非磁性基板11の主表面110に対してスパッタ法などの気相成膜法を利用して密着層12を形成する。密着層12は、例えば、CrTi合金からなる非磁性アモルファス層であり、非磁性基板11との密着性を向上させるとともに、非磁性基板11に含まれるアルカリ金属等の汚染元素の拡散を抑止して磁気特性の劣化を防ぐために形成される。ここで、密着層12としても用いられる非磁性アモルファス層としては、第1の添加元素として、Ti、Y、Zr、Nb、Mo、Hf、Ta、W、SiまたはBを含有し、第2の添加元素として、Cr、V、MnまたはCoを含有する層を用いることができる。   In order to manufacture the magnetic recording disk 1 of this embodiment, first, the adhesion layer 12 is formed on the main surface 110 of the nonmagnetic substrate 11 by using a vapor phase film forming method such as sputtering. The adhesion layer 12 is a nonmagnetic amorphous layer made of, for example, a CrTi alloy, and improves adhesion with the nonmagnetic substrate 11 and suppresses the diffusion of contaminant elements such as alkali metals contained in the nonmagnetic substrate 11. It is formed to prevent the deterioration of magnetic properties. Here, the nonmagnetic amorphous layer also used as the adhesion layer 12 contains Ti, Y, Zr, Nb, Mo, Hf, Ta, W, Si, or B as the first additive element, As an additive element, a layer containing Cr, V, Mn, or Co can be used.

次に、密着層12の上層に対してスパッタ法などの気相成膜法を利用して下地層13を形成する。このような下地層13は、磁性層14の結晶構造を良好にするために形成される。下地層13は、Crを主成分とし、Ti、Zr、Nb、Ta、Mo、W、Mn、Coのうちの少なくとも1種の元素を含有する層を少なくとも1層有していることが好ましく、本形態では、CoW合金からなる第1の下地層、CrMn合金からなる第2の下地層、およびCrMoTi合金からなる第3の下地層によって構成されている。なお、CoW合金からなる第1の下地層の表面には、酸素暴露処理が施されている。   Next, the base layer 13 is formed on the upper layer of the adhesion layer 12 by using a vapor deposition method such as sputtering. Such an underlayer 13 is formed in order to improve the crystal structure of the magnetic layer 14. The underlayer 13 preferably has at least one layer containing Cr as a main component and containing at least one element selected from Ti, Zr, Nb, Ta, Mo, W, Mn, and Co. In this embodiment, the first underlayer is made of a CoW alloy, the second underlayer is made of a CrMn alloy, and the third underlayer is made of a CrMoTi alloy. The surface of the first underlayer made of CoW alloy is subjected to oxygen exposure treatment.

次に、下地層13の上層に対してスパッタ法などの気相成膜法を利用して磁性層14を形成する。本形態において磁性層14は、第1の磁性層、および第2の磁性層の2層がこの順に積層された構成を有し、第1の磁性層はCoを主成分とし、さらに、Cr、Pt、Ta、B、Cu、Cのうちの少なくとも1種の元素を含有する層によって構成され、第2の磁性層はCoを主成分とし、さらに、Cr、Pt、Ta、B、Cu、Cのうちの少なくとも1種の元素を含有する層によって構成される。本形態では、第1の磁性層がCoCrTa合金によって構成され、第2の磁性層がCoCrB合金によって構成されている。   Next, the magnetic layer 14 is formed on the upper layer of the underlayer 13 by using a vapor deposition method such as sputtering. In this embodiment, the magnetic layer 14 has a configuration in which a first magnetic layer and a second magnetic layer are laminated in this order. The first magnetic layer is mainly composed of Co, and further includes Cr, It is composed of a layer containing at least one element of Pt, Ta, B, Cu, and C, and the second magnetic layer is mainly composed of Co, and further includes Cr, Pt, Ta, B, Cu, and C. It is comprised by the layer containing at least 1 sort (s) of element. In this embodiment, the first magnetic layer is made of a CoCrTa alloy, and the second magnetic layer is made of a CoCrB alloy.

次に、磁性層14の上層に対してスパッタ法あるいはプラズマCVD法などの気相成膜法を利用して保護層15を形成する。保護層15は、例えば、ダイヤモンドライクカーボンからなり、耐摩耗性を向上させて磁性層14を保護する機能を担っている。   Next, the protective layer 15 is formed on the upper layer of the magnetic layer 14 by using a vapor deposition method such as sputtering or plasma CVD. The protective layer 15 is made of, for example, diamond-like carbon, and has a function of improving the wear resistance and protecting the magnetic layer 14.

次に、保護層15の上層に潤滑層16を浸漬成膜法により形成する。潤滑層16は、パーフルオロポリエーテル層などから構成されており、磁気ヘッドとの接触した際の衝撃を緩和するなどの機能を担っている。   Next, the lubricating layer 16 is formed on the protective layer 15 by an immersion film forming method. The lubrication layer 16 is composed of a perfluoropolyether layer or the like, and has a function of mitigating impact when coming into contact with the magnetic head.

このように構成した磁気記録ディスク1を備えた磁気ディスク装置のうち、例えば、図2に示すLUL(ロード・アンロード)方式を採用したハードディスクドライブ装置100は、ケース8内に、複数枚の磁気記録ディスク1、これらの磁気記録ディスク1を支持するとともに回転駆動するスピンドルモータを備えた駆動機構3、磁気記録ディスク1に対して情報の記録、再生を行うヘッド素子(図示せず)を保持するスライダ2、このスライダ2を磁気記録ディスク1に対して移動自在に支持するヘッドサスペンションアセンブリ4などを有している。また、図2に示すハードディスクドライブ装置100では、LUL(ロード・アンロード)方式が採用されており、スライダ2は磁気記録ディスク1が停止しているときは、磁気記録ディスク1の外側付近に位置するランプと称せられる傾斜台5上に待機しており、磁気記録ディスク1が回転した後、ガイド機構(図示せず)によってスライダ2がディスク面上に移動してきて記録、再生を行う。スライダ2は、ヘッドサスペンションアセンブリ4の先端部に設けられたジンバルばね(図示せず)などにより磁気記録ディスク1に向けて所定の荷重が印加されている。   Among the magnetic disk devices including the magnetic recording disk 1 configured as described above, for example, the hard disk drive device 100 adopting the LUL (load / unload) method shown in FIG. A recording disk 1, a drive mechanism 3 having a spindle motor that supports and rotates these magnetic recording disks 1, and a head element (not shown) for recording and reproducing information to and from the magnetic recording disk 1 are held. The slider 2 includes a head suspension assembly 4 that supports the slider 2 so as to be movable with respect to the magnetic recording disk 1. 2 employs a LUL (load / unload) method, and the slider 2 is positioned near the outside of the magnetic recording disk 1 when the magnetic recording disk 1 is stopped. After the magnetic recording disk 1 is rotated, the slider 2 is moved onto the disk surface by a guide mechanism (not shown) to perform recording and reproduction. A predetermined load is applied to the slider 2 toward the magnetic recording disk 1 by a gimbal spring (not shown) provided at the tip of the head suspension assembly 4.

ここで、スライダ2に保持されたヘッド素子としては、例えば、トンネル磁気抵抗(TMR(Tunneling Magneto Resistance))素子が用いられており、かかるTMR素子は、例えば、トンネル障壁に酸化アルミニウム、あるいは酸化マグネシウムが用いられ、低抵抗かつ、大きな磁気抵抗比を備えている。   Here, as the head element held by the slider 2, for example, a tunneling magnetoresistance (TMR) element is used. For example, the TMR element has aluminum oxide or magnesium oxide as a tunnel barrier. Is used and has a low resistance and a large magnetoresistance ratio.

(本形態の主な効果)
以下、本形態の主な効果を図3を参照して説明する。図3は、磁気記録ディスクにおける磁性層の円周方向におけるMrtと熱揺らぎ特性との関係を示すグラフである。なお、図3中におけるMrt、および後述する表1、表2におけるMrtの値は、Digital Measurement Systems社製のM2 Automated Disk Media Measurement and Mapping System を用いて測定した。
(Main effect of this form)
Hereinafter, main effects of this embodiment will be described with reference to FIG. FIG. 3 is a graph showing a relationship between Mrt and thermal fluctuation characteristics in the circumferential direction of the magnetic layer in the magnetic recording disk. In addition, the value of Mrt in FIG. 3 and the values of Mrt in Tables 1 and 2 described later were measured using an M2 Automated Disk Media Measurement and Mapping System manufactured by Digital Measurement Systems.

本形態では、ガラス基板からなる非磁性基板11上に周方向のテクスチャーを設け、非磁性基板11と下地層13との層間には、非磁性アモルファス層からなる密着層12を形成している。また、下地層13を構成する第1の下地層の表面には酸素暴露処理が施されている。このため、高いMrt−OR(磁気異方性比)、具体的には、1.60よりも大であるMrt−ORを実現することが可能である。ここで、Mrt−ORとは、磁気記録ディスク1における円周方向のMrt(磁性層14における残留磁化(Mr)と膜厚(t)との積)と半径方向のMrt値との比(円周方向におけるMrt/半径方向におけるMrt)であり、Mrt−ORの値が高いほど、その磁気記録ディスク1は円周方向に磁化しやすい。このようにしてMrt−ORを高めると磁気異方性も高まるので、これにより、磁気異方性エネルギーも高まる。従って、従来のようにAFC構造を適用しなくても、磁気記録ディスク1における熱揺らぎに対する安定性を高めることができる。これにより、磁気記録ディスク1における高耐久性が実現可能になる。   In this embodiment, a circumferential texture is provided on a nonmagnetic substrate 11 made of a glass substrate, and an adhesion layer 12 made of a nonmagnetic amorphous layer is formed between the nonmagnetic substrate 11 and the underlayer 13. Further, the surface of the first underlayer constituting the underlayer 13 is subjected to oxygen exposure treatment. For this reason, it is possible to realize high Mrt-OR (magnetic anisotropy ratio), specifically, Mrt-OR which is larger than 1.60. Here, Mrt-OR is the ratio of the Mrt in the circumferential direction of the magnetic recording disk 1 (the product of the residual magnetization (Mr) and the film thickness (t) in the magnetic layer 14) to the Mrt value in the radial direction (circle). Mrt in the circumferential direction / Mrt in the radial direction) The higher the value of Mrt-OR, the easier the magnetic recording disk 1 is magnetized in the circumferential direction. When Mrt-OR is increased in this way, the magnetic anisotropy is also increased, thereby increasing the magnetic anisotropy energy. Therefore, the stability against thermal fluctuation in the magnetic recording disk 1 can be improved without applying the AFC structure as in the prior art. Thereby, high durability in the magnetic recording disk 1 can be realized.

また、本発明を適用した磁気記録ディスク1においては、円周方向のMrtが0.350memu/cm2より大きくなるよう構成したため、熱揺らぎに対する安定性を実用上、問題のないレベルに抑えることができる。すなわち、本発明を適用した磁気記録ディスク1において、磁性層の円周方向におけるMrtと熱揺らぎ特性(信号出力の減衰)との間には、図3に示す相関性があり、本発明では、円周方向のMrtが0.350memu/cm2より大きくなるように磁気記録ディスク1を構成したため、熱揺らぎに起因する信号出力の減衰を実用上、問題のない0.100dB/decade以下に抑えることができる。 Further, in the magnetic recording disk 1 to which the present invention is applied, since the circumferential Mrt is configured to be larger than 0.350 memu / cm 2, the stability against thermal fluctuation can be suppressed to a practically satisfactory level. it can. That is, in the magnetic recording disk 1 to which the present invention is applied, there is a correlation shown in FIG. 3 between the Mrt in the circumferential direction of the magnetic layer and the thermal fluctuation characteristic (attenuation of signal output). Since the magnetic recording disk 1 is configured so that the circumferential direction Mrt is larger than 0.350 memu / cm 2 , the attenuation of the signal output due to thermal fluctuation is suppressed to 0.100 dB / decade or less which is practically no problem. Can do.

さらに、本形態を適用した磁気記録ディスク1においては、磁性層14の円周方向におけるMrtが0.350memu/cm2より大きくなるよう構成されるため、65Gbit/inch2以上の高記録密度化を達成することができる。従って、TMR型の磁気ヘッドを有するHDD装置へ搭載するのに適している。 Further, in the magnetic recording disk 1 to which this embodiment is applied, since the Mrt in the circumferential direction of the magnetic layer 14 is configured to be larger than 0.350 memu / cm 2, the recording density is increased to 65 Gbit / inch 2 or more. Can be achieved. Therefore, it is suitable for mounting on an HDD apparatus having a TMR type magnetic head.

表1、表2を参照して、本発明を適用した磁気記録ディスク1の実施例を説明する。表1には、本発明の実施例1、2、およびAFC構造を有する比較例に係る磁気記録ディスクの第1の磁性層の構成、円周方向のMrt(残留磁化と膜厚の積)、Mrt−OR(磁気異方性比)、および熱揺らぎ特性を示してある。表2には、本発明を適用した実施例3〜7に係る磁気記録ディスクの第1の磁性層の構成、円周方向のMrt、Mrt−OR、SNR(信号雑音比)を示してある。   An embodiment of the magnetic recording disk 1 to which the present invention is applied will be described with reference to Tables 1 and 2. Table 1 shows the configurations of the first magnetic layer of the magnetic recording disks according to Examples 1 and 2 of the present invention and the comparative example having the AFC structure, Mrt in the circumferential direction (product of residual magnetization and film thickness), Mrt-OR (magnetic anisotropy ratio) and thermal fluctuation characteristics are shown. Table 2 shows the configuration of the first magnetic layer of the magnetic recording disks according to Examples 3 to 7 to which the present invention is applied, and the Mrt, Mrt-OR, and SNR (signal-to-noise ratio) in the circumferential direction.

Figure 2007273000
Figure 2007273000

Figure 2007273000
Figure 2007273000

なお、実施例に用いた磁気記録ディスクのその他の構成は、図1を参照して説明したように、テクスチャーを施したガラス基板に対して、CrTi合金(非磁性アモルファス層)からなる密着層12と、CoW合金、CrMn合金、およびCrMoTi合金からなる下地層13と、表1に示す第1の磁性層およびCoCrB合金からなる第2の磁性層からなる磁性層14(磁気記録層)、ダイヤモンドライクカーボンからなる保護層15と、パーフルオロポリエーテル層からなる潤滑層16がこの順に積層された構造になっている。   The other configuration of the magnetic recording disk used in the example is as described with reference to FIG. 1. The adhesion layer 12 made of a CrTi alloy (nonmagnetic amorphous layer) is applied to a textured glass substrate. A magnetic layer 14 (magnetic recording layer) composed of a base layer 13 made of a CoW alloy, a CrMn alloy, and a CrMoTi alloy, a first magnetic layer and a second magnetic layer made of a CoCrB alloy shown in Table 1, diamond-like A protective layer 15 made of carbon and a lubricating layer 16 made of a perfluoropolyether layer are laminated in this order.

まず、表1に示すように、磁性層14における残留磁化(Mr)と膜厚(t)との積であるMrtは、実施例1および実施例2では、それぞれ、円周方向で0.436memu/cm2、0.467memu/cm2であり、比較例1(AFC構造を有する)では、0.449memu/cm2であった。また、実施例1および実施例2におけるMrt−ORは全て1.60より大であった。さらに、熱揺らぎ特性を示す信号出力の減衰は、実施例1および実施例2では、それぞれ、−0.078dB/decade、−0.069dB/decadeであり、比較例1においては、−0.078dB/decadeであった。 First, as shown in Table 1, Mrt, which is the product of the remanent magnetization (Mr) and the film thickness (t) in the magnetic layer 14, is 0.436 memu in the circumferential direction in each of Example 1 and Example 2. / Cm 2 , 0.467 memu / cm 2 , and in Comparative Example 1 (having an AFC structure), it was 0.449 memu / cm 2 . Moreover, all Mrt-OR in Example 1 and Example 2 was larger than 1.60. Further, the attenuation of the signal output indicating the thermal fluctuation characteristics is −0.078 dB / decade and −0.069 dB / decade in Example 1 and Example 2, respectively, and −0.078 dB in Comparative Example 1. / Decade.

このように、本発明の実施例1、2に係る磁気記録ディスクは、AFC構造を有する従来の磁気記録ディスクと略同等のMrt値を示し、さらに、熱揺らぎ特性においても、AFC構造を有する磁気記録ディスクと略同等の特性を示していることが分かる。従って、本発明の実施例に係る磁気記録ディスクでは、AFC構造を有する磁気記録ディスクと略同等の高密度記録が可能であり、かつ、AFC構造を用いずとも、熱揺らぎに対する安定性も高めることが可能であることが分かる。本発明を適用した磁気記録ディスクが熱揺らぎに対して高い安定性を有する理由としては、Mrt−ORを1.6より大とすることにより、磁気記録ディスクにおける磁気異方性エネルギーが高められたためと考えられる。   As described above, the magnetic recording disks according to Examples 1 and 2 of the present invention have substantially the same Mrt value as that of the conventional magnetic recording disk having the AFC structure, and the magnetic fluctuation characteristics have the AFC structure. It can be seen that it exhibits substantially the same characteristics as the recording disk. Therefore, the magnetic recording disk according to the embodiment of the present invention can perform high density recording substantially the same as the magnetic recording disk having the AFC structure, and can improve the stability against thermal fluctuation without using the AFC structure. It is understood that is possible. The reason why the magnetic recording disk to which the present invention is applied has high stability against thermal fluctuation is that the magnetic anisotropy energy in the magnetic recording disk is increased by making Mrt-OR larger than 1.6. it is conceivable that.

次に、表2に示すように、実施例3〜7におけるMrtは全て円周方向で0.350memu/cm2より大であり、また、Mrt−ORは全て1.60より大であった。また、実施例3〜7におけるSNRは、すべて20.0近傍であった。従って、本発明を適用した磁気記録ディスクでは、高密度記録が可能であり、さらに、SNR値が20.0近傍という良好な電磁変換特性が得られることが分かる。本発明を適用した磁気記録ディスクが良好な電磁変換特性を有する理由としては、Mrt−ORを1.6より大とすることにより、磁気記録ディスクの周方向における磁気異方性が改善され、これにより良好な電磁変換特性が得られるためと考えられる。 Next, as shown in Table 2, all Mrts in Examples 3 to 7 were larger than 0.350 memu / cm 2 in the circumferential direction, and all Mrt-ORs were larger than 1.60. Moreover, all SNR in Examples 3-7 was 20.0 vicinity. Therefore, it can be seen that the magnetic recording disk to which the present invention is applied can perform high-density recording, and can obtain good electromagnetic conversion characteristics with an SNR value of around 20.0. The reason why the magnetic recording disk to which the present invention is applied has good electromagnetic conversion characteristics is that the magnetic anisotropy in the circumferential direction of the magnetic recording disk is improved by making Mrt-OR larger than 1.6. It is considered that better electromagnetic conversion characteristics can be obtained.

(a)、(b)はそれぞれ、本発明を適用した磁気記録ディスクを示す平面図、およびその概略断面図である。(a), (b) is the top view and schematic sectional drawing which respectively show the magnetic recording disk to which this invention is applied. 磁気ディスク装置の要部構成を示す説明図である。It is explanatory drawing which shows the principal part structure of a magnetic disc apparatus. 磁気記録ディスクにおける磁性層の円周方向におけるMrtと熱揺らぎ特性との関係を示すグラフである。It is a graph which shows the relationship between Mrt and the thermal fluctuation characteristic in the circumferential direction of the magnetic layer in a magnetic recording disk.

符号の説明Explanation of symbols

1 磁気記録ディスク(磁気記録媒体)
11 非磁性基板
12 密着層
13 下地層
14 磁性層
15 保護層
16 潤滑層
1 Magnetic recording disk (magnetic recording medium)
11 Nonmagnetic substrate 12 Adhesion layer 13 Underlayer 14 Magnetic layer 15 Protective layer 16 Lubrication layer

Claims (6)

非磁性基板上に少なくとも下地層、磁性層、保護層、および潤滑層がこの順で積層された磁気記録媒体において、
前記非磁性基板と前記下地層との層間に非磁性アモルファス層からなる密着層が形成され、
前記磁性層の残留磁化とその膜厚との積で求められるMrtが円周方向で0.350memu/cm2より大きく、半径方向のMrtに対する円周方向のMrtの比で求められるMrt−ORが1.6より大きいことを特徴とする磁気記録媒体。
In a magnetic recording medium in which at least an underlayer, a magnetic layer, a protective layer, and a lubricating layer are laminated in this order on a nonmagnetic substrate,
An adhesion layer made of a nonmagnetic amorphous layer is formed between the nonmagnetic substrate and the underlayer,
The Mrt obtained by the product of the remanent magnetization of the magnetic layer and its film thickness is greater than 0.350 memu / cm 2 in the circumferential direction, and the Mrt-OR obtained by the ratio of the Mrt in the circumferential direction to the Mrt in the radial direction is A magnetic recording medium characterized by being larger than 1.6.
前記密着層は、第1の添加元素として、Ti、Y、Zr、Nb、Mo、Hf、Ta、W、Si、Bのうちの少なくとも1種の元素を含有することを特徴とする請求項1に記載の磁気記録媒体。   The adhesion layer contains at least one element of Ti, Y, Zr, Nb, Mo, Hf, Ta, W, Si, and B as the first additive element. 2. A magnetic recording medium according to 1. 前記密着層は、第2の添加元素として、Cr、V、Mn、Coのうちの少なくとも1種の元素を含有することを特徴とする請求項2に記載の磁気記録媒体。   The magnetic recording medium according to claim 2, wherein the adhesion layer contains at least one element of Cr, V, Mn, and Co as a second additive element. 前記下地層は、Crを主成分とし、Ti、Zr、Nb、Ta、Mo、W、Mn、Coのうちの少なくとも1種の元素を含有する層を、少なくとも1層有することを特徴とする請求項1ないし3のいずれかに記載の磁気記録媒体。   The underlayer has at least one layer containing Cr as a main component and containing at least one element selected from Ti, Zr, Nb, Ta, Mo, W, Mn, and Co. Item 4. The magnetic recording medium according to any one of Items 1 to 3. 前記磁気層は、少なくとも第1の磁性層および第2の磁性層の2層を有し、
前記第1の磁性層はCoを主成分とし、さらに、Cr、Pt、Ta、B、Cu、Cのうちの少なくとも1種の元素を含有することを特徴とする請求項1ないし4のいずれかに記載の磁気記録媒体。
The magnetic layer has at least two layers of a first magnetic layer and a second magnetic layer,
5. The first magnetic layer according to claim 1, wherein the first magnetic layer contains Co as a main component and further contains at least one element selected from Cr, Pt, Ta, B, Cu, and C. 2. A magnetic recording medium according to 1.
前記第2の磁性層はCoを主成分とし、さらに、Cr、Pt、Ta、B、Cu、Cのうちの少なくとも1種の元素を含有することを特徴とする請求項5に記載の磁気記録媒体。   6. The magnetic recording according to claim 5, wherein the second magnetic layer contains Co as a main component and further contains at least one element selected from Cr, Pt, Ta, B, Cu, and C. Medium.
JP2006097654A 2006-03-31 2006-03-31 Magnetic recording medium Active JP4795831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006097654A JP4795831B2 (en) 2006-03-31 2006-03-31 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006097654A JP4795831B2 (en) 2006-03-31 2006-03-31 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2007273000A true JP2007273000A (en) 2007-10-18
JP4795831B2 JP4795831B2 (en) 2011-10-19

Family

ID=38675647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006097654A Active JP4795831B2 (en) 2006-03-31 2006-03-31 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP4795831B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157468A1 (en) * 2012-04-18 2013-10-24 山陽特殊製鋼株式会社 CrTi-BASED ALLOY FOR ADHESION FILM LAYER FOR USE IN MAGNETIC RECORDING MEDIUM, TARGET MATERIAL FOR SPUTTERING, AND PERPENDICULAR MAGNETIC RECORDING MEDIUM OBTAINED USING SAME
CN113053422A (en) * 2019-12-27 2021-06-29 昭和电工株式会社 Magnetic recording medium and magnetic storage device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737237A (en) * 1993-07-22 1995-02-07 Hitachi Ltd Magnetic recording medium, manufacturing method thereof, and magnetic recording device
JPH0757261A (en) * 1993-08-17 1995-03-03 Hitachi Ltd Magnetic recording medium, magnetic head, and method and apparatus for manufacturing the same
JP2003242631A (en) * 2001-12-14 2003-08-29 Hoya Corp Magnetic recording medium
JP2003338018A (en) * 2002-03-13 2003-11-28 Fuji Electric Co Ltd Magnetic recording medium and method of manufacturing the same
JP2004171756A (en) * 2002-11-18 2004-06-17 Komag Inc Texture machining of magnetic disk substrate
JP2005078796A (en) * 2003-08-29 2005-03-24 Hitachi Global Storage Technologies Netherlands Bv Thin film magnetic medium having a two-layer structure made of CrTi / NiP

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737237A (en) * 1993-07-22 1995-02-07 Hitachi Ltd Magnetic recording medium, manufacturing method thereof, and magnetic recording device
JPH0757261A (en) * 1993-08-17 1995-03-03 Hitachi Ltd Magnetic recording medium, magnetic head, and method and apparatus for manufacturing the same
JP2003242631A (en) * 2001-12-14 2003-08-29 Hoya Corp Magnetic recording medium
JP2003338018A (en) * 2002-03-13 2003-11-28 Fuji Electric Co Ltd Magnetic recording medium and method of manufacturing the same
JP2004171756A (en) * 2002-11-18 2004-06-17 Komag Inc Texture machining of magnetic disk substrate
JP2005078796A (en) * 2003-08-29 2005-03-24 Hitachi Global Storage Technologies Netherlands Bv Thin film magnetic medium having a two-layer structure made of CrTi / NiP

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157468A1 (en) * 2012-04-18 2013-10-24 山陽特殊製鋼株式会社 CrTi-BASED ALLOY FOR ADHESION FILM LAYER FOR USE IN MAGNETIC RECORDING MEDIUM, TARGET MATERIAL FOR SPUTTERING, AND PERPENDICULAR MAGNETIC RECORDING MEDIUM OBTAINED USING SAME
JP2013222488A (en) * 2012-04-18 2013-10-28 Sanyo Special Steel Co Ltd CrTi-BASED ALLOY FOR ADHESION FILM LAYER FOR USE IN MAGNETIC RECORDING MEDIUM, TARGET MATERIAL FOR SPUTTERING AND PERPENDICULAR MAGNETIC RECORDING MEDIUM USING THE SAME
CN104246884A (en) * 2012-04-18 2014-12-24 山阳特殊制钢株式会社 CrTi-based alloy for adhesion film layer for use in magnetic recording medium, target material for sputtering, and perpendicular magnetic recording medium obtained using same
CN104246884B (en) * 2012-04-18 2017-06-06 山阳特殊制钢株式会社 For the CrTi systems alloy of the bonding film layer in magnetic recording media
CN113053422A (en) * 2019-12-27 2021-06-29 昭和电工株式会社 Magnetic recording medium and magnetic storage device
CN113053422B (en) * 2019-12-27 2022-03-04 昭和电工株式会社 Magnetic recording medium and magnetic storage device

Also Published As

Publication number Publication date
JP4795831B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP5260510B2 (en) Perpendicular magnetic recording medium and method for manufacturing perpendicular magnetic recording medium
US7923134B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic recording device
CN117678019A (en) Thermally assisted magnetic recording (HAMR) media having optically coupled multilayers between recording and heat sink layers
JPWO2009014205A1 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
US8722212B2 (en) Magnetic recording medium with a non-magnetic granular layer under a plurality of granular magnetic layers and storage apparatus
JP7514982B2 (en) Magnetic recording medium having an underlayer configured to reduce diffusion of titanium into the magnetic recording layer - Patents.com
JP7622147B2 (en) MEDIUM STRUCTURES HAVING SELECTED SEPARATES CONFIGURED TO IMPROVE HEAT-ASSISTED MAGNETIC RECORDING - Patent application
WO2023278008A1 (en) Heat-assisted magnetic recording (hamr) media with magnesium trapping layer
KR20080076699A (en) Vertical magnetic recording medium, manufacturing method thereof and magnetic recording device
JP3924301B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
CN101689375A (en) Magnetic recording media, its manufacture method and magnetic recorder/reproducer
JP4795831B2 (en) Magnetic recording medium
CN101185128A (en) Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JP4123806B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
JP2003338018A (en) Magnetic recording medium and method of manufacturing the same
JP3564707B2 (en) Magnetic recording media
US12260889B1 (en) Magnetic recording media with sacrificial layer and corresponding etching processes to minimize head to media spacing
JP2009064501A (en) Magnetic recording medium and magnetic recording and playback apparatus
US11074934B1 (en) Heat assisted magnetic recording (HAMR) media with Curie temperature reduction layer
US20060019125A1 (en) Magnetic recording medium and production method thereof as well as magnetic disc device
JP3565103B2 (en) Magnetic recording device
JPH11250438A (en) Magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording device
JP2009193619A (en) Perpendicular magnetic recording medium and magnetic recording apparatus
US20190122696A1 (en) Perpendicular recording media with carbon grain isolation initiation layer
JP2008204529A (en) Perpendicular magnetic recording medium and magnetic recording apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4795831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250