[go: up one dir, main page]

JP2007218711A - 電子顕微鏡装置を用いた計測対象パターンの計測方法 - Google Patents

電子顕微鏡装置を用いた計測対象パターンの計測方法 Download PDF

Info

Publication number
JP2007218711A
JP2007218711A JP2006038945A JP2006038945A JP2007218711A JP 2007218711 A JP2007218711 A JP 2007218711A JP 2006038945 A JP2006038945 A JP 2006038945A JP 2006038945 A JP2006038945 A JP 2006038945A JP 2007218711 A JP2007218711 A JP 2007218711A
Authority
JP
Japan
Prior art keywords
electron microscope
measurement
electron
target pattern
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006038945A
Other languages
English (en)
Inventor
Maki Tanaka
麻紀 田中
Chie Shishido
千絵 宍戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2006038945A priority Critical patent/JP2007218711A/ja
Priority to US11/673,057 priority patent/US7732761B2/en
Publication of JP2007218711A publication Critical patent/JP2007218711A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24571Measurements of non-electric or non-magnetic variables
    • H01J2237/24578Spatial variables, e.g. position, distance

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

【課題】測長SEMの装置特性を電子線シミュレーションに反映させることで、電子線シミュレーションを用いた計測手法の安定化、高速化、高精度化をはかる方法を提供する。
【解決手段】本発明は、予め、装置特性と画像取得条件とを反映した電子線シミュレーションを様々な対象パターン形状について行ってSEM模擬波形を生成し、該生成されたSEM模擬波形に対応するパターン形状情報との組合せをライブラリとして記憶しておくライブラリ作成過程と、取得した実電子顕微鏡画像と前記SEM模擬波形とを比較して前記実電子顕微鏡画像と最も一致度の高い前記SEM模擬波形を選択し、該選択されたSEM模擬波形に対応するパターン形状情報から計測対象パターンの形状を推定する計測過程とを有する測長SEMを用いた計測対象パターンの計測方法。
【選択図】図8

Description

本発明は、半導体の製造工程においてウェハ上に形成された回路パターンの加工形状の良否を、電子顕微鏡装置によって取得される回路パターンの電子顕微鏡画像を用いて評価する方法及びそのシステム、特に電子顕微鏡装置を用いた計測対象パターンの計測方法に関する。
半導体ウェハの製造工程において、ウェハ上に多層に形成されるパターンの微細化が急速に進んでおり、それらのパターンが設計どおりにウェハ上に形成されているか否かを監視するプロセスモニタの重要性はますます増加している。中でもトランジスタゲート配線をはじめとする配線パターンは、その配線幅とデバイス動作特性に強い関連があり、その配線製造プロセスのモニタは特に重要である。
数十ナノメートルオーダの微細配線の線幅を測定する測長ツールとしては、それらの配線を10万から20万倍の拡大倍率で撮像可能な線幅測定用の走査型電子顕微鏡(測長SEM(Scanning Electron Microscope)またはCD(Critical dimension)SEM)が従来から用いられている。
このような走査型電子顕微鏡を用いた測長処理の一例が特開平11−316115号公報(特許文献1)に記載されている。特許文献1の開示例においては、測定対象配線を撮像した画像内の局所領域から、配線の信号プロファイルを配線の長手方向に加算平均した投影プロファイルを作成し、このプロファイルにおいて検出した左右の配線エッジ間の距離として配線寸法を算出している。
しかし、非特許文献1(Fig. 1)に開示されているように、SEMの信号波形においては、その計測対象の形状が変化すると、それに応じて信号波形も変化するため計測誤差を生じるという課題がある。半導体パターンの微細化に伴い、これら計測誤差がプロセスモニタに与える影響は大きくなりつつある。このような計測誤差を低減する手法が非特許文献1および非特許文献2に開示されている。この手法では、パターン形状とSEM信号波形の関係を予めシミュレーションにより計算しておき、その結果を利用して対象形状に依存しない高精度計測を実現している。
特開平11−316115号公報 特開2003−142021号公報 特開2000−67797号公報 J. S. Villarrubia, A. E. Vladar, J. R. Lowney, and M. T. Postek, "Scanning electron microscope analog of scatterometry,"Proc. SPIE 4689, pp. 304-312 (2002) J. S. Villarrubia, A. E. Vladar, M. T. Postek, "A simulation study of repeatability and bias in the CD-SEM," Proc. SPIE 5038, pp. 138-149, 2003. M. Tanaka, J. S. Villarrubia and A. E. Vladar, "Influence of Focus Variation on Linewidth Measurements," Proc. SPIE 5752, pp.144-155(2005) J. R. Lowney, "Monte Carlo Simulation of Scanning Electron Microscope Signals for Lithographic Metrology," SCANNING Vol.18, pp.301-396(1996) D. C. Joy, Monte Carlo Modeling for Electron Microscopy and Microanalysis, OXFORD UNIV. PRESS (1995) D. C. Joy, Y. Ko and J. Hwu, "Metrics of resolution and performance for CD-SEMs," Proc. SPIE 3998, pp.108-114(2000) M. Sato and J. Orloff, "A method for calculation the current density of charged particle beams and the effect of finite source size and spherical and chromatic aberrations on the focusing characteristics." J. Vac. Sci. Technol. B5(9). Sep/Oct 1991 P. B. Kenway and G. Cliff, "Electron density distributions in spherically aberrated probes." Inst. Phys. Conf. Ser. No. 68: Chapter 3 1983
上記背景技術に示されているように、測長SEMにより半導体パターンの寸法計測を行う際には、対象パターンの形状に依存した計測誤差を発生するという課題がある。これに対して、非特許文献1および非特許文献2に開示されている手法では、パターン形状とSEM信号波形の関係を予めシミュレーションにより計算しておき、その結果を利用して対象形状に依存しない高精度計測を実現している。このような計測手法を以下ではモデルベース計測手法と呼ぶ。このようなモデルベース計測手法においては、いかに精度の良いシミュレーションを行うかが安定で高精度な計測を実現するために重要となる。
しかしながら、特許文献3に開示されているように、SEM信号波形は装置の特性によって変化するため、上記技術で用いるシミュレーションにおいても、このような装置特性を考慮する必要がある。また、非特許文献1および非特許文献2では、一部の装置パラメタをシミュレーションに取り入れているが、実際の波形とのマッチングの際に装置パラメタの推定を行うため、非特許文献3に示されているように、結果が不安定になる場合がある。また、装置パラメタ推定のために多くの処理時間を要するという課題もある。
本発明が解決しようとする課題は、電子顕微鏡装置(測長SEM又はCD−SEM)の装置特性を電子線シミュレーションに反映させることで、電子線シミュレーション(モンテカルロシミュレーション)を用いた計測手法の安定化、高速化、高精度化をはかることである。
本発明では、計測対象サンプルの形状及び寸法変動の予測値に基づいてこれら形状変化がおきた場合のSEM画像を電子線シミュレーションにより作成し、さまざまな形状のシミュレーション画像をライブラリとして記録しておく。ここで、シミュレーションとはモデルに基づいて物理現象を模擬する方法全般を指すが、本発明において、特にライブラリを作成するための電子線シミュレーションという場合は、SEMにおいて電子顕微鏡画像が生成される過程を模擬し、計測対象形状と電子顕微鏡画像の波形との関係を計算することを指すものとする。これらのライブラリ作成用の電子線シミュレーションは、使用するモデルが適切なものでなければ正しい結果を得ることができない。本発明は、このライブラリ作成の電子線シミュレーションを行う際に、電子顕微鏡画像を取得する装置の特性を適切に設定する手段を与えることにより、電子線シミュレーションおよびそれを用いた計測の精度を向上させることにある。このとき、これらの電子線シミュレーションに用いる各種装置特性パラメタ(電子光学系の分解能、ビーム開き角、収差係数など)は、電子光学系の設計情報あるいは該設計情報に基づいて計算された値、あるいは実際の装置特性を予め計測手段で計測しておいた値を用いることを特徴とする。計測の際には、計測対象パターンのSEM画像を撮像し、予め作成しておいたライブラリに記録されている様々なSEM波形(第1の模擬波形若しくは第1の模擬波形に対して内挿補間やガウシアンフィルタ補正等を施して生成される第2の模擬波形)との比較を行い、最も一致度の高いものを選択することで、立体形状を評価した高精度な計測を可能とする。
即ち、本発明は、電子顕微鏡装置により計測対象パターンについての実電子顕微鏡画像を画像取得条件で取得し、該取得した実電子顕微鏡画像を用いて前記計測対象パターンの形状を推定して計測する電子顕微鏡装置を用いた計測対象パターンの計測方法であって、予め、定められた予想変動範囲において寸法を変動させた様々な対象パターン形状の概略形状を数値データでモデル化してパターン形状情報を得る計測レシピ作成過程と、予め、前記電子顕微鏡装置の装置特性と該電子顕微鏡装置による画像取得条件とを反映した電子線シミュレーション(モンテカルロシミュレーション)を前記予想変動範囲内の様々な対象パターン形状について行って様々な対象パターン形状についての電子顕微鏡信号の第1の模擬波形を生成し、該生成された電子顕微鏡信号の第1の模擬波形と該第1の模擬波形に対応する前記計測レシピ作成過程で得られたパターン形状情報との組合せをライブラリとして記憶しておくライブラリ作成過程と、前記取得した実電子顕微鏡画像と前記ライブラリ作成過程で生成された電子顕微鏡画像の第1の模擬波形または該第1の模擬波形から生成された第2の模擬波形とを比較して前記実電子顕微鏡画像と最も一致度の高い前記第1の模擬波形または第2の模擬波形を選択し、該選択された第1の模擬波形または第2の模擬波形に対応する前記ライブラリ作成過程で用いた前記パターン形状情報(パターンのエッジ位置情報も含む)から前記計測対象パターンの形状を推定する計測過程とを有することを特徴とする。
また、本発明は、前記ライブラリ作成過程において、前記電子顕微鏡装置の装置特性が、電子光学系の分解能、ビーム形状、ビーム開き角、及び収差係数の何れか一つ、若しくはこれら二つ以上の組合せであることを特徴とする。
また、本発明は、前記ライブラリ作成過程において、前記電子線シミュレーションに反映した前記電子顕微鏡装置の装置特性である電子光学系の分解能、ビーム形状、ビーム開き角、及び収差係数の何れか一つ、若しくはこれら二つ以上の組合せを、該電子顕微鏡装置(電子光学系)の設計情報を用いて決定することを特徴とする。
また、本発明は、前記ライブラリ作成過程において、前記電子線シミュレーションに反映した前記電子顕微鏡装置の装置特性である電子光学系の分解能、ビーム形状、ビーム開き角、及び収差係数の何れか一つ若しくは二つ以上の組合せを、予め計測手段で計測した結果に基づいて決定することを特徴とする。
また、本発明は、前記ライブラリ作成過程において、前記電子顕微鏡装置の装置特性を、電子顕微鏡装置毎に記録しておき、前記第1の模擬波形生成時には当該電子顕微鏡装置毎に記憶しておかれた装置特性を読み出して前記電子線シミュレーションに反映することを特徴とする。
また、本発明は、前記ライブラリ作成過程において、前記電子顕微鏡装置の装置特性を、少なくとも電子ビームの加速電圧や画素サイズの前記画像取得条件毎に記録しておき、前記第1の模擬波形生成時には当該画像取得条件毎に記憶しておかれた装置特性を読み出して前記電子線シミュレーションに反映することを特徴とする。
また、本発明は、前記ライブラリ作成過程において、前記対象パターン形状毎に予めシミュレーション画像を用いて実際の電子顕微鏡装置と同じ評価手法でベストフォーカス位置を求め、該求めたベストフォーカス位置を前記電子顕微鏡装置による画像取得条件として前記電子線シミュレーションに反映することを特徴とする。
また、本発明は、電子顕微鏡装置により計測対象パターンについて2つ以上の異なる電子ビームの入射角での実電子顕微鏡画像を画像取得条件で取得し、該取得した前記2つ以上の実電子顕微鏡画像を用いて前記計測対象パターンの3次元形状を推定して計測する電子顕微鏡装置を用いた計測対象パターンの計測方法であって、予め、定められた予想変動範囲において寸法を変動させた様々な対象パターン形状の概略形状を数値データでモデル化してパターン形状情報を得る計測レシピ作成過程と、予め、前記電子顕微鏡装置の装置特性と該電子顕微鏡装置による前記異なる2つ以上の入射角で電子ビームを照射する条件を含む画像取得条件とを反映した電子線シミュレーションを前記予想変動範囲内の様々な対象パターン形状について行って様々な対象パターン形状についての前記2つ以上の異なる電子ビームの入射角での電子顕微鏡信号の第1の模擬波形群を生成し、該生成された前記2つ以上の電子顕微鏡信号の第1の模擬波形群と該第1の模擬波形群に対応する前記計測レシピ作成過程で得られたパターン形状情報との組合せをライブラリとして記憶しておくライブラリ作成過程と、前記取得した2つ以上の実電子顕微鏡画像と前記ライブラリ作成過程で生成された前記第1の模擬波形群または該第1の模擬波形群から生成された第2の模擬波形群とを比較することにより、各々の実電子顕微鏡画像内における計測対象パターンエッジ位置を算出し、該算出された各々の実電子顕微鏡画像内における計測対象パターンエッジ位置の組合せから前記計測対象パターンの3次元形状を計測する計測過程とを有することを特徴とする。
また、本発明は、電子顕微鏡装置により計測対象パターンについて2つ以上の異なる電子ビームの入射角での実電子顕微鏡画像を画像取得条件で取得し、該取得した前記2つ以上の実電子顕微鏡画像を用いて前記計測対象パターンの3次元形状を推定して計測する電子顕微鏡装置を用いた計測対象パターンの計測方法であって、予め、定められた予想変動範囲において寸法を変動させた様々な対象パターン形状の概略形状を数値データでモデル化してパターン形状情報を得る計測レシピ作成過程と、予め、前記電子顕微鏡装置の装置特性と該電子顕微鏡装置による前記異なる2つ以上の入射角で電子ビームを照射する条件を含む画像取得条件とを反映した電子線シミュレーションを前記予想変動範囲内の様々な対象パターン形状について行って様々な対象パターン形状についての前記2つ以上の異なる電子ビームの入射角での電子顕微鏡信号の第1の模擬波形群を生成し、該生成された前記2つ以上の電子顕微鏡信号の第1の模擬波形群と該第1の模擬波形群に対応する前記計測レシピ作成過程で得られたパターン形状情報との組合せをライブラリとして記憶しておくライブラリ作成過程と、前記取得した前記2つ以上の実電子顕微鏡画像と前記ライブラリ作成過程で生成された前記第1の模擬波形群または該第1の模擬波形群から生成された第2の模擬波形群とを比較し、前記2つ以上の実電子顕微鏡画像と前記第1の模擬波形群または第2の模擬波形群との間の誤差の総和が最小となる前記パターン形状情報を選択することにより、前記計測対象パターンの3次元形状を計測する計測過程とを有することを特徴とする。
以上説明したように、本発明によれば、電子顕微鏡装置の装置パラメタの一部、あるいは全てを予め設計値あるいは計測値に基づいて決めておき、非線形最小自乗法での推定パラメタとはしないことで、推定するパラメタの数を減らすことができる。非線形最小自乗法では、推定するパラメタの数が多いほど推定に多くの時間を必要とする。いくつかのパラメタ組合せで同じような信号波形が与えられてしまう場合には、結果が収束しない場合も起こりうる。パラメタの数が多いとノイズの影響により、それぞれのパラメタの推定精度も低くなってしまい、計測の再現性が低下する恐れもある。
即ち、本発明では、電子顕微鏡装置の装置パラメタを予め別の手法で決めておくために、これらのパラメタ推定において生じる曖昧さを除去することができ、安定で高速な測長SEM計測またはCD−SEM計測を実現することが可能となる。
本発明によれば、モデルベース計測手法における推定パラメタの数を減らすことができるため、安定な推定が可能となり、また計測に要する計算時間を短縮することができる。
また、本発明によれば、測長SEM又はCD−SEMの装置の特性を電子線シミュレーションに反映することにより、電子線シミュレーションの精度が向上し、その結果モデルベース計測手法そのものの精度も向上することとなる。
また、本発明によれば、測長SEM又はCD−SEMの装置特性を電子光学系の設計値で決めるか、または予め計測手段で計測して決め、それを電子線シミュレーションに反映させるため、複数の測長SEM又はCD−SEMの装置間での計測ばらつきを低減することも可能となる。
本発明に係る電子顕微鏡装置を用いた計測対象パターンの計測方法及びその装置又はシステムの実施の形態について図面を用いて説明する。
(装置特性を反映することで高精度化する説明:ライブラリ作成手順)
本発明に係る計測対象パターンの計測方法及びその装置(システム)の第1の実施例について、測長SEMを用いる場合の基本的な手順とシステム構成について図1乃至図6を用いて説明する。
図1(a)は本発明に係るパターン計測方法及びその装置(システム)において用いる画像取得のためのCD計測レシピ4およびSEM波形ライブラリ3を作成する手順の一実施例を示す図である。また、図1(b)は実際に計測を行う手順の一実施例を示す図である。
図4に示す測長SEM10の処理・制御部300又はインターフェース(ネットワーク)20で接続された別のコンピュータであるCD計測レシピ作成部(図示せず)は、図1(a)に示すように、始めに、プロセス情報1及び設計情報2から得られる計測レシピの作成に必要な計測対象パターンの情報を用いて通常の測長SEMと同様にCD計測レシピを作成する(ステップ1101)。ここで、CD計測レシピ作成に必要な情報とは、プロセス情報1から得られる計測対象パターンの製品名、及び製造工程名、例えば設計情報2から得られる計測対象パターンのウェハ上位置、パターン種類(ラインパターンか、ホールパターンか、あるいはその他のパターン)及びパターンの設計寸法などである。
本発明に係るCD計測レシピ作成ステップ(1101)で作成されたCD計測レシピ4には、アライメント用パターン情報や計測対象パターンの位置、画素サイズやSEMのビーム電流及び加速電圧などの画像取得条件(tool)など、計測対象の画像を取得するのに必要な情報が記録されており、計測時には後述する測長SEM装置上又はCD計測レシピ作成部(図示せず)において接続されたディスプレイのGUI(Graphic User Interface)等を用いて当該レシピを指定することにより、計測対象パターンの画像を自動的に撮像することを可能とするもので、これらの情報はCD計測レシピデータベース4に記録しておく。このレシピ作成ステップ1101は、後述する測長SEM本体10によって行われてもよいし、測長SEMまたはCD−SEMの装置とは別の、例えばネットワーク20で接続されたコンピュータ(CDレシピ作成部)上で行われてもよい。このように、CDレシピ作成部を別に設けることにより、測長SEMまたはCD−SEMの装置10において共用することも可能である。図1(a)に示すように、計測対象パターンの製造プロセス情報1やCADデータなどの設計情報2があれば、実際の測長SEMまたはCD−SEMの装置およびウェハを用いなくても、比較的容易にCD計測レシピ4を作成することが可能となる。
CD計測レシピ4ができると、確定した計測対象パターンの情報を元に、本発明に係るパターン計測に用いるSEM画像のライブラリ3を例えば図4に示す電子線シミュレーションユニット9において電子線シミュレーション(モンテカルロシミュレーション)により作成する(ステップ1200)。SEM波形のライブラリ3は、例えば図2(a)に示すような基準断面形状を始めに作成しておき、図中に示すような各形状パラメタ(H,BW,TR,BR,SWA等)を、製造プロセスの変動により計測対象が実際に変化する範囲(予想変動範囲)に適宜変更したものを用いる。図2(a)の実施例に示されているパラメタは、それぞれ、H:ラインパターン高さ、BW:ボトム幅、TR:トップコーナ曲率、BR:ボトムコーナ曲率、SWA:側壁傾斜角である。ここでボトム幅BWはボトムコーナ曲率が0の場合の寸法を示しているが、BW’に示すように、コーナ曲率の部分を含んだものを用いても勿論よい。BRとBWがあればBW’は容易に計算することができる。このようにして決めた様々な形状に対するSEM波形信号を電子線シミュレーションにより計算し、入力された対象断面形状と、計算されたSEM波形信号の組合せをライブラリ3に記録する。図2(b)は実際にライブラリ3に記録されるデータの一実施例である。図2(b)の実施例では、計測対象パターン形状(断面形状)1003として、側壁傾斜角(SWA)とトップコーナの曲率(TR)を変化させている。変化させるパラメタは、目的によって適宜決めてやればよい。例えば、計測対象パターンがエッチング後の配線パターンであればトップコーナ形状やパターン高さはあまり変化しないため、適当な値に固定すれば、推定するべきパラメタが減少するため、計算時間を短縮することができる。一方、例えばゲート配線エッチングの場合、配線幅(ボトム幅だけではなく平均的な配線幅も含む)や側壁傾斜角、ボトムコーナ形状はデバイス特性に影響を与える重要なパラメタであり、正確に計測することが重要となる。また、露光後のレジストパターンであれば、変化しやすく、露光装置の状態をモニタするのに重要なトップコーナ形状、側壁傾斜角および計測対象高さを適当な範囲で変更して電子線シミュレーションを行えばよい。このように、そのプロセスにとって重要な形状パラメタを計測対象パラメタとして変化させて、そのプロセスでは変化しないパラメタを固定してライブラリ3を作成すれば、感度の良い計測が最小限の計算時間で実現することができる。
図2(b)に示されているように、断面形状1003の違いに応じて、シミュレーション波形1002の形状および信号量が変化する。説明のため図示したが、実際のライブラリ3内では、これらのデータセットは図2(a)に示されるような形状パラメタで表現されるパターン断面の形状情報(定められた予想変動範囲における様々な対象パターン形状の概略形状を数値データでモデル化して得られたパターン形状情報)と、電子線シミュレーションにより計算されるその断面形状に対応する各点での信号量の組合せからなる数値データの集まりである。
本発明においては、このライブラリ3に記録される電子線シミュレーションに計測を行う装置(測長SEM)の特性が反映されている。入力される断面形状データの作り方の詳細については、第2の実施例で説明する。
この断面形状とSEM信号波形の関係を記録したライブラリ3は、SEM画像の波形に影響を与える条件の組合せと共に記録しておく。例えば、計測対象パターン(製品、工程、チップレイアウト上のパターン位置)(sample)とSEM画像取得装置ID、SEM画像取得条件(例えば照射電子ビームの加速電圧、画素サイズ(画像倍率)など、その外ビームスキャン速度、ビーム電流、リターディング電圧(リターディング電極を有する場合)など)の組合せに対して1組作成しておく。この1組のライブラリを使って図1(b)に示す手順により実際の計測を実施する。はじめに、通常の測長SEM計測と同様にウェハを測長SEMまたはCD−SEMの装置にロード(1111)し、ウェハアライメント(1112)によりウェハ上パターンの位置を校正する。次に計測対象パターンの近くにステージを移動し、予め設定しておいた近傍のパターンを用いて正確な位置決め(1113)およびフォーカス及び非点合わせ(1114)による像質の調整を行う。その後、計測対象パターンの画像を取得(1115)し、計測を実行する(1116)。図1(b)は画像取得直後に計測を実行する実施例を示すが、画像だけを取得しておいて計測は別途行ってもよい。その場合には、図1(b)の計測ステップ1116の代わりに画像記録(図示せず)あるいは画像転送(図示せず)を行い、画像データを記録媒体(例えば図3に示す301または図4に示す画像DB5)に記録しておいて、別途、外部インターフェース20で接続された画像処理ユニット(計測処理ユニット)8において計測処理を実行すればよい。図4(別途詳述)に示すように、計測を行う装置(例えば測長SEM10)がネットワークなどの外部インターフェース20を通じて画像処理ユニット8に接続されていれば、測長SEM10で取得した画像を適宜画像処理ユニット8に転送して計測処理を行い、結果を計測結果データベース6に転送するといったことも可能である。あるいは、一旦画像データベース5に転送しておき、別途画像処理ユニット8に転送して計測処理を行っても勿論良い。この場合は、処理をするタイミングを自由に選べるため、SEM本体を占有する時間が少なく、計測演算に時間がかかる場合やライブラリが事前に用意できなかった場合に有効である。同一ウェハ上で複数のパターンを計測する場合は、図1(b)に示すように、ステップ1113からステップ1116を繰り返して、全てのパターンに対して画像取得及び計測を実行する。計測が終了したらウェハをアンロード(1117)する。
次に、本発明に係るSEM画像を取得するのに用いる測長SEMまたはCD−SEM装置の実施例について図3を用いて説明する。測長SEM10等において、電子光学系200は、電子銃201と、電子銃201からの一次電子ビームの放出をアライメントするアライメントコイル208と、一次電子ビームを集束させるコンデンサレンズ202と、一次電子ビームの非点を補正する非点補正コイル209と、一次電子ビームを二次元に偏向させる偏向器204,205と、対物レンズ203と、対物レンズ絞り210とを備えて構成される。
ウェハ等の試料100はxyステージ101上に載置され、xyステージ101によってxy方向に走行される。二次電子検出器206は、試料100に電子ビームが照射されて発生した二次電子を検出して電気信号に変換させて二次電子線像(電子線像またはSEM画像)が検出されることになる。
即ち、電子銃201から放出された一次電子ビームはコンデンサレンズ202、対物レンズ203によって集束され、微小スポットとしてxyステージ101上に載置された試料100上に照射される。電子ビームが照射されると、照射された部分から試料の材質や形状に応じた二次電子や反射電子が発生する。偏向器204、205を用いて1次電子ビーム303を二次元走査し、発生する二次電子を二次電子検出器206で検出し電気信号に変換し、さらにA/D変換器207でディジタル信号に変換することによって、二次元のディジタル画像としての二次電子線像が得られる。なお、半導体プロセスにおける寸法計測には、(反射電子線像ではなく)2次電子線像が用いられるのが一般的である。以下、単に電子線像あるいはSEM画像と表現した場合には2次電子線像を指すものとするが、本発明は反射電子像に対しても同様に用いることができる。なお、測長SEMまたはCD−SEM10は、ビームチルト及びステージチルト機能を有するものとする。ステージコントローラ221は、処理・制御部300からの指令に基づいてxyステージ101を制御する。偏向・焦点制御部222は、処理・制御部300からの指令に基づいて偏向器204,205を制御し、画像倍率を設定し、さらに対物レンズ203を制御してオートフォーカス制御する。加速電圧制御部223は、処理・制御部300からの指令に基づいて加速電圧を制御することになる。
そして、得られたSEM画像は記憶媒体301に記憶され、処理・制御部300で計測処理される。または図4に示すように、外部インターフェース20を通じて、一旦画像データベース5に保存された後、あるいは直接画像処理ユニット8に送られて計測処理を行っても良い。装置の操作や結果表示は表示装置302等のGUI機能を通じて行われる。なお、処理・制御部300はCPU3001と画像メモリ3002とを備え、CPU3001はCDレシピ作成機能を有することも可能である。
次に、本発明に係るSEM計測装置およびデータベースを含むシステムの一実施例について図4を用いて説明する。本発明のパターン計測方法は、測長SEM10本体の上で実施してもよいし、測長SEMでは画像取得のみを行い、得られた画像をローカルエリアネットワークなどのインターフェース20を通じて他のコンピュータに転送して処理を実施してもよい。例えば得られた画像を画像DB5に記録し、画像処理ユニット8上で計算を行い、結果を計測結果DB6に転送するといったことも可能である。第1および第2の実施例に示した通り、CD計測レシピ作成部(例えば300内のCPU3001)における測長画像取得のためのレシピ作成や、例えばシミュレーションユニット9におけるライブラリ用のシミュレーションデータを作成するためにプロセス情報や設計情報のDB1,2にアクセスできると便利である。また、CD計測レシピ4をDBとして一括管理しておくおことで、複数の測長SEM10で同じ計測を容易に行うことが可能となる。実画像と比較するライブラリデータの作成は比較的時間を要するので、計測とは別のコンピュータ(シミュレーションユニット9)を用いて行う。ライブラリ3は画像処理ユニット8からも測長SEM10からもアクセスできるように一括管理することで、データ容量および管理の面で有効である。シミュレーションに用いる装置特性のDB7も同ネットワーク上にあることで、装置に応じた特性を容易に反映することが可能となる。
本発明のパターン計測方法は、電子線シミュレーションで画像が作れれば、測長SEM10以外のSEMでも同様の効果を得ることができる。例えば汎用SEM11や欠陥レビューSEM12などであり、用いる画像はシミュレーションが可能であれば反射電子像でも勿論良い。このように本発明で用いるデータおよび装置をI/F20を通じてお互いに接続しておくことで、本発明の装置特性を反映したライブラリ作成およびそれを用いた波形マッチングを容易にスムーズに実現することが可能となる。
また、測長SEMまたはCD−SEMにおいては、計測する際、SEM計測装置名及び画像取得条件が指定されるので、装置特性DB7に装置特性を、SEM計測装置毎に記録し、画像取得条件毎に記録しておけば、シミュレーション波形(模擬波形)生成時に容易に装置特性を読み出して電子線シミュレーションに反映することが可能となる。
次に、計測処理の詳細手順について図5を用いて説明する。(MBLの説明)
はじめに、測長SEMまたはCD−SEM10において、画像処理部300は、二次電子検出器206によって検出されたSEM画像1300a,あるいは1300bから、処理対象となる波形データ1301a,1301bを生成し、記録媒体301または画像データベース5に記憶する。SEM画像(波形データ)1301a,1301bのS/Nが十分によい場合には、1ラインスキャンのデータをそのまま用いればよいし、S/Nが不十分で処理が安定しない場合にはy方向の数ラインスキャンのデータを平均して用いればよい。このとき、計測対象パターンの形状に応じて平均処理は最適化する必要がある。図5左上に示すようにラインパターンの場合には、ラインパターンと直交する方向に平均処理を行う。このとき、ラインエッジ位置の変動(一般にラインエッジラフネスと呼ばれる)が大きい場合には、平均ラインスキャン数を多くすると、形状の異なる部分の波形を平均してしまうことになるので、ラインエッジラフネスの影響が十分に小さな範囲で平均化処理を行う必要がある。また、図5右上に示すように、計測対象パターンがホールの場合には、円周方向に平均するのがよい。以下の説明はラインパターンの場合について行うが、ホールパターンの場合にも同様の処理を実施することができる。以下の処理は、画像中の各ラインスキャン(あるいは円周上の各点)に対して適用することができるので、対象領域を移動させながら処理を繰り返すことにより各ラインスキャンのエッジ位置を正確に検出することができる。なお、ラインパターンであるか、ホールパターンであるかは、プロセス情報1及び設計情報2に基づいて作成され、CD計測レシピ4に格納されているCD計測レシピ情報に基づいて識別することが可能である。
次に、画像処理部300または画像処理ユニット8は、記録媒体301または画像データベース5に記憶された実際の波形データ1301a,1301bにおいて、エッジ付近にあるピーク1302を検出して処理領域1303を決める。図5左上に示すように、計測対象が一本のラインパターンの場合には、明るいピークは2箇所のみになるので、検出された2箇所のピークのうち、評価したい方向のエッジ(図の場合は右側)を選択して、パターンエッジ部分を十分に含む領域を処理領域として設定する。そして、画像処理部300または画像処理ユニット8は、この処理領域内のSEM信号波形(Img(x))1304と、図2(b)に示したような予め作成されて例えばSEM波形ライブラリ3に記憶された電子線シミュレーション波形(電子顕微鏡信号の模擬波形)1002とを比較して、実際のSEM信号波形に最も一致するものを、図2(b)に示したような、様々な断面形状や画像取得条件に対する電子線シミュレーションによるSEM波形を記憶しているライブラリ3の中から選択する。その一致したシミュレーション波形の元となっているパターン形状1003が、実際のパターン形状の推定値となって求まることになる。ここで、ライブラリ3内のデータは、非特許文献1に開示されているように、片側のエッジのみ(図2(b))電子線シミュレーションしておけば、反対側のエッジは同じライブラリ3を左右反転させることで同様の処理が可能となる。
なお、図2および図5では、計測対象の寸法が電子ビームのビーム径や固体内での電子の拡散に対して十分に大きい場合を示したが、これらに対してパターン寸法が小さい場合には、例えば図5(a)(b)に示した2つのピークが分離できない場合がある。その場合には、ピーク毎の領域設定は行わず、2つのエッジを含む領域を用いて上記比較処理を行う。なお、シミュレーションユニット9において、電子線シミュレーションによる電子線シミュレーション波形1002の生成も両方のエッジを併せて行う必要があり、エッジ間の距離や左右で異なる側壁傾斜角(SWA)の組合せなども考慮した電子線シミュレーションを行えばよい。
次に、例えば処理・制御部300または画像処理ユニット8において実行する、実際のSEM信号波形と電子線シミュレーション波形(電子顕微鏡信号の模擬波形)との比較手順について説明する。即ち、図5に示すように実際のSEM信号波形(Img(x))1304、電子線シミュレーション波形をImg-s(x-xs, tool, sample)とすると、2つの信号波形の誤差Eは(1)式で表わせる。
E=Σ{Img-s(x−xs, tool, sample)−Img(x)} (1)
ここで、Σは処理領域1302内の画素全ての位置xにおける信号の総和を示す。電子線シミュレーション波形の(xs)は波形のシフト量、(tool)は画像取得条件(電子ビームの加速電圧、ビーム形状、画像取得倍率(画素サイズ)など)のパラメタを含む測長SEMまたはCD−SEMの装置パラメタ(装置特性)の集合、sampleは図2(a)に示したような対象形状パラメタの集合をそれぞれ表わす。(sample)は図2に示したH(高さ:Hight),SWA(側壁角度:Side Wall Angle),BW(底部幅:Bottom Width)などである。toolについては別途説明する。(1)式の誤差Eを最小とする(xs),(tool),(sample)の組合せをLevenber-Marquardt法などの非線形最小自乗法により求めることで、立体形状情報(H,SWA,BW,TR,BRなど)および正しいパターンエッジの位置情報の推定が可能となる。例えば、図5(b)のボトムエッジ位置(xe)1004とマッチング結果(xs)を用いれば、実波形(図5(a))のサンプルエッジの位置は(xe+xs)となる。このようにして左右のエッジ位置を求めれば、その差分から正しいCD値を求めることが可能となる。
第1の実施例では、これらのパラメタのうち、測長SEMまたはCD−SEMの装置パラメタを予め、例えばシミュレーションユニット9において例えば入力手段(GUI等も含む)302、13によって入力された上記装置の設計値(図8に示す30)から決めて例えば装置特性データベース7に登録することを特徴とする。なお、上記入力手段としては図3に示す302又は図4に示す13に限定されるものではなく、装置設計システム(図示せず)からネットワーク20を介して入力するように構成してもよい。また、例えば、計測に用いたSEMの撮影時の電子光学条件の装置パラメタ(電子光学系の分解能、ビーム開き角、収差係数など)を、装置設計時に決められた値を基に例えばシミュレーションユニット9に入力して設定してやればよい。
次に、例えばシミュレーションユニット9が、装置特性(電子光学系の分解能、ビーム開き角、収差係数など)である電子光学条件を電子線シミュレーションに反映させる方法の一実施例について図6を用いて説明する。図6は半導体パターンに電子ビームが照射される様子を表しており、図6(a)は上方から(ビーム照射方向から)見た図を、図6(b)は側面(図6(a)に示したラインパターンの長手方向)から見た図を示す。斜線で示した部分が電子ビーム501、すなわち電子が通る範囲を簡易的にモデル化した例である。図3に示したように、電子ビーム303は対物レンズ203により試料100の表面に収束される。図6の例では、対物レンズを通った全ての電子は合焦高さzfにある点Fに収束し、その後また拡がっていく。すなわちA,B,Cから照射された電子はそれぞれFを通過してA’,B’,C’に向かって進む。実際には、試料表面(例えばA”)で固体内に入り、拡散して2次電子を発生する。図示されている角度αはビーム開き角であり、電子光学系200の設計および使用条件によってほぼ決まった角度となる。この開き角は、非特許文献3に開示されているように、パターンエッジ部における実効的なビーム形状を歪ませる働きを持つため、開き角が考慮されていない電子線シミュレーションを用いたのでは計測誤差が大きくなる。この開き角の値は、入力された電子光学系200の設計情報を元に、例えばシミュレーションユニット9が例えば電磁場解析を行うことで計算することができる。図6(b)では点Fにおいてビームの幅がゼロとなっているが、実際には各種収差の影響やクーロン効果による電子間の反発によって完全にはゼロにならない。また、有限の大きさの画素でサンプリングを行うため、得られる画像の分解能は画素サイズによっても変化する。そこで、図6に示した電子の軌跡に図6(c)に示すような一定の電子強度分布502(例えば2次元のガウシアン分布)を畳み込んだものをビーム照射状態および画素サイズの影響を表現するモデルとして用いる。この強度分布の畳み込みは、シミュレーションの電子の軌道に対して行っても、シミュレーション後の波形に対して行っても結果は同じである。このモデルは非特許文献2(Fig. 2)に開示されているものと同じモデルであるが、本発明ではこの開き角αを電子光学系200の設計値に基づいて設定することを特徴とする。
更に、例えばシミュレーションユニット9は、図6にて斜線で示した円錐内において、光軸に直交する平面(A,B,Cを含む平面と平行な平面)上では、ビーム強度分布は均一なものとして、全ての電子が点Fを通る方向に試料表面に照射されるようモンテカルロシミュレーションにより、各ビーム位置における2次電子放出量を計算する。モンテカルロ法を用いた電子線シミュレーションについては非特許文献4および非特許文献5などに詳細が示されている。ここでは詳細は省略するが、例えばシミュレーションユニット9は、CD計測レシピデータベース4から得られる図2に示すような計測対象サンプルの形状と材質とを設定しておく。次に,電子源から放出される電子の強度分布を元に,図6(a)に斜線で示した円内での強度分布を仮定して,その強度分布に従う乱数を用いて,上記円内での座標をランダムに与えることができる。この与えられた座標をスタート地点として,フォーカス点Fを通過する電子の軌道を決め,この電子のエネルギーと試料表面への入射位置および方向に応じて,入射した電子の固体内での散乱の軌道と2次電子の発生を物理モデルに基づいて計算する。この計算を,乱数を振って様々なスタート地点および角度から入射する電子に対して繰り返し行って,それらの結果を足し合わせることで試料表面からでてくる2次電子の発生をシミュレーションして信号量を計算する。この固体内での散乱は確率的な現象であり、乱数を用いたモンテカルロシミュレーションが効果的であることが知られている。本発明のライブラリ作成1200においては、例えば上記のビーム照射モデルによりある一点にビームを照射した場合の電子の広がりおよび入射方向の変化を設定し、それらの電子が入射した結果検出される2次電子の数をSEM画像の信号量とする。ビーム照射の目標位置を順に変化させて各点における画像明るさを検出することで、SEM画像のシミュレーション信号を得ることができる。
ここで、焦点位置zfは電子ビームのフォーカス状態によって変化するもので、図6ではサンプル基板表面に焦点があっている場合をzf=0とした。zfは通常は試料表面などの決まった高さに設定されるべきものであり、第1の実施例におけるシミュレーションでは一定値、例えばzf=0としてシミュレーションを行う。このzfは、zfをいくつか変更してシミュレーションを実施して、SEM装置から得られた画像に実際の装置でAF(オートフォーカス)に使われる画像処理を施し、実際の装置でベストフォーカスと判定されるzfの値を基準として用いればよい。図7は、様々な側壁傾斜角(SWA)のサンプルに対してフォーカスを変化させた電子線シミュレーションを実際に行った実施例である。まず、図7(a)に示すように、各側壁傾斜角のフォーカスを変化した画像に対して、画像のエッジ強度を算出する。エッジ強度とは、画像内におけるエッジの強さを表わす値で、ここでは実際のSEM装置で自動焦点合わせを行うのに用いられているものと同じ評価手法を使えばよい。例えばSobelフィルタの出力などである。次に、このエッジ強度の変化から、エッジ強度が最も大きくなるフォーカスの位置をベストフォーカス位置として算出する。ピーク検出は例えば図7(a)のようなデータに対して2次曲線フィッティングなどを行えば容易に求めることができる。このようにして、各パターン形状に対してベストフォーカス位置を求めた一実施例が図7(b)である。図7(b)の例ではベストフォーカス位置は対象サンプルの側壁傾斜角に依存して変化している。図7(b)では側壁傾斜角の変化のみを示しているが、実際にはライブラリ3内の様々な形状に対して同様の処理を行う。このようにして、計測対象形状に応じてSEM装置がベストフォーカスとしてSEM画像を取得する条件を電子線シミュレーションにより再現することができる。オートフォーカスシステムが十分安定であれば、このベストフォーカス位置(各条件におけるzf)におけるシミュレーション画像のみを記憶したライブラリ3を用いるようにすれば、ビーム形状やフォーカス位置といったパラメタを推定する必要がなくなる。図7(b)のように、断面形状とベストフォーカス位置の関係が得られて、かつこれらの関係に適切な関数を当てはめることができる場合には、関数で記憶しておいた方が、その後のライブラリ作成などの処理が簡単になることもある(図7(b)の場合は4次関数を用いている)。この場合、ビーム形状推定を行わないので、高速で安定な計測が可能となる。SEM装置におけるAF(オートフォーカス)の安定性が不十分であるならば、例えばシミュレーションユニット9は、AFの変動範囲でいくつかのzfについてシミュレーションを実施し、これらの波形をライブラリ3に記録しておく。計測の度に記録されたzfの範囲で最も実波形と一致するものを他の装置パラメタと同様に選択すれば、ビーム形状の変化を考慮した高精度計測が可能となる。実際の装置のAF特性は、同じ場所にAFを複数回かけてみて、その際に対物レンズ203の制御値がどの程度変わるかを計測すれば容易に測ることができる。AFの性能に応じて、最小のビーム形状変動範囲を設定することで、高速で安定な計測が可能となる。
このようにして、例えばシミュレーションユニット9は、ビーム開き角とフォーカス位置を考慮したモデルを導入したシミュレーションに対して、図6(c)に示すような、例えば2次元ガウシアンフィルタ502を適用して実際の波形との併せこみを行う。この併せこみは非特許文献1、2に示されているように、ガウシアンフィルタのサイズを変更して実波形と比較し、その一致度が最も高いものを用いて決めればよい。このとき、立体形状が既知のサンプルがあれば、装置のパラメタのみを安定して推測することが可能となるので、キャリブレーション用のサンプルがあると便利である。このフィルタサイズは1つのビーム照射条件(加速電圧、画素サイズ(画像倍率)など)に対して、通常は一回設定してやればよい。これらのビーム開き角、フォーカス位置、ガウシアンフィルタサイズなどは後述する図8に示す装置特性パラメタDB7に記録しておく。なお、ここではビーム形状の違いを補正するためにガウシアンフィルタを用いたが、機差の原因に応じて異なる密度分布関数を用いてもよい。
例えば、処理・制御部300または画像処理ユニット8において、装置パラメタ(tool)以外の対象形状パラメタ(sample)およびシフト量(xs)は、これらパラメタの組合せの中から上記(1)式の誤差Eを最小とする組合せを、非線形最小自乗法(例えばLevenber-Marquardt 法など)を用いて決定する。その結果、このようにして得られたシフト量(xs)および対象形状パラメタ(sample)が、取得された計測対象のSEM画像とシミュレーションライブラリ3から推定された計測対象形状およびそのエッジの位置となる。
この対象形状パラメタに対応するデータは、電子線シミュレーションを行った条件のみに対して存在するため、ライブラリ3の中からの選択では離散的な値しか選べないが、例えばシミュレーションユニット9において、非特許文献1に示されているように、これらのデータを内挿することにより、ライブラリ3の中に無い中間的な値についてもシミュレーション信号波形を算出することができる。例えば、ライブラリ3の中には側壁傾斜角3度と4度のデータしか無い場合に、側壁傾斜角が3.2度のシミュレーション信号を得たい場合には、次に示す(2)式とすればよい。
Img-s(x,3.2deg.)=Img-s(x,3deg.)+(Img-s(x,4deg.)−Img-s(x,3deg.))*(3.2-3)/(4-3) (2)
非特許文献1では、図6のようにビームの開き角αを考慮したシミュレーションではなく、z軸に平行なビームのみでシミュレーションを行い、このシミュレーション波形に対して、ゲインとオフセットによる階調変換を行い、有限ビーム形状を模擬するために、ガウシアンフィルタとの畳み込みを実施している。これらのゲイン、オフセットおよびガウシアンフィルタのサイズをSEM装置パラメタとして、(1)式の誤差を使った非線形最小自乗法によって、シフト量および対象形状パラメタと同時に推定を行っている。
一方、本発明ではこのSEM装置パラメタ(電子顕微鏡装置の装置特性)の一部、あるいは全てを予め電子光学系の設計値あるいは計測手段での計測値に基づいて決めておき、非線形最小自乗法での推定パラメタとはしないことを特徴とする。このようにすることで、推定するパラメタの数を減らすことができる。非線形最小自乗法では、推定するパラメタの数が多いほど推定に多くの時間を必要とする。いくつかのパラメタ組合せで同じような信号波形が与えられてしまう場合には、結果が収束しない場合も起こりうる。パラメタの数が多いとノイズの影響により、それぞれのパラメタの推定精度も低くなってしまい、計測の再現性が低下する恐れもある。これに対し、本発明ではSEM装置パラメタを予め別の手法で決めておくために、これらのパラメタ推定において生じるあいまいさを除去することができ、安定で高速な計測を実現することが可能となる。図6に示したように、従来法よりも、より正確なモデルを用いたシミュレーションを行う場合は一般にパラメタの数が増えるため、計算に必要な時間が増大したり、正しい結果が得られなくなったりするが、本発明では装置特性に基づいてパラメタを固定あるいは限定する。これにより計算量の増加がなく、より正確なモデルの使用が可能となる。なお、本実施例では2次電子画像を用いる例を示したが、反射電子や透過電子なども同様に電子線シミュレーションにより波形ライブラリを作成することが可能であり、本発明の手法を適用することで同様の効果を得ることができる。
(設計時の情報を反映1:条件別に特性を登録)
(設計時の情報を反映2:電子光学系シミュレーション、条件別に特性を登録)
第2の実施例では、SEM画像シミュレーションに装置特性を反映させる具体的な方法について説明する。図1(a)のステップ1200の詳細に相当する。第1の実施例で示したように、測長SEMの装置特性は、それがどのような性能になるように設計されたのかが分かっている場合には、設計値から設定することができる。例えば、電子光学系の設計情報を元に、電磁場解析を行うことで電子ビームの形状や収差の係数などを計算することができる。ここで、電磁場解析とは、電子光学系200の構造に対して、各部位の寸法や配置のそれらに印加する電圧などから電子光学系の各部位での電界及び磁界を計算し、その電磁界において電子がどのような軌道を描くか計算を行うものであり、差分法や有限要素法などが利用される。
図8は例えばシミュレーションユニット9において装置特性を反映したシミュレーションライブラリ作成手順の詳細を示している。例えばシミュレーションユニット9は、はじめに、ライブラリ3を作成する対象パターン材料情報および形状のリストを作成する(ステップ1201)。このとき対象とするサンプルの基本的な形状として、本来当該製造プロセスで形成したいパターンの目標形状を設定し、その目標形状からどのくらいの形状変動を計測したいのか、該計測範囲(予想形状変動範囲)を考慮してライブラリ作成のためのシミュレーションを行えばよい。この目標形状はCADデータなどの設計情報2を利用すれば比較的容易に設定することができる。また、モンテカルロ法による電子線シミュレーションのためには各構造の材質情報が必要であるが、これらの情報はプロセス情報1を用いれば設定が可能である。もちろん、これらの形状や材質の情報をオペレータが例えば入力手段302を用いて入力してもよい。図9は、例えば図3に示す表示装置302において、目標形状を基準とした計測対象形状の入力を補助するグラフィカルユーザインターフェース(以下GUI)の実施例を示している。図9は台形形状の組合せによるラインパターンのデータ作成の実施例であるが、他の形状の場合にも同様に応用が可能である。はじめに図9(a)に示すようなGUI701を用いて基準形状を作成する。下地層(図は1層であるが複数でもよい)の上に重ねる台形の数だけデータを追加していく。図の例では「要素追加」ボタン7011を押せば台形要素の数を増やせるようにしてあり、適当な数の台形を積み重ねることができる。各台形要素の材質や代表寸法を右のテーブルに入力してやれば、それに応じて左の図で状態を表示するようにする。この基準データの入力は、設計情報2やプロセス情報1を用いて、ある程度自動化することも可能である。また隣接する辺、例えば台形要素#4の上辺と#5の下辺は常に同じ大きさをとるようにリンク設定を行うことも可能である。例えば、どちらか一つの寸法をテーブルから選び、「リンク設定/解除」ボタン7012を押してからもう一方の寸法を選択するとリンクが設定されるようにすればよい。リンクが設定されている場合には、どちらか一方の寸法を変更すると、もう一方も同じ値になるように自動的に変更されるようにしておけば、複雑な積層構造のデータも容易に作成することが可能となる。リンクが設定されていることが明確になるように、図9(a)に示すようにテーブルのセルの色を変えておくとわかりやすい。
図9(a)のようなGUI701により基準形状および寸法が決まったら、ライブラリを作成する形状バリエーションを設定する。図9(b)では、GUI702により要素#4の幅と側壁傾斜角を変更する場合の実施例を示している。追加ボタン7021を押して、図9(a)で設定した基準寸法を元に、変更するパラメタを選択する。選択したパラメタに対して、図9(b)に示すように変更ステップと最大、最小値を設定する。左端の表示チェックをすると、シミュレーション候補を図9(b)上側のテーブルのように選択したパラメタと一緒に表示するようにしておく。これらのテーブルを見ながら、必要のないものを選択して取り除けるようにしておけば、対象形状を見ながら必要なライブラリのみを作成できるよう設定が容易にできる。例えば、図9(b)では、選択されたものはハッチングで、選択から除外されたものは線のみで示されている。このようにして、GUI701,702を利用することで対象パターン形状・材料情報の作成を行う(図8のステップ1201)。
次に、例えばシミュレーションユニット9において、SEM画像シミュレーションに反映させるための測長SEMの装置特性を設定する(図8の1202)。通常各装置には管理のためのID番号が付けられているので、CD計測レシピDB4に記憶されている上記装置を管理するID番号と図1のステップ1101で作成されたCD計測レシピに記録されている画像取得条件(例えば電子ビームの加速電圧、ビーム形状、画像取得倍率(画素サイズ)など)とを用いて、画像取得に使用する装置および条件での測長SEMの装置特性パラメタを装置特性パラメタデータベース7から読み出し、結果を装置特性として設定する。この装置特性パラメタデータベースに記録されている装置特性は、電子光学形の分解能などの設計値そのものや、電極配置などのより下位の設計情報を元に電磁場解析により計算した電子ビーム強度分布あるいはオフラインで装置特性を計測した結果であったりする。
例えばシミュレーションユニット9は、ステップ1201により設定された対象パターン形状・材料情報とステップ1202により設定された装置特性を用いて、SEM画像シミュレーション(1203)を実行し、結果をライブラリ3に記録する。ひとつの基準形状に対して、図9(a)(b)のGUI701,702を用いて設定した形状バリエーション全てについて計算を実施する。
このようにして、サンプル(sample)と装置(tool)との組合せに対してライブラリ3を作成するが、一般的な形状、例えばレジストやシリコンのラインパターンなどのライブラリは予め考えうる形状を全て含むライブラリを作成しておき、その中から、計測対象とするプロセスに必要な形状変動範囲のものを選択して、そのサンプル用のライブラリを作成することもできる。この場合は、はじめにライブラリ3を作成しておけば、新しいプロセスの計測の際に短時間でライブラリ作成を行うことができる利点がある。
このようにして、本発明では装置パラメタの一部、あるいは全てを予め設計値あるいは計測値に基づいて決めておき、それを反映した電子線シミュレーションによりライブラリ3を作る。これら装置パラメタは非線形最小自乗法で推定する必要はなく、推定するパラメタの数を減らすことができる。非線形最小自乗法では、推定するパラメタの数が多いほど推定に多くの時間を必要とする。いくつかのパラメタ組合せで同じような信号波形が与えられてしまう場合には、結果が収束しない場合も起こりうる。パラメタの数が多いとノイズの影響により、それぞれのパラメタの推定精度も低くなってしまい、計測の再現性が低下する恐れもある。
これに対し、本発明では装置パラメタを予め別の手法で決めておくために、これらのパラメタ推定において生じるあいまいさを除去することができ、安定で高速な計測を実現することが可能となる。なお、本実施例は2次電子画像を用いる例を示したが、反射電子や透過電子なども同様に電子線シミュレーションにより波形ライブラリを作成することが可能であり、本発明の手法を適用することで同様の効果を得ることができる。
(実機状態を反映1:分解能計測)
次に、図8に示すステップ1202での装置特性パラメタDB7の作り方の第3の実施例について説明する。第3の実施例として、測長SEMの分解能を実際の画像を用いて評価、ライブラリあるいはマッチングに反映させる方法について図10を用いて説明する。同じように製造された装置であっても、実際には部品のばらつきや組み立て調整の精度の限界により、全く同じ性能を得ることは難しい。測長SEMにおいても、同じ機種のSEMであっても装置ごとに分解能が微妙に異なり、その結果同じサンプルの計測値が装置によって異なるという課題が発生する。本発明では、この装置間の機差を予め計測し、計測結果をライブラリに反映して第1の実施例と同様の処理を行うことにより、機差のない高精度な計測を実現する。
本第3の実施例では、基準サンプルを用いて複数の装置の画像を取得することで、ビーム特性のパラメタを決定する方法について図10を用いて説明する。図10(a)に示すように、基準サンプル(同じサンプルあるいは全く同じ形状・材質の異なるサンプル)のSEM画像を複数の装置で撮像すると、その装置の分解能によって異なる波形が検出される。図10(a)の場合は装置Aの方が分解能が良い。このような画像取得を全ての対象装置について行い、ライブラリデータあるいは計測画像の補正を行うことで機差の無い計測を実現する。図10(b)に手順を示す。はじめに、機差評価用SEM画像として、基準サンプルのSEM画像を全ての装置(n台)で取得する(ステップ1401)。次に、これら各装置の画像を評価して、最も分解能の良い装置を決定する(ステップ1402)。実際の画像を用いた分解能の評価手法には様々なものが提案されており、既存の手法を用いればよい。例えば特許文献2(CG法)に開示されている方法は画像内の局所領域ごとの濃度勾配を用いて分解能を評価する。また、非特許文献6にはFFT法、自己相関法、相互相関法などを用いた評価手法が記載されている。
その後、例えばシミュレーションユニット9は、最も分解能の良い装置の画像Ibに標準偏差σiのガウシアンを作用させた波形と、各装置の波形Ii(iは装置に対応、例えばi=1,2...n, i≠b)と比較して、各装置の波形毎に(3)式によって得られる誤差Ebが最小になるσi=σeiを決定する。
Eb=Σ(Ib*G(σi)−Ii) (3)
一方、例えばシミュレーションユニット9において、最も分解能の良い装置については、第1の実施例と同様に、設計値30に基づいて設定したビームモデルと比較して、シミュレーションとの差を併せ込んだビーム照射モデルMb(例えば、開き角αのビーム照射と、σ=σbのガウシアンのコンボリューションなど)を決定しておく(ステップ1404)。この最高分解能装置のビーム特性モデルMbを決定する際に、基準サンプルの正しい形状が分かっていれば、既知の形状に対する電子線シミュレーション結果と実波形の差から比較的容易にビーム形状モデルを構築することができる。このステップ1401から1404の処理により、最高分解能装置のビーム特性モデルMbと、該Mbと各装置の違いを合わせるフィルタサイズσiを求めることができる。つまり、各装置のビーム照射モデルMi=Mb*G(σei)を求めることができる(ステップ1405)。その結果、図8に示すように、これらの装置特性のオフライン計測結果32に基づく各装置のビーム照射モデルMiを装置特性パラメタデータベース7に記録しておく。
次に、これらの結果を用いて、機差のない計測を行う方法について述べる。第1の実施の形態において、ライブラリを作成する際に、先に検出しておいたサイズのガウシアンフィルタを作用させたライブラリ3を装置毎に作成すれば、処理・制御部300または画像処理ユニット8は、機差を考慮した計測が可能となる。当該装置用のライブラリとして、全ての波形にガウシアンフィルタを作用させて新たなライブラリを作成してもよいし、マッチングの際にガウシアンフィルタを作用させるようにしてもよい。前者は計算時間を短縮できるがライブラリの容量が増える。後者は装置間で同じライブラリを共有できるが、計算コストが若干大きくなる。
また、ライブラリ3は最も分解能の悪い装置に併せて作成しておき、最も分解能の悪い画像に合わせて各画像にフィルタを作用させたものを用いて計測してもよい。
なお、ここではビーム形状の違いを補正するためにガウシアンフィルタを用いたが、機差の原因に応じて異なる密度分布関数を用いてもよい。これらの装置特性評価は、装置が安定であれば一度計測して登録しておけばよいし、変動するものであれば、変動の周期に応じて再度計測・再登録を行えばよい。例えば通常は一週間に一度、電子銃のチップなど、SEMの部品交換の際には必ず実施といったように行えばよい。
このように、本発明の手法では、例えばシミュレーションユニット9において、予め計測しておいた装置特性を反映した電子線シミュレーションによりライブラリ3を作る。このように装置特性の差を予めライブラリに反映させることにより装置間の差や、経時変化による計測誤差を低減することが可能となる。これら装置パラメタは、非線形最小自乗法での推定する必要はなく、推定するパラメタの数を減らすことができる。非線形最小自乗法では、推定するパラメタの数が多いほど推定に多くの時間を必要とする。いくつかのパラメタ組合せで同じような信号波形が与えられてしまう場合には、結果が収束しない場合も起こりうる。パラメタの数が多いとノイズの影響により、それぞれのパラメタの推定精度も低くなってしまい、計測の再現性が低下する恐れもある。これに対し、本発明では装置パラメタを予め別の手法で決めておくために、これらのパラメタ推定において生じるあいまいさを除去することができ、複数の装置に対しても、長期に、安定で高速な計測を実現することが可能となる。
(球面収差の反映)
第3の実施例をさらに高精度化する方法について図11を用いて説明する。
第2あるいは第3の実施例では、電子ビームの開き角αを考慮した電子線シミュレーションを用いた手法について説明した。第4の実施例ではこれに球面収差を反映させる。通常のSEMでは、球面収差がある場合には対物レンズ203の外側を通る電子はより大きく曲げられるため、光軸からの距離に応じて異なる高さで焦点を結ぶこととなる。この電子の曲がり方は、電子光学系200の設計情報30を元に、例えば電磁場解析による球面収差係数を求めておくことで、計算することができる。そこで、第4の実施の形態では、この球面収差係数に応じて電子の軌跡を変更して電子線シミュレーションを行う。このシミュレーションに関しては,非特許文献7および非特許文献8に詳しく述べられている。本実施例では非特許文献7を使用する場合の例について図11を用いて説明する。非特許文献7に示されているように,図11の対物レンズの物面上の点(x,y)から照射された電子が投影される観測面上の座標(x,y)は,対物レンズの物点側の球面収差係数CS0を用いて(4)式で表わすことができる。
=M{x+CS0(x'+y')x'}+zMax'
=M{y+CS0(x'+y')y'}+zMay' (4)
ここで,x'およびy'は(x,y)における微分値,すなわち電子の入射方向を表わす。また,Mは対物レンズの横倍率,Maは対物レンズの角度倍率である。そこで本発明では,この対物レンズ物面上での電子の入射位置(x,y)とその入射角を乱数を用いて与えてやり,与えられた入射方向および位置により試料表面から発生する2次電子の計算を行い,それを乱数を振って繰り返し,加算することで2次電子信号を計算する。ここで,対物レンズ物面上での電子の強度分布と入射方向は,実験評価などに基づいて実際の装置の電子源分布を仮定し,コンデンサレンズの倍率や途中の絞りの大きさなどを考慮して与えてやればよい。例えば,電子源の分布がガウシアンであれば,物面上での分布も対物レンズの倍率に応じて分散を変更したガウシアンを用いて,その分布に従う乱数を用いて与えてやればよい。また,入射角の分布は,物点上でのビーム開き角(図11のαo)よりも小さいので,この開き角より小さい角度を乱数により与えてやればよい。このようにして計算された2次電子信号のシミュレーション結果を用いてライブラリを作成する。なお,非特許文献8に示されたモデルでも同様のシミュレーションを行うことができるのは言うまでもない。シミュレーションを行った後は装置特性を併せ込むためのガウシアンフィルタを求めて第3の実施例と同様にすればよい。第3の実施例と同様にして得られたガウシアンフィルタのサイズを装置特性DB7に記録しておき、処理・制御部300または画像処理ユニット8による計測のマッチングの際に使用すれば、高精度で安定な計測が可能となる。
本実施の形態によれば、SEMの主要な収差のひとつである球面収差を考慮することにより、さらに高精度な計測が可能となる。また、この球面収差は設計値に基づいて予め設定しておくため、安定で高速な計測を実現することが可能となる。本実施例では球面収差について説明したが、他の電子光学系収差についても同様の手法が応用できる。
(他方式の応用)
実際の画像を用いた分解能の評価手法には様々なものが提案されている。例えば特許文献2(CG法)に開示されている方法は画像内の局所領域ごとの濃度勾配を用いて分解能を評価する。また、非特許文献6にはFFT法、自己相関法、相互相関法などを用いた評価手法が開示されている。これらの手法はどれも分解能を定量評価することが可能だが、評価結果をそのまま電子線シミュレーションに反映することはできない。そこで、これらの評価により得られる評価値を電子線シミュレーションに反映する方法として、装置特性を反映した電子線シミュレーションによる高精度計測を実現する第3の実施例と異なる別の手法である第5の実施例について説明する。
本第5の実施例では、別途既存の分解能評価手法での評価値を取得し、上記のガウシアンフィルタサイズとの対応を記憶しておく。この評価を様々な分解能の条件の画像に対して行い、この分解能評価値とガウシアンフィルタサイズの対応を装置特性DB7に一旦記録しておけば、その後はマッチングや電子線シミュレーションなしで、上記分解能評価手法を用いて装置特性を設定することが可能となる。第3の実施例と同様に、機差評価用SEM画像として、基準サンプルのSEM画像を全ての装置(n台)で取得する(ステップ1501)。このとき、用いる分解能評価手法によっては、全ての装置に対して同じサンプルを用いる必要はない。次に、これら各装置の画像の分解能を評価(ステップ1502)して、最も分解能の良い装置を決定する(ステップ1503)。その後、最も分解能の良い装置の画像Ibに標準偏差σiのガウシアンを作用させた波形と、各装置の波形Ii(iは装置に対応、例えばi=1,2...n, i≠b)と比較して、各装置の波形毎に上記(3)式による誤差Ebが最小になるσi=σeiを決定する。この結果から、上記ステップ1502において得られた分解能評価値と各装置と最高分解能装置のビーム径の差に相当するガウシアンフィルタサイズσeiの関係1506を装置特性パラメタデータベース7に記録しておく(ステップ1505)。一方で、第3の実施例と同様に、最高分解能装置のビームモデルMbを推定、装置特性パラメタデータベース7に記録しておく(1507)。これらデータベースに記録された分解能評価値とガウシアンフィルタサイズの関係および最高分解能装置のビーム特性モデルを用いて、他の装置の機差を補正することができる。新しい装置について、ステップ1502で用いた分解能評価手法により分解能を評価する。この分解能評価値から、先に求めて記録されている分解能評価値とガウシアンフィルタサイズの関係1506から、当該装置の機差を補正するためのガウシアンフィルタサイズσeを求める。この得られたガウシアンフィルタと最高分解能装置のビーム照射モデルMbを用いて、ライブラリの作成あるいは実画像の補正を行うことで、第3の実施例と同様に機差のない計測を実現することができる。
ここで、分解能評価手法によっては、金蒸着粒子など特別なサンプルを用いた方が良好な感度が得られる場合が少なくない。その場合には、SEM画像取得の際に、同一条件で適当なサンプルの画像も同時に取得しておけばよい。その後の計測の際には、分解能評価に適した適当なサンプルで分解能評価を行い、その結果に対応するガウシアンフィルタのサイズを装置特性DB7から読み出すことで、計測の際の装置特性を設定することが可能となる。このような装置特性評価を定期的に行い、計測に反映させることで、安定で高精度な計測を常に行うことが可能となる。評価の頻度は、当該パラメタの変化のしやすさに応じて決めればよい。例えば通常は一週間に一度、電子銃のチップなど、SEMの部品交換の際には必ず実施といったように行えばよい。
このようにして、本発明ではSEMの分解能を予め評価し、評価結果を反映した電子線シミュレーションによりライブラリ3を作る。このように装置特性の差を予めライブラリに反映させることにより装置間の差や、経時変化による計測誤差を低減することが可能となる。これら装置パラメタは非線形最小自乗法での推定する必要はなく、推定するパラメタの数を減らすことができる。非線形最小自乗法では、推定するパラメタの数が多いほど推定に多くの時間を必要とする。いくつかのパラメタ組合せで同じような信号波形が与えられてしまう場合には、結果が収束しない場合も起こりうる。パラメタの数が多いとノイズの影響により、それぞれのパラメタの推定精度も低くなってしまい、計測の再現性が低下する恐れもある。これに対し、本発明では装置パラメタを予め別の手法で決めておくために、これらのパラメタ推定において生じるあいまいさを除去することができ、複数の装置に対しても、長期に、安定で高速な計測を実現することが可能となる。
(検出器特性)
第6の実施例では、検出器のゲインとオフセットを予め決めることで計測の安定性を向上する方法について説明する。
本発明では、例えばシミュレーションユニット9において、画像DB5に取得された2種類以上の材質が既知のサンプル画像における2つ以上の材質のコントラストを用いて例えば2次電子検出器のゲインとオフセットを設定する。計測用の画像取得前に適切な画像処理条件を設定し、実際の画像を取得する前に2種類以上の材質が既知のサンプル画像を取得する。このときサンプル表面は十分に平らで、広さも十分にあるものを用いる。サンプル画像は別々に取得してもよいし、図13に示すように2つの材質が隣り合うような領域があれば、1枚の画像でもかまわない。このような信号波形のうち、波形が安定な領域の平均明るさを算出し、それぞれの明るさと電子線シミュレーション画像の信号量の関係からゲインとオフセットを決定する。検出器の特性が線形であれば、2種類の材質で十分に安定なゲインとオフセットの推定が可能である。検出器特性が非線形の場合には、図14に示すように複数のコントラストが異なる材質を用いてシミュレーションと実際の信号量の補正を行えばよい。補正には、一般に画像の階調補正で用いられているガンマ補正などが応用できる。また、図13や図14に示されたサンプルのように材質の境界部分があるサンプルの表面段差をCMP(ケミカルメカニカルポリッシング)などの手段で平らにすれば、境界部分におけるSEM画像のエッジ効果を排除することができる。このような画像を取得できれば、境界部分の波形を評価することにより、パターン形状の影響を排除してビーム形状の変化および分解能の変化を評価することが可能となる。
このようにして、本発明では検出器のゲインとオフセットを実際の画像によりキャリブレーションし、それを反映して電子線シミュレーション結果の階調変換を行う。これにより、これらのパラメタを非線形最小自乗法で推定する必要はなく、推定するパラメタの数を減らすことができる。非線形最小自乗法では、推定するパラメタの数が多いほど推定に多くの時間を必要とする。いくつかのパラメタ組合せで同じような信号波形が与えられてしまう場合には、結果が収束しない場合も起こりうる。パラメタの数が多いとノイズの影響により、それぞれのパラメタの推定精度も低くなってしまい、計測の再現性が低下する恐れもある。これに対し、本発明では装置パラメタを予め別の手法で決めておくために、これらのパラメタ推定において生じるあいまいさを除去することができ、安定で高速な計測を実現することが可能となる。
(ステレオ)
次に、本手法を応用して、さらに高精度な立体形状情報を取得する手法について図15を用いて説明する。ステレオ法とは、2枚の異なる視点から撮った画像内において対応する点を検出し、それらの点の位置ずれ量をもとに画像の3次元計測を行う手法である。図15はこのステレオ法を適用するためのSEM画像取得方法の実施例である。図15(b)に示す通常の測長SEM画像Aは図15(a)に示すAの方向電子ビームにより撮像されたものである。これに対して図15(d)に示す測長SEM画像BおよびCは、図15(a)に示すように電子ビームをチルト(B)すること、または図15(c)に示すように電子ビームはそのままでステージをチルトさせる(C)ことによって、異なる視点からの画像を撮ることが可能である。それぞれの画像内において、サンプル上の点P1およびP2を精度良く検出することができれば、これらの位置関係からP1とP2の高さの違いを計測することができる。しかし、実際にはこれらの位置を画像内で正確に求めるのは困難である。これは非特許文献1および2に示されている例と同様に、対象の形状およびビームの当たる方向によってSEM信号波形が変化するため、正確なエッジ位置を求めることが困難なためである。また、分解能などステレオ画像間で画像の質が異なるといった場合にもエッジ位置の検出精度が変化してしまうため、問題となる。
そこで、本発明ではチルト画像のライブラリ1604を作成し、処理・制御部300または画像処理ユニット8においてステレオ画像に対してライブラリとの比較を行う。手順を図16に示す。はじめに、2つ以上の異なる電子ビームの入射角度から撮像されたステレオSEM画像の組を撮影する(ステップ1601)。このチルトした場合の像質の変化、例えば解像度の変化量を第1から第5の実施例と同様に予め設計値あるいは計測値で装置特性データベース6に記憶しておき、これをライブラリ作成時あるいはマッチング時に反映させる。次に、それぞれの画像において、画像取得条件と同じチルト角で作成されたライブラリ(位置座標を有している)1604との比較によりパターンエッジ位置を推定する(ステップ1602)。この比較では、第1から第5の実施例と同様に、対象形状や装置特性によらず正確なエッジ位置を検出することが可能である。そして、2つ以上の異なる電子ビームの入射角(チルト角)は分かっているので、これらの結果のステレオマッチング、すなわち得られたエッジ位置の位置関係を算出することにより、計測対象パターンの3次元形状であるパターンの高さを推定することが可能となる(ステップ1603)。このように、本発明をチルト画像に対して適用することで従来のSEM画像処理手法では十分な精度が得られなかった高さ計測を実現可能とすることができる。
(ステレオ)
第8の実施例として、異なる角度から得られた複数の画像から別の方法により対象パターンの立体形状を推定する手法について図17を用いて説明する。はじめに、第8の実施例と同様に、画像取得条件(電子ビームの加速電圧、ビーム形状、画素サイズ(画像取得倍率)等)ごとに、そのビーム特性を反映したライブラリを作成する。図17(a)に示すチルト角A、Bで実際に撮像された、図17(d)(e)に示す画像Img-A(x)106,Img-B(x)107として、あるサンプル形状(sample 0)のチルト角A,Bのシミュレーション画像を図17(b)(c)に示す如くImg-s-A(x, tool-A, sample 0)108,Img-s-B(x, tool-B, sample 0)109とする。ここで、これらシミュレーション画像と実画像のマッチング誤差Estereoを(5)式で定義する。
Estereo=Σ[{Img-s-A(x-(xs-A), tool-A, sample 0)−Img-A(x)}
+{Img-s-B(x-(xs-B), tool-B, sample 0)−Img-B(x)}] (5)
本実施例では、この誤差Estereoが最小となる(xs-A), (xs-B), (sample 0)を非線形最小自乗法で求めることにより、全てのステレオ画像に対して、シミュレーションとの一致度がよい対象形状パラメタを推定することができる。このように、異なる方向から撮像することによって対象形状パラメタを高精度に推定することが可能となる。ここで、装置特性パラメタ(tool-A)および(tool-B)は前記第1乃至第5の実施例に開示した方法で予め設定されており、計測の段階で装置特性パラメタを求める必要はない。そして、チルト角A,Bは分かっているので、このEstereoを最小とするサンプルパラメタに相当する立体形状が計測対象パターンの形状として計測されることになる。本実施例では2枚の画像を用いる場合について説明したが、3つ以上の異なる角度から得られた画像を用いてもよい。
本手法を用いることにより、第1から第5の実施例と同様に、対象形状や装置特性によらず正確なパターン形状を計測することが可能である。このように、本発明をチルト画像に対して適用することで従来のSEM画像処理手法では十分な精度が得られなかった高さ計測を実現可能とすることができる。
本発明に係るパターン計測技術は、電子顕微鏡で画像取得が行える対象であれば、適用することが可能である。なお、本発明は半導体パターンの計測以外のMEMSや微細工業部品などの計測にも適用することができる。
本発明に係るSEM計測装置による計測対象パターンを計測のためのシミュレーション波形生成と計測手順の一実施例との説明図である。 本発明に係る計測対象形状モデルとシミュレーションライブラリとの説明図である。 本発明に係るパターン計測に用いるSEM計測装置の一実施例を示す概略構成図である。 本発明に係るパターン計測システムの一実施例を示す概略構成図である。 本発明に係るパターン計測手法の一実施例を示す説明図である。 本発明に係るSEM計測装置のビーム照射状態の説明図である。 本発明に係る様々な側壁傾斜角(SWA)のサンプルに対してフォーカスを変化させた電子線シミュレーションを実際に行った一実施例を示す図である。 本発明に係るパターン計測におけるシミュレーションライブラリ作成手順の一実施例を示す説明図である。 本発明に係るシミュレーションライブラリ作成のためのGUIの一実施例を示す説明図である。 本発明に係るSEM計測装置間の電子線分解能の違いを補正する方法の第1の実施例を示す説明図である。 本発明に係る電子ビーム照射モデルにおける球面収差の説明図である。 本発明に係るSEM計測装置間の電子線分解能の違いを補正する方法の第2の実施例を示す説明図である。 本発明に係る複数の装置特性を計測するための第1のサンプルの説明図である。 本発明に係る複数の装置特性を計測するための第2のサンプルの説明図である。 本発明に係る複数の観察方向からの画像を用いた立体形状計測の第1の実施例の説明図である。 本発明に係る複数の観察方向からの画像を用いた立体形状計測手順の第1の実施例を示す説明図である。 本発明に係る複数の観察方向からの画像を用いた立体形状計測手法の第2の実施例を示す説明図である。
符号の説明
1…プロセス情報(データベース)、2…設計情報(データベース)、3…SEM波形ライブラリ、4…CD計測レシピ(データベース)、5…画像(データベース)、6…計測結果(データベース)、7…装置特性(データベース)、8…画像処理ユニット、9…シミュレーションユニット、10…測長SEM(CD−SEM)、11…汎用SEM、12…結果レビューSEM、13…表示装置(入力手段)、20…外部インターフェース、30…(装置特性の)設計値、31…電子光学系シミュレーション、32…(装置特性の)オフライン計測結果、100…ウェハ(試料)、101…xyステージ、106…測長SEM画像(チルト角A)、107…測長SEM画像(チルト角B)、108…SEMシミュレーション信号波形(チルト角A)、109…SEMシミュレーション信号波形(チルト角B)、200…電子光学系、201…電子銃、202…コンデンサレンズ、203…対物レンズ、204、205…偏向器、206…二次電子検出器、207…A/D変換器、208…アライメントコイル、209…非点補正コイル、210…対物レンズ絞り、221…ステージコントローラ、222…偏向・焦点制御部、223…加速電圧制御部、300…処理・制御部、301…記憶装置(記録媒体)、302…表示装置(入力手段)、303…一次電子ビーム、701、702…GUI、1002…SEMシミュレーション信号波形、1003…サンプル断面形状、1300a…測長SEM画像(ラインパターン)、1300b…測長SEM画像(ホールパターン)、1304…測長SEM信号波形(実画像)、3001…CPU、3002…画像メモリ。

Claims (9)

  1. 電子顕微鏡装置により計測対象パターンについての実電子顕微鏡画像を画像取得条件で取得し、該取得した実電子顕微鏡画像を用いて前記計測対象パターンの形状を推定して計測する電子顕微鏡装置を用いた計測対象パターンの計測方法であって、
    予め、定められた予想変動範囲において寸法を変動させた様々な対象パターン形状の概略形状を数値データでモデル化してパターン形状情報を得る計測レシピ作成過程と、
    予め、前記電子顕微鏡装置の装置特性と該電子顕微鏡装置による画像取得条件とを反映した電子線シミュレーションを前記予想変動範囲内の様々な対象パターン形状について行って様々な対象パターン形状についての電子顕微鏡信号の第1の模擬波形を生成し、該生成された電子顕微鏡信号の第1の模擬波形と該第1の模擬波形に対応する前記計測レシピ作成過程で得られたパターン形状情報との組合せをライブラリとして記憶しておくライブラリ作成過程と、
    前記取得した実電子顕微鏡画像と前記ライブラリ作成過程で生成された電子顕微鏡画像の第1の模擬波形または該第1の模擬波形から生成された第2の模擬波形とを比較して前記実電子顕微鏡画像と最も一致度の高い前記第1の模擬波形または第2の模擬波形を選択し、該選択された第1の模擬波形または第2の模擬波形に対応する前記ライブラリ作成過程で用いた前記パターン形状情報から前記計測対象パターンの形状を推定する計測過程とを有することを特徴とする電子顕微鏡装置を用いた計測対象パターンの計測方法。
  2. 前記ライブラリ作成過程において、前記電子顕微鏡装置の装置特性が、電子光学系の分解能、ビーム開き角、及び収差係数の何れか一つ、若しくはこれら二つ以上の組合せであることを特徴とする請求項1に記載の電子顕微鏡装置を用いた計測対象パターンの計測方法。
  3. 前記ライブラリ作成過程において、前記電子線シミュレーションに反映した前記電子顕微鏡装置の装置特性である電子光学系の分解能、ビーム開き角、及び収差係数の何れか一つ、若しくはこれら二つ以上の組合せを、該電子顕微鏡装置の設計情報を用いて決定することを特徴とする請求項2に記載の電子顕微鏡装置を用いた計測対象パターンの計測方法。
  4. 前記ライブラリ作成過程において、前記電子線シミュレーションに反映した前記電子顕微鏡装置の装置特性である電子光学系の分解能、ビーム形状、ビーム開き角、及び収差係数の何れか一つ若しくは二つ以上の組合せを、予め計測手段で計測した結果に基づいて決定することを特徴とする請求項2に記載の電子顕微鏡装置を用いた計測対象パターンの計測方法。
  5. 前記ライブラリ作成過程において、前記電子顕微鏡装置の装置特性を、電子顕微鏡装置毎に記録しておき、前記第1の模擬波形生成時には当該電子顕微鏡装置毎に記憶しておかれた装置特性を読み出して前記電子線シミュレーションに反映することを特徴とする前記請求項1に記載の電子顕微鏡装置を用いた計測対象パターンの計測方法。
  6. 前記ライブラリ作成過程において、前記電子顕微鏡装置の装置特性を、少なくとも電子ビームの加速電圧や画素サイズの前記画像取得条件毎に記録しておき、前記第1の模擬波形生成時には当該画像取得条件毎に記憶しておかれた装置特性を読み出して前記電子線シミュレーションに反映することを特徴とする前記請求項1に記載の電子顕微鏡装置を用いた計測対象パターンの計測方法。
  7. 前記ライブラリ作成過程において、前記対象パターン形状毎に予めシミュレーション画像を用いて実際の電子顕微鏡装置と同じ評価手法でベストフォーカス位置を求め、該求めたベストフォーカス位置を前記電子顕微鏡装置による画像取得条件として前記電子線シミュレーションに反映することを特徴とする前記請求項1に記載の電子顕微鏡装置を用いた計測対象パターンの計測方法。
  8. 電子顕微鏡装置により計測対象パターンについて2つ以上の異なる電子ビームの入射角での実電子顕微鏡画像を画像取得条件で取得し、該取得した前記2つ以上の実電子顕微鏡画像を用いて前記計測対象パターンの3次元形状を推定して計測する電子顕微鏡装置を用いた計測対象パターンの計測方法であって、
    予め、定められた予想変動範囲において寸法を変動させた様々な対象パターン形状の概略形状を数値データでモデル化してパターン形状情報を得る計測レシピ作成過程と、
    予め、前記電子顕微鏡装置の装置特性と該電子顕微鏡装置による前記異なる2つ以上の入射角で電子ビームを照射する条件を含む画像取得条件とを反映した電子線シミュレーションを前記予想変動範囲内の様々な対象パターン形状について行って様々な対象パターン形状についての前記2つ以上の異なる電子ビームの入射角での電子顕微鏡信号の第1の模擬波形群を生成し、該生成された前記2つ以上の電子顕微鏡信号の第1の模擬波形群と該第1の模擬波形群に対応する前記計測レシピ作成過程で得られたパターン形状情報との組合せをライブラリとして記憶しておくライブラリ作成過程と、
    前記取得した2つ以上の実電子顕微鏡画像と前記ライブラリ作成過程で生成された前記第1の模擬波形群または該第1の模擬波形群から生成された第2の模擬波形群とを比較することにより、各々の実電子顕微鏡画像内における計測対象パターンエッジ位置を算出し、該算出された各々の実電子顕微鏡画像内における計測対象パターンエッジ位置の組合せから前記計測対象パターンの3次元形状を計測する計測過程とを有することを特徴とする電子顕微鏡装置を用いた計測対象パターンの計測方法。
  9. 電子顕微鏡装置により計測対象パターンについて2つ以上の異なる電子ビームの入射角での実電子顕微鏡画像を画像取得条件で取得し、該取得した前記2つ以上の実電子顕微鏡画像を用いて前記計測対象パターンの3次元形状を推定して計測する電子顕微鏡装置を用いた計測対象パターンの計測方法であって、
    予め、定められた予想変動範囲において寸法を変動させた様々な対象パターン形状の概略形状を数値データでモデル化してパターン形状情報を得る計測レシピ作成過程と、
    予め、前記電子顕微鏡装置の装置特性と該電子顕微鏡装置による前記2つ以上の異なる入射角で電子ビームを照射する条件を含む画像取得条件とを反映した電子線シミュレーションを前記予想変動範囲内の様々な対象パターン形状について行って様々な対象パターン形状についての前記2つ以上の異なる電子ビームの入射角での電子顕微鏡信号の第1の模擬波形群を生成し、該生成された前記2つ以上の電子顕微鏡信号の第1の模擬波形群と該第1の模擬波形群に対応する前記計測レシピ作成過程で得られたパターン形状情報との組合せをライブラリとして記憶しておくライブラリ作成過程と、
    前記取得した前記2つ以上の実電子顕微鏡画像と前記ライブラリ作成過程で生成された前記第1の模擬波形群または該第1の模擬波形群から生成された第2の模擬波形群とを比較し、前記2つ以上の実電子顕微鏡画像と前記第1の模擬波形群または第2の模擬波形群との間の誤差の総和が最小となる前記パターン形状情報を選択することにより、前記計測対象パターンの3次元形状を計測する計測過程とを有することを特徴とする電子顕微鏡装置を用いた計測対象パターンの計測方法。
JP2006038945A 2006-02-16 2006-02-16 電子顕微鏡装置を用いた計測対象パターンの計測方法 Pending JP2007218711A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006038945A JP2007218711A (ja) 2006-02-16 2006-02-16 電子顕微鏡装置を用いた計測対象パターンの計測方法
US11/673,057 US7732761B2 (en) 2006-02-16 2007-02-09 Method for measuring a pattern dimension using a scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006038945A JP2007218711A (ja) 2006-02-16 2006-02-16 電子顕微鏡装置を用いた計測対象パターンの計測方法

Publications (1)

Publication Number Publication Date
JP2007218711A true JP2007218711A (ja) 2007-08-30

Family

ID=38367410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006038945A Pending JP2007218711A (ja) 2006-02-16 2006-02-16 電子顕微鏡装置を用いた計測対象パターンの計測方法

Country Status (2)

Country Link
US (1) US7732761B2 (ja)
JP (1) JP2007218711A (ja)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162494A (ja) * 2007-12-28 2009-07-23 Nec Electronics Corp 計測方法
JP2009198339A (ja) * 2008-02-22 2009-09-03 Hitachi High-Technologies Corp パターン寸法計測方法
JP2009198338A (ja) * 2008-02-22 2009-09-03 Hitachi High-Technologies Corp 電子顕微鏡システム及びそれを用いたパターン寸法計測方法
JP2010087075A (ja) * 2008-09-30 2010-04-15 Toppan Printing Co Ltd マスク検査方法
JP2010129516A (ja) * 2008-12-01 2010-06-10 Jeol Ltd 走査電子顕微鏡、放出電子検出値推定方法、sem像シミュレーション方法、及びそのプログラム
JP2010153320A (ja) * 2008-12-26 2010-07-08 Fujitsu Ltd 電磁レンズにおける色収差係数測定方法及び走査透過電子顕微鏡
JP2010205864A (ja) * 2009-03-03 2010-09-16 Hitachi High-Technologies Corp 画像形成装置
JP2010225812A (ja) * 2009-03-23 2010-10-07 Nuflare Technology Inc パターン寸法測定方法及び荷電粒子ビーム描画方法
WO2011013316A1 (ja) * 2009-07-31 2011-02-03 株式会社 日立ハイテクノロジーズ パターン形状選択方法、及びパターン測定装置
WO2011021346A1 (ja) * 2009-08-21 2011-02-24 株式会社 日立ハイテクノロジーズ パターン形状推定方法、及びパターン測定装置
JP2011038811A (ja) * 2009-08-07 2011-02-24 Hitachi High-Technologies Corp 半導体パターンの計測方法及び計測システム
WO2011064960A1 (ja) * 2009-11-26 2011-06-03 株式会社 日立ハイテクノロジーズ 荷電粒子線顕微鏡および当該荷電粒子顕微鏡の制御方法
JP2011154223A (ja) * 2010-01-28 2011-08-11 Hitachi High-Technologies Corp パターンマッチング用画像作成方法、及びパターンマッチング用画像作成装置
JP2011179819A (ja) * 2010-02-26 2011-09-15 Hitachi High-Technologies Corp パターン測定方法及びコンピュータプログラム
WO2012014356A1 (ja) * 2010-07-28 2012-02-02 株式会社日立ハイテクノロジーズ 電子顕微鏡を用いたパターン寸法計測方法、パターン寸法計測システム並びに電子顕微鏡装置の経時変化のモニタ方法
WO2012053650A1 (ja) * 2010-10-22 2012-04-26 株式会社日立ハイテクノロジーズ 形状計測方法およびそのシステム
JPWO2011052339A1 (ja) * 2009-10-27 2013-03-21 株式会社日立ハイテクノロジーズ パターン寸法測定方法及びそれに用いる荷電粒子線顕微鏡
JP2013200319A (ja) * 2013-07-10 2013-10-03 Hitachi High-Technologies Corp 電子顕微鏡システム及びそれを用いたパターン寸法計測方法
WO2013164971A1 (ja) * 2012-05-01 2013-11-07 東京エレクトロン株式会社 X線検査方法及びx線検査装置
WO2014208216A1 (ja) * 2013-06-25 2014-12-31 株式会社日立ハイテクノロジーズ 試料観察装置用のテンプレート作成装置及び試料観察装置
US8953855B2 (en) 2008-03-05 2015-02-10 Hitachi High-Technologies Corporation Edge detection technique and charged particle radiation equipment
US9123504B2 (en) 2009-06-30 2015-09-01 Hitachi High-Technologies Corporation Semiconductor inspection device and semiconductor inspection method using the same
WO2019136015A1 (en) * 2018-01-05 2019-07-11 Kla-Tencor Corporation Semiconductor metrology and defect classification using electron microscopy
WO2019180760A1 (ja) * 2018-03-19 2019-09-26 株式会社 日立ハイテクノロジーズ パターン計測装置、及び計測を実行させるプログラムを記憶する非一時的なコンピュータ可読媒体
CN110678968A (zh) * 2017-05-18 2020-01-10 应用材料以色列公司 用于检查半导体晶片的技术
WO2020095531A1 (ja) * 2018-11-08 2020-05-14 株式会社日立ハイテク 荷電粒子線装置の調整方法及び荷電粒子線装置システム
JP2021027273A (ja) * 2019-08-08 2021-02-22 株式会社日立ハイテク 荷電粒子線装置
WO2021140662A1 (ja) * 2020-01-10 2021-07-15 株式会社日立ハイテク パターン検査装置
KR20220017818A (ko) 2020-08-05 2022-02-14 주식회사 히타치하이테크 화상 처리 시스템
JP2022061001A (ja) * 2020-09-17 2022-04-15 アプライド マテリアルズ イスラエル リミテッド 半導体試料の3次元再構成
JP2023068788A (ja) * 2021-11-04 2023-05-18 日本電子株式会社 走査電子顕微鏡及び輝度調整方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4511303B2 (ja) * 2004-10-05 2010-07-28 株式会社日立ハイテクノロジーズ 荷電粒子線装置および寸法測定方法
US7408154B2 (en) * 2004-10-29 2008-08-05 Hitachi High-Technologies Corporation Scanning electron microscope, method for measuring a dimension of a pattern using the same, and apparatus for correcting difference between scanning electron microscopes
JP4990548B2 (ja) * 2006-04-07 2012-08-01 株式会社日立製作所 半導体装置の製造方法
JP2008198380A (ja) * 2007-02-08 2008-08-28 Toshiba Corp 電荷軌道計算方法及び電荷軌道計算システム
US7485859B2 (en) * 2007-04-17 2009-02-03 International Business Machines Corporation Charged beam apparatus and method that provide charged beam aerial dimensional map
US20090121131A1 (en) * 2007-11-13 2009-05-14 Arkady Nikitin Method of determination of resolution of scanning electron microscope
KR101137045B1 (ko) * 2008-03-19 2012-04-19 도판 인사츠 가부시키가이샤 미세 구조체 검사 방법, 미세 구조체 검사 장치, 및 미세 구조체 검사 프로그램 기록 매체
JP5288894B2 (ja) * 2008-06-09 2013-09-11 株式会社東芝 半導体装置の製造管理方法
JP5302595B2 (ja) * 2008-08-06 2013-10-02 株式会社日立ハイテクノロジーズ 傾斜観察方法および観察装置
DE102008041070A1 (de) * 2008-08-07 2010-02-11 Robert Bosch Gmbh Verfahren zur Bestimmung der Partikelhöhe
JP4956510B2 (ja) * 2008-08-25 2012-06-20 株式会社東芝 パターン計測装置、パターン計測方法およびプログラム
JP5425601B2 (ja) * 2009-12-03 2014-02-26 株式会社日立ハイテクノロジーズ 荷電粒子線装置およびその画質改善方法
US8495527B2 (en) 2010-10-28 2013-07-23 International Business Machines Corporation Pattern recognition with edge correction for design based metrology
US8855401B2 (en) 2010-10-29 2014-10-07 International Business Machines Corporation Methods and systems involving measuring complex dimensions of silicon devices
US10048480B2 (en) 2011-01-07 2018-08-14 Zeta Instruments, Inc. 3D microscope including insertable components to provide multiple imaging and measurement capabilities
WO2013150847A1 (ja) * 2012-04-03 2013-10-10 株式会社 日立ハイテクノロジーズ 荷電粒子線装置
US9404743B2 (en) * 2012-11-01 2016-08-02 Taiwan Semiconductor Manufacturing Company, Ltd. Method for validating measurement data
US9953803B2 (en) 2015-02-25 2018-04-24 Hermes Microvision Inc. Local alignment point calibration method in die inspection
JP6527799B2 (ja) * 2015-09-25 2019-06-05 株式会社日立ハイテクノロジーズ 荷電粒子線装置及びパターン測定装置
DE102015013698B9 (de) * 2015-10-22 2017-12-21 Carl Zeiss Microscopy Gmbh Verfahren zum Betreiben eines Vielstrahl-Teilchenmikroskops
US11099001B2 (en) * 2016-12-06 2021-08-24 Pioneer Corporation Inspection apparatus, inspection method, computer program and recording medium
US10120973B2 (en) * 2017-03-15 2018-11-06 Applied Materials Israel Ltd. Method of performing metrology operations and system thereof
US10748272B2 (en) * 2017-05-18 2020-08-18 Applied Materials Israel Ltd. Measuring height difference in patterns on semiconductor wafers
US11966167B2 (en) * 2017-12-22 2024-04-23 Asml Netherlands B.V. Systems and methods for reducing resist model prediction errors
CN113874679B (zh) * 2019-05-21 2024-06-18 应用材料公司 增强的截面特征测量方法
US11933729B2 (en) 2020-08-07 2024-03-19 Abberior Instruments Gmbh Method, computer program, and apparatus for adapting an estimator for use in a microscope
JP2022144306A (ja) * 2021-03-18 2022-10-03 キオクシア株式会社 モデリング方法
CN114414605B (zh) * 2021-11-25 2023-10-24 上海精测半导体技术有限公司 一种带电粒子束扫描成像设备实际像素尺寸的获取方法
US20230420278A1 (en) * 2022-06-24 2023-12-28 Kla Corporation Image Modeling-Assisted Contour Extraction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622116A (ja) * 1985-06-28 1987-01-08 Nec Corp 形状測定方法
JPS63148112A (ja) * 1986-12-11 1988-06-21 Toshiba Corp 傾斜角測定装置
JPH03255303A (ja) * 1990-03-05 1991-11-14 Jeol Ltd 多方向からのステレオペア像を用いた三次元立体像再構築方法
JPH03290767A (ja) * 1990-04-09 1991-12-20 Nippon Telegr & Teleph Corp <Ntt> Sem画像の濃度変換方法およびsem画像変換装置
JP2005156436A (ja) * 2003-11-27 2005-06-16 Hitachi Ltd 半導体パターン計測方法、およびプロセス管理方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2010485A1 (ja) * 1968-05-28 1970-02-20 Jeol Ltd
JP3156694B2 (ja) 1985-11-01 2001-04-16 株式会社日立製作所 走査電子顕微鏡
GB8622976D0 (en) * 1986-09-24 1986-10-29 Trialsite Ltd Scanning electron microscopes
US5719796A (en) * 1995-12-04 1998-02-17 Advanced Micro Devices, Inc. System for monitoring and analyzing manufacturing processes using statistical simulation with single step feedback
JP4235284B2 (ja) 1998-08-25 2009-03-11 株式会社日立製作所 パターン検査装置およびその方法
US6943900B2 (en) * 2000-09-15 2005-09-13 Timbre Technologies, Inc. Generation of a library of periodic grating diffraction signals
US7050957B2 (en) * 2001-02-26 2006-05-23 Agere Systems Inc. Projection electron beam lithography apparatus and method employing an estimator
JP4263416B2 (ja) 2001-08-24 2009-05-13 株式会社日立製作所 荷電粒子顕微鏡評価システム
JP3968334B2 (ja) * 2002-09-11 2007-08-29 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び荷電粒子線照射方法
US20040225488A1 (en) * 2003-05-05 2004-11-11 Wen-Chuan Wang System and method for examining mask pattern fidelity
JP4262592B2 (ja) * 2003-12-26 2009-05-13 株式会社日立ハイテクノロジーズ パターン計測方法
JP4512395B2 (ja) * 2004-03-30 2010-07-28 株式会社日立ハイテクノロジーズ 露光プロセスモニタ方法及びその装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622116A (ja) * 1985-06-28 1987-01-08 Nec Corp 形状測定方法
JPS63148112A (ja) * 1986-12-11 1988-06-21 Toshiba Corp 傾斜角測定装置
JPH03255303A (ja) * 1990-03-05 1991-11-14 Jeol Ltd 多方向からのステレオペア像を用いた三次元立体像再構築方法
JPH03290767A (ja) * 1990-04-09 1991-12-20 Nippon Telegr & Teleph Corp <Ntt> Sem画像の濃度変換方法およびsem画像変換装置
JP2005156436A (ja) * 2003-11-27 2005-06-16 Hitachi Ltd 半導体パターン計測方法、およびプロセス管理方法

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162494A (ja) * 2007-12-28 2009-07-23 Nec Electronics Corp 計測方法
JP2009198339A (ja) * 2008-02-22 2009-09-03 Hitachi High-Technologies Corp パターン寸法計測方法
JP2009198338A (ja) * 2008-02-22 2009-09-03 Hitachi High-Technologies Corp 電子顕微鏡システム及びそれを用いたパターン寸法計測方法
US8953855B2 (en) 2008-03-05 2015-02-10 Hitachi High-Technologies Corporation Edge detection technique and charged particle radiation equipment
JP2010087075A (ja) * 2008-09-30 2010-04-15 Toppan Printing Co Ltd マスク検査方法
JP2010129516A (ja) * 2008-12-01 2010-06-10 Jeol Ltd 走査電子顕微鏡、放出電子検出値推定方法、sem像シミュレーション方法、及びそのプログラム
JP2010153320A (ja) * 2008-12-26 2010-07-08 Fujitsu Ltd 電磁レンズにおける色収差係数測定方法及び走査透過電子顕微鏡
JP2010205864A (ja) * 2009-03-03 2010-09-16 Hitachi High-Technologies Corp 画像形成装置
JP2010225812A (ja) * 2009-03-23 2010-10-07 Nuflare Technology Inc パターン寸法測定方法及び荷電粒子ビーム描画方法
US9123504B2 (en) 2009-06-30 2015-09-01 Hitachi High-Technologies Corporation Semiconductor inspection device and semiconductor inspection method using the same
WO2011013316A1 (ja) * 2009-07-31 2011-02-03 株式会社 日立ハイテクノロジーズ パターン形状選択方法、及びパターン測定装置
JP2011033423A (ja) * 2009-07-31 2011-02-17 Hitachi High-Technologies Corp パターン形状選択方法、及びパターン測定装置
JP2011038811A (ja) * 2009-08-07 2011-02-24 Hitachi High-Technologies Corp 半導体パターンの計測方法及び計測システム
US8671366B2 (en) 2009-08-21 2014-03-11 Hitachi High-Technologies Corporation Estimating shape based on comparison between actual waveform and library in lithography process
WO2011021346A1 (ja) * 2009-08-21 2011-02-24 株式会社 日立ハイテクノロジーズ パターン形状推定方法、及びパターン測定装置
JPWO2011021346A1 (ja) * 2009-08-21 2013-01-17 株式会社日立ハイテクノロジーズ パターン形状推定方法、及びパターン測定装置
JPWO2011052339A1 (ja) * 2009-10-27 2013-03-21 株式会社日立ハイテクノロジーズ パターン寸法測定方法及びそれに用いる荷電粒子線顕微鏡
WO2011064960A1 (ja) * 2009-11-26 2011-06-03 株式会社 日立ハイテクノロジーズ 荷電粒子線顕微鏡および当該荷電粒子顕微鏡の制御方法
JP2011113776A (ja) * 2009-11-26 2011-06-09 Hitachi High-Technologies Corp 荷電粒子線顕微鏡および当該荷電粒子顕微鏡の制御方法
US8934006B2 (en) 2009-11-26 2015-01-13 Hitachi High-Technologies Corporation Charged-particle microscope and method for controlling same
JP2011154223A (ja) * 2010-01-28 2011-08-11 Hitachi High-Technologies Corp パターンマッチング用画像作成方法、及びパターンマッチング用画像作成装置
US8774493B2 (en) 2010-01-28 2014-07-08 Hitachi High-Technologies Corporation Apparatus for forming image for pattern matching
JP2011179819A (ja) * 2010-02-26 2011-09-15 Hitachi High-Technologies Corp パターン測定方法及びコンピュータプログラム
US9671223B2 (en) 2010-07-28 2017-06-06 Hitachi High-Technologies Corporation Pattern dimension measurement method using electron microscope, pattern dimension measurement system, and method for monitoring changes in electron microscope equipment over time
JP2012026989A (ja) * 2010-07-28 2012-02-09 Hitachi High-Technologies Corp 電子顕微鏡を用いたパターン寸法計測方法、パターン寸法計測システム並びに電子顕微鏡装置の経時変化のモニタ方法
WO2012014356A1 (ja) * 2010-07-28 2012-02-02 株式会社日立ハイテクノロジーズ 電子顕微鏡を用いたパターン寸法計測方法、パターン寸法計測システム並びに電子顕微鏡装置の経時変化のモニタ方法
US9354049B2 (en) 2010-10-22 2016-05-31 Hutachi High-Technologies Corporation Shape measurement method, and system therefor
JP2012088269A (ja) * 2010-10-22 2012-05-10 Hitachi High-Technologies Corp 形状計測方法およびそのシステム
WO2012053650A1 (ja) * 2010-10-22 2012-04-26 株式会社日立ハイテクノロジーズ 形状計測方法およびそのシステム
JP2013231700A (ja) * 2012-05-01 2013-11-14 Tokyo Electron Ltd X線検査方法及びx線検査装置
WO2013164971A1 (ja) * 2012-05-01 2013-11-07 東京エレクトロン株式会社 X線検査方法及びx線検査装置
JPWO2014208216A1 (ja) * 2013-06-25 2017-02-23 株式会社日立ハイテクノロジーズ 試料観察装置用のテンプレート作成装置及び試料観察装置
WO2014208216A1 (ja) * 2013-06-25 2014-12-31 株式会社日立ハイテクノロジーズ 試料観察装置用のテンプレート作成装置及び試料観察装置
JP2013200319A (ja) * 2013-07-10 2013-10-03 Hitachi High-Technologies Corp 電子顕微鏡システム及びそれを用いたパターン寸法計測方法
JP2020521323A (ja) * 2017-05-18 2020-07-16 アプライド マテリアルズ イスラエル リミテッド 半導体ウエハを検査するための技法
CN110678968B (zh) * 2017-05-18 2021-02-23 应用材料以色列公司 用于检查半导体晶片的技术
CN110678968A (zh) * 2017-05-18 2020-01-10 应用材料以色列公司 用于检查半导体晶片的技术
KR102445989B1 (ko) 2018-01-05 2022-09-21 케이엘에이 코포레이션 전자 현미경을 사용한 반도체 계측 및 결함 분류
US10580673B2 (en) 2018-01-05 2020-03-03 Kla Corporation Semiconductor metrology and defect classification using electron microscopy
KR20200096992A (ko) * 2018-01-05 2020-08-14 케이엘에이 코포레이션 전자 현미경을 사용한 반도체 계측 및 결함 분류
JP7097447B2 (ja) 2018-01-05 2022-07-07 ケーエルエー コーポレイション 電子顕微鏡を使用した半導体計測および欠陥分類
JP2021509772A (ja) * 2018-01-05 2021-04-01 ケーエルエー コーポレイション 電子顕微鏡を使用した半導体計測および欠陥分類
WO2019136015A1 (en) * 2018-01-05 2019-07-11 Kla-Tencor Corporation Semiconductor metrology and defect classification using electron microscopy
TWI759574B (zh) * 2018-01-05 2022-04-01 美商克萊譚克公司 使用電子顯微法之半導體度量衡及缺陷分類
US11177112B2 (en) 2018-03-19 2021-11-16 Hitachi High-Tech Corporation Pattern measurement device and non-transitory computer readable medium having stored therein program for executing measurement
WO2019180760A1 (ja) * 2018-03-19 2019-09-26 株式会社 日立ハイテクノロジーズ パターン計測装置、及び計測を実行させるプログラムを記憶する非一時的なコンピュータ可読媒体
WO2020095531A1 (ja) * 2018-11-08 2020-05-14 株式会社日立ハイテク 荷電粒子線装置の調整方法及び荷電粒子線装置システム
JPWO2020095531A1 (ja) * 2018-11-08 2021-09-30 株式会社日立ハイテク 荷電粒子線装置の調整方法及び荷電粒子線装置システム
JP7174773B2 (ja) 2018-11-08 2022-11-17 株式会社日立ハイテク 荷電粒子線装置の調整方法及び荷電粒子線装置システム
US12001521B2 (en) 2018-11-08 2024-06-04 Hitachi High-Tech Corporation Adjusting method of charged particle beam device and charged particle beam device system
JP7159128B2 (ja) 2019-08-08 2022-10-24 株式会社日立ハイテク 荷電粒子線装置
JP2021027273A (ja) * 2019-08-08 2021-02-22 株式会社日立ハイテク 荷電粒子線装置
WO2021140662A1 (ja) * 2020-01-10 2021-07-15 株式会社日立ハイテク パターン検査装置
TWI773013B (zh) * 2020-01-10 2022-08-01 日商日立全球先端科技股份有限公司 圖案檢查裝置
KR20220102641A (ko) 2020-01-10 2022-07-20 주식회사 히타치하이테크 패턴 검사 장치
JP7260675B2 (ja) 2020-01-10 2023-04-18 株式会社日立ハイテク パターン検査装置
JPWO2021140662A1 (ja) * 2020-01-10 2021-07-15
KR102740249B1 (ko) 2020-01-10 2024-12-11 주식회사 히타치하이테크 패턴 검사 장치
US12176181B2 (en) 2020-01-10 2024-12-24 Hitachi High-Tech Corporation Pattern inspecting device
KR20220017818A (ko) 2020-08-05 2022-02-14 주식회사 히타치하이테크 화상 처리 시스템
US11852599B2 (en) 2020-08-05 2023-12-26 Hitachi High-Tech Corporation Image processing system
JP2022061001A (ja) * 2020-09-17 2022-04-15 アプライド マテリアルズ イスラエル リミテッド 半導体試料の3次元再構成
JP7636293B2 (ja) 2020-09-17 2025-02-26 アプライド マテリアルズ イスラエル リミテッド 半導体試料の3次元再構成
JP2023068788A (ja) * 2021-11-04 2023-05-18 日本電子株式会社 走査電子顕微鏡及び輝度調整方法

Also Published As

Publication number Publication date
US20070187595A1 (en) 2007-08-16
US7732761B2 (en) 2010-06-08

Similar Documents

Publication Publication Date Title
JP2007218711A (ja) 電子顕微鏡装置を用いた計測対象パターンの計測方法
US7633061B2 (en) Method and apparatus for measuring pattern dimensions
JP5712130B2 (ja) パターン形状推定方法、及びパターン測定装置
JP4220358B2 (ja) 半導体パターン計測方法
JP5103219B2 (ja) パターン寸法計測方法
JP5525421B2 (ja) 画像撮像装置および画像撮像方法
JP6038053B2 (ja) パターン評価方法およびパターン評価装置
US8214166B2 (en) Method and its system for calibrating measured data between different measuring tools
JP5783953B2 (ja) パターン評価装置およびパターン評価方法
WO2011013316A1 (ja) パターン形状選択方法、及びパターン測定装置
KR101568945B1 (ko) 슈링크 전 형상 추정 방법 및 cd-sem 장치
JP2012026989A (ja) 電子顕微鏡を用いたパターン寸法計測方法、パターン寸法計測システム並びに電子顕微鏡装置の経時変化のモニタ方法
US20060060774A1 (en) Mesuring method and its apparatus
JP4791333B2 (ja) パターン寸法計測方法及び走査型透過荷電粒子顕微鏡
KR102154667B1 (ko) 패턴 계측 장치, 및 컴퓨터 프로그램
JP2006153837A (ja) 走査型電子顕微鏡及びそれを用いたパターン計測方法並びに走査型電子顕微鏡の機差補正装置
JP2012173028A (ja) パターン形状計測方法及びその装置
Valade et al. Tilted beam scanning electron microscopy, 3-D metrology for microelectronics industry
TWI850667B (zh) 深度計測裝置、深度計測系統及深度指標值算出方法
KR20240167021A (ko) 매립된 피처의 오버레이 측정을 위한 전자 빔 최적화
WO2025062546A1 (ja) 検査計測モデルを有する走査型電子顕微鏡及び検査計測モデルの修正方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110829

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111021