JP2007163393A - Recoil lithium chemical nuclear fusion energy generating method and apparatus - Google Patents
Recoil lithium chemical nuclear fusion energy generating method and apparatus Download PDFInfo
- Publication number
- JP2007163393A JP2007163393A JP2005362652A JP2005362652A JP2007163393A JP 2007163393 A JP2007163393 A JP 2007163393A JP 2005362652 A JP2005362652 A JP 2005362652A JP 2005362652 A JP2005362652 A JP 2005362652A JP 2007163393 A JP2007163393 A JP 2007163393A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- recoil
- reaction
- fusion
- liquid target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Particle Accelerators (AREA)
Abstract
Description
本発明は反跳リチウム化学核融合エネルギー発生法及び装置、特に、溶融金属リチウムを主体とする核融合物質からなる液体を標的とし、イオン注入で生ずる標的中の反跳イオンが誘発する反跳リチウム化学核融合エネルギー発生法及び装置に関するものである。 The present invention relates to a recoil lithium chemical fusion energy generation method and apparatus, and more particularly to a recoil lithium that targets a liquid composed of a fusion material mainly composed of molten metal lithium and is induced by recoil ions in the target generated by ion implantation. The present invention relates to a chemical fusion energy generation method and apparatus.
現在実用レベルの核融合はまだ実現していない。このようなことから本発明者は、特許文献1(無反跳非熱核融合反応生成方法及び無反跳熱エネルギー発生装置)、特許文献2(溶融リチウム核融合反応発生方法及び核融合エネルギー供給装置)、特許文献3(非熱核融合発電方法および非熱核融合発電装置)、特許文献4(核融合反応装置)、特許文献5(溶融リチウム核融合反応生成方法及び溶融リチウム核融合エネルギー発生装置)、特許文献6(増進核融合発生方法及び増進核融合エネルギー発生装置)を発明した。 At present, nuclear fusion at a practical level has not been realized. For this reason, the present inventors have disclosed Patent Document 1 (Method for generating recoilless non-thermonuclear fusion reaction and apparatus for generating recoilless thermal energy), Patent Document 2 (Method for generating molten lithium fusion reaction and fusion energy supply). Apparatus), Patent Document 3 (Non-thermonuclear power generation method and non-thermonuclear power generation apparatus), Patent Document 4 (nuclear fusion reactor), Patent Document 5 (Method of generating molten lithium fusion reaction and generation of molten lithium fusion energy) Apparatus), Patent Document 6 (enhanced fusion generation method and enhanced fusion energy generator).
また、これらの発明の熱力学第二法則に立脚した理論は非特許文献1に、又この理論の実験的検証は非特許文献2の中のNo.3および非特許文献3に開示されている。これらの文献では既存の手段によって実用レベルの非熱核融合の達成が可能であり、これを利用したエネルギー装置の構成例が示されている。
前記各文献では、実用化する上で完全解決していない次の課題がある。即ち、前記各文献には核子あたり10(キロ電子ボルト)程度あるいはそれ以下のエネルギーの重陽子または陽子ビームを溶融金属リチウムを主体とする液体標的に注入し、該液体中の熱力学的力によって核融合レートを1010倍以上増進する化学核融合反応と呼ばれるようになった新原理の核融合方法が開示されているが、該液体金属リチウム中で化学核融合反応と競合する化学反応が水素化リチウムを生成して溶融金属リチウムの液体活性が劣化し化学核融合反応の増進度が減殺される。 In each of the above-mentioned documents, there are the following problems that have not been completely solved for practical use. That is, in each of the above documents, a deuteron or proton beam having an energy of about 10 (kiloelectron volts) or less per nucleon is injected into a liquid target mainly composed of molten metal lithium, and the thermodynamic force in the liquid is used. A novel principle fusion method called a chemical fusion reaction that enhances the fusion rate by 10 10 times or more is disclosed, but a chemical reaction that competes with the chemical fusion reaction in the liquid metal lithium is hydrogen. Lithium fluoride is produced, the liquid activity of the molten metal lithium is degraded, and the degree of enhancement of the chemical fusion reaction is diminished.
ここで言う熱力学的力とは吸着時間の延長効果や溶液中の自発性化学反応の増進効果で顕在化してくる反応媒体特有の集団的ダイナミクスのことである。 The thermodynamic force mentioned here is collective dynamics peculiar to the reaction medium that is manifested by the effect of extending the adsorption time and the effect of promoting the spontaneous chemical reaction in the solution.
注入イオンは衝突点で液体標的中の原子と融合原子を形成するが、融合原子内では、衝突原子核同志がpm(ピコメートルすなわち10-12m)以内の極小空間に閉じ込められ数keVの零点エネルギーで超高密度の相互作用をなし、トンネル効果による核反応を誘発する可能性が生ずる。該融合原子形成の原子反応で放出される化学エネルギー(Gibbsエネルギーと呼ぶ)が大きい場合は、融合原子形成の寿命が後述する莫大な増進因子で延長される。その結果、相互作用をしている原子核の閉じ込め時間も延長され、その因子で核反応レートも増大するのである。 Implanted ions form a fusion atom with the atom in the liquid target at the collision point, and within the fusion atom, the collision nuclei are confined in a minimal space within pm (picometer or 10 -12 m) and zero-point energy of several keV There is a possibility of inducing ultra-high density interactions and inducing nuclear reactions due to the tunnel effect. When the chemical energy (called Gibbs energy) released by the atomic reaction of the fused atom formation is large, the lifetime of the fused atom formation is extended by a huge enhancement factor described later. As a result, the confinement time of the interacting nuclei is extended, and the nuclear reaction rate is increased by that factor.
このような機構で、太陽内部の熱核融合プラズマ密度の100万倍に相当する超高密度の白色矮星や超新星でおこっている核融合を地上で実現したのが化学核融合である。 With such a mechanism, chemical fusion has realized on the ground the fusion that occurs in super high density white dwarfs and supernovas equivalent to 1 million times the density of thermonuclear plasma in the sun.
そこで、本発明の課題は、化学核融合反応と競合する化学反応を排除して、リチウムの完全な金属性を保証することにより、注入イオンの殆どがリチウム化学核融合を誘発する実用可能な化学核融合反応発生法および化学核融合エネルギー発生装置を提供することにある。 Therefore, the object of the present invention is to eliminate the chemical reaction competing with the chemical fusion reaction and to guarantee the complete metallicity of lithium, so that most of the implanted ions can induce a chemical chemical fusion that induces lithium chemical fusion. A fusion reaction generation method and a chemical fusion energy generation apparatus are provided.
本発明の反跳リチウム化学核融合エネルギー発生法は、内面を金属リチウムやボロンまたはリチウムやボロンの化合物等の中性子吸収材で覆った反応槽内の放電で生じた不活性ガスまたは軽重水素のイオン、あるいは分子イオンを溶融金属リチウムを主体とする核融合物質からなる液体標的に注入して核的阻止能領域である原子質量単位あたり数キロ電子ボルトのエネルギーの反跳イオンを発生し、反跳イオンと標的の原子との間で、上記液体標的内の熱力学的力によって化学核融合反応を誘発させ、上記核融合で放出される低速中性子により上記中性子吸収材および上記液体標的に二次核反応を誘発せしめることを特徴とする。 The recoil lithium chemical fusion energy generation method of the present invention is an inert gas or light deuterium ion generated by discharge in a reaction vessel whose inner surface is covered with a neutron absorber such as metallic lithium or boron or a compound of lithium or boron. Alternatively, molecular ions are injected into a liquid target composed of a fusion material mainly composed of molten metal lithium to generate recoil ions with energy of several kiloelectron volts per atomic mass unit, which is the nuclear stopping power region. A chemical fusion reaction is induced between the ion and the target atom by thermodynamic force in the liquid target, and secondary nuclei are generated in the neutron absorber and the liquid target by the slow neutrons released by the fusion. It is characterized by inducing a reaction.
また、本発明の反跳リチウム化学核融合エネルギー発生装置は、正または負の原子イオンあるいは分子イオンを生成する手段および溶融金属リチウムを主体とする核融合物質からなる液体標的と、内面を金属リチウムやボロンまたはリチウムやボロンの化合物等の中性子吸収材で覆った、上記液体標的を囲む反応槽と、上記イオンを、核的阻止能領域である原子質量単位あたり数キロ電子ボルトのエネルギーの反跳イオンを発生するような速度に加速して上記液体標的に注入する手段とよりなり、反跳イオンと標的の原子との間で、上記液体標的内の熱力学的力によって化学核融合反応を誘発させ、上記核融合で放出される低速中性子により上記中性子吸収材および上記液体標的に二次核反応を誘発せしめることを特徴とする。 In addition, the recoil lithium chemical fusion energy generator of the present invention comprises a liquid target composed of a fusion material mainly composed of molten metal lithium, a means for generating positive or negative atomic ions or molecular ions, and an inner surface of metal lithium. A reaction vessel surrounding the liquid target, covered with a neutron absorber such as lithium or boron or a compound of lithium or boron, and the ion recoiled energy of several kilo-electron volts per atomic mass unit, which is the nuclear stopping power region. Accelerates the ion generation rate and injects it into the liquid target, and induces a chemical fusion reaction between recoil ions and target atoms by thermodynamic force in the liquid target And a secondary nuclear reaction is induced in the neutron absorber and the liquid target by the slow neutrons released by the fusion.
また、本発明においては、上記液体標的に金属リチウム以外の化学核融合反応誘発物質が混入されていることを特徴とする。 In the present invention, the liquid target is mixed with a chemical fusion reaction inducing substance other than metallic lithium.
また、本発明においては、上記液体標的を撹拌または流動させるかあるいは上記液体標的に標的温度調整物質を混入することを特徴とする。 In the present invention, the liquid target is stirred or fluidized, or a target temperature adjusting substance is mixed into the liquid target.
本発明によれば、核融合反応の主体は殆ど金属リチウムであるからクリーンな真空中で溶融金属リチウムまたはリチウム合金等の核融合物質からなる液体標的に不活性ガス又は軽重水素との混合ガスのイオンを加速して注入して生じた反跳イオンを液体標的の原子と反応させ、液体中の熱力学的力によってリチウム化学核融合反応を増進させることができる。そのため安全かつ安定したエネルギー供給ができ、その取扱いも容易で簡便である。 According to the present invention, since the main component of the fusion reaction is mostly metallic lithium, a mixed gas of inert gas or light deuterium is applied to a liquid target made of a fusion material such as molten metallic lithium or a lithium alloy in a clean vacuum. Recoil ions generated by accelerating and injecting ions can react with atoms in the liquid target, and the lithium chemical fusion reaction can be enhanced by thermodynamic forces in the liquid. Therefore, safe and stable energy supply can be performed, and the handling is easy and simple.
(本発明の理論的根拠) (Theoretical basis of the present invention)
一般に注入イオンは液体標的物質の原子と衝突を繰り返すが、加速エネルギーの多くの部分は一次衝突の標的原子に反跳エネルギーの形で移行する。注入イオンおよび標的物質の原子の質量をそれぞれmi,mtとし、イオンの注入エネルギーをE0とすると反跳エネルギーErは運動量とエネルギーの保存則により決まり、数1で表わされる。 In general, implanted ions repeatedly collide with atoms of the liquid target substance, but most of the acceleration energy is transferred to the target atoms of the primary collision in the form of recoil energy. Mass of atoms of implanted ions and the target substance each m i, and m t, recoil energy Er When the injection energy and E 0 of the ion is determined by the conservation law of momentum and energy, represented by the number 1.
一例としてアルゴン40Aのイオンが標的物質の原子の7Liに衝突した場合はEr=0.51E0となる。二次以降の衝突における反跳エネルギーは注入アルゴンのエネルギーの1/4以下と小さいから衝突エネルギーの減少で指数函数的に反応確率が減少する核融合反応では二次以降の衝突で生じた反跳リチウム原子が誘発する寄与は無視できる。 As an example, when an ion of argon 40 A collides with 7 Li of atoms of the target substance, Er = 0.51E 0 . The recoil energy in secondary and subsequent collisions is less than ¼ of the energy of the injected argon, so in the fusion reaction where the reaction probability decreases exponentially as the collision energy decreases, the recoil generated in the secondary and subsequent collisions. The contribution induced by lithium atoms is negligible.
化学核融合反応と同様のメカニズムは、宇宙物理学者が超高密度の白色矮星や超新星爆発前に発生していると考えている零点振動核反応( pycnonuclear reaction )以外には、前記非特許文献1以前は理論的にも実験的にも報告例が全くない。一方常温核融合は液体活性の存在しない固体中の水素−水素核融合でありガスプラズマ中の水素−水素核融合と同様の水素−水素核融合であって化学核融合とは無縁である事はいうまでもない。 The mechanism similar to the chemical fusion reaction is the same as the non-patent document 1 except for the pycnonuclear reaction, which is considered to have occurred before the super high density white dwarf and supernova explosion. Previously there have been no reports either theoretically or experimentally. On the other hand, cold fusion is hydrogen-hydrogen fusion in solids without liquid activity, and is similar to hydrogen-hydrogen fusion in gas plasma and is not related to chemical fusion. Needless to say.
ここでは化学核融合反応のうち、本発明の反跳リチウム化学核融合反応を数2の核融合反応を例にとり詳述する。 Here, among the chemical fusion reactions, the recoil lithium chemical fusion reaction of the present invention will be described in detail by taking the fusion reaction of Formula 2 as an example.
ここで12C*と8Be*は反応中間生成励起核で、20.90MeVは反応発生エネルギーであり、単位MeVは100万電子ボルトである。 Here, 12 C * and 8 Be * are reaction-generated intermediate nuclei, 20.90 MeV is the reaction generation energy, and the unit MeV is 1 million electron volts.
この場合の発生エネルギーは全て生成ヘリウム原子4Heイオン(アルファ線)の運動エネルギーの形で放出される。この反応では、反跳6Liイオンエネルギーが40keV(キロ電子ボルト)の場合、核融合反応レートに比例するクーロン障壁の貫通因子は4.3×10-48と小さく通常の観測手段では不可能なほどに反応確率は小さい。しかし、このエネルギー領域では数2の核融合反応に以下に示す数3の原子変換反応が附随的に発生する。
In this case, all of the generated energy is released in the form of kinetic energy of the produced helium atom 4 He ions (alpha rays). In this reaction, when the recoil 6 Li ion energy is 40 keV (kilo electron volt), the Coulomb barrier penetration factor proportional to the fusion reaction rate is as small as 4.3 × 10 −48 , which is impossible with ordinary observation means. The reaction probability is small. However, in this energy region, the following atom conversion reaction of the following
このため溶融金属リチウムの核融合反応数2では数3の原子変換反応におけるGibbsエネルギー変化ΔGr=−4.7eVと液体標的温度Tで決まる熱力学的力による数4で示す莫大な値の反応増進因子が期待される。
For this reason, in the
ここでkBはボルツマン(Boltzmann)常数であり、原子変換反応数3におけるGibbsエネルギー変化ΔGrはリチウムと炭素それぞれの生成エネルギーGfから数5によって算出される。
Here, k B is a Boltzmann constant, and the Gibbs energy change ΔGr in the atom
例えば金属リチウムの融点に近い絶対温度T=460K(ケルビン)ではkBT=0.040eVで数4で示す増進因子の値は1051に達する。そのため核融合反応数2は、原子変換反応数3を通じて前記の微細な貫通因子を相殺する大きなレートで発生する。さらに、原子変換反応数3の中間生成原子の炭素が、リチウムと約2.0eVのエネルギーで結合する可能性を考慮するとGibbsエネルギー変化の数5の値は−6.7eVとなり、増進因子は1072にもなり得る。
For example, at an absolute temperature T = 460 K (Kelvin) close to the melting point of metallic lithium, k B T = 0.040 eV, and the value of the enhancement factor shown in
このように前記熱力学的力が、核融合反応をも支配することは前述の特許文献1で議論され、それによる核融合反応レート増進効果が核反応で発生したアルファ線(ヘリウムイオン)の観測で確認されており、上記非特許文献2及び3に開示されている。
It is discussed in Patent Document 1 that the thermodynamic force controls the nuclear fusion reaction as described above, and the effect of the fusion reaction rate enhancement by the observation is the observation of alpha rays (helium ions) generated in the nuclear reaction. And disclosed in
例えば、金属リチウムの融点における加速エネルギー10keV(キロ電子ボルト)及び20keVの重水素原子分子混合イオン注入で、それぞれ1014倍、1012倍程度の核融合反応レートの増進が観測されている。 For example, an increase in the fusion reaction rate of about 10 14 times or 10 12 times has been observed in deuterium atom mixed ion implantation with acceleration energy of 10 keV (kiloelectron volt) and 20 keV at the melting point of metallic lithium.
液体標的が濃縮6Liではない天然リチウムでは、7Liの存在比率が93%で、数2の核融合反応と共に数6及び数7に示す核融合反応が発生する。
In natural lithium whose liquid target is not concentrated 6 Li, the abundance ratio of 7 Li is 93%, and the fusion reactions shown in
ここでnは低速中性子である。 Here, n is a slow neutron.
核融合で放出された低速中性子は、前記特許文献1で解説されているように金属リチウムまたはボロン或いはリチウム、ボロン化合物等の中性子吸収材および前記液体標的リチウムに吸収されるので、この二次核反応もエネルギーを発生する。これらの核融合反応と二次核反応はイオンの注入中止あるいは反応に伴う標的温度上昇で即座に停止するので、容易にエネルギー発生の制御が可能であり、使用しないときにはエネルギー及び放射線の放出がないため、利用上の制限が少なく取り扱い易いエネルギー源を提供することが可能である。 Since the slow neutrons released by the fusion are absorbed by metallic lithium or boron or a neutron absorber such as lithium or boron compound and the liquid target lithium as described in Patent Document 1, this secondary nucleus The reaction also generates energy. These fusion reactions and secondary nuclear reactions stop immediately when ion implantation is stopped or the target temperature rises due to the reaction, so energy generation can be easily controlled, and there is no energy or radiation emission when not in use. Therefore, it is possible to provide an easy-to-handle energy source with few restrictions on use.
溶融リチウム標的に物質Xを混入して、リチウムを溶融合金にすると、反跳リチウムイオンが誘発する核融合反応には次の数8に示される原子変換が連動して発生する。この場合の変換前後のGibbsエネルギー変化は次の数9に示されるようになる。
When the substance X is mixed into the molten lithium target and lithium is made into a molten alloy, the atomic conversion shown in the
上記数5と数9に示されるGibbsエネルギー変化の間に次の数10が成立する。
The following
この関係が成立する場合は、化学核融合反応の増進度が次の数11に示すように向上するが、上記原子変換反応数8で生成した炭素の中間生成励起核は10-18秒以内にヘリウムに分裂するので、遊離したXは消失することなく再びリチウムと合金化する。つまりこの物質Xは触媒としての機能をもつことになる。
When this relationship is established, the degree of enhancement of the chemical fusion reaction is improved as shown in the following
具体例の一つとして、ボロンを触媒Xとしてリチウムに混入する場合を考える。 As one specific example, consider the case where boron is mixed into lithium as catalyst X.
ボロンは300℃以下でリチウムと化合はせず、リチウム中に溶けて金属性を持つようになり合金化する。リチウム−ボロン合金の化学核融合反応の場合の数9で示されるGibbsエネルギー変化はリチウム単体の場合の数5に示される値より2eV程度絶対値が増加し、上記数8に示される原子変換反応の増進度は数3に示される原子変換反応に比べ1020倍以上大きくなる。これにともなって化学核融合反応の増進度も同じ倍数だけ大幅に増大する。反跳Liイオンが分子イオンの場合はCXの役をするC2が発生し自己触媒効果がある。
Boron does not combine with lithium at 300 ° C. or lower, but dissolves in lithium and has metallic properties to form an alloy. In the case of the chemical fusion reaction of a lithium-boron alloy, the Gibbs energy change represented by Equation 9 has an absolute value increased by about 2 eV from the value represented by
次に注入イオンに混合イオンが存在する場合を考える。一例として、不活性ガスのヘリウムに重水素が混入していると複合イオンHeD+が発生し、液体標的リチウム中で、反跳リチウムによる反応とあわせて数12に示される分子変換反応を誘発する。
Next, consider the case where mixed ions exist in the implanted ions. As an example, when deuterium is mixed in the inert gas helium, a composite ion HeD + is generated, and in the liquid target lithium, the molecular conversion reaction shown in
この反応のGibbsエネルギー変化は−5.11eVと著しいので、反応増進因子は1056倍にもなるから同イオンの重陽子は全て7Li又は6Liと化学核融合反応をおこす。したがって、この場合は不活性ガスに重水素が混入していても標的中の溶融金属リチウムが重水素との化学反応で劣化することは避けられる。また核融合生成物はリチウム化学核融合反応の場合と同様にヘリウムのみである。 Since the Gibbs energy change of this reaction is as significant as −5.11 eV, the reaction enhancement factor is 10 56 times, so all deuterons of the same ion undergo chemical fusion reaction with 7 Li or 6 Li. Therefore, in this case, even if deuterium is mixed in the inert gas, the molten metal lithium in the target is prevented from being deteriorated by a chemical reaction with deuterium. The fusion product is only helium as in the case of the lithium chemical fusion reaction.
以下図面によって本発明の反跳リチウム化学核融合エネルギー発生法及び装置を説明する。 The recoil lithium chemical fusion energy generation method and apparatus of the present invention will be described below with reference to the drawings.
図1は本発明反跳リチウム化学核融合エネルギー発生装置の反応装置本体1の一例としての8連PIG型イオン源装着の概略構造図であって溶融金属リチウム容器2、PIG型イオン源3、溶融金属リチウム又は同合金を主体とする核融合物質からなる液体標的4、撹拌器5、イオン加速電極6、イオン源の磁極カソード7、永久磁石8、イオン源アノード9、イオンビーム10、容器2の内面を覆った金属リチウムやボロンまたはリチウムやボロンの化合物等の中性子吸収材11及び蒸気発生熱交換器12の各構成要素で構成されている。ただし、溶融金属リチウム予備加熱システムや補助的エネルギー取り出しの熱電対列等の機器類や高圧電源は省略している。
FIG. 1 is a schematic structural view of an 8-unit PIG type ion source mounted as an example of a reactor main body 1 of a recoil lithium chemical nuclear fusion energy generator according to the present invention, which includes a molten
イオン源3はアルゴン、ネオン、ヘリウム等の不活性ガスあるいは軽重水素との混合ガスのPIG型のイオン源を並列に集積した構造をしており、ここから引き出したイオンビーム10は加速電極6で所定のエネルギー(後述する核的阻止能領域である原子質量単位あたり数キロ電子ボルトのエネルギーの反跳イオンを発生するような大きさ、例えば数10keV)に加速し、液体標的4の溶融金属リチウム又はリチウム合金に注入し、反跳リチウムイオンを発生せしめる。その結果、熱力学的力によって大部分の反跳リチウムイオンが溶融金属リチウム表層で核融合反応を誘発し、数MeVの放出エネルギーのヘリウムイオンを発生する。ヘリウムイオンで加熱されたリチウム又はリチウム合金からの熱エネルギーは熱電対列或いは液体リチウム等の反応装置冷却用冷媒を通じて取り出す。
The
本発明では反応生成物がヘリウムであるので、ヘリウム回収システムにより取り出して有効利用することができ放射性廃棄物は生じない。 In the present invention, since the reaction product is helium, it can be taken out and effectively used by a helium recovery system, and no radioactive waste is generated.
上記実施例によれば、不活性ガスイオンをクリーンな真空中の標的金属リチウムに導入することができ、イオン源のガス圧及び印加電圧の調整でイオンビーム強度も加速エネルギーと同様に自由に制御できる。この結果、発電あるいは地域暖房等の目的に応じて、最適エネルギー発生量が得られ、利用上の制限が少なく安全且つ安定なエネルギー源を提供することができる。 According to the above embodiment, inert gas ions can be introduced into the target metallic lithium in a clean vacuum, and the ion beam intensity can be freely controlled in the same manner as the acceleration energy by adjusting the gas pressure and applied voltage of the ion source. it can. As a result, an optimum energy generation amount can be obtained according to the purpose such as power generation or district heating, and a safe and stable energy source with few restrictions on use can be provided.
本発明ではイオン源3を導入するかわりに反応装置本体1内の空間を稀薄ガスで満たし、イオン加速電極6と溶融リチウムを主体とする液体標的4の間に高電圧パルスを印加してガスのイオン化と加速を同時に達成することもできる。
In the present invention, instead of introducing the
なお、上記容器2の内壁面は更にガンマ線遮蔽材で覆うようにしても良い。
The inner wall surface of the
また、上記液体標的には金属リチウム以外の化学核融合反応誘発物質または標的温度制御物質を混入しても良い。 The liquid target may be mixed with a chemical fusion reaction inducing substance or a target temperature control substance other than metallic lithium.
1 反跳リチウム化学核融合エネルギー発生装置の反応装置本体
2 溶融金属リチウム容器
3 PIG型イオン源
4 液体標的
5 撹拌器
6 イオン加速電極
7 磁極カソード
8 永久磁石
9 アノード
10 イオンビーム
11 中性子吸収材
12 蒸気発生熱交換器
DESCRIPTION OF SYMBOLS 1 Reactor main body of recoil lithium chemical
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005362652A JP2007163393A (en) | 2005-12-16 | 2005-12-16 | Recoil lithium chemical nuclear fusion energy generating method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005362652A JP2007163393A (en) | 2005-12-16 | 2005-12-16 | Recoil lithium chemical nuclear fusion energy generating method and apparatus |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008150373A Division JP2008249725A (en) | 2008-06-09 | 2008-06-09 | Method and device for generating chemical fusion energy with recoil lithium |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007163393A true JP2007163393A (en) | 2007-06-28 |
Family
ID=38246449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005362652A Pending JP2007163393A (en) | 2005-12-16 | 2005-12-16 | Recoil lithium chemical nuclear fusion energy generating method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007163393A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008249725A (en) * | 2008-06-09 | 2008-10-16 | Rine:Kk | Method and device for generating chemical fusion energy with recoil lithium |
JP2012119062A (en) * | 2010-11-29 | 2012-06-21 | High Energy Accelerator Research Organization | Composite target, neutron generating method using composite target, and neutron generator using composite target |
-
2005
- 2005-12-16 JP JP2005362652A patent/JP2007163393A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008249725A (en) * | 2008-06-09 | 2008-10-16 | Rine:Kk | Method and device for generating chemical fusion energy with recoil lithium |
JP2012119062A (en) * | 2010-11-29 | 2012-06-21 | High Energy Accelerator Research Organization | Composite target, neutron generating method using composite target, and neutron generator using composite target |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Azechi | Present status of the FIREX programme for the demonstration of ignition and burn | |
Hora et al. | Road map to clean energy using laser beam ignition of boron-hydrogen fusion | |
Pálffy et al. | Can extreme electromagnetic fields accelerate the α decay of nuclei? | |
US20100202580A1 (en) | Method and apparatus for neutron generation using liquid targets | |
WO2017155520A1 (en) | Methods and apparatus for enhanced nuclear reactions | |
Chen et al. | Transmutation of nuclear wastes using photonuclear reactions triggered by Compton backscattering photons at the Shanghai laser electron gamma source | |
Shmatov | Igniting a microexplosion by a microexplosion and some other controlled thermonuclear fusion scenarios with neutronless reactions | |
US20030058980A1 (en) | Method and apparatus for the transmutation of nuclear waste with tandem production of tritium | |
US20110013738A1 (en) | Neutron Source For Creation of Isotopes | |
US20210225531A1 (en) | Method and apparatus for initiating and maintaining nuclear reactions | |
JP2007163393A (en) | Recoil lithium chemical nuclear fusion energy generating method and apparatus | |
Khripunov et al. | Evidence of radiation damage impact on material erosion in plasma environment | |
Gruenwald | Proposal for a novel type of small scale aneutronic fusion reactor | |
JP2008249725A (en) | Method and device for generating chemical fusion energy with recoil lithium | |
Mirfayzi et al. | Recent developments on plasma based neutron sources from microscopic innovations to meter-scale applications | |
JP2007303822A (en) | Molecular chemical nuclear fusion reaction generation method, and molecular chemical nuclear fusion energy generating apparatus | |
Zhu et al. | Transmutation of radioactive cesium and iodine using gamma-radiation from light nuclei under proton bombardment | |
Perkins et al. | On the utility of antiprotons as drivers for inertial confinement fusion | |
Fundamenski et al. | Evolution and status of D-3He fusion: a critical review | |
Imasaki et al. | An approach to hydrogen production by inertial fusion energy | |
Yang et al. | Hot spot heating process estimate using a laser-accelerated quasi-Maxwellian deuteron beam | |
Galy et al. | High-intensity lasers as radiation sources: An overview of laser-induced nuclear reactions and applications | |
Gus’ kov | Laser Thermonuclear Fusion and High Energy Density Physics | |
JP2005321366A (en) | Method for lithium chemical nuclear fusion reaction occurrence and lithium chemical nuclear fusion energy generation system | |
JP2015129735A (en) | Using a semiconductor laser as an igniting means for self-ignition conditions of a fusion power generation reactor that uses D-He3 or B11-p as a fusion fuel and does not emit any neutrons, using a laser beam or a semiconductor laser A fusion power reactor that performs self-ignition. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071204 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080408 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080509 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080729 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20080905 |