[go: up one dir, main page]

JP2006324035A - 放電灯点灯回路 - Google Patents

放電灯点灯回路 Download PDF

Info

Publication number
JP2006324035A
JP2006324035A JP2005143953A JP2005143953A JP2006324035A JP 2006324035 A JP2006324035 A JP 2006324035A JP 2005143953 A JP2005143953 A JP 2005143953A JP 2005143953 A JP2005143953 A JP 2005143953A JP 2006324035 A JP2006324035 A JP 2006324035A
Authority
JP
Japan
Prior art keywords
frequency
discharge lamp
circuit
lamp lighting
lighting circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005143953A
Other languages
English (en)
Inventor
Kotaro Matsui
浩太郎 松井
Tomoyuki Ichikawa
知幸 市川
Soichi Yagi
操一 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koito Manufacturing Co Ltd
Original Assignee
Koito Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito Manufacturing Co Ltd filed Critical Koito Manufacturing Co Ltd
Priority to JP2005143953A priority Critical patent/JP2006324035A/ja
Priority to US11/435,439 priority patent/US7479742B2/en
Priority to CNA2006100803778A priority patent/CN1867220A/zh
Priority to DE102006023185A priority patent/DE102006023185A1/de
Publication of JP2006324035A publication Critical patent/JP2006324035A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/2885Static converters especially adapted therefor; Control thereof
    • H05B41/2887Static converters especially adapted therefor; Control thereof characterised by a controllable bridge in the final stage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/05Starting and operating circuit for fluorescent lamp
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

【課題】 放電灯の高周波点灯において音響共鳴の抑制に有効な対策を講じる。
【解決手段】 直流−交流変換回路3、起動回路4、電力制御のための制御手段15を備えた放電灯点灯回路1において、制御手段15によって駆動される複数のスイッチング素子5H、5Lと、直列LC共振回路(7p、8、9)を有する。スイッチング素子の駆動周波数に係る周波数変調により音響共鳴を抑制するために周波数変調回路を設ける。駆動周波数に係る基本周波数が1メガヘルツ以上である場合に、変調幅を20キロヘルツ以上に設定する。
【選択図】図1

Description

本発明は、放電灯の高周波点灯回路における音響共鳴対策の技術に関する。
自動車用照明光源に用いられる、メタルハライドランプ等の放電灯の点灯回路には、DC−DCコンバータの構成をもった直流電源回路と、直流−交流変換回路、起動回路を備えた構成が知られている。例えば、バッテリーからの直流入力電圧を直流電源回路において所望の電圧に変換した上で、後段の直流−交流変換回路にて交流出力に変換し、これに起動用信号を重畳して放電灯に供給する(例えば、特許文献1参照。)。
放電灯の点灯制御においては、放電灯が点灯する前(消灯時)の無負荷時出力電圧(以下、「OCV」という。)を制御して、放電灯に起動用信号を印加することで該放電灯を点灯させた後、過渡投入電力を低減しながら定常点灯状態へと移行させる。
直流電源回路には、例えば、トランスを用いたスイッチングレギュレータが用いられ、また、直流−交流変換回路には、例えば、複数対のスイッチング素子を用いたフルブリッジ型構成等が挙げられる。
直流電圧変換と直流−交流変換という2段階の変換を行う構成形態では、回路規模が大きくなってしまい、小型化に適さなくなるため、その対策として、直流−交流変換回路における1段階の電圧変換によって昇圧された出力を放電灯に供給するようにした構成が知られている。
例えば、コンデンサとインダクタンス素子を用いた直列共振回路を備え、共振電圧をトランスで昇圧した上で放電灯への電力供給を行う構成形態が挙げられる。コンデンサやインダクタンス素子による直列共振では、共振周波数を中心としてほぼ対称的な周波数特性をもち、直流−交流変換回路を構成する半導体スイッチング素子の駆動周波数を変えることで出力電圧や電力を制御することができ、共振周波数よりも高い周波数領域(誘導性領域あるいは遅相領域)では、周波数の増加に対して出力電圧が低下し、また、共振周波数よりも低い周波数領域(容量性領域あるいは進相領域)では、周波数の減少に対して出力電圧が低下する傾向を示す。
電源投入後の消灯時(点灯前)におけるOCV制御では、直列共振周波数(これを「Foff」と記す。)よりも高い周波数領域において、半導体スイッチング素子の駆動周波数を下げることでOCV値を高め、それが目標値に到達した時点で、起動用の高圧パルスを発生させて放電灯に印加する。そして、放電灯が点灯した場合に、直列共振周波数(これを「Fon」と記す。「Fon>Foff」である。)よりも高い周波数領域へと移行させて放電灯の電力制御を開始させる。
特開平7−142182号公報
ところで、放電灯に矩形波状電圧等を供給して点灯させる回路装置を小型化するために、高周波化により点灯周波数を高める場合に、所定の周波数以上では放電管内のガス振動(音波)と放電アークとの共振(共鳴)が問題となる。所謂「音響共鳴」という現象によりアーク形状の乱れが引き起こされ、この現象が発生する周波数は放電管の形状と放電管内のガス圧で決まる。
1MHz以上の点灯周波数では、音響共鳴が発生する周波数が連続的ではなく離散的な値をとるため、音響共鳴が発生しない周波数を選んで点灯周波数を設定すれば安定したアークが得られることになるが、放電管形状の個体差によって個々の設定が異なり、量産化において放電管毎に点灯周波数を個別に設定する方法は現実的でない。
本発明は、放電灯の高周波点灯において音響共鳴の抑制に有効な対策を講じることを課題とする。
本発明は、直流入力電圧を受けて交流変換を行う直流−交流変換回路と、放電灯に起動用信号を供給するための起動回路と、直流−交流変換回路の出力する電力を制御するための制御手段を備えた放電灯点灯回路において、下記に示す構成を有するものである。
・直流−交流変換回路が、制御手段によって駆動される複数のスイッチング素子と、インダクタンス素子若しくはトランス及びコンデンサを含む直列共振回路を有していること。
・スイッチング素子の駆動周波数に係る周波数変調により音響共鳴を抑制するために周波数変調回路が設けられていること。
本発明では、周波数変調により、放電管の管壁に向かう進行波と管壁での反射波とで波長が異なる結果、音響共鳴周波数にて放電管内で定在波を生じさせないようにする作用が齎される。
本発明によれば、音響共鳴現象による放電アークの乱れを防止することで放電の安定性を保証することができる。そして、放電管形状の個体差を考慮して個々の周波数設定を変更する必要がなく、個体差には無関係に変調周波数を一律に規定すれば良い。
周波数変調に伴う周波数の増加時に放電灯への投入電力が低くなり過ぎないようにするためには、放電灯の点灯状態を維持し得る上限周波数を「Fmax」と記すとき、スイッチング素子の駆動周波数がFmaxを超えないようにするためにリミッタ回路を設けることが放電灯の立ち消え防止に有効である。
また、点灯時の上記共振周波数Fon未満の領域でもランプ電圧やランプ電流を安定に検出できるようにするには、スイッチング素子の駆動周波数が予め決められた周波数下限値未満とならないようにするためのリミッタ回路を設けることが好ましい。
周波数変調回路の出力波形として三角波を用いる形態では、正弦波等に比して放電アークが途切れ難いという効果が得られる。
そして、起動用信号によって放電灯が起動した直後にいきなり周波数変調を開始させることは放電灯の始動性に悪影響を及ぼすため、放電灯が起動してから予め決められた時間が経過した後で周波数変調を開始させることが好ましい。
上記制御手段が、入力電圧に応じて変化する周波数の信号を出力する電圧−周波数変換部を備えた構成では、周波数変調回路の出力信号によって周波数変調を受けた電圧−周波数変換部の出力信号に基づいて生成される駆動信号をスイッチング素子に供給する形態と、周波数変調回路の出力信号によって変調された上記入力電圧を電圧−周波数変換部に供給し、その出力信号に基づいて生成される駆動信号をスイッチング素子に供給する形態が挙げられる。いずれの形態でも回路構成の簡素化に有用であって、前者の形態では放電灯への投入電力に応じて決まる周波数を操作し、後者の形態では、目標とする投入電力を変化させることで周波数変調を実現することができる。
周波数変調に関する許容幅については、スイッチング素子の駆動制御に係る基本周波数を「Fc」と記し、「Δmax=2×(Fmax−Fc)」と記すとき、Fcが1メガヘルツ以上であって、変調許容幅が20キロヘルツ以上かつΔmax以下であることが実用上好ましい。つまり、音響共鳴の発生確率及び放電灯の点灯維持可能性を考慮して変調周波数を設定する。これにより、例えば、車両用灯具への適用において信頼性や走行安全性を高めることができる。
図1は本発明に係る基本構成例を示すものであり、放電灯点灯回路1は、直流電源2から電源供給を受ける直流−交流変換回路3と起動回路4を備えている。
直流−交流変換回路3は、直流電源2から直流入力電圧(図の「+B」参照)を受けて交流変換及び昇圧を行うために設けられている。本例では、2つのスイッチング素子5H、5Lと、それらの駆動するための駆動回路6を備えている。つまり、高段側のスイッチング素子5Hの一端が電源端子に接続され、該スイッチング素子の他端が低段側のスイッチング素子5Lを介して接地されており、駆動回路6からの信号によって各素子5H、5Lが交互にオン/オフされる。尚、図では簡単化のために素子5H、5Lをスイッチの記号で示しているが、電界効果トランジスタ(FET)やバイポーラトランジスタ等の半導体スイッチング素子が用いられる。
直流−交流変換回路3は電力伝送及び昇圧用のトランス7を有しており、本例では、その一次側において共振用コンデンサ8と、インダクタ又はインダクタンス成分との共振現象を利用した回路構成が用いられている。つまり、構成形態としては、例えば、下記の3通りが挙げられる。
(I)共振用コンデンサ8とインダクタンス素子との共振を利用した形態
(II)共振用コンデンサ8とトランス7のリーケージ(漏れ)インダクタンスとの共振を利用した形態
(III)共振用コンデンサ8と、インダクタンス素子及びトランス7のリーケージインダクタンスとの共振を利用した形態
先ず、上記(I)では、共振用コイル等のインダクタンス素子9を付設し、例えば、該素子の一端を共振用コンデンサ8に接続して、該コンデンサ8をスイッチング素子5Hと5Lとの接続点に接続する。そして、インダクタンス素子9の他端をトランス7の一次巻線7pに接続した構成が挙げられる。
また、上記(II)では、トランス7のインダクタンス成分を利用することで、共振用コイル等の追加が不要である。つまり、共振用コンデンサ8の一端をスイッチング素子5Hと5Lとの接続点に接続し、該コンデンサ8の他端をトランス7の一次巻線7pに接続すれば良い。
上記(III)では、インダクタンス素子9とリーケージインダクタンスとの直列合成リアクタンスを用いることができる。
いずれの形態でも、共振用コンデンサ8と誘導性要素(インダクタンス成分やインダクタンス素子)との直列共振を利用し、スイッチング素子5H、5Lの駆動周波数を直列共振周波数以上の値に規定して該スイッチング素子を交互にオン/オフさせ、トランス7の二次巻線7sに接続された放電灯10(車両用灯具に用いられるメタルハライドランプ等)を点灯させる。尚、各スイッチング素子の駆動制御において、スイッチング素子がともにオン状態とならないように相反的にそれぞれの素子を駆動する必要がある(オンデューティーの制御等に依る。)。また、直列共振周波数については、電源投入後の点灯前の共振周波数を「Foff」、点灯状態での共振周波数を「Fon」と記し、共振用コンデンサ8の静電容量を「Cr」、インダクタンス素子9のインダクタンスを「Lr」、トランス7の一次側インダクタンスを「Lp」と記すとき、例えば、上記形態(III)において、電源投入後の放電灯の点灯前では、「Foff=1/(2・π・√(Cr・(Lr+Lp))」となる。例えば、駆動周波数がFoffよりも低いとスイッチング素子の損失が大きくなり効率が悪化するので、Foffよりも高い周波数領域でのスイッチング動作が行われる。また、放電灯の点灯後には、「Fon≒1/(2・π・√(Cr・Lr))」となる(Foff<Fon)。この場合に、Fonよりも高い周波数領域でスイッチング動作が行われる。
点灯回路の電源投入後には、放電灯の消灯状態(無負荷状態)においてFoff付近の周波数値をもってOCVを制御し、起動用信号の発生及び該信号による放電灯の起動後に点灯状態に移行した場合には、Fonよりも高い周波数領域での点灯制御を行うことが好ましい。
起動回路4は、放電灯10に起動用信号を供給するために設けられており、起動時における起動回路4の出力電圧がトランス7にて昇圧されて放電灯10に印加される(交流変換された出力に対して起動用信号が重畳されて放電灯10に供給される。)。本例では、起動回路4の出力端子の一方をトランス7の一次巻線7pの途中に接続し、他方の出力端子を一次巻線7pの一端(グランド側端子)に接続した形態を示している。起動回路4への入力については、例えば、トランス7の二次側又は始動用補助巻線から起動回路への入力電圧を得る形態や、インダクタンス素子9とともにトランスを構成する補助巻線を設けて該巻線から起動回路への入力電圧を得る形態等が挙げられる。
図1のように、直流−交流変換回路3で直流入力から交流への変換及び昇圧を行って、放電灯の電力制御を行う回路形態において、放電灯10にかかる電圧を検出する場合には、例えば、トランス7の出力電圧を分圧する方法又はトランス7に検出用巻線や検出用端子を追加して検出する方法が挙げられる。
また、放電灯10に流れる電流を検出する場合には、例えば、トランス7の二次側に電流検出用抵抗11を設けて電圧変換する方法が挙げられるが、これに限らず、例えば、インダクタンス素子9とともにトランスを形成する補助巻線を設け、放電灯10に流れる電流の相当電流を検出する方法等でも構わない。
放電灯10に係る電圧や電流の検出信号は投入電力演算部12に送出され、ここでは放電灯10に投入すべき電力が算出され、演算結果に基づく制御信号がエラーアンプ13を介して電圧−周波数変換部(以下、「V−F変換部」と記す。)14に送出される。
V−F変換部14は、その入力電圧に応じて変化する周波数をもった信号(パルス周波数変調信号)を生成し、該信号を駆動回路6に送出する。これにより駆動回路6からスイッチング素子5H、5Lの制御端子に印加される信号の駆動周波数が制御される。
尚、本例では、投入電力演算部12、エラーアンプ13、V−F変換部14、駆動回路6が制御手段15を構成している。
周波数変調回路16は、スイッチング素子5H、5Lの駆動周波数に係る周波数変調を行うことにより音響共鳴を抑制するために設けられている。周波数変調回路16の出力信号はV−F変換部14に送出されるか又はエラーアンプ13の入力として送出される。つまり、実施形態としては、下記に示す構成が挙げられる。
(A)投入電力の演算結果に相当する周波数を操作して周波数を変調する構成
(B)制御目標となる投入電力自体を変動させる構成
いずれの形態でも周波数変調の結果としてスイッチング素子の駆動周波数が所定の変動幅をもって変化する。即ち、交流波の1波毎に周波数が異なるため、放電管の管壁に向かう進行波の波長と管壁で反射する反射波との波長とが異なり、よって、音響共鳴周波数又はその近辺で放電灯を点灯させる場合に放電管内に定在波が生じないので音響共鳴現象が抑制されるか又はその発生が皆無となる。
図2は、LC直列共振を利用した場合の周波数特性について説明するための概略的なグラフ図であり、横軸に周波数「f」をとり、縦軸には点灯回路の出力電圧「Vo」又は出力電力「OP」をとって、放電灯の消灯時の共振曲線「g1」及び点灯時の共振曲線「g2」を示している。
尚、共振曲線「g1」については、縦軸が出力電圧「Vo」を示し、共振曲線「g2」については、縦軸が出力電力「OP」を示す。
放電灯の消灯時にはトランス7の二次側が高インピーダンスであり、該トランスの一次側のインダクタンス値が高く、共振周波数Foffの共振曲線g1が得られる。また、放電灯の点灯時には、トランス7の二次側のインピーダンスが低く(数Ω乃至数百Ω程度)、一次側のインダクタンス値が低くなり、共振周波数Fonの共振曲線g2が得られる(点灯時には電圧の変化量が比較的小さく、主として電流が大きく変化する。)。
図中に示す各記号の意味は下記の通りである。
・「fa1」=「f<Foff」の周波数領域(「f=Foff」の左側に位置する容量性領域あるいは進相領域)
・「fa2」=「f>Foff」の周波数領域(「f=Foff」の右側に位置する誘導性領域あるいは遅相領域)
・「fb」=「f>Fon」に位置する周波数領域(点灯時の周波数領域であり、「f=Fon」の右側の誘導性領域内である。)
・「focv」=点灯前(消灯時)における出力電圧の制御範囲(以下、これを「OCV制御範囲」という。これはfa2内においてFoffの近傍域に位置する。)
・「Lmin」=放電灯の点灯維持が可能な出力レベル
・「P1」=電源投入前の動作点
・「P2」=電源投入直後の初期動作点(領域fb内)
・「P3」=消灯時にOCVの目標値への到達時点を示す動作点(focv内)
・「P4」=点灯後の動作点(領域fb内)
・「f1」=放電灯の点灯開始直前におけるスイッチング素子の駆動周波数(例えば、動作点P3での駆動周波数)
・「f2」=放電灯の点灯時におけるスイッチング素子の駆動周波数(例えば、動作点P4での駆動周波数)
・「Fmax」=g2とLminとの交点における周波数(許容上限周波数)
放電灯に係る点灯移行制御の流れを箇条書きで示すと、例えば、以下のようになる。
(1)回路電源を投入する(P1→P2)
(2)OCV制御範囲focvにて電力を投入する(P2→P3)
(3)起動パルスを発生させて放電灯に印加する(P3)
(4)放電灯が点灯を開始した後に点灯周波数(スイッチング素子の駆動周波数)の値を一定期間(以下、「周波数固定期間」という。)に亘って固定する(P3)
(5)fb内での電力制御へと移行させる(P3→P4)。
電源投入直後や、放電灯が一旦点灯してから消灯した直後において、一時的に駆動周波数を高くしてから(P1→P2)、徐々に周波数を下げてf1に近づけていく(P2→P3)。
focv内でOCVの制御を行い、放電灯への起動用信号を発生させ、該信号の印加により放電灯を点灯させる。例えば、OCVの制御において、周波数を下げて共振周波数Foffへと高周波側から近づけていくと、出力電圧Voが次第に大きくなっていき、動作点P3で目標値に到達する。尚、放電灯が点灯する前の消灯時に領域fa1でOCVの制御を行う方法では、スイッチング損失がかなり大きくなって回路効率が悪化する。また、領域fa2においてOCVの制御を行う方法において、無負荷時に回路を連続して動作させる期間が必要以上に長くならないように注意を要する。
動作点P3において、起動回路4によって放電灯が起動すると、周波数固定期間中に駆動周波数が一定値とされた後、領域fbへと移行する(図の「ΔF」参照)。尚、OCV制御範囲focvから領域fbへの周波数移行においては、放電灯が点灯を開始した後にf1からf2へと周波数を連続的に変化させることが好ましい。
上記のように、放電灯の消灯時には、共振周波数Foffよりも高周波側の領域fa2での出力電圧制御が行われ、放電灯の点灯時には、共振周波数Fonよりも高周波側の領域fbで電力制御が行われる構成(誘導性領域では、電流変動に対する抑制作用により、電力が安定し易い。)において、出力を上げる場合には、スイッチング素子の駆動周波数を低くする制御が行われる。
図3は、上記構成形態(A)に係る回路構成の一例についてその要部を示したものである。
エラーアンプ13において、その負側入力端子には投入電力演算部12からの制御電圧(以下、これを「V12」と記す。)が供給され、また、その正側入力端子には、図に定電圧源の記号で示す基準電圧「Eref」が供給される。そして、エラーアンプ13の出力信号が後段のV−F変換部14に送出される。
尚、投入電力演算部12は放電灯が点灯を開始した後の過渡的な投入電力の制御や安定な定常状態での電力制御等を行うための回路構成を有するが、本発明の適用において、投入電力演算部12に係る構成の如何は問わない。
V−F変換部14は、カレントミラーを用いた電流源17とランプ波発生部18を備えている。
カレントミラーを構成するPNPトランジスタ19、20は、それらのエミッタが電源端子21に接続されており、ベース同士が接続されている。そして、トランジスタ19のコレクタが該トランジスタのベースに接続されるとともに抵抗22を介してエラーアンプ13の出力端子に接続されている。
トランジスタ20は、そのコレクタがダイオード23のアノードに接続され、該ダイオードのカソードが抵抗24とコンデンサ25との接続点に接続されている。
抵抗24はその一端が電源端子21に接続され、他端がコンデンサ25に接続されており、該コンデンサ25が接地されている。
コンデンサ25の端子電圧はヒステリシスコンパレータ26を介してDフリップフロップ27のクロック信号入力端子(CK)及びトランジスタ28のベースに供給される。
Dフリップフロップ27は、そのD端子がQバー端子に接続されることでT(トグル)型構成とされており、Q出力信号が上記駆動回路6に送出される。
トランジスタ28は、そのベースが抵抗29を介してヒステリシスコンパレータ26の出力端子に接続されており、そのコレクタが抵抗30を介してコンデンサ25の一端(非接地側端子)に接続されている。そして、トランジスタ28のエミッタが接地されている。
本例では、エラーアンプ13の出力に応じた電流がトランジスタ19、20を介して折り返され、該出力に応じた電位傾度(変化率)をもってコンデンサ25が充電される動作と、ヒステリシスコンパレータ26の出力がH(ハイ)レベルを示す場合にトランジスタ28がオン状態となってコンデンサ25を放電させる動作とが繰り返される。これにより、抵抗24とコンデンサ25との接続点には、エラーアンプ13の出力に応じたランプ波(PFMランプ波)が得られる。そして、これがヒステリシスコンパレータ26からDフリップフロップ27を経てデューティーサイクル50%の矩形波状信号となる。
V−F変換部14は、その入力電圧が高い程ランプ波の周波数が低くなる制御特性を有しており、Dフリップフロップ27のQ出力が後段の駆動回路6に送られると、駆動回路6の出力信号がスイッチング素子5H、5Lの制御端子にそれぞれ送出されて、各素子が所定のデッドタイムをもって交互にオン/オフ制御される。例えば、放電灯が点灯した後の共振周波数Fonよりも高い周波数領域において、V−F変換部14への入力電圧値が大きいほど周波数値が低くなり、その結果、出力電力が増大する方向に制御が行われる。
周波数変調回路16は、コンパレータを構成する演算増幅器31と、複数の抵抗及び1個のコンデンサを用いて構成されている。
演算増幅器31の非反転入力端子は、分圧抵抗32と32′との接続点に接続されており、抵抗32の一端が電源端子21に接続されている。そして、抵抗32の他端が抵抗32′を介して接地されている。
演算増幅器31の非反転入力端子と出力端子との間には抵抗33が介挿されており、また、演算増幅器31の反転入力端子と出力端子との間に抵抗34が介挿されている。
コンデンサ35は、その一端が演算増幅器31の反転入力端子に接続されるとともに、抵抗36を介して前記コンデンサ25の一端(非接地側端子)に接続されており、コンデンサ35の他端が接地されている。
本回路において、演算増幅器31の出力信号がHレベルを示す場合に、コンデンサ35が充電されてその端子電位が上昇する。その後、これが上限閾値電位に到達すると演算増幅器31の出力信号がL(ロー)レベルを示し、その間にコンデンサ35の端子電位が下降する。そして、これが下限閾値電位に到達すると演算増幅器31の出力信号がHレベルを示すというサイクルが繰り返される。
図4は、回路各部の波形を例示した図であり、各記号の意味は下記の通りである。
・「S31」=演算増幅器31の出力信号(Hレベル又はLレベルを示す。)
・「S35」=コンデンサ35の端子電位
・「Srmp」=抵抗24とコンデンサ25の接続点での電位(PFMランプ波)
・「S27」=Dフリップフロップ27のQ出力信号(矩形状パルス信号)
図中の期間「T」の長さが変調周波数に対応する周期を示しており、S31がHレベルを示す期間においてS35が正の傾きをもって上昇し、S31がLレベルを示す期間においてS35が負の傾きをもって下降する。つまり、S35は所定の周波数で変化する三角波である。
尚、周波数変調回路16の出力波形としては三角波状又はほぼ三角波状とすることが放電アークの安定性の面で好ましい。つまり、正弦波や台形波のようにそのピーク位置付近やボトム位置付近での滞在時間が長い波形では放電アークが途切れる等の不具合が起こり易いため、ピーク位置付近やボトム位置付近での滞在時間が短い三角波又はこれに近い波形を採用した方が放電アークが安定し易い。
Srmpは、S35のレベルに応じた周波数変調を受ける。即ち、S35のレベルが高い程ランプ波の傾きが大きくなるため、S35のレベルがその中心値を基準としてそれよりも相対的に低い場合にはSrmpの周波数が低いが、S35のレベルがその中心値を基準としてそれよりも相対的に高い場合にはSrmpの周波数が高くなる。このように、ランプ波に対する周波数変調の結果、S27についても同様にS35のレベルがその中心値を基準としてそれよりも相対的に低い(高い)場合には周波数が低く(高く)なる。
エラーアンプ13の出力に応じてコンデンサ25の充電電流が変化してランプ波Srmpの傾斜が変わって周波数が変化するが、ランプ波の変調周波数に対してエラーアンプ13の反応時間が遅くなるように設定すれば、ランプ波の周波数を決める充電電流を直接的操作して周波数変調を実現することができる。
図5は、上記構成形態(B)に係る回路構成の一例についてその要部を示したものである。
図3に示す構成との相違点は、周波数変調回路16Aの出力信号がエラーアンプ13の負側入力端子に供給されていることである。
前記したように、放電灯の点灯状態において、スイッチング素子の駆動周波数に応じて放電灯への投入電力が決まることを利用し、目標とする投入電力を上下に変化させることでランプ波に係る周波数変調を実現することができる。
本例では、周波数変調回路16Aが、コンパレータを構成する演算増幅器及び電圧バッファを構成する演算増幅器と、複数の抵抗及び1個のコンデンサと、2個のNPNトランジスタを用いて構成されている。
演算増幅器37の非反転入力端子には、所定の基準電圧「Vref」を抵抗38及び38′で分圧した電圧が供給され、演算増幅器37の反転入力端子がコンデンサ39を介して接地されている。
演算増幅器37の出力端子は、抵抗40を介してNPNトランジスタ41のベースに接続され、該トランジスタのコレクタが抵抗42を介して電源端子21に接続されている。尚、トランジスタ41はエミッタ接地とされ、ベース−エミッタ間に抵抗43が介挿されている。
エミッタ接地のNPNトランジスタ44は、そのベースが抵抗45を介してトランジスタ41のコレクタに接続され、トランジスタ44のコレクタが抵抗46を介して演算増幅器37の非反転入力端子に接続されている。
出力段に設けられた演算増幅器47は、その非反転入力端子が抵抗48を介して演算増幅器37の出力端子に接続されるとともにコンデンサ39の一端(非接地側端子)に接続されており、その反転入力端子が演算増幅器47の出力端子に接続されている。
演算増幅器47の出力端子は抵抗49を介してエラーアンプ13の負側入力端子に接続されている。尚、この負側入力端子には図示しない投入電力演算部12の出力V12が抵抗50を介して供給されるようになっており、エラーアンプ13の出力が、スイッチング素子(5H、5L)の周波数制御に係る制御電圧(周波数制御電圧)としてV−F変換部14に送られる。
周波数変調回路16Aにおいて、演算増幅器37の出力信号がHレベルを示す場合に、コンデンサ39が充電されてその端子電位が次第に上昇する。尚、この場合に、トランジスタ41がオン状態で、トランジスタ44がオフ状態であって、Vrefの抵抗分圧値が演算増幅器37の非反転入力端子に供給される。
コンデンサ39の端子電位が上昇して上限閾値電位に達すると演算増幅器37の出力信号がLレベルに変化する。コンデンサ39の放電とともにその端子電位が次第に低下していく。この場合に、トランジスタ41はオフ状態で、トランジスタ44がオン状態とされ、演算増幅器37の非反転入力端子にかかる電圧レベルが低くなる。
そして、コンデンサ39の端子電位が下がって下限閾値電位に達すると演算増幅器37の出力信号がHレベルを示すことになり、再びコンデンサ39の充電が開始される。このようなサイクルが繰り返される結果、コンデンサ39の端子電位が三角波状に変化する。
図6は、回路各部の波形を例示した図であり、各記号の意味は下記の通りである。
・「S37」=演算増幅器37の出力信号(Hレベル又はLレベルを示す。)
・「S39」=コンデンサ39の端子電位
・「PW」=放電灯10への投入電力
尚、S27については既述の通りである。
S37がHレベルを示す期間においてS39が正の傾きをもって上昇し、この期間中はPWが低下する。つまり、放電灯の点灯状態において共振周波数Fonよりも高周波側の領域(誘導性領域)では、エラーアンプ13の出力が低下してV−F変換部14の出力信号周波数が高くなると放電灯への供給電力が低下する。
また、S37がLレベルを示す期間においてS39が負の傾きをもって下降し、この期間中はPWが上昇する。つまり、放電灯の点灯状態において共振周波数Fonよりも高周波側の領域(誘導性領域)では、エラーアンプ13の出力が増加してV−F変換部14の出力信号周波数が低くなると放電灯への供給電力が増加する。
こうして、PWはその平均値を基準としてS39とは逆相関係をもって変化する。
尚、ランプ波Srmpについては、前記と同様にS39のレベルが高い程ランプ波の傾きが大きくなるため、S39のレベルがその中心値を基準としてそれよりも相対的に低い場合にはSrmpの周波数が低いが、S39のレベルがその中心値を基準としてそれよりも相対的に高い場合にはSrmpの周波数が高くなる。その結果、S27についても同様にS39のレベルがその中心値を基準としてそれよりも相対的に低い(高い)場合には周波数が低く(高く)なる。
本例では、ランプ波の変調周波数に対してエラーアンプ13の反応が速くなるように設定しておき、投入すべき電力の目標値を基準として電力値をその上下に変動させることによって周波数変調を実現することができる。
以上に説明したように、周波数変調によってスイッチング素子の駆動周波数が変動し、例えば、該周波数が高くなるとFon以上の誘導性領域においては放電灯への投入電力を下げる作用を齎す。従って、周波数変動の幅が大きく、必要以上に駆動周波数が高くなると放電灯への電力供給が充分に行われなくなって立ち消え等の虞が生じる。そこで、放電灯の点灯状態を維持し得る上限周波数を「Fmax」と記すとき、スイッチング素子の駆動周波数がFmaxを超えないようにするための手段を講じることが好ましい。即ち、変調による周波数変動に対して許容上限を規定することにより確実で安定した放電アークを得ることができる。
図7はV−F変換部14の前段において周波数リミッタ回路51、52を付設した構成例の要部(周波数変調回路を除く。)を示している。
本例ではリミッタ回路51によって周波数上限値が規定され、リミッタ回路52によって周波数下限値が規定される。
リミッタ回路51は、演算増幅器53を用いた吐き出しバッファとして形成され、演算増幅器53の非反転入力端子には周波数上限を決めるための設定電圧値「Vfmax」が供給される。演算増幅器53の出力端子はダイオード54のアノードに接続され、該ダイオードのカソードが演算増幅器53の反転入力端子に接続されるとともに、V−F変換部14の入力端子に接続されている。
本例では、V−F変換部14の入力電圧が下がる程、その出力信号の周波数が上がる特性を有するので、演算増幅器53を用いた吐き出し用バッファを設け、V−F変換部14の入力電圧が下限値Vfmax以下とならないように規制している。
また、リミッタ回路52は、演算増幅器55を用いた吸い込みバッファとして形成され、演算増幅器55の非反転入力端子には周波数下限を決めるための設定電圧値「Vfmin」が供給される。演算増幅器55の出力端子はダイオード56のカソードに接続され、該ダイオードのアノードが演算増幅器55の反転入力端子に接続されるとともに、V−F変換部14の入力端子に接続されている。
周波数の下限リミッタを設ける理由には、放電管のランプ電圧やランプ電流を安定して検出できるようにすることが挙げられる。例えば、点灯回路への直流入力電圧が低くなった場合や、放電灯の始動直後に光束を速やかに立ち上げる必要性から過渡電力制御時に定格値を超える電力を放電灯に供給している場合には、負荷が重く共振周波数Fon付近で駆動制御が行われることがある。その際、周波数変調に伴ってスイッチング素子の駆動周波数が変動するとFon未満の容量性領域に入った状態と、Fonよりも高い誘導性領域に入った状態との間で駆動周波数が行き来することになる。特に、容量性領域に深入りした状態では、ランプ電圧やランプ電流の波形が乱れる結果、フィードバック制御の安定性が阻害される。そこで、容量性領域でもランプ電圧やランプ電流を安定に検出できるようにするために、本例では、演算増幅器55を用いた吸い込み用バッファを設け、V−F変換部14の入力電圧が上限値Vfminを超えないように規制している。
ところで、放電灯の起動直後には放電灯の状態が安定しないため、点灯回路において許される最大限の電力を放電灯に供給して始動性を高めるための制御が行われる。従って、起動用信号を放電灯に印加して該放電灯が起動し、点灯を開始した直後から上記した周波数変調を直ちに開始したのでは、ランプの始動性に悪影響を及ぼす虞がある。つまり、周波数変調に伴って放電灯への投入電力が低下した場合に放電灯に充分な電力が供給されず、放電アークの不安定化を招く原因となる。
そこで、放電灯が起動してから予め決められた時間(音響共鳴現象が発生しても光束変化に影響を与えない程度の時間であり、例えば、1秒程度)が経過するまでの間は上記周波数変調を行わず、共振周波数Fon又はその近辺の周波数でスイッチング素子を駆動し、当該時間の経過後にスイッチング素子の駆動周波数に係る周波数変調を開始させることが始動性の向上にとって好ましい。
図8は、そのための回路構成例を示したものである。
放電灯10に係る電流検出用抵抗11によって電圧変換された検出信号は、電流検出用増幅器57に送出される。
電流検出用増幅器57は、例えば、演算増幅器58を用いて構成され、その非反転入力端子が抵抗59を介して電流検出用抵抗11の一端(放電灯10との接続端)に接続されるとともに、抵抗60を介して接地されている。演算増幅器58の反転入力端子は抵抗61を介して電流検出用抵抗11の他端(接地側端子)に接続されており、演算増幅器58の出力端子と反転入力端子との間で帰還抵抗62が介挿されている。
電流検出用増幅器57の後段には単安定回路63が設けられており、その入力端子に電流検出用増幅器57の出力信号が供給される。例えば、該出力信号の立ち上がり時点を起点として所定の時間幅(これを「τ」と記す。)をもった信号が単安定回路63により出力され、この信号は前記した周波数変調回路の接続状態を切り換えるための制御に利用される。
放電灯10の起動前には電流検出用増幅器57の出力がグランドレベルであるが、放電灯10の起動後に点灯を開始してランプ電流が流れると、電流検出用増幅器57はその増幅率に応じた検出レベルを出力する。ランプ電流が流れ始めた時点をトリガーとして単安定回路63からパルス幅τの信号が単発的に生成される。
上記周波数変調回路16とV−F変換部14との間、あるいは上記周波数変調回路16Aとエラーアンプ13との間に、例えば、半導体スイッチ素子64を配置し、単安定回路63の出力信号により該素子をオン/オフ制御する。つまり、パルス幅τの期間においてスイッチ素子64をオフ状態にして、周波数変調回路とV−F変換部又はエラーアンプとを切り離し、その後にスイッチ素子64をオン状態にして周波数変調回路による変調動作を開始させれば良い。
周波数変調の許容幅に関して、その下限値としてはスイッチング素子の駆動に係る基本周波数(定格電力での駆動周波数に相当し、これを「Fc」と記す。)が1MHz以上である場合に、20kHz以上に規定すると、音響共鳴の発生確率が40%未満となることが実験的に判明しており、30kHz以上とした場合に音響共鳴の発生確率がゼロ又は殆どゼロに近くなることが判明している。
また、上限値については、前記したようにFonよりも高周波側の誘導性領域において駆動周波数の増加に伴って放電灯への投入電力が低下するため、上限周波数FmaxとFcとの周波数差の2倍を「Δmax=2×(Fmax−Fc)」と記すとき(図9参照)、変調幅をΔmax以下に規定することが好ましい(Δmaxを超えると放電灯への投入電力が不足し、立ち消えの発生確率が高まる等の問題が生じる。)。
以上に説明した構成によれば、下記に示す各種の利点が得られる。
・放電灯の高周波点灯において、音響共鳴の発生確率を充分に低減できること。
・スイッチング素子の駆動周波数が上限値を超えないように規制することで、放電アークの不安定化を防止できること。
・スイッチング素子の駆動周波数が下限値を下回らないように規制することで、放電灯の電力制御の安定化に寄与すること。
・三角波状又はほぼ三角波状を用いた周波数変調により、放電アークの安定化に寄与すること。
・放電灯の起動直後に周波数変調を行わずに、放電アークが安定するまでの時間的猶予を考慮し、予め決められた時間が経過した後で周波数変調を開始させることによって、放電灯の始動性を保証できること。
・入力電圧に応じて変化する周波数の信号を出力するV−F変換部14を備えた形態(A)において、周波数変調回路16の出力信号によって周波数変調を受けたV−F変換部14の出力信号に基づいて駆動信号を生成し、これをスイッチング素子(5H、5L)に供給することは、回路構成の簡素化に有利であり、また、駆動信号の周波数が共振周波数Fon未満にならないための周波数下限を直接的に設定できること。
・入力電圧に応じて変化する周波数の信号を出力するV−F変換部14を備えた形態(B)において、周波数変調回路16Aの出力信号によって変調された入力電圧をV−F変換部14に供給するとともに、その出力信号に基づいて駆動信号を生成し、これをスイッチング素子(5H、5L)に供給することは、回路構成の簡素化に有利であり、また、放電灯の立ち消え防止等を考慮した電力値の設定を直接的に行えること。
・自動車用灯具の光源に用いるHID放電管の高周波点灯を実現し、点灯回路装置の小型化や低コスト化等に有利であること。
・1MHz以上の高周波点灯において、周波数変調の許容幅を20kHz以上、好ましくは30kHz以上であって、上記Δmax以下に規定すれば、音響共鳴の発生確率を実用上充分に低減できること。
本発明に係る基本構成例を示す図である。 LC直列共振に係る周波数特性を説明するための概略的なグラフ図である。 図4とともに、本発明に係る構成形態を例示したものであり、本図は回路構成の要部を示す図である。 回路動作を説明するための波形図である。 図6とともに、本発明に係る別の構成形態を例示したものであり、本図は回路構成の要部を示す図である。 回路動作を説明するための波形図である。 V−F変換部の前段に周波数リミッタ回路を付設した構成例を示す図である。 放電灯が起動直後において周波数変調を禁止する場合の回路構成例を示す図である。 周波数変調の許容上限について説明するために点灯時の周波数特性を概略的に示すグラフ図である。
符号の説明
1…放電灯点灯回路、3…直流−交流変換回路、4…起動回路、5H、5L…スイッチング素子、7…トランス、8…コンデンサ、9…インダクタンス素子、10…放電灯、14…電圧−周波数変換部、15…制御手段、16、16A…周波数変調回路、51、52…リミッタ回路

Claims (8)

  1. 直流入力電圧を受けて交流変換を行う直流−交流変換回路と、放電灯に起動用信号を供給するための起動回路と、上記直流−交流変換回路の出力する電力を制御するための制御手段を備えた放電灯点灯回路において、
    上記直流−交流変換回路が、上記制御手段によって駆動される複数のスイッチング素子と、インダクタンス素子若しくはトランス及びコンデンサを含む直列共振回路を有しており、
    上記スイッチング素子の駆動周波数に係る周波数変調により音響共鳴を抑制するために周波数変調回路が設けられている
    ことを特徴とする放電灯点灯回路。
  2. 請求項1に記載した放電灯点灯回路において、
    上記放電灯の点灯状態を維持し得る上限周波数を「Fmax」と記すとき、上記スイッチング素子の駆動周波数がFmaxを超えないようにするためのリミッタ回路を設けた
    ことを特徴とする放電灯点灯回路。
  3. 請求項1又は請求項2に記載した放電灯点灯回路において、
    上記スイッチング素子の駆動周波数が予め決められた周波数下限値未満とならないようにするためのリミッタ回路を設けた
    ことを特徴とする放電灯点灯回路。
  4. 請求項1又は請求項2又は請求項3に記載した放電灯点灯回路において、
    上記周波数変調回路の出力が三角波状又はほぼ三角波状をしている
    ことを特徴とする放電灯点灯回路。
  5. 請求項1又は請求項2又は請求項3又は請求項4に記載した放電灯点灯回路において、
    上記起動用信号によって上記放電灯が起動してから予め決められた時間が経過した後で、上記スイッチング素子の駆動周波数に係る周波数変調が開始される
    ことを特徴とする放電灯点灯回路。
  6. 請求項1又は請求項2又は請求項3又は請求項4又は請求項5に記載した放電灯点灯回路において、
    上記制御手段が、入力電圧に応じて変化する周波数の信号を出力する電圧−周波数変換部を備えており、
    上記周波数変調回路の出力信号によって周波数変調を受けた上記電圧−周波数変換部の出力信号に基づいて生成される駆動信号が上記スイッチング素子に供給される
    ことを特徴とする放電灯点灯回路。
  7. 請求項1又は請求項2又は請求項3又は請求項4又は請求項5に記載した放電灯点灯回路において、
    上記制御手段が、入力電圧に応じて変化する周波数の信号を出力する電圧−周波数変換部を備えており、
    上記周波数変調回路の出力信号によって変調された上記入力電圧が上記電圧−周波数変換部に供給され、該電圧−周波数変換部の出力信号に基づいて生成される駆動信号が上記スイッチング素子に供給される
    ことを特徴とする放電灯点灯回路。
  8. 請求項2に記載した放電灯点灯回路において、
    上記スイッチング素子の駆動制御に係る基本周波数を「Fc」と記し、「Δmax=2×(Fmax−Fc)」と記すとき、
    上記Fcが1メガヘルツ以上であって、周波数変調に係る許容幅が20キロヘルツ以上かつΔmax以下である
    ことを特徴とする放電灯点灯回路。
JP2005143953A 2005-05-17 2005-05-17 放電灯点灯回路 Pending JP2006324035A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005143953A JP2006324035A (ja) 2005-05-17 2005-05-17 放電灯点灯回路
US11/435,439 US7479742B2 (en) 2005-05-17 2006-05-16 Discharge lamp lighting circuit
CNA2006100803778A CN1867220A (zh) 2005-05-17 2006-05-16 放电灯点亮电路
DE102006023185A DE102006023185A1 (de) 2005-05-17 2006-05-17 Entladungslampen-Lichtstromkreis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005143953A JP2006324035A (ja) 2005-05-17 2005-05-17 放電灯点灯回路

Publications (1)

Publication Number Publication Date
JP2006324035A true JP2006324035A (ja) 2006-11-30

Family

ID=37387875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005143953A Pending JP2006324035A (ja) 2005-05-17 2005-05-17 放電灯点灯回路

Country Status (4)

Country Link
US (1) US7479742B2 (ja)
JP (1) JP2006324035A (ja)
CN (1) CN1867220A (ja)
DE (1) DE102006023185A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282810A (ja) * 2007-05-11 2008-11-20 Osram Sylvania Inc バラスト
JP2013513917A (ja) * 2009-12-10 2013-04-22 アゾディジタル・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオン 高強度放電ランプの制御方法及び高強度放電ランプの供給システム

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7126450B2 (en) * 1999-06-21 2006-10-24 Access Business Group International Llc Inductively powered apparatus
TWI291311B (en) * 2003-12-08 2007-12-11 Beyond Innovation Tech Co Ltd PWM illumination control circuit with low visual noise for LED
EP2080421B1 (en) * 2007-07-12 2011-10-05 Panasonic Corporation Lighting method for a high-pressure discharge lamp, lighting circuit for a high-pressure discharge lamp, high-pressure discharge lamp apparatus, and projector-type image display apparatus
US8378585B2 (en) * 2008-05-23 2013-02-19 Osram Sylvania Inc. High frequency integrated HID lamp with run-up current
US7863827B2 (en) 2008-05-23 2011-01-04 Osram Sylvania Inc. Ceramic metal halide lamp bi-modal power regulation control
JP5532587B2 (ja) * 2008-11-14 2014-06-25 セイコーエプソン株式会社 放電灯の駆動装置および駆動方法、光源装置並びに画像表示装置
JP5981337B2 (ja) * 2009-07-03 2016-08-31 フィリップス ライティング ホールディング ビー ヴィ 低コストの電力供給回路及び方法
JP2012003899A (ja) * 2010-06-15 2012-01-05 Tdk-Lambda Corp 放電灯点灯装置
US9541989B2 (en) * 2014-11-17 2017-01-10 Texas Instruments Deutschland Gmbh Power transfer estimation
CN106160267B (zh) * 2016-08-04 2019-06-21 中惠创智无线供电技术有限公司 一种限幅控制电路及方法
CN106253495B (zh) * 2016-08-04 2019-06-21 中惠创智无线供电技术有限公司 一种限幅控制电路及方法
CN106253494B (zh) * 2016-08-04 2019-06-21 中惠创智无线供电技术有限公司 一种限幅控制电路、装置及方法
CN106330146B (zh) * 2016-08-10 2019-08-09 上海交通大学 用于脉冲频率调制的载波发生电路
EP3766308B1 (en) * 2018-04-27 2022-10-26 Tridonic GmbH & Co. KG Power supplier circuit, controlling method and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064688A (ja) * 1996-08-22 1998-03-06 Minebea Co Ltd 高輝度放電灯点灯装置
JP2000502502A (ja) * 1996-10-23 2000-02-29 パテント―トロイハント―ゲゼルシヤフト フユア エレクトリツシエ グリユーランペン ミツト ベシユレンクテル ハフツング 高圧放電ランプ作動用回路装置ならびに高圧放電ランプおよび高圧放電ランプ用作動装置を有する照明システム
JP2005063821A (ja) * 2003-08-13 2005-03-10 Koito Mfg Co Ltd 放電灯点灯回路及び放電灯点灯方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5121034A (en) * 1989-03-08 1992-06-09 General Electric Company Acoustic resonance operation of xenon-metal halide lamps
JP2909867B2 (ja) 1993-11-22 1999-06-23 株式会社小糸製作所 車輌用放電灯の点灯回路
US5623187A (en) * 1994-12-28 1997-04-22 Philips Electronics North America Corporation Controller for a gas discharge lamp with variable inverter frequency and with lamp power and bus voltage control
US6522089B1 (en) * 2001-10-23 2003-02-18 Orsam Sylvania Inc. Electronic ballast and method for arc straightening
JP2003297595A (ja) 2002-04-02 2003-10-17 Ushio Inc 光源装置
JP4087292B2 (ja) * 2003-05-26 2008-05-21 三菱電機株式会社 高輝度放電ランプ点灯装置およびその点灯方法
JP2005078910A (ja) * 2003-08-29 2005-03-24 Mitsubishi Electric Corp 高輝度放電ランプ点灯装置
JP2007018960A (ja) * 2005-07-11 2007-01-25 Koito Mfg Co Ltd 放電灯点灯回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064688A (ja) * 1996-08-22 1998-03-06 Minebea Co Ltd 高輝度放電灯点灯装置
JP2000502502A (ja) * 1996-10-23 2000-02-29 パテント―トロイハント―ゲゼルシヤフト フユア エレクトリツシエ グリユーランペン ミツト ベシユレンクテル ハフツング 高圧放電ランプ作動用回路装置ならびに高圧放電ランプおよび高圧放電ランプ用作動装置を有する照明システム
JP2005063821A (ja) * 2003-08-13 2005-03-10 Koito Mfg Co Ltd 放電灯点灯回路及び放電灯点灯方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282810A (ja) * 2007-05-11 2008-11-20 Osram Sylvania Inc バラスト
JP2013513917A (ja) * 2009-12-10 2013-04-22 アゾディジタル・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオン 高強度放電ランプの制御方法及び高強度放電ランプの供給システム

Also Published As

Publication number Publication date
US20060261756A1 (en) 2006-11-23
DE102006023185A1 (de) 2006-11-30
CN1867220A (zh) 2006-11-22
US7479742B2 (en) 2009-01-20

Similar Documents

Publication Publication Date Title
US7479742B2 (en) Discharge lamp lighting circuit
US7291990B2 (en) Discharge lamp lighting circuit
JP2587710B2 (ja) 車輌用放電灯の点灯回路
US6975077B2 (en) High intensity discharge lamp ballast apparatus
JP4186801B2 (ja) 無電極放電灯点灯装置並びに無電極放電灯装置
US7417381B2 (en) Discharge lamp lighting circuit
CN103379719B (zh) 放电灯点亮装置、包括其的照明设备和车辆
JP4155249B2 (ja) 無電極放電灯点灯装置および照明装置
JP4702038B2 (ja) 高輝度放電ランプ点灯装置及びプロジェクタ
JP2005050661A (ja) 高圧放電灯点灯装置
JP5103641B2 (ja) 高圧放電灯点灯装置
JP4003418B2 (ja) 放電灯点灯装置
JP4186788B2 (ja) 無電極放電灯点灯装置
JP5227112B2 (ja) 無電極放電灯点灯装置及びそれを用いた照明器具
JP2016110885A (ja) 放電ランプ点灯装置
JP4386357B2 (ja) 放電灯点灯回路及び放電灯点灯方法
JP5129703B2 (ja) 無電極放電灯点灯装置及びそれを用いた照明器具
JP5129652B2 (ja) 放電灯点灯装置
KR100984310B1 (ko) 고압방전등 램프 구동회로
KR100977464B1 (ko) 가스 방전 램프용 전자식 안정기의 안정화 제어 회로
JP2005174610A (ja) 照明装置
JP2007087821A (ja) 高圧放電ランプ点灯装置及び照明装置
JP5330768B2 (ja) 無電極放電灯点灯装置及びそれを用いた照明器具
JPWO2008123274A1 (ja) 高輝度放電ランプ点灯装置
JPH08264289A (ja) 無電極放電灯点灯装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100916