[go: up one dir, main page]

JP2005180778A - Water heating appliance - Google Patents

Water heating appliance Download PDF

Info

Publication number
JP2005180778A
JP2005180778A JP2003421822A JP2003421822A JP2005180778A JP 2005180778 A JP2005180778 A JP 2005180778A JP 2003421822 A JP2003421822 A JP 2003421822A JP 2003421822 A JP2003421822 A JP 2003421822A JP 2005180778 A JP2005180778 A JP 2005180778A
Authority
JP
Japan
Prior art keywords
heat exchanger
water
main heat
main
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003421822A
Other languages
Japanese (ja)
Inventor
Masaru Kodama
勝 児玉
Tomohiro Ichikawa
智浩 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paloma Kogyo KK
Original Assignee
Paloma Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paloma Kogyo KK filed Critical Paloma Kogyo KK
Priority to JP2003421822A priority Critical patent/JP2005180778A/en
Publication of JP2005180778A publication Critical patent/JP2005180778A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve thermal efficiency by averaging surface temperatures of a main heat exchanger and suppressing generation of a local drain. <P>SOLUTION: A temperature of the main heat exchanger 8 of a water heater 1 becomes low as on a water inflow side when a flow rate distribution of combustion exhaust gas is even, and surface temperatures of respective parts of the main heat exchanger 8 become even by controlling the flow rate distribution by a drain evaporator 9 so that the combustion exhaust gas flows in more as on the water inflow side. As a result, heat exchange quantity on the water inflow side can be increased without generating the drain in the main heat exchanger 8. Therefore, heat can be exchanged at a maximum by the main heat exchanger 8, tiny sensible heat which can not be recovered by the main heat exchanger 8 is recovered by an auxiliary heat exchanger 10, and the thermal efficiency of the water heater 1 as a whole can be improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、バーナの燃焼熱により通水を加熱する熱交換器を備えた給湯器等の温水機器に関する。
尚、以下の説明において、「燃焼排気」という用語は、熱交換器を通過した後の燃焼ガスだけを意味するわけでなく、バーナの燃焼により発生した熱交換前の高温の燃焼ガスをも含めて使用する。
The present invention relates to a hot water apparatus such as a water heater provided with a heat exchanger that heats water through combustion heat of a burner.
In the following description, the term “combustion exhaust” does not mean only the combustion gas after passing through the heat exchanger, but also includes the high-temperature combustion gas generated by the burner combustion before the heat exchange. To use.

一般に、温水機器の一例である給湯器は、給水管と出湯管が接続される熱交換器と、この熱交換器を加熱するバーナとを備え、バーナの燃焼熱でもって、熱交換器において通水を加熱し、出湯管より温水を供給するように構成される。   In general, a water heater, which is an example of a hot water device, includes a heat exchanger to which a water supply pipe and a hot water discharge pipe are connected, and a burner for heating the heat exchanger, and passes through the heat exchanger with the combustion heat of the burner. It is configured to heat water and supply hot water from a tapping pipe.

通常こうした給湯器においては、フィンチューブ式の熱交換器が用いられ、熱交換器では、フィン間を流れる燃焼排気の温度が均一とならず熱交換器の入水側ほど低温となりドレンが発生しやすい。そこで、入水側のフィン間を流れる燃焼排気の温度が露点(およそ50〜60℃)を下回らないように、熱交換を制限している。このため、熱交換器の出水側ではドレンを発生させずに更に多く熱交換できるもにもかかわらず、そのまま高温の排気を無駄に排出している。   Usually, in such a water heater, a fin tube type heat exchanger is used, and in the heat exchanger, the temperature of the combustion exhaust gas flowing between the fins is not uniform, and the temperature on the water inlet side of the heat exchanger becomes lower and the drain is likely to be generated. . Therefore, heat exchange is limited so that the temperature of the combustion exhaust flowing between the fins on the water inlet side does not fall below the dew point (approximately 50 to 60 ° C.). For this reason, on the outlet side of the heat exchanger, even though heat can be exchanged more without generating drainage, high-temperature exhaust is discharged as it is.

そこで、熱交換器の下流側排気通路にも別の熱交換器を設けて熱効率を向上させた給湯器も知られている。
例えば、特許文献1に示す給湯器では、バーナの燃焼排気通路に、主熱交換器と副熱交換器とドレン蒸発器とを備え、主熱交換器において燃焼排気熱中の顕熱を回収し、副熱交換器においてドレンを発生させて潜熱および主熱交換器で回収しきれなかった顕熱を回収し、ドレン蒸発器において副熱交換器で発生したドレンを燃焼排気熱を利用して蒸発させるようにしている。
この給湯器によれば、副熱交換器で回収された潜熱と同量の熱量がドレンの蒸発に使用されるため、結果的には潜熱の回収は行われないものの、通常の給湯器と比較し顕熱について高い回収率を得ることができる。
また、この給湯器では、主熱交換器でドレンが発生しないようにするため、主熱交換器のフィンピッチを入水側で広くなるように調整したり、フィンの板厚を入水側ほど薄くなるように調整したりして、主熱交換器の各部の表面温度を平均化している。
特開2002−39623
Therefore, a water heater is also known in which another heat exchanger is provided in the exhaust passage downstream of the heat exchanger to improve the thermal efficiency.
For example, in the water heater shown in Patent Document 1, the combustion exhaust passage of the burner includes a main heat exchanger, a sub heat exchanger, and a drain evaporator, and collects sensible heat in the combustion exhaust heat in the main heat exchanger, Drain is generated in the auxiliary heat exchanger to recover latent heat and sensible heat that could not be recovered in the main heat exchanger, and the drain generated in the auxiliary heat exchanger is evaporated in the drain evaporator using the combustion exhaust heat. I am doing so.
According to this water heater, since the same amount of heat as the latent heat recovered by the auxiliary heat exchanger is used for the evaporation of the drain, the latent heat is not recovered as a result, but compared with a normal water heater. However, a high recovery rate can be obtained for sensible heat.
Further, in this water heater, in order to prevent drain from being generated in the main heat exchanger, the fin pitch of the main heat exchanger is adjusted to be wide on the water inlet side, or the fin thickness is reduced toward the water inlet side. The surface temperature of each part of the main heat exchanger is averaged.
JP 2002-39623 A

しかしながら、主熱交換器のフィンピッチやフィンの板厚を調整した場合には、標準タイプの給湯器の熱交換器をそのまま使用することができず、専用の熱交換器として作り分けなければならず、生産性が低下してしまう。
また、主熱交換器の入水側での熱交換を制限しているため、バーナの高温排気熱は水の加熱に有効利用されず、たとえ主熱交換器を通過した排気の熱を副熱交換器で回収しようとしても、副熱交換器での熱回収率にも限度があり、トータルとして充分な熱回収ができるとは言えなかった。つまり、主熱交換器で最大限に熱交換していないため、いくら副熱交換器でリカバーを図っても、結局は高い熱効率が得られないのである。
また、熱交換器の表面温度の平均化は、フィンの調整ではあまり均一にはなりにくいという問題もあった。
本発明の温水機器は上記課題を解決し、主熱交換器の表面温度を平均化して、局部的なドレンの発生を抑制し熱効率を向上させることを目的とする。
However, if the fin pitch or fin thickness of the main heat exchanger is adjusted, the heat exchanger of the standard water heater cannot be used as it is, and it must be created as a dedicated heat exchanger. Therefore, productivity is reduced.
In addition, because heat exchange on the water inlet side of the main heat exchanger is restricted, the high-temperature exhaust heat from the burner is not effectively used for water heating, even if the heat from the exhaust that has passed through the main heat exchanger is sub-heat exchanged. Even if it was going to be recovered by the heat exchanger, there was a limit to the heat recovery rate in the auxiliary heat exchanger, and it could not be said that sufficient heat recovery was possible as a total. In other words, since the main heat exchanger does not exchange heat to the maximum extent, no matter how much the secondary heat exchanger recovers, high thermal efficiency cannot be obtained in the end.
Further, the averaging of the surface temperature of the heat exchanger has a problem that it is difficult to make it uniform by adjusting the fins.
The hot water apparatus of the present invention has an object to solve the above problems, average the surface temperature of the main heat exchanger, suppress the generation of local drainage, and improve the thermal efficiency.

上記課題を解決する本発明請求項1記載の温水機器は、
燃焼室内で燃料を燃焼するバーナと、
上記バーナの燃焼排気から顕熱を回収して主伝熱管内の通水を加熱する主熱交換器と、
上記主熱交換器より上流の通水路に設けられ、上記主熱交換器を通過した燃焼排気から潜熱と上記主熱交換器で回収しきれなかった顕熱とを回収して副伝熱管内の通水を加熱する副熱交換器と、
上記副熱交換器で発生したドレンを受けて蒸発させる蒸発皿とを備えた温水機器において、
上記蒸発皿により上記主熱交換器に流れるバーナの燃焼排気の流量分布をコントロールして、上記主熱交換器の各部の表面温度を平均化することを要旨とする。
The hot water device according to claim 1 of the present invention for solving the above problems is
A burner that burns fuel in the combustion chamber;
A main heat exchanger that recovers sensible heat from the combustion exhaust of the burner and heats water in the main heat transfer tube;
It is provided in a water passage upstream from the main heat exchanger, and recovers latent heat and sensible heat that could not be recovered by the main heat exchanger from the combustion exhaust gas that has passed through the main heat exchanger. An auxiliary heat exchanger for heating the water flow;
In a hot water apparatus comprising an evaporating dish that receives and evaporates drain generated in the auxiliary heat exchanger,
The gist is to average the surface temperature of each part of the main heat exchanger by controlling the flow distribution of the combustion exhaust gas of the burner flowing to the main heat exchanger by the evaporating dish.

上記課題を解決する本発明請求項2記載の温水機器は、
燃焼室内で燃料を燃焼するバーナと、
上記バーナの燃焼排気から顕熱を回収して主伝熱管内の通水を加熱する主熱交換器と、
上記主熱交換器より上流の通水路に設けられ、上記主熱交換器を通過した燃焼排気から潜熱と上記主熱交換器で回収しきれなかった顕熱とを回収して副伝熱管内の通水を加熱する副熱交換器とを備えた温水機器において、
主熱交換器の伝熱管を内側管と外側管とからなる二重管構造にし、上記内側管に上記副熱交換器から送られてきた水を入水させ、その内側管を通過した水を上記外側管に送り、外側管では上記内側管における水の流れ方向と反対方向に水を流すことにより上記主熱交換器の各部の表面温度を平均化することを要旨とする。
The hot water device according to claim 2 for solving the above-mentioned problems is
A burner that burns fuel in the combustion chamber;
A main heat exchanger that recovers sensible heat from the combustion exhaust of the burner and heats water in the main heat transfer tube;
It is provided in a water passage upstream from the main heat exchanger, and recovers latent heat and sensible heat that could not be recovered by the main heat exchanger from the combustion exhaust gas that has passed through the main heat exchanger. In a hot water device equipped with a sub heat exchanger for heating water flow,
The heat transfer tube of the main heat exchanger has a double tube structure consisting of an inner tube and an outer tube, the water sent from the sub heat exchanger is introduced into the inner tube, and the water that has passed through the inner tube is transferred to the The gist is to average the surface temperature of each part of the main heat exchanger by feeding the outer pipe to the outer pipe and flowing water in the direction opposite to the flow direction of the water in the inner pipe.

上記構成を有する本発明の請求項1記載の温水機器は、バーナの燃焼排気により主熱交換器の伝熱管に流れる水を加熱し、主熱交換器を通過した燃焼排気により副熱交換器に流れる水を加熱する。副熱交換器では、ドレンが発生するまで熱交換し、このドレンは蒸発皿で受けられ燃焼排気により加熱されて蒸発する。
この蒸発皿は、バーナの燃焼排気が主熱交換器に流れる流量分布をコントロールして主熱交換器の各部の表面温度を均一にする。
つまり、主熱交換器は燃焼排気の流量分布が均一の場合にはその入水側ほど低温になるが、入水側ほど燃焼排気が多く流入するように蒸発皿で流量分布をコントロールすることにより主熱交換器の各部の表面温度を均一にする。
この結果、主熱交換器でドレンを発生することなく、入水側での熱交換量を増大することができる。従って、主熱交換器で最大限にまで熱交換でき、主熱交換器で回収しきれなかった僅かの顕熱を副熱交換器で回収するようにして、温水機器トータルとしての熱効率を向上させることができる。
また、蒸発皿を利用して流量分布をコントロールするため、特別に分布板等を設ける必要がない。また、主熱交換器のフィン等を改造する必要もなく、生産性の低下やコストアップを招かない。
The hot water device according to claim 1 of the present invention having the above-described configuration heats the water flowing to the heat transfer pipe of the main heat exchanger by the combustion exhaust of the burner, and turns into the auxiliary heat exchanger by the combustion exhaust that has passed through the main heat exchanger. Heat the flowing water. In the auxiliary heat exchanger, heat is exchanged until drain is generated, and this drain is received by the evaporating dish and heated by the combustion exhaust gas to evaporate.
This evaporating dish controls the flow distribution of the burner combustion exhaust gas flowing into the main heat exchanger to make the surface temperature of each part of the main heat exchanger uniform.
In other words, when the flow distribution of combustion exhaust is uniform, the main heat exchanger becomes cooler at the inlet side, but the main heat exchanger controls the flow distribution with an evaporating dish so that more combustion exhaust flows into the inlet side. Make the surface temperature of each part of the exchanger uniform.
As a result, the amount of heat exchange on the incoming water side can be increased without generating drain in the main heat exchanger. Therefore, heat can be exchanged to the maximum with the main heat exchanger, and the sensible heat that could not be recovered with the main heat exchanger is recovered with the auxiliary heat exchanger, improving the overall thermal efficiency of the hot water equipment. be able to.
Further, since the flow rate distribution is controlled using the evaporating dish, it is not necessary to provide a special distribution plate or the like. In addition, it is not necessary to modify the fins of the main heat exchanger, and productivity is not lowered and costs are not increased.

上記構成を有する本発明の請求項2記載の温水機器は、バーナの燃焼排気により主熱交換器の伝熱管に流れる水を加熱し、主熱交換器を通過した燃焼排気により副熱交換器に流れる水を加熱する。
主熱交換器では、伝熱管が二重管構造となっており、供給された水は最初に内側管に流れたのち外側管に送られる。この場合、外側管に流れる水は内側管に流れる水の方向と反対向きになっているため、外側管における上流側が内側管における下流側と接することとなる。
バーナの燃焼排気は、まず外側管の水と熱交換し、その下流側ほど得られた熱量が増えていくが、外側管の水は同時に内側管の水とも熱交換することとなり、内側管の水は上流ほど低温であることから、外側管内の水はその流れ方向の温度が均一となる。
この結果、主熱交換器の各部の表面温度が平均化され、主熱交換器の全体を使ってドレンが発生する直前まで熱交換することができる。従って、主熱交換器で最大限にまで熱交換でき、主熱交換器で回収しきれなかった僅かの顕熱を副熱交換器で回収するようにして、温水機器トータルとしての熱効率を向上させることができる。しかも、副熱交換器に送られる燃焼排気は、均一な温度分布になっているため、副熱交換器での熱回収も有効に行うことができる。
さらに、内側管よりも外側管を下流側としているため、内側管に流れる水よりも外側管に流れる水の方が高温となるので、主熱交換器の表面温度は一層高温となりドレンの発生を抑制できる。
The hot water apparatus according to claim 2 of the present invention having the above-described configuration heats water flowing to the heat transfer pipe of the main heat exchanger by the combustion exhaust of the burner, and turns it into a sub heat exchanger by the combustion exhaust that has passed through the main heat exchanger. Heat the flowing water.
In the main heat exchanger, the heat transfer tube has a double tube structure, and the supplied water first flows to the inner tube and then is sent to the outer tube. In this case, since the water flowing in the outer pipe is in the direction opposite to the direction of water flowing in the inner pipe, the upstream side in the outer pipe is in contact with the downstream side in the inner pipe.
The combustion exhaust of the burner first exchanges heat with the water in the outer pipe, and the amount of heat obtained downstream increases, but the water in the outer pipe also exchanges heat with the water in the inner pipe at the same time. Since water is colder upstream, the water in the outer tube has a uniform temperature in the flow direction.
As a result, the surface temperature of each part of the main heat exchanger is averaged, and heat exchange can be performed using the entire main heat exchanger until just before drainage is generated. Therefore, heat can be exchanged to the maximum with the main heat exchanger, and the sensible heat that could not be recovered with the main heat exchanger is recovered with the auxiliary heat exchanger, improving the overall thermal efficiency of the hot water equipment. be able to. Moreover, since the combustion exhaust gas sent to the auxiliary heat exchanger has a uniform temperature distribution, heat recovery in the auxiliary heat exchanger can also be performed effectively.
Furthermore, since the outer pipe is located downstream from the inner pipe, the water flowing in the outer pipe is hotter than the water flowing in the inner pipe, so the surface temperature of the main heat exchanger becomes higher and the generation of drainage is increased. Can be suppressed.

以上説明した本発明の構成・作用を一層明らかにするために、以下本発明の温水機器の好適な実施例について説明する。   In order to further clarify the configuration and operation of the present invention described above, preferred embodiments of the hot water apparatus of the present invention will be described below.

本発明の実施例1としての給湯器1は、図1に示すように、器具本体2内に燃焼室3が設けられ、その下方にDCモータ4と連結した給気ファン5が取り付けられる。尚、器具本体2には、外気を燃焼用空気として取り込むための給気口6が形成される。   As shown in FIG. 1, the water heater 1 as Embodiment 1 of the present invention is provided with a combustion chamber 3 in an instrument body 2 and an air supply fan 5 connected to a DC motor 4 is attached below the combustion chamber 3. The instrument body 2 is formed with an air supply port 6 for taking outside air as combustion air.

燃焼室3内には、下から順に、燃料ガスと給気ファン5からの一次空気との混合ガスを燃焼するバーナ7と、バーナ7からの燃焼排気の顕熱の多くを回収するフィンチューブ式の主熱交換器8と、ドレンを受けて蒸発させるドレン蒸発器9と、主熱交換器8で回収しきれなかった顕熱とドレンを発生させて回収する潜熱とを回収する副熱交換器10とが設けられる。燃焼室3の上部には、主熱交換器8、副熱交換器10で熱交換後の燃焼排気を器体外へ排出する排気口11が形成される。   In the combustion chamber 3, in order from the bottom, a burner 7 that burns a mixed gas of fuel gas and primary air from the air supply fan 5, and a fin tube type that recovers most of the sensible heat of the combustion exhaust from the burner 7. Main heat exchanger 8, drain evaporator 9 that receives and evaporates the drain, and auxiliary heat exchanger that recovers sensible heat that could not be recovered by the main heat exchanger 8 and latent heat that is generated and recovered by drainage. 10 are provided. In the upper part of the combustion chamber 3, an exhaust port 11 for discharging the combustion exhaust after heat exchange by the main heat exchanger 8 and the sub heat exchanger 10 to the outside of the body is formed.

器具本体2内に設けられる通水管は、上流から順に、冷水が供給される給水管12、燃焼室3を外側で巻回する巻回管13、副熱交換器10として設けられる副伝熱管14、主熱交換器8に設けられる主伝熱管15、温水を出湯する出湯管16からなる。これらの通水管の内、副伝熱管14は耐食性に優れたパイプ(例えば、ステンレスパイプ)であり、その他の管は銅製である。
一方、主伝熱管15には、燃焼熱を吸収する多数の銅製の主フィン17が等ピッチで設けられる。このため、主熱交換器8は入水側ほど低温となり、出水側ほど高温となる。
また、主熱交換器8と副熱交換器10との位置関係は、副熱交換器10の入水側が、主熱交換器8の出水側すなわち主熱交換器8の高温部側の上方となるように配置する。
The water pipe provided in the appliance main body 2 includes, in order from the upstream, a water supply pipe 12 to which cold water is supplied, a winding pipe 13 for winding the combustion chamber 3 on the outside, and a sub heat transfer pipe 14 provided as a sub heat exchanger 10. The main heat exchanger 8 is provided with a main heat transfer pipe 15 and a hot water discharge pipe 16 for hot water. Of these water pipes, the auxiliary heat transfer pipe 14 is a pipe (for example, stainless steel pipe) excellent in corrosion resistance, and the other pipes are made of copper.
On the other hand, the main heat transfer tube 15 is provided with a large number of copper main fins 17 that absorb combustion heat at an equal pitch. For this reason, the main heat exchanger 8 has a lower temperature on the incoming water side and a higher temperature on the outgoing water side.
Further, the positional relationship between the main heat exchanger 8 and the sub heat exchanger 10 is such that the water inlet side of the sub heat exchanger 10 is above the water outlet side of the main heat exchanger 8, that is, the high temperature part side of the main heat exchanger 8. Arrange as follows.

ドレン蒸発器9は、図1、図2、図3に示すように、断面がU字状に形成された長細いドレン受け18が横方向に三列で並べられ、その左右の端部がそれぞれ一体的に結合されたドレン受け部19と、ドレン受け18とドレン受け18との間の排気隙間20の上方を覆い下方の主熱交換器8やバーナ7等へのドレンの落下を防止する断面逆U字状のドレンカバー21とからなる。尚、図2は、図1中の一点鎖線A−Aでの断面図である。また、ドレン受け18は、左右の長手方向の辺が平行に形成されているのではなく、それぞれが左端部から右端部にいくにつれ、その横幅が狭まるように形成される。従って、ドレン受け18とドレン受け18との間の排気隙間20は、左端部から右端部にいくにつれて広くなる。
そして、ドレン蒸発器9は、主熱交換器8の上方全面を覆う大きさで設けられ、主熱交換器8の入水側すなわち低温側に対向する側に広い方の排気隙間20が、主熱交換器8の出水側すなわち高温側に狭い方の排気隙間20がくるように配置される。
As shown in FIGS. 1, 2, and 3, the drain evaporator 9 has long and thin drain receptacles 18 having a U-shaped cross section arranged in three rows in the horizontal direction, and the left and right ends thereof are respectively A cross-section that covers the drain receiving portion 19 that is integrally coupled and the upper portion of the exhaust gap 20 between the drain receiver 18 and the drain receiver 18 to prevent the drain from dropping to the main heat exchanger 8 and the burner 7 below. It consists of a reverse U-shaped drain cover 21. 2 is a cross-sectional view taken along one-dot chain line AA in FIG. Further, the drain receiver 18 is not formed so that the left and right longitudinal sides are parallel to each other, but is formed so that the lateral width thereof becomes narrower as it goes from the left end portion to the right end portion. Therefore, the exhaust gap 20 between the drain receiver 18 and the drain receiver 18 becomes wider from the left end to the right end.
The drain evaporator 9 is provided in a size that covers the entire upper surface of the main heat exchanger 8, and a wider exhaust gap 20 is provided on the main heat exchanger 8 on the water inlet side, that is, the side facing the low temperature side. It arrange | positions so that the narrower exhaust gap 20 may come in the water discharge side of the exchanger 8, ie, a high temperature side.

給水管12には水流センサや水ガバナを備える水側制御ユニット22が設けられ、バーナ7へのガス管23には主電磁弁24及びガス比例弁25が設けられる。また、水側制御ユニット22内の水流センサや、主電磁弁24及びガス比例弁25、そしてDCモータ4等は、この給湯器1の燃焼を制御するバーナコントローラ26に電気的に接続される。   The water supply pipe 12 is provided with a water-side control unit 22 including a water flow sensor and a water governor, and the gas pipe 23 to the burner 7 is provided with a main electromagnetic valve 24 and a gas proportional valve 25. Further, the water flow sensor in the water side control unit 22, the main electromagnetic valve 24, the gas proportional valve 25, the DC motor 4 and the like are electrically connected to a burner controller 26 that controls the combustion of the water heater 1.

このように構成された給湯器1では、図示しない給湯栓を開くことにより給水管12に水(図中破線矢印)が流れ、水側制御ユニット22内の水流センサからの検知信号によりバーナコントローラ26が制御動作を行い、給気ファン5がDCモータ4の駆動により回転し始める。所定のプリパージが完了すると、バーナ7の主電磁弁24及びガス比例弁25が開いてバーナ7に燃料ガス(図中実線矢印)が供給され、図示しないイグナイタによりバーナ7に点火が行われる。
点火動作が終了すると、比例制御が開始され、図示しない主湯温サーミスタで検出される湯温と設定温度との差があると、バーナコントローラ26でそれを判断しガス比例弁25へ信号を送り、ガス量を連続的に変化させて主熱交換器8の出口温度を一定に保つ。また、ガス比例弁25によるガス量の変化に応じてバーナコントローラ26から給気ファン5のDCモータ4に信号が送られ、給気ファン5の回転数も変えられ、常にガス量と給気量とが所定の関係に保たれるように制御される。
In the water heater 1 configured as above, water (broken arrow in the figure) flows through the water supply pipe 12 by opening a hot water tap (not shown), and the burner controller 26 is detected by a detection signal from a water flow sensor in the water side control unit 22. Performs the control operation, and the air supply fan 5 starts to rotate by driving the DC motor 4. When the predetermined pre-purge is completed, the main electromagnetic valve 24 and the gas proportional valve 25 of the burner 7 are opened, fuel gas (solid arrow in the figure) is supplied to the burner 7, and the burner 7 is ignited by an igniter (not shown).
When the ignition operation is finished, proportional control is started. If there is a difference between the hot water temperature detected by the main hot water temperature thermistor (not shown) and the set temperature, the burner controller 26 determines that and sends a signal to the gas proportional valve 25. The gas temperature is continuously changed to keep the outlet temperature of the main heat exchanger 8 constant. Further, a signal is sent from the burner controller 26 to the DC motor 4 of the air supply fan 5 according to the change in the gas amount by the gas proportional valve 25, and the rotation speed of the air supply fan 5 is also changed. Are maintained in a predetermined relationship.

このような燃焼制御において、給気ファン5の動作に伴い、器具本体2に設けられる給気口6より外気が器具本体2内に吸引され、バーナ7へ導入されて燃焼用空気として燃焼に供される。バーナ7の炎口近傍では混合気が燃焼して火炎を形成し、主熱交換器8の上流近傍に至る間に燃焼が完結(完全燃焼)する。
バーナ7からの高温の燃焼排気が、給気ファン5により主熱交換器8の各主フィン17間を貫流し主伝熱管15を流れる水と熱交換し、これにより温度の下がった燃焼排気が、ドレン蒸発器9を加熱して、さらに副熱交換器10の副伝熱管14を流れる水と熱交換した後に排気口11から器具の外へ排出される。ドレン蒸発器9においては、燃焼排気は、排気隙間20とドレンカバー21との間を通って流れていく。
この際、主熱交換器8では、ドレンを発生させずに顕熱のみを回収し、一方、副熱交換器10では、ドレンを発生させて主熱交換器8で回収しきれなかった顕熱に加え潜熱も回収する。
In such combustion control, along with the operation of the air supply fan 5, outside air is sucked into the device main body 2 from the air supply port 6 provided in the device main body 2 and introduced into the burner 7 to be used as combustion air for combustion. Is done. In the vicinity of the flame opening of the burner 7, the air-fuel mixture burns to form a flame, and the combustion is completed (complete combustion) while reaching the upstream vicinity of the main heat exchanger 8.
The high-temperature combustion exhaust from the burner 7 exchanges heat with the water flowing through the main fins 17 of the main heat exchanger 8 and flowing through the main heat transfer tubes 15 by the air supply fan 5, whereby the combustion exhaust having a lowered temperature is generated. The drain evaporator 9 is heated and further exchanged with water flowing through the auxiliary heat transfer pipe 14 of the auxiliary heat exchanger 10 and then discharged from the exhaust port 11 to the outside of the appliance. In the drain evaporator 9, the combustion exhaust gas flows between the exhaust gap 20 and the drain cover 21.
At this time, the main heat exchanger 8 recovers only sensible heat without generating drain, while the sub heat exchanger 10 generates drain and sensible heat that cannot be recovered by the main heat exchanger 8. In addition to recovering latent heat.

発生したドレンは、副熱交換器10の真下に設けられたドレン蒸発器9で受けられる。ドレンカバー21に落下したドレンもドレンカバー21を伝わってドレン受け18に落ちて、燃焼排気により加熱されて蒸発する。この際、回収した潜熱と同量の熱量を燃焼排気中へ放出してしまうが、副熱交換器10ではドレンの発生を制限することなく燃焼排気からできるだけ多くの顕熱を回収することが可能となる。また、ドレンカバー21は、燃焼排気を一旦ドレン受け18上のドレンに案内するガイドとしても働く。   The generated drain is received by a drain evaporator 9 provided immediately below the auxiliary heat exchanger 10. The drain that has fallen on the drain cover 21 also travels along the drain cover 21 and falls on the drain receiver 18, and is heated and evaporated by the combustion exhaust. At this time, the same amount of heat as the recovered latent heat is released into the combustion exhaust, but the auxiliary heat exchanger 10 can recover as much sensible heat as possible from the combustion exhaust without limiting the generation of drain. It becomes. The drain cover 21 also serves as a guide for once guiding the combustion exhaust to the drain on the drain receiver 18.

そして、ドレン蒸発器9においては、主熱交換器8の入水側の排気隙間20を広く、出水側の排気隙間20を狭く形成しているために、燃焼排気は、入水側の方に多く流れて主熱交換器8の表面温度を均一化する。すなわち、このドレン蒸発器9は、バーナ7の燃焼排気が主熱交換器8に流れる流量分布をコントロールして主熱交換器8の各部の表面温度を均一にする。
つまり、主熱交換器8は燃焼排気の流量分布が均一の場合にはその入水側ほど低温になるが、入水側ほど燃焼排気が多く流入するようにドレン蒸発器9で流量分布をコントロールすることにより主熱交換器8の各部の表面温度を均一にする。
この結果、主熱交換器8でドレンを発生することなく、入水側での熱交換量を増大することができる。従って、主熱交換器8全体を有効に使うことにより、ここで最大限にまで熱交換でき、主熱交換器8で回収しきれなかった僅かの顕熱を副熱交換器10で回収するようにして、給湯器1トータルとしての熱効率を向上させることができる。
また、ドレン蒸発器9を利用して流量分布をコントロールするため、特別に分布板等を設ける必要がない。また、主熱交換器8の主フィン17等を改造する必要もなく、生産性の低下やコストアップを招かない。
In the drain evaporator 9, the exhaust gap 20 on the water inlet side of the main heat exchanger 8 is wide and the exhaust gap 20 on the water outlet side is narrow, so that a lot of combustion exhaust flows toward the water inlet side. The surface temperature of the main heat exchanger 8 is made uniform. That is, the drain evaporator 9 controls the flow distribution of the combustion exhaust of the burner 7 to the main heat exchanger 8 to make the surface temperature of each part of the main heat exchanger 8 uniform.
That is, when the flow distribution of the combustion exhaust gas is uniform, the main heat exchanger 8 has a lower temperature at the water inlet side, but the flow distribution is controlled by the drain evaporator 9 so that more combustion exhaust gas flows into the water inlet side. Thus, the surface temperature of each part of the main heat exchanger 8 is made uniform.
As a result, the amount of heat exchange on the incoming water side can be increased without generating drain in the main heat exchanger 8. Therefore, by effectively using the main heat exchanger 8 as a whole, the maximum heat exchange can be performed here, and a small amount of sensible heat that could not be recovered by the main heat exchanger 8 is recovered by the auxiliary heat exchanger 10. Thus, the thermal efficiency of the water heater 1 as a whole can be improved.
Further, since the flow rate distribution is controlled using the drain evaporator 9, it is not necessary to provide a special distribution plate or the like. Further, it is not necessary to modify the main fins 17 of the main heat exchanger 8 and the productivity is not lowered and the cost is not increased.

さらに、燃焼排気が排気隙間20とドレンカバー21との間を通って流れていくため、ドレン受け18中のドレンは燃焼排気に直接接触して加熱されるので、より一層効率良く蒸発させられる。   Furthermore, since the combustion exhaust flows through between the exhaust gap 20 and the drain cover 21, the drain in the drain receiver 18 is heated in direct contact with the combustion exhaust, so that it is evaporated more efficiently.

以上本発明の実施例1について説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。
例えば、実施例1では、ドレン蒸発器9の排気隙間20の開口幅を変えることによって排気通路の面積を調節して燃焼排気の流量分布をコントロールしたが、これに限ったものではなく、図4、図5に示すように、排気隙間を多数の丸穴27で形成し、丸穴27の大きさを変えたり(図4)、丸穴27の密度分布を変えたり(図5)して燃焼排気の流量分布をコントロールしてもよい。つまり、主熱交換器8の入水側ほど排気通路面積が広くなるようにして、主熱交換器8の各部の表面温度を均一化すればよいのである。
Although the first embodiment of the present invention has been described above, the present invention is not limited to such an embodiment, and it is needless to say that the present invention can be implemented in various modes without departing from the gist of the present invention.
For example, in the first embodiment, the flow rate distribution of the combustion exhaust gas is controlled by adjusting the area of the exhaust passage by changing the opening width of the exhaust gap 20 of the drain evaporator 9, but the present invention is not limited to this. As shown in FIG. 5, the exhaust gap is formed by a large number of round holes 27, and the size of the round holes 27 is changed (FIG. 4) or the density distribution of the round holes 27 is changed (FIG. 5). The flow rate distribution of the exhaust may be controlled. That is, the surface temperature of each part of the main heat exchanger 8 may be made uniform by increasing the exhaust passage area toward the water inlet side of the main heat exchanger 8.

次に、実施例2の給湯器について図6、図7、図8を用いて説明する。尚、実施例1と異なる部分について説明し、重複する部分に関しては同一符号を付してその説明を省略する。
実施例2の給湯器201では、主熱交換器208の主伝熱管215を内側管229と外側管230とからなる二重管構造とする。そして、内側管229に副熱交換器210から送られてきた水を入水させ、その内側管229を通過した水を外側管230に送り、外側管230では内側管229における水の流れ方向と反対方向に水を流す。また、主伝熱管215には、燃焼熱を吸収する多数の銅製の主フィン217が等ピッチで設けられる。
ドレン蒸発器209においては、図6、図7、図8に示すように、ドレン受け218として左右の長手方向の辺が平行に形成されたものを用いてドレン受け部219を形成する。従って、排気隙間220は、主熱交換器208の上方領域で等しくなり燃焼排気の流れに偏りは生じない。尚、図7は、図6中の一点鎖線B−Bでの断面図である。
Next, the water heater of Example 2 is demonstrated using FIG.6, FIG.7, FIG.8. In addition, a different part from Example 1 is demonstrated, about the overlapping part, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
In the water heater 201 of the second embodiment, the main heat transfer tube 215 of the main heat exchanger 208 has a double tube structure including an inner tube 229 and an outer tube 230. Then, the water sent from the auxiliary heat exchanger 210 is introduced into the inner pipe 229, the water that has passed through the inner pipe 229 is sent to the outer pipe 230, and the outer pipe 230 is opposite to the water flow direction in the inner pipe 229. Run water in the direction. The main heat transfer tube 215 is provided with a large number of copper main fins 217 that absorb combustion heat at an equal pitch.
In the drain evaporator 209, as shown in FIGS. 6, 7, and 8, the drain receiving part 219 is formed by using a drain receiver 218 in which the left and right longitudinal sides are formed in parallel. Accordingly, the exhaust gap 220 becomes equal in the upper region of the main heat exchanger 208, and the flow of the combustion exhaust does not bias. 7 is a cross-sectional view taken along one-dot chain line BB in FIG.

このような給湯器201では、バーナ7からの高温の燃焼排気が、給気ファン5により主熱交換器208の各主フィン217間を貫流し主伝熱管215を流れる水と熱交換し、これにより温度の下がった燃焼排気が、ドレン蒸発器209を加熱して、さらに副熱交換器210の副伝熱管214を流れる水と熱交換した後に排気口11から器具の外へ排出される。ドレン蒸発器209においては、燃焼排気は、排気隙間220とドレンカバー21との間を通って流れていく。
この際、主熱交換器208では、ドレンを発生させずに顕熱のみを回収し、一方、副熱交換器210では、ドレンを発生させて主熱交換器208で回収しきれなかった顕熱に加え潜熱も回収する。発生したドレンは、副熱交換器210の真下に設けられたドレン蒸発器209で受けられ、燃焼排気によって加熱されて蒸発する。
そして、主熱交換器208では、主伝熱管215が二重管構造となっており、供給された水は最初に内側管229に流れたのち外側管230に送られる。この場合、外側管230に流れる水は内側管229に流れる水の方向と反対向きになっているため、外側管230における上流側が内側管229における下流側と接することとなる。
バーナ7の燃焼排気は、まず外側管230の水と熱交換し、その下流側ほど得られた熱量が増えていくが、外側管230の水は同時に内側管229の水とも熱交換することとなり、内側管229の水は上流ほど低温であることから、外側管230内の水はその流れ方向の温度が均一となる。
この結果、主熱交換器208の各部の表面温度が平均化され、主熱交換器208の全体を使ってドレンが発生する直前まで熱交換することができる。従って、主熱交換器208で最大限にまで熱交換でき、主熱交換器208で回収しきれなかった僅かの顕熱を副熱交換器210で回収するようにして、給湯器201トータルとしての熱効率を向上させることができる。しかも、副熱交換器210に送られる燃焼排気は、均一な温度分布になっているため、副熱交換器210での熱回収も有効に行うことができる。
さらに、内側管229よりも外側管230を下流側としているため、内側管229に流れる水よりも外側管230に流れる水の方が高温となるので、主熱交換器208の表面温度は一層高温となりドレンの発生を抑制できる。
尚、本実施例では、発生したドレンを蒸発処理するようにしているが、これに限ったものではなく、中和装置を備え、ドレンを中和処理した後に液体のまま器具外に排出するような構成としてもよい。
In such a water heater 201, high-temperature combustion exhaust from the burner 7 exchanges heat with water flowing through the main fins 217 of the main heat exchanger 208 and flowing through the main heat transfer pipe 215 by the air supply fan 5. Thus, the exhaust gas whose temperature has decreased is heated by the drain evaporator 209 and further exchanged heat with water flowing through the auxiliary heat transfer pipe 214 of the auxiliary heat exchanger 210 and then discharged from the exhaust port 11 to the outside of the appliance. In the drain evaporator 209, the combustion exhaust gas flows between the exhaust gap 220 and the drain cover 21.
At this time, the main heat exchanger 208 recovers only sensible heat without generating drain, while the sub heat exchanger 210 generates drain and sensible heat that could not be recovered by the main heat exchanger 208. In addition to recovering latent heat. The generated drain is received by a drain evaporator 209 provided immediately below the auxiliary heat exchanger 210, and is heated and evaporated by combustion exhaust gas.
In the main heat exchanger 208, the main heat transfer tube 215 has a double tube structure, and the supplied water first flows to the inner tube 229 and then is sent to the outer tube 230. In this case, since the water flowing through the outer tube 230 is in the opposite direction to the direction of water flowing through the inner tube 229, the upstream side of the outer tube 230 is in contact with the downstream side of the inner tube 229.
The combustion exhaust of the burner 7 first exchanges heat with the water in the outer tube 230, and the amount of heat obtained at the downstream side increases, but the water in the outer tube 230 also exchanges heat with the water in the inner tube 229 at the same time. Since the water in the inner pipe 229 is colder toward the upstream, the temperature in the flow direction of the water in the outer pipe 230 is uniform.
As a result, the surface temperature of each part of the main heat exchanger 208 is averaged, and heat exchange can be performed using the entire main heat exchanger 208 until just before drainage is generated. Therefore, the main heat exchanger 208 can exchange heat to the maximum extent, and the sensible heat that could not be recovered by the main heat exchanger 208 is recovered by the auxiliary heat exchanger 210, so that Thermal efficiency can be improved. Moreover, since the combustion exhaust gas sent to the auxiliary heat exchanger 210 has a uniform temperature distribution, heat recovery in the auxiliary heat exchanger 210 can also be performed effectively.
Furthermore, since the outer pipe 230 is located downstream of the inner pipe 229, the water flowing through the outer pipe 230 is hotter than the water flowing through the inner pipe 229, so the surface temperature of the main heat exchanger 208 is even higher. The generation of drain can be suppressed.
In this embodiment, the generated drain is evaporated, but the present invention is not limited to this. A neutralization device is provided, and after draining is neutralized, the liquid is discharged out of the apparatus as a liquid. It is good also as a simple structure.

以上本発明の実施例について説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。
例えば、本実施例では、給気ファン5を備えた強制燃焼式の給湯器1、201に適用した例を示したが、これに限ったものではなく、給気ファンを備えない自然燃焼式の給湯器に適用しても構わない。
Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and it is needless to say that the present invention can be implemented in various modes without departing from the gist of the present invention.
For example, in the present embodiment, an example is shown in which the present invention is applied to a forced combustion type water heater 1,201 provided with an air supply fan 5, but the present invention is not limited to this, and a natural combustion type that does not include an air supply fan. You may apply to a water heater.

バーナの燃焼熱により通水を加熱して出湯する温水機器に適用可能である。   The present invention can be applied to a hot water device that heats water through the combustion heat of a burner and produces hot water.

実施例1としての給湯器の概略構成図である。1 is a schematic configuration diagram of a water heater as Example 1. FIG. 実施例1としてのドレン蒸発器の断面図である。It is sectional drawing of the drain evaporator as Example 1. FIG. 実施例1としてのドレン蒸発器の平面図である。1 is a plan view of a drain evaporator as Example 1. FIG. 別の実施例としてのドレン蒸発器の平面図である。It is a top view of the drain evaporator as another Example. 別の実施例としてのドレン蒸発器の平面図である。It is a top view of the drain evaporator as another Example. 実施例2としての給湯器の概略構成図である。It is a schematic block diagram of the water heater as Example 2. 実施例2としてのドレン蒸発器の断面図である。It is sectional drawing of the drain evaporator as Example 2. FIG. 実施例2としてのドレン蒸発器の平面図である。It is a top view of the drain evaporator as Example 2. FIG.

符号の説明Explanation of symbols

1、201 給湯器
3 燃焼室
7 バーナ
8、208 主熱交換器
9、209 ドレン蒸発器
10、210 副熱交換器
14、214 副伝熱管
15、215 主伝熱管
229 内側貫
230 外側管
1,201 Water heater 3 Combustion chamber 7 Burner 8, 208 Main heat exchanger 9, 209 Drain evaporator 10, 210 Sub heat exchanger 14, 214 Sub heat transfer tube 15, 215 Main heat transfer tube 229 Inside through 230 Outer tube

Claims (2)

燃焼室内で燃料を燃焼するバーナと、
上記バーナの燃焼排気から顕熱を回収して主伝熱管内の通水を加熱する主熱交換器と、
上記主熱交換器より上流の通水路に設けられ、上記主熱交換器を通過した燃焼排気から潜熱と上記主熱交換器で回収しきれなかった顕熱とを回収して副伝熱管内の通水を加熱する副熱交換器と、
上記副熱交換器で発生したドレンを受けて蒸発させる蒸発皿とを備えた温水機器において、
上記蒸発皿により上記主熱交換器に流れるバーナの燃焼排気の流量分布をコントロールして、上記主熱交換器の各部の表面温度を平均化することを特徴とする温水機器。
A burner that burns fuel in the combustion chamber;
A main heat exchanger that recovers sensible heat from the combustion exhaust of the burner and heats water in the main heat transfer tube;
It is provided in a water passage upstream from the main heat exchanger, and recovers latent heat and sensible heat that could not be recovered by the main heat exchanger from the combustion exhaust gas that has passed through the main heat exchanger. An auxiliary heat exchanger for heating the water flow;
In a hot water apparatus comprising an evaporating dish that receives and evaporates drain generated in the auxiliary heat exchanger,
A hot water apparatus characterized by controlling the flow distribution of combustion exhaust gas of the burner flowing to the main heat exchanger by the evaporating dish and averaging the surface temperature of each part of the main heat exchanger.
燃焼室内で燃料を燃焼するバーナと、
上記バーナの燃焼排気から顕熱を回収して主伝熱管内の通水を加熱する主熱交換器と、
上記主熱交換器より上流の通水路に設けられ、上記主熱交換器を通過した燃焼排気から潜熱と上記主熱交換器で回収しきれなかった顕熱とを回収して副伝熱管内の通水を加熱する副熱交換器とを備えた温水機器において、
主熱交換器の伝熱管を内側管と外側管とからなる二重管構造にし、上記内側管に上記副熱交換器から送られてきた水を入水させ、その内側管を通過した水を上記外側管に送り、外側管では上記内側管における水の流れ方向と反対方向に水を流すことにより上記主熱交換器の各部の表面温度を平均化することを特徴とする温水機器。
A burner that burns fuel in the combustion chamber;
A main heat exchanger that recovers sensible heat from the combustion exhaust of the burner and heats water in the main heat transfer tube;
It is provided in a water passage upstream from the main heat exchanger, and recovers latent heat and sensible heat that could not be recovered by the main heat exchanger from the combustion exhaust gas that has passed through the main heat exchanger. In a hot water device equipped with a sub heat exchanger for heating water flow,
The heat transfer tube of the main heat exchanger has a double tube structure consisting of an inner tube and an outer tube, the water sent from the sub heat exchanger is introduced into the inner tube, and the water that has passed through the inner tube is transferred to the A hot water apparatus characterized in that the surface temperature of each part of the main heat exchanger is averaged by feeding water to the outer pipe and flowing water in the outer pipe in a direction opposite to the flow direction of water in the inner pipe.
JP2003421822A 2003-12-19 2003-12-19 Water heating appliance Pending JP2005180778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003421822A JP2005180778A (en) 2003-12-19 2003-12-19 Water heating appliance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003421822A JP2005180778A (en) 2003-12-19 2003-12-19 Water heating appliance

Publications (1)

Publication Number Publication Date
JP2005180778A true JP2005180778A (en) 2005-07-07

Family

ID=34782886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003421822A Pending JP2005180778A (en) 2003-12-19 2003-12-19 Water heating appliance

Country Status (1)

Country Link
JP (1) JP2005180778A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531981A (en) * 2005-03-07 2008-08-14 キョントン ナビン コーポレーション リミテッド Hot water supply system with double pipe
KR101243026B1 (en) 2011-04-18 2013-03-12 주식회사 경동나비엔 Boiler having condensed water evaporator
JP2013096609A (en) * 2011-10-29 2013-05-20 Noritz Corp Heat exchanger and water heating device including the same
JP2013096610A (en) * 2011-10-29 2013-05-20 Noritz Corp Water heater
JP2013231558A (en) * 2012-04-28 2013-11-14 Noritz Corp Water heating device
JP2015183894A (en) * 2014-03-20 2015-10-22 株式会社ノーリツ Hot-water supply device
JP2016044955A (en) * 2014-08-26 2016-04-04 大阪瓦斯株式会社 Hot water supply device
CN109140755A (en) * 2018-10-11 2019-01-04 浙江建设职业技术学院 A kind of gas heater waste heat reclaiming system and method
CN109282496A (en) * 2018-10-18 2019-01-29 高月云 A kind of latent heat type heat exchanger and water heater
JP7525786B2 (en) 2020-09-28 2024-07-31 株式会社ノーリツ Combustion heat source and CO2 supply device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531981A (en) * 2005-03-07 2008-08-14 キョントン ナビン コーポレーション リミテッド Hot water supply system with double pipe
US8573161B2 (en) 2005-03-07 2013-11-05 Kyungdong Navien Co., Ltd. Hot-water supply system having dual pipe
KR101243026B1 (en) 2011-04-18 2013-03-12 주식회사 경동나비엔 Boiler having condensed water evaporator
JP2013096609A (en) * 2011-10-29 2013-05-20 Noritz Corp Heat exchanger and water heating device including the same
JP2013096610A (en) * 2011-10-29 2013-05-20 Noritz Corp Water heater
JP2013231558A (en) * 2012-04-28 2013-11-14 Noritz Corp Water heating device
JP2015183894A (en) * 2014-03-20 2015-10-22 株式会社ノーリツ Hot-water supply device
JP2016044955A (en) * 2014-08-26 2016-04-04 大阪瓦斯株式会社 Hot water supply device
CN109140755A (en) * 2018-10-11 2019-01-04 浙江建设职业技术学院 A kind of gas heater waste heat reclaiming system and method
CN109282496A (en) * 2018-10-18 2019-01-29 高月云 A kind of latent heat type heat exchanger and water heater
JP7525786B2 (en) 2020-09-28 2024-07-31 株式会社ノーリツ Combustion heat source and CO2 supply device

Similar Documents

Publication Publication Date Title
JP4099141B2 (en) Hot water equipment
US10890356B2 (en) Heat exchange device and heat source machine
JP2005180778A (en) Water heating appliance
US6971335B2 (en) Water heater
JP2002267273A (en) Hot water supply apparatus
JP4086455B2 (en) Water heater
JP2003161527A (en) Heat exchange device
JP2003014309A (en) Heat exchanger
JP4099139B2 (en) Water heater
JP4301718B2 (en) Water heater
JP4728056B2 (en) Hot water equipment
JP4262897B2 (en) Water heater
JP4099140B2 (en) Hot water equipment
KR100999996B1 (en) High efficiency condensing water heater
JP4470139B2 (en) Natural combustion water heater
JP2002333212A (en) Water heater
JP3991016B2 (en) Water heater
JP2002048413A (en) Water heater
JP6449590B2 (en) Water heater
KR200202937Y1 (en) Heat Exchanger Having The Many Route Condensing Gas Boiler
JP2004150680A (en) Water heater
JPH09126554A (en) Heat exchange equipment
JP2002130829A (en) Heat source machine
JP6334322B2 (en) Water heater
JP2004093129A (en) Water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701