JP2005173684A - 光学式座標入力装置 - Google Patents
光学式座標入力装置 Download PDFInfo
- Publication number
- JP2005173684A JP2005173684A JP2003408782A JP2003408782A JP2005173684A JP 2005173684 A JP2005173684 A JP 2005173684A JP 2003408782 A JP2003408782 A JP 2003408782A JP 2003408782 A JP2003408782 A JP 2003408782A JP 2005173684 A JP2005173684 A JP 2005173684A
- Authority
- JP
- Japan
- Prior art keywords
- light
- coordinate
- coordinate input
- pointing tool
- indicator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Position Input By Displaying (AREA)
Abstract
【課題】 指示具の姿勢によらない信頼性の高い座標入力装置を提供する。
【解決手段】 入力面から所定領域はなれた位置の光ビームを遮光、或いは光ビームを放射する事で座標を検出する座標検出方法においては、ペン傾きにより、指示具の指示位置座標と、検出される位置座標に誤差が発生する。そこで、指示具の光遮光部分と高さの異なる位置に光放射手段を指示具に設け、遮光位置/発光位置を交互に検出する事で、ペン傾き情報を得、所定角度以上での入力座標を無効とする他、得られた2つの座標値に基づき、実際に指示具が座標入力面を指示している位置の座標を算出して出力する。
【選択図】 図1
【解決手段】 入力面から所定領域はなれた位置の光ビームを遮光、或いは光ビームを放射する事で座標を検出する座標検出方法においては、ペン傾きにより、指示具の指示位置座標と、検出される位置座標に誤差が発生する。そこで、指示具の光遮光部分と高さの異なる位置に光放射手段を指示具に設け、遮光位置/発光位置を交互に検出する事で、ペン傾き情報を得、所定角度以上での入力座標を無効とする他、得られた2つの座標値に基づき、実際に指示具が座標入力面を指示している位置の座標を算出して出力する。
【選択図】 図1
Description
本発明は、座標入力装置、より詳しくは、入力面に指示具や指によって指示して座標を入力することにより、接続されたコンピュータを制御したり、文字や図形などを書き込むために用いられる座標入力装置であって、その性能を改善する技術に関するものである。
従来より、この種の装置として各種方式のタッチパネルが提案、または製品化されており、特殊な器具などを用いずに、画面上でPCなどの操作が簡単にできるため、広く用いられている。
方式としては、抵抗膜を用いたもの、また、超音波を用いたものなど、さまざまなものがあるが、光を用いたものとして、座標入力面外側に再帰性反射シートを設け、光を照明する手段からの光を再帰反射シートで反射し、受光手段により光量分布を検出する構成において、入力領域内にある、指などで遮蔽された領域の角度を検出し、遮蔽位置つまり入力位置の座標を決定するものが、知られている(例えば特許文献1参照)。また、国内においても再帰反射部材を入力領域周辺に構成し、再帰反射光が遮光される部分の座標を検出する装置が開示されており、例えば、微分などの波形処理演算によって遮光部分のピークを検出することにより、遮光部分の角度を検出する方式(例えば特許文献2参照)、あるいは特定のレベルパターンとの比較によって遮光部位の一方の端と他方の端を検出しそれらの座標の中心を検出する構成(例えば特許文献3参照)が示されている。
また、座標入力面上で座標入力動作を行う事で、ペンから放射光を発光し、前述ペンの位置座標を求めるため、座標入力面の外側に複数配置された検出ユニットで該放射光を受光して電気信号に変換し、この電気信号を処理して位置座標を算出する方式も開示されている(例えば特許参考文献4参照)。
米国特許USP4507557
特許公開番号2000-105671
特許公開番号2001-142642
特許公開番号H11-3170
しかしながら、前述した光の遮光に基づき遮光位置を検出する座標検出方式にあっては、入力面より所定距離離れた位置(入力面よりの高さL0)に検出用の光束を設け、その光束を遮蔽物により遮蔽する事で、その遮蔽位置を検出する。従って、検出された位置座標は、座標入力面よりの高さL0の位置における遮光部位の位置座標であって、実際に例えば指示具が座標入力面に接触している位置(高さL0が『0』の状態)の座標値を検出しているわけではない。従って指示具が座標入力操作の際に傾けば、検出される座標値と実際に指示具が指示している位置座標とは異なる結果となり、しかもし治具の傾きが大きくなるにつれ、その誤差も大きくなる課題を有する。
逆に言えば、操作者の意図を忠実に入力するためには、操作者は指示具を常に入力面に対して垂直となる方向に固定して入力操作を行わなければならず、著しい操作性の低下をまねく。
上述の課題を回避/改善するためには、入力面よりの高さh0、及び光束の幅をできるだけ小さくすることで、指示具の傾きの影響を低下させることができるが、例えば光束の幅をほぼゼロにする(ゼロに近づける)ことは、発光素子や光学系が複雑になる等の課題を有し、安価に装置を製造する事が困難となる。
また、指示具の発光位置を検出してその発光位置を算出する座標入力装置にあっては、発光部位をできるだけ指示具の先端部に設けることで、指示具の傾きの影響を抑制する事ができるが、実際には発光素子の形状、投射方向を設定するための光学系の形状、指示具が入力面と接触しているかを検知するスイッチ手段、あるいは、発光素子を含む前記光学系やスイッチ手段を、操作者が使用するときの衝撃や摩耗(筆記動作により、その接触部は常に摩耗する)から保護する保護部材が必須であり、良好な操作性を得る事ができる指示具形状にする事は困難であった。
以上の課題を解決するために本願発明は、指示具の動作状態に応じて点灯する発光手段を有する指示具を用いて座標入力を行う事ができる座標入力装置であって、座標入力有効領域の周辺部に設けられ再帰的に入射光を反射する再帰反射手段と、該再帰性反射手段に向けて座標入力面に略平行に光束を投光する投光手段と、該再帰反射手段で再帰反射した光束を受光する受光手段とを有し、指示具によって前記光束を遮光することによって、前記受光手段から得られる光量分布の変化から、指示具による遮光部分の位置座標を算出する位置算出手段と、指示具の動作状態に応じて点灯する指示具の発光手段からの光を前記受光手段で検出する事によって、指示具による発光部分の位置座標を算出する第二の位置算出手段を有し、両者の座標値を比較する事で、座標値の有効性を判定できる様に構成した。
さらには、前記第一の投光手段を遮光する遮光部位の座標入力面からの高さと、前記第二の投光手段の座標入力面からの高さが異なる様に設定する事で、前記第一の座標算出手段より得られた座標値と、前記第二の座標算出手段より得られた座標値とから指示具の傾きを検出できるように構成し、指示具の傾きが所定の角度以上をもって入力された座標値を無効とする様に構成することで、誤動作を防止できるように構成した。さらには、前記第一の座標算出手段より得られた座標値と、前記第二の座標算出手段より得られた座標値とから、指示具が実際に座標入力面を指示している位置座標を算出する様に構成することで、操作者の意図した位置座標入力を忠実に、操作性を低下させること無く実現できるようにした。
以上述べたように本願発明の座標入力装置にあっては、指示具5による座標入力を行う際に、指示具5の姿勢によらず、実際に指示具5の先端部が座標入力面を指示している位置座標を正確に算出する事が可能なので、信頼性の高い座標入力を行えるようになった。さらには、操作者は指示具5の姿勢を意識する事無く入力作業を行えるので、操作性の向上という点でも優れた効果が得られる様になった。
以下、図面を参照して、本発明の実施の形態を詳細に説明する。
まず、本発明に係る座標入力装置の概略構成、並びに第一の座標算出手段いついて説明する。図2中1L、1Rは投光手段および検出手段を有するセンサユニット1であり、本実施例の場合、図示の如く座標入力有効領域4のX軸に平行に、かつY軸に対称な位置に所定距離離れて配置されている。センサユニット1は制御・演算ユニット2に接続され、制御信号を制御・演算ユニット2から受け取ると共に、検出した信号を制御・演算ユニット2に送信する。3は入射光を到来方向に反射する再帰反射面を有する反射手段であり、左右それぞれのセンサユニット1から略90°範囲に投光された光を、センサユニット1に向けて再帰反射する。
反射された光は、集光光学系とラインCCD等によって構成されたセンサユニット1の検出手段によって1次元的に検出され、その光量分布が制御・演算ユニットに送られる。
前述した座標入力有効領域4は、PDPやリアプロジェクタ、LCDパネルなどの表示装置の表示画面で構成することで、インタラクティブな入力装置として、利用可能となる。
このように構成することで、入力領域に指などによる入力指示がなされると、上記投光手段から投光された光が、指等の指示手段によって遮られ、センサユニット1の検出手段ではその部位のみの光(再帰反射による反射光)を検出する事ができなくなり、その結果、どの方向からの光が検出できなかったかを判別することが可能となる。つまり制御・演算ユニット2の演算制御手段は、左右のセンサユニット1の光量変化から入力指示された部分の遮光範囲を検出し、その遮光範囲の情報から遮光位置の方向(角度)をそれぞれ導出する。さらに、前記導出された方向(角度)、及びセンサユニット1L、及び1R間の距離情報等から、入力エリア上の座標位置を算出すると共に、表示装置に接続されているPCなどに、USBなどのインタフェースを経由して座標値を出力する。
このようにして、指等の指示具によって、画面上に線を描画したり、表示画面上のアイコン操作によりPCの制御等が可能となる。
以降、各部分毎にその構成、動作について詳細説明を行う。
<センサユニット1の詳細説明>
図3はセンサユニット1中における投光手段の構成例を示したものである。
図3はセンサユニット1中における投光手段の構成例を示したものである。
図3−1は投光手段を正面方向(座標入力面6に対し垂直方向)から見た図であり、図中31は赤外光を発する赤外LEDであり、発光した光は投光レンズ32によって、略90°範囲に光を投光する。一方、図3−2は同じ構成を横から見た側面図であり(入力面に対し水平方向)、この方向では、赤外LED31からの光は上下方向に制限された光束として投光され、主に、再帰反射手段3に対して光が投光されるように構成されている。
図4はセンサユニット1中における検出手段を図示したのものであり、図3と同様に、図4-1は正面方向(座標入力面6に対して垂直方向)から、また図4-2はその側面図である。なお正面図4-1中の破線部分は、側面図4-2に示される前述したセンサユニット1中の投光手段の配置を示すものである。本実施例の場合、投光手段と検出手段を重ねて配置しており、その距離Lは、投光手段から再帰反射手段3までの距離に比べて十分に小さな値であり、距離Lを有していても十分な再帰反射光を検出手段で検知することが可能な構成となっている。
また、図4-2において本願発明の検出手段は、1次元のラインCCD41および集光光学系としてのレンズ42,43および、入射光の入射方向を制限する絞り44、可視光など余分な光の入射を防止する赤外フィルター45からなり、投光手段で投光された光は、再帰反射部材3によって反射され、前述赤外フィルター45、絞り44を抜けて集光用レンズ42,43によって、CCDの検出面上に集光される。
同様に図4-1において説明を加えると、前述した略90°方向に投光された投光手段の光は、再帰反射部材3によって反射され、前述赤外フィルター45、絞り44を抜けて集光用レンズ42,43によって、反射光の入射角に応じたCCD41の画素上に結像することになる。従って、CCD41の出力信号は、反射光の入射角に応じた光量分布を出力することになるので、CCD41画素番号が角度情報を示すことになる。
<制御・演算ユニットの説明>
図2の制御・演算ユニット2とセンサユニット1L、 センサユニット1Rの間では、CCDの制御信号、CCD用クロック信号、CCDの出力信号、および、LEDの駆動信号がやり取りされている。
図2の制御・演算ユニット2とセンサユニット1L、 センサユニット1Rの間では、CCDの制御信号、CCD用クロック信号、CCDの出力信号、および、LEDの駆動信号がやり取りされている。
図5は制御・演算ユニットのブロック図である。CCD制御信号は、ワンチップマイコンなどで構成される演算制御回路83から出力されており、CCDのシャッタタイミングや、データの出力制御などをおこなっている。CCD用のクロックはクロック発生回路87からセンサユニットに送られると共に、CCDとの同期をとって、各種制御を行うために、演算制御回路83にも入力されている。
LED駆動信号は演算制御回路83からLED駆動回路84L、84Rをへて、センサユニット1中の赤外LED31に供給されている。
センサユニット1の検出手段であるCCD41からの検出信号は、制御・演算ユニット2中のADコンバータ81L、81Rに入力され、演算制御回路83からの制御によって、デジタル値に変換される。変換されたデジタル値は必要に応じてメモリ82に記憶され、後述する方法で角度算出、さらには座標値が求められ、その結果を外部PCなどにシリアルインタフェース88などを介して出力される。
<光量分布検出の説明>
図6は制御信号のタイミングチャートである。
図6は制御信号のタイミングチャートである。
91,92,93がCCD制御用の制御信号であり、91SH信号の間隔で、CCDのシャッタ解放時間が決定される。92、93はそれぞれ左右のセンサへのゲート信号であり、CCD内部の光電変換部の電荷を読み出し部へ転送する信号である。
94、95は左右のLEDの駆動信号であり、SHの最初の周期で一方のLED(センサユニット1L中のLED)を点灯するために94の駆動信号がLED駆動回路(この場合LED駆動回路84L)を経てLEDに供給される。次の周期でもう一方のLED(この場合、センサユニット1R中のLED)が駆動される。双方のLEDの駆動が終了した後に、CCDの信号が左右のセンサから読み出される。
読み出される信号は、例えば指、或いは指示具等による入力がない場合、つまり遮光部分が無い場合には、それぞれのセンサからの出力として、図7-1のような光量分布が得られる。もちろん、このような分布がどのシステムでも必ず得られるわけではなく、投光手段から再帰反射シートまでの距離(光路長)、再帰反射シートの特性(例えば再帰反射部材の入射角による再帰反射効率に依存)やLEDを含む投光手段の特性、また、経時変化(反射面の汚れなど)によって、この分布は変化する。
図7-1において、Aのレベルが最大光量を検出した時のレベル、Bのレベルが最低レベルであるものとすれば、反射光のない状態では、得られるレベルはB付近になり、反射光量が増えるほどAのレベルに近づく事になる。この様にCCDから出力されたデータは、逐次AD変換されCPUにデジタルデータとして取り込まれる。
図7-2は指等で入力を行った、つまり、反射光を遮った場合の出力の例である。Cの部分が指などで反射光が遮られたため、その部分のみ光量が低下している。
検出は、この光量分布の変化を検知して行うものであり、具体的に説明すれば、まず図7-1のような入力の無い初期状態(以後、初期状態で得られたデータを初期データと言う)を予めメモリ82に記憶しておき、それぞれのサンプル期間で得られるデータとあらかじめ記憶しておいた初期データとの差分を算出する事で、図7-2のような変化があるかどうかを判別する。
<角度計算の説明>
角度計算にあたっては、まず、遮光範囲を検出する必要がある。
角度計算にあたっては、まず、遮光範囲を検出する必要がある。
先にも述べた用に、光量分布は経時変化などで一定ではないため、システムの起動時などに前述した初期データを記憶する事が望ましい。つまり、工場等の出荷時に初期データを設定し、そのデータの更新が、逐次行われなければ、例えば所定の位置の再帰反射面にゴミが付着した場合、その部分での再帰反射効率が低下するので、あたかもその位置(センサから見た方向)で座標入力動作が行われた、すなわち誤検出してしまうと言う重大な結果を引き起こす。従って、システムの起動時などに前述した初期データを記憶する事で、再帰反射面が経時的にほこり等で汚れて再帰反射効率が落ちていても、その状態を初期状態として設定しなおすことができるので、誤動作をする事が無くなると言う優れた利点が得られる様になる。
さて、電源投入時、入力の無い(遮光部分が無い)状態で、まず投光手段から照明すること無しにCCDの出力をAD変換して、これをBas_data[N]として、メモリ82に記憶する。これは、CCD41のバイアスのばらつき等を含んだデータとなり、図7-1のBのレベル付近のデータとなる。ここで、Nは画素番号であり、有効な入力範囲に対応する画素番号が用いられる。次に、投光手段から照明した状態での光量分布を記憶する。図7-1の実線で表されたデータであり、Ref_data[N]とし、初期データの記憶を完了する。
これらのデータを用いてまずは入力が成されたか、遮光範囲があるかどうかの判定を行う。
あるサンプル期間のデータをNorm_data[N]とする。まず遮光範囲を特定するために、データの変化の絶対量によって、有無を判定する。これは、ノイズなどによる誤判定を防止し、所定量の確実な変化を検出するためである。変化の絶対量を各々の画素において以下の計算を行い、予め決定してある閾値Vthaと比較する。
Norm_data_a[N] = Norm_data[N] − Ref_data[N] (1)
従って、Norm_data_a[N]は各画素における絶対変化量に相当する事になる。
従って、Norm_data_a[N]は各画素における絶対変化量に相当する事になる。
この処理は、差をとり比較するだけなので、処理時間をさほど使わないので、入力の有無の判定を高速に行う事が可能である。
Vthaを初めて超えた画素が所定数を超えて検出されたときに入力があったと判定する。
次に、より高精度に検出するために、変化の比を計算して入力点の決定を行う。図8で121を再帰反射面とする。ここでα領域が汚れなどにより反射率が低下していたとすると、このときのRef _data[N]の分布は、図9−1のように、領域αの反射光量が少なくなる。この状態で、図8のように指などの指示具5が挿入され、ほぼ再帰反射部材の半分を覆ったとすると、反射光量は略半分となるため、図9−2の太線で示した分布Norm_data[N]が観測される。この状態に対して、式(1)を適用すると、図10−1のようになる。ここで、縦軸は初期状態との差分電圧になっている。
このデータに対して、閾値Vthaと比較すると、本来の入力範囲をはずれてしまうような場合(図10-1の破線領域)がある。もちろん、閾値Vthaをより小さな値に設定する事で、ある程度の検出は可能となるが、ノイズなどの影響を受ける可能性が大きくなり、座標算出性能を劣化させると言う弊害が発生する。そこで、指示具5によって遮られる光量は、α領域、β領域ともに最初の半分(α領域ではV1レベル相当、β領域ではレベルV2相当)であるので、次式で変化の比を計算する。
Norm_data_r[N] = Norm_data_a[N] / (Bas_data[N] - Ref_data[N]) (2)
この計算結果を示すと、図10−2のようになり、変動比であらわされるため、反射率が異なる場合でも、等しく扱う事が可能になり、このデータに対して、閾値Vthrを別途設定して、その立ち上がり部と立下り部の画素番号から、例えば両者の中央を入力画素として、高精度に画素情報が取得可能となる。
この計算結果を示すと、図10−2のようになり、変動比であらわされるため、反射率が異なる場合でも、等しく扱う事が可能になり、このデータに対して、閾値Vthrを別途設定して、その立ち上がり部と立下り部の画素番号から、例えば両者の中央を入力画素として、高精度に画素情報が取得可能となる。
ところで、図10−2は説明のために模式的に描いたものであり、実際の検出信号波形は詳細に表示すると、図11の様になる。いま閾値Vthrと比較して遮光領域の立ちあがり部分は、Nr番目の画素で閾値Vthrを越えたとし、Nf番の画素で閾値Vthrを下まわったと仮定する。この時、出力すべきCCDの画素番号Npを、先に説明した様に、立ち上がり部と立下り部の画素番号の中央値として
Np = Nr + (Nf-Nr)/2 (3)
のように計算してもよいが、そうすると、CCDの画素間隔が出力画素番号の分解能になる。そこで、より高分解能に検出するために、画素の出力レベル情報を用いて演算を行う。
Np = Nr + (Nf-Nr)/2 (3)
のように計算してもよいが、そうすると、CCDの画素間隔が出力画素番号の分解能になる。そこで、より高分解能に検出するために、画素の出力レベル情報を用いて演算を行う。
図11において、画素番号NrのCCD出力レベルをLr、画素番号Nr-1の出力レベルをLr-1とする。同様に、画素番号Nfの出力レベルをLf、画素番号Nf-1の出力レベルをLf-1とする。このとき検出すべき画素番号を、それぞれのNrv、Nfvとすれば、
Nrv = Nr-1 + ( Vthr Lr-1 ) / ( Lr Lr-1 ) (4)
Nfv = Nf-1 + ( Vthr Lf-1 ) / ( Lf Lf-1 ) (5)
と計算すれば、出力レベルに応じた仮想の画素番号、つまりCCDの画素番号よりも細かい画素番号を取得でき、出力される仮想中心画素Npvは、
Npv = Nrv + (Nfv-Nrv)/2 (6)
で決定される。
Nrv = Nr-1 + ( Vthr Lr-1 ) / ( Lr Lr-1 ) (4)
Nfv = Nf-1 + ( Vthr Lf-1 ) / ( Lf Lf-1 ) (5)
と計算すれば、出力レベルに応じた仮想の画素番号、つまりCCDの画素番号よりも細かい画素番号を取得でき、出力される仮想中心画素Npvは、
Npv = Nrv + (Nfv-Nrv)/2 (6)
で決定される。
このように、画素番号とその画素の出力レベルから仮想的な画素番号を計算することで、より分解能の高い検出が可能となる。
<CCD画素情報から角度情報への変換>
さて、得られた中央画素番号から、実際の座標値を計算するためには、前述の画素番号を角度情報に変換する必要がある。
さて、得られた中央画素番号から、実際の座標値を計算するためには、前述の画素番号を角度情報に変換する必要がある。
図12は得られた画素番号と角度Θの関係をプロットしたものである。この関係の近似式
Θ=f(N) (7)
を求め、この近似式よりデータの変換を行う。本願発明では、1次近似式を用いて近似できる様に、先に説明したセンサユニット1中の検出手段のレンズ群を構成するが、レンズの光学的収差等により、より高次な近似式を用いたほうが、より高精度に角度情報を得る事が可能となる場合がある。どのようなレンズ群を採用するかは、製造コストと密接に関連し、レンズ群の製造原価を下げる事によって一般的に発生する光学的な歪を、より高次の近似式を用いて補正する場合には、それなりの演算能力(演算速度)を要求されるので、目的とする製品に要求される座標算出精度を鑑みながら、その両者を適宜設定すれば良い。
Θ=f(N) (7)
を求め、この近似式よりデータの変換を行う。本願発明では、1次近似式を用いて近似できる様に、先に説明したセンサユニット1中の検出手段のレンズ群を構成するが、レンズの光学的収差等により、より高次な近似式を用いたほうが、より高精度に角度情報を得る事が可能となる場合がある。どのようなレンズ群を採用するかは、製造コストと密接に関連し、レンズ群の製造原価を下げる事によって一般的に発生する光学的な歪を、より高次の近似式を用いて補正する場合には、それなりの演算能力(演算速度)を要求されるので、目的とする製品に要求される座標算出精度を鑑みながら、その両者を適宜設定すれば良い。
一方、後述する方法で角度情報から座標値を算出する場合には、得られた画素番号から角度そのものを算出するよりも、その角度における正接(tangent)の値を求めるほうが、三角関数の演算を省略する事が可能となるので都合が良い。図13はこの観点に立ち、画素番号に対するtanθ値をプロットしたものであり、この関係より近似式を求め、その近似式を用いて画素番号からtanθ値への変換を行う。例えば、近似式として5次多項式を用いる場合には、係数が6個必要になるので、出荷時などにこのデータを不揮発性メモリーなどに記憶する。今5次多項式の係数をL5,L4,L3,L2,L1,L0とした時、tanθは
tanθ=(L5 *Npr + L4) *Npr + L3) *Npr + L2) *Npr + L1) *Npr + L0 (8)
で得られる。同様な演算を各々のセンサに対して行えば、それぞれの角度データを決定できる。
tanθ=(L5 *Npr + L4) *Npr + L3) *Npr + L2) *Npr + L1) *Npr + L0 (8)
で得られる。同様な演算を各々のセンサに対して行えば、それぞれの角度データを決定できる。
<座標計算方法の説明>
図14は画面座標との位置関係を示す図である。座標入力崇高エリア4の水平方向にX軸、垂直方向にY軸を、そして座標入力有効エリア4の中央を原点位置に配置するものとし、入力範囲4の上辺左右にセンサユニット1L、及びセンサユニット1RをY軸に対称に取り付け、そのセンサユニット間の距離をDsとする。また図示されている様に、センサユニット1のCCDの受光面は、その法線方向がX軸と45°の角度を成すように配置され、その法線方向を0°と定義する。この時角度の符号は、左側に配置されたセンサユニット1Lの場合には、時計回りの方向を『+』方向に、また右側に配置されたセンサユニット1Rの場合には、反時計回りの方向を『+』方向と定義する。さらには、図中P0は前述した各センサの法線方向の交点位置であり、Y軸方向の原点からの距離をP0yと定義する。この時、それぞれのセンサユニット1で得られた角度をθL、θRとして、検出すべき点Pの座標P(x,y)は、
図14は画面座標との位置関係を示す図である。座標入力崇高エリア4の水平方向にX軸、垂直方向にY軸を、そして座標入力有効エリア4の中央を原点位置に配置するものとし、入力範囲4の上辺左右にセンサユニット1L、及びセンサユニット1RをY軸に対称に取り付け、そのセンサユニット間の距離をDsとする。また図示されている様に、センサユニット1のCCDの受光面は、その法線方向がX軸と45°の角度を成すように配置され、その法線方向を0°と定義する。この時角度の符号は、左側に配置されたセンサユニット1Lの場合には、時計回りの方向を『+』方向に、また右側に配置されたセンサユニット1Rの場合には、反時計回りの方向を『+』方向と定義する。さらには、図中P0は前述した各センサの法線方向の交点位置であり、Y軸方向の原点からの距離をP0yと定義する。この時、それぞれのセンサユニット1で得られた角度をθL、θRとして、検出すべき点Pの座標P(x,y)は、
以上、指示具5による遮光位置を検出して、指示具5の位置座標を検出する座標入力装置、及び第一の座標算出手段について説明した。引き続き、指示具5から発せられる光の発光位置を検出する第二の座標算出手段について説明する。
本願発明の実施例における指示具5の構成について、図15を用いて説明すると、指示具5の先端部67が座標入力面6に接触したかを判定するスイッチ手段61を有する。指示具5は電池66、電池電圧を昇圧するためのコンバータ65、スイッチ信号を検出し、光のON/OFFを制御するペン制御回路64とペン先67に設けられたペン先スイッチ61、及び発光LED63からなる。ペン先スイッチ61をONすると、ペン制御回路は、LED63より光出力を放射し、放射された光出力は反射ブロック62により反射され、指示具56の軸方向に略垂直な方向に光を放射する。放射された光出力は、先に説明したセンサユニット1中のCCD41にて検出される。
今仮にセンサユニット1中の発光手からの投光が無いものと仮定して、CCD41の出力信号を説明すれば図16-1は、指示具5からの放射光が無い状態の出力信号、図16-2は指示具5からの放射光を検知した場合の出力信号である。
図7におけるCCD出力信号の説明と同様に、Aのレベルが最大光量を検出した時のレベル、Bのレベルが最低レベルであるものとすれば、指示具5からの発光が検知されない状態では、得られるレベルはB付近になり、指示具からの発光が検知されるに従ってAのレベルに近づく事になる。この様にCCDから出力されたデータは、逐次AD変換されCPUにデジタルデータとして取り込まれるが、図16-2においては、Cの部分で指示具5からの発光が検知されたことを示している。
位置検出は、この光量分布の変化を検知して行うものであり、例えば、まず図16-1のような入力の無い初期状態を予めメモリ82に記憶しておき、それぞれのサンプル期間で得られるデータとあらかじめ記憶しておいた初期データとの差分を算出する事で、図16-2のような変化があるかどうかを判別する。
この信号から、角度算出するにあたっては、先に説明した第一の座標算出手段におけるCCD出力信号の処理方法、算出されたCCD画素番号からの座標値算出方法を。応用/適用すればよいので、ここではその詳細説明を省略する。
以上述べたように、センサユニット1中の投光手段からの光を再帰反射部材3によって再帰反射させ、その光をセンサユニットで監視し、指示具5(指示具5は発光していない状態)による遮光によってその遮光位置を算出する第一の座標算出手段(方法)、並びに、指示具5の発光する光をセンサユニット1で検出(センサユニット1中の投光手段は投光を中止している状態)する第二の座標算出手段(方法)について説明した。しかしながら、センサユニット1中の投光手段の投光と、指示具5中の発光手段の発光が干渉すると、位置算出に影響を与える。従って、センサユニット1中の投光手段の投光と、指示具5中の発光手段の発光が干渉しないような仕組みが必要であり、この点についての説明を加えるものとする。
まずペン先スイッチ61をONすると、ペン制御回路は、その状態に応じた信号列の光出力をLED63を用いて外部に出力する。スイッチ信号は、外乱などの影響を受けにくいように、所定の周波数fで変調されている。この変調光は、図17に示すように受光IC8によって復調され、ビット列として制御ユニット2中のCPU83へと出力される。
CPU83は、先頭のスタートビットが検出されると、一定周期でのサンプリングを行い、各ビット位置の1,0を判定し、論値があっているか、また、ストップビットまで検出できたかなどの判断を行い、論理が間違っていた場合には、そのデータを破棄し、再度検出を行う。
実際の動作では、座標取得の発光(図5において、CPU83の制御に基づき動作するLED駆動回路84、及びLED駆動回路84によって駆動されるセンサユニット1中のLED31)と、ペン信号の発光とは同期が取れていないため、座標取得のための発光と、ペン発光が重なる場合が生じる。図18はそのような場合を示したものであり、上段がペン発光信号、下段が座標取得のためのLED31の発光信号94、95(図6参照)である。図26において、ペン発光信号がAの場合には、ペン発光と座標用発行のタイミングが確実にずれているため問題はないが、同図Bの場合にはペン発光の一部が、またCでは全部の発光が重なっている。このような重なりがあると座標取得用の信号に飽和が生じたり、あるいは、波形変形を引き起こし検出誤差の原因となりかねない。そこで、両者の発光が重ならないよう制御する必要がある。
図19はその一例を示すものである。図中510は受光IC8の出力、511はこの信号がアクティブの時には第一の座標算出手段による座標取得を禁止する座標取得禁止信号で、CPU83によって先頭の受光があってから一定時間アクティブ(この場合はLOW)となる。512、513は座標取得用の発光信号である。まず、制御ユニット2中のCPU83は、ある一定時間毎に座標取得をするために発光を行うが、その発光の前に指示具5の発光がないか調べる動作を行う。座標取得禁止信号511を監視し、これがアクティブでなければ、座標取得動作用発光を開始するが、座標取得禁止信号511がアクティブの場合には、座標取得禁止信号が非アクティブになるまで待ってから(図中A点)座標取得を行う。
以上の構成により、2つの座標値が得られることが説明され、この得られた座標値を比較する事によって、算出座標値の信頼性を検証でき、両者の値が所定値以上異なる場合には、例えば算出された座標値を無効として判定する。
さて図21は、指示具5が座標入力面6に対して角度Θ0だけ傾いている様子を示したものである。指示具5中の発光手段の発光位置は指示具5の先端部よりL0の位置に有り(図21(C)参照)、図21(A)に示されるように、指示具5が角度Θ0傾いた時の発光位置は、座標入力面よりL2の高さ位置となる。従って、第二の座標算出手段は、座標入力面6よりL2の高さにある発光部の位置座標P2を算出する事になる。同様に図21(B)に示されるように、第一の座標算出手段による遮光位置は、座標入力面6より高さL1の高さにあるセンサユニット1中の投光手段より発せられる光束の中心位置にあり、その結果として、第一の座標算出手段は座標入力面よりL1の高さにある遮光位置座標P1を算出する事になる。つまり、高さL0と高さL2が異なるように指示具の発光位置L0とセンサユニット1中の投光手段の光束の高さL1を異なるように設定すれば、操作者が指示具5を傾ける事によって、実際に指示している座標入力面の位置P0と算出された位置座標P1及びP2は異なる値となる。つまり、指示具5の傾き角度Θ0をより大きくすると、得られる座標値P1、P2と実際の指示位置座標P0の差はより大きくなり、操作者の意図する位置と異なる座標値が検出されるようになる。この現象を回避するためには、指示具5を常に垂直方向(Θ0=0)に保ち、座標入力を行う必要が有るが、この使い勝手は操作者にとって非常に悪いものとなる。そこで本願発明では、座標入力面6よりの高さが異なる位置の座標値を複数算出する事で、操作者が実際に指示している位置座標を、指示具の傾きに依存することなく正確に算出できるように構成したものである。
図20-1は、高さの異なる位置座標P1、P2より実際に指示している位置座標P0を算出するための説明図であり、説明を簡単にするために、X軸方向にペンが傾いたと仮定して説明する(この場合、Y軸方向には傾いていないので、第一の算出手段、第二の算出手段で得られるY座標値は同一値が得られる)。
図20-1において、座標X0は実際に指示具5の先端部が座標入力面6に接触している位置座標、座標X1は座標入力面6よりの高さL0において検出された第一の座標算出手段の座標値、座標X2は指示具5の先端部より距離L1の位置で検出される第二の座標算出手段の座標値を示している。
指示具5が座標入力面6の法線方向よりΘ0だけ傾いた時、座標入力面6と指示具の軸が成す角度をΘと定義すれば、
さて図20-2について説明をさらに加えると、L0=5mm、L1=20mmの場合で、例えばX2-X1の差の値が3mmの時はテーブルより、傾きは80°程度、もしくは20°程度となるが、座標入力の際の傾きはΘ=60〜90°と言う条件により、傾きはΘ=80°(Θ0=10°)と言う事になる。一方、X2-X1の差の値が7mm以上となる領域は、テーブルより略25°<Θ<60°(つまり30°<Θ0<65°)の範囲であり、通常筆記時に使う指示具の角度範囲を逸脱している事が検知できる。つまり、個の様な値が検知されたときには、検出された座標値は無効と判断して、座標値を出力しないように構成する事が可能となる効果が得られる。
以上は説明を簡略化するために、X軸方向にのみ指示具5が傾いた状態を想定して説明したが、X軸方向、Y軸方向の任意の方向に傾いた場合であっても、得られる2個の座標値を用いて、実際に指示具5が座標入力面と接触している位置座標値を算出できる事は、上記の説明より容易に理解される。
さて、図1はデータ取得から座標計算までの工程を示したフローチャートであり、本願発明の座標入力装置の一連の処理工程を詳述する。
まずS101で電源投入が行われると、S102で演算制御回路などのポート設定、タイマ設定などさまざまな初期化が行われる。S103は立ち上げ時のみに行う不要電荷除去のための準備である。CCDなどの光電変換素子においては、動作させていない時に不要な電荷が蓄積している場合があり、そのデータをそのままリファレンスデータとして用いると、検出不能、あるいは誤検出の原因となる。それを避けるために、前述した投光手段の照明無しの状態で、CCDからのデータをS103で予め設定された回数読み出す(S104)ことにより、CCDに蓄積されていた不要電荷の除去を行っている。S105は所定回数繰り返すための判断文である。S106は投射手段の照明無し状態(センサユニット1中の投光手段、及び指示具5中の発光手段の光放射が行われない状態)でのデータの取り込みであり、リファレンスデータとして上述したBas_data[N]の取得に相当し、S107にてメモリに記憶され、以降の計算に用いられる。
S108では、センサユニット1中の投光手段で照明したときの初期光量分布に相当するリファレンスデータRef_data[N]の取り込みを行い、S109にて同様にメモリーに記憶する。
以上のステップまでが、電源投入時の初期設定動作と言う事になるが、この初期設定動作は、リセットスイッチ等により操作者の意図によって動作するように構成しても良い事は言うまでも無く、この初期設定動作を経て、通常の取り込み動作状態に移行することになる。
まずS110で指示具5からの発光を検知するように動作し、S112にて有効な制御信号が取得されたかどうかを判定し、無ければS110、S111の動作を繰り返す。S111にて有効な制御信号が取得されたならば、制御信号発光の所定時間後に指示具5から座標取得用に発光される発光信号を取得するために、座標取得用発光期間中(図19参照)にセンサユニット1の受光手段を動作させ、例えば図16-2の様な信号を取得する。そして、S113にてこの信号及びs106、s107で記憶した照明無しのデータから、指示具5からの光を受光したCCD41の画素番号を決定し、s114にて第二の座標算出手段による位置座標検出が行われる。
その後、座標取得禁止信号511が非アクティブになるのを待ってから(図中A点)、s115にてセンサユニット1の投光手段より光を放射し、指示具5による光の遮光位置を検出するために、CCDデータを取得する。そしてS116にて、s115にて得られた信号、s106、s107で記憶した照明無しのデータ、及びS108、S109で記憶したセンサユニット1中の投光手段を投光した際のデータから、指示具5が該投光手段の光を遮光したCCD41の画素番号を決定し、S117にて第一の座標算出手段による位置座標検出が行われる。そして図20を用いて説明した通り、S118にて指示具5が実際に座標入力面を指示している位置を計算し、S119にてその情報を外部機器等に送信し、S110に戻る様に構成されている。
1L,1R センサユニット
2 制御ユニット
3 再帰反射部材
4 座標入力有効領域
5 指示具
6 表示面(座標入力面)
2 制御ユニット
3 再帰反射部材
4 座標入力有効領域
5 指示具
6 表示面(座標入力面)
Claims (4)
- 座標入力有効領域の周辺部に設けられ再帰的に入射光を反射する再帰反射手段と、該再帰性反射手段に向けて座標入力面に略平行に光束を投光する第一の発光手段と、該再帰反射手段で再帰反射した光束を受光する受光手段、指示手段によって前記第一の発光手段により投光された光束を遮光することによって生じる前記受光手段から得られる光量分布の変化により、指示手段による遮光部分の位置座標を算出する第一の位置算出手段、及び位置指示具の動作状態に応じて点滅する第二の発光手段を備える指示具からの光を受光する前記受光手段、前記第二の発光手段が発光する事によって前記受光手段から得られる光量分布の変化より、指示具による発光部分の位置座標を算出する第二の位置算出手段を有する事を特徴とする座標入力装置。
- 前記第一項記載の座標入力装置であって、前記第一の発光手段を遮光する遮光部位の座標入力面からの高さと、前記第二の発光手段の座標入力面からの高さが異なることを特徴とする座標入力装置。
- 前記第一項、第二項記載の座標入力装置であって、検出した座標値の有効性を判定する判定手段をさらに有する事を特徴とする座標入力装置。
- 前記第一、第二項、第三項記載の座標入力装置であって、前記第一の座標算出手段より得られた座標値と、前記第二の座標算出手段より得られた座標値とから、指示具が座標入力面を実際に指示している位置座標を算出する事を特徴とする座標入力装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003408782A JP2005173684A (ja) | 2003-12-08 | 2003-12-08 | 光学式座標入力装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003408782A JP2005173684A (ja) | 2003-12-08 | 2003-12-08 | 光学式座標入力装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005173684A true JP2005173684A (ja) | 2005-06-30 |
Family
ID=34730363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003408782A Withdrawn JP2005173684A (ja) | 2003-12-08 | 2003-12-08 | 光学式座標入力装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005173684A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8581892B2 (en) | 2010-06-11 | 2013-11-12 | Seiko Epson Corporation | Optical position detecting device and display device with position detecting function |
JP2015056112A (ja) * | 2013-09-13 | 2015-03-23 | 株式会社リコー | 座標検出システム、情報処理装置、プログラム、記憶媒体、座標検出方法 |
US9030443B2 (en) | 2010-06-11 | 2015-05-12 | Seiko Epson Corporation | Optical position detecting device and display device with position detecting function |
JP2015158885A (ja) * | 2014-01-21 | 2015-09-03 | セイコーエプソン株式会社 | 位置検出装置、プロジェクター、位置検出システム、及び、位置検出装置の制御方法 |
US9575574B2 (en) | 2014-01-07 | 2017-02-21 | Ricoh Company, Ltd. | Coordinate detection system, coordinate detection method, and information processing device |
-
2003
- 2003-12-08 JP JP2003408782A patent/JP2005173684A/ja not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8581892B2 (en) | 2010-06-11 | 2013-11-12 | Seiko Epson Corporation | Optical position detecting device and display device with position detecting function |
US9030443B2 (en) | 2010-06-11 | 2015-05-12 | Seiko Epson Corporation | Optical position detecting device and display device with position detecting function |
JP2015056112A (ja) * | 2013-09-13 | 2015-03-23 | 株式会社リコー | 座標検出システム、情報処理装置、プログラム、記憶媒体、座標検出方法 |
US9575574B2 (en) | 2014-01-07 | 2017-02-21 | Ricoh Company, Ltd. | Coordinate detection system, coordinate detection method, and information processing device |
JP2015158885A (ja) * | 2014-01-21 | 2015-09-03 | セイコーエプソン株式会社 | 位置検出装置、プロジェクター、位置検出システム、及び、位置検出装置の制御方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4125200B2 (ja) | 座標入力装置 | |
JP4405766B2 (ja) | 座標入力装置、座標入力方法 | |
JP5127337B2 (ja) | 座標入力装置及びその制御方法、コンピュータプログラム | |
JP5489886B2 (ja) | 座標入力装置、該装置における受光装置、及びその製造方法 | |
JP5591069B2 (ja) | 座標入力装置及びその制御方法、プログラム | |
JP2011128991A (ja) | 座標入力装置およびその制御方法 | |
JP2005276019A (ja) | 光学式座標入力装置 | |
JP2005173684A (ja) | 光学式座標入力装置 | |
JP4968915B2 (ja) | 座標入力装置、座標検出方法、及びコンピュータプログラム | |
JP2006099273A (ja) | 座標入力装置及びその方法 | |
JP5049747B2 (ja) | 座標入力装置及びその制御方法、プログラム | |
JP2004185283A (ja) | 光学式座標入力装置 | |
JP2005165830A (ja) | 光学式座標入力装置 | |
JP2004326232A (ja) | 座標入力装置 | |
JP2005128693A (ja) | 座標入力装置及びその制御方法、プログラム | |
JP2005346230A (ja) | 光学式座標入力装置 | |
JP2006059153A (ja) | 光学式座標入力装置 | |
JP5738112B2 (ja) | 座標入力装置及びその制御方法、プログラム | |
JP5865053B2 (ja) | 座標入力装置、座標入力装置の制御方法、およびプログラム | |
JP2006350908A (ja) | 光学式情報入力装置 | |
JP4423003B2 (ja) | 座標入力装置及びその制御方法、プログラム | |
JP2005071022A (ja) | 座標入力装置、座標入力方法 | |
JP4125162B2 (ja) | 座標入力装置 | |
JP4423113B2 (ja) | 座標入力装置及びその制御方法、プログラム | |
JP2005346231A (ja) | 光学式座標入力装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20070306 |