[go: up one dir, main page]

JP2005155944A - Device and method of monitoring exhaust gas duct - Google Patents

Device and method of monitoring exhaust gas duct Download PDF

Info

Publication number
JP2005155944A
JP2005155944A JP2003391472A JP2003391472A JP2005155944A JP 2005155944 A JP2005155944 A JP 2005155944A JP 2003391472 A JP2003391472 A JP 2003391472A JP 2003391472 A JP2003391472 A JP 2003391472A JP 2005155944 A JP2005155944 A JP 2005155944A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas duct
duct
monitoring
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003391472A
Other languages
Japanese (ja)
Other versions
JP4188214B2 (en
Inventor
Akira Noma
野間  彰
Tomohiro Harada
朋弘 原田
Keita Inoue
敬太 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003391472A priority Critical patent/JP4188214B2/en
Publication of JP2005155944A publication Critical patent/JP2005155944A/en
Application granted granted Critical
Publication of JP4188214B2 publication Critical patent/JP4188214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Incineration Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device and a method of monitoring an exhaust gas duct, which make it possible to monitor the inside of the exhaust gas duct excellently even in the exhaust gas having a high soot-and-dust atmosphere. <P>SOLUTION: The device of monitoring an exhaust gas duct which monitors the inside of the exhaust gas duct 10 provided on the side of a slag outlet port 31 of a melting furnace 30 is configured so that a transparent window (inspection window) 12 above a vertically erected part 10a of an exhaust gas duct 10 which communicates with the slag outlet port 31; at least a duct region from the height of the slag outlet port to the lower portion thereof, among the vertically erected part 10a, is defined as a field-of-view range 21; and an infrared camera 20 which can pick up images is arranged outside the transparent window 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、溶融炉に付設された排ガスダクトの内部を監視する装置及び方法に関し、特に、排ガス中に含まれる塩化物等が冷却され、ダクト内部に付着した付着物の状況を監視する排ガスダクトの監視装置及び監視方法に関する。   The present invention relates to an apparatus and method for monitoring the inside of an exhaust gas duct attached to a melting furnace, and in particular, an exhaust gas duct for monitoring the state of deposits adhered to the inside of a duct after chlorides and the like contained in the exhaust gas are cooled. The present invention relates to a monitoring apparatus and a monitoring method.

従来、一般廃棄物や産業廃棄物、またはこれらを焼却処理した際に発生する焼却灰は、溶融炉により溶融固化して処理されている。溶融炉には、例えば重油等を燃料とするバーナ式溶融炉や、電気を熱源とした電気抵抗式溶融炉やプラズマ式溶融炉等のように様々な種類が存在する。
図8は溶融炉の一例であるプラズマアーク式溶融炉を用いた焼却灰の処理システムを示し、焼却灰サイロ40からプラズマアーク式溶融炉30に投入された焼却灰は、該溶融炉30にて溶融、スラグ化される。
Conventionally, general waste and industrial waste, or incineration ash generated when these are incinerated, are melted and solidified by a melting furnace. There are various types of melting furnaces such as a burner type melting furnace using heavy oil as a fuel, an electric resistance type melting furnace using electricity as a heat source, a plasma type melting furnace, and the like.
FIG. 8 shows an incineration ash treatment system using a plasma arc melting furnace which is an example of a melting furnace, and the incineration ash charged into the plasma arc melting furnace 30 from the incineration ash silo 40 is stored in the melting furnace 30. Melt and slag.

かかるプラズマアーク式溶融炉30は、炉本体33の天井壁を貫通して配設された主電極34と、該主電極34と対向して炉底に配設された炉底電極35とを有し、これらの電極間に直流電圧を印加してプラズマアークを発生させ、焼却灰を加熱溶融する。溶融した焼却灰は、無機物が溶融した溶融スラグ37と、重金属類を含み比重が大である溶融メタル36とに分離して炉底部に層状に溜まる。上層の溶融スラグ37は出滓口31の出滓樋32から、その直下に設けられた不図示の冷却水槽内に落下して、水冷された後に空冷コンベヤ41により空冷されスラグ42として回収される。   The plasma arc melting furnace 30 has a main electrode 34 disposed through the ceiling wall of the furnace body 33, and a furnace bottom electrode 35 disposed on the bottom of the furnace so as to face the main electrode 34. Then, a direct current voltage is applied between these electrodes to generate a plasma arc, and the incinerated ash is heated and melted. The molten incineration ash is separated into a molten slag 37 in which an inorganic substance is melted and a molten metal 36 containing heavy metals and having a large specific gravity, and accumulates in a layered manner at the bottom of the furnace. The upper molten slag 37 falls from a tap 32 of the tap 31 into a cooling water tank (not shown) provided immediately below, and is cooled with water and then cooled by an air-cooling conveyor 41 and recovered as a slag 42. .

一方、溶融炉30内で発生した排ガスは排ガスダクト10よりバグフィルタ43に送給され、該バグフィルタ43で除塵された後に湿式洗煙塔44にて浄化され、外部に排出される。
このとき、出滓樋32や排ガスダクト10の出滓口付近には、溶融スラグ37が堆積固化した付着物15が形成される。これは、出滓時の溶融状態が悪化した場合に、出滓樋32付近で溶融スラグが冷却固化してしまうためである。
また別の原因として、排ガス中に含まれる低沸点の重金属類や塩化物等が排ガスダクト10にて冷却されて析出し、ダクト内壁に付着して流下し、排ガス流量が少なく比較的温度の低い出滓口付近で冷却固化することが考えられる。
On the other hand, the exhaust gas generated in the melting furnace 30 is sent from the exhaust gas duct 10 to the bag filter 43, and after being removed by the bag filter 43, the exhaust gas is purified by the wet smoke tower 44 and discharged outside.
At this time, the adhering matter 15 in which the molten slag 37 is deposited and solidified is formed in the vicinity of the outlet of the outlet 32 and the exhaust gas duct 10. This is because the molten slag is cooled and solidified in the vicinity of the brewing 32 when the molten state at the time of brewing deteriorates.
Another cause is that low boiling point heavy metals and chlorides contained in the exhaust gas are cooled and deposited in the exhaust gas duct 10 and adhere to the inner wall of the duct and flow down, the exhaust gas flow rate is small and the temperature is relatively low. It is possible to cool and solidify near the tap.

このように排ガスダクト10の付着物15が成長すると、排ガスダクトの閉塞を招き、排気状態やスラグの出滓状況が悪化して炉の運転に支障をきたす惧れがある。
そこで、炉の状態を監視するために撮像手段を利用した方法が種々提案されている。例えば特開2001−330220号公報(特許文献1)では、出滓口と対面する側の壁面にテレビカメラを設けて溶融スラグの溶融状態を監視し、出滓状況を把握するようにしている。また、特願2003−302024号公報(特許文献2)には、スラグ排出部を撮像可能な赤外線カメラ又はテレビカメラを設けて壁面への付着状況を監視する装置が開示されている。
If the deposit 15 on the exhaust gas duct 10 grows in this way, the exhaust gas duct is blocked, and the exhaust state and the slag outflow condition may deteriorate, which may hinder the operation of the furnace.
Therefore, various methods using an imaging means have been proposed for monitoring the state of the furnace. For example, in Japanese Patent Application Laid-Open No. 2001-330220 (Patent Document 1), a television camera is provided on the wall surface facing the tap outlet to monitor the molten state of the molten slag so as to grasp the tap output status. Japanese Patent Application No. 2003-302024 (Patent Document 2) discloses an apparatus for monitoring an adhesion state on a wall surface by providing an infrared camera or a television camera capable of imaging a slag discharge part.

特開2001−330220号公報JP 2001-330220 A 特願2003−302024号公報Japanese Patent Application No. 2003-302024

撮像手段を利用した従来の監視方法は、出滓口付近におけるスラグ溶融状態の把握、又は出滓時における溶融スラグの付着、固化状況の把握を目的としており、図9に示されるように赤外線カメラ200を出滓口と対面する側の壁面に設置して視野範囲210を得ていた。
しかし上記したように、壁面への付着物の堆積は、排ガス中に含まれる揮散物の析出が主な原因とされるが、従来の監視技術では排ガスダクト内部まで監視を行なうことはしていない。これは、排ガスダクト内部は排ガスに含まれる高濃度の煤塵のために撮像手段で監視することは困難であるためと考えられる。
そこで、本発明は上記従来技術の問題点に鑑み、高煤塵雰囲気の排ガス中であっても良好に排ガスダクト内部の監視を行なうことができる排ガスダクトの監視装置及び監視方法を提供することを目的とする。
The conventional monitoring method using the imaging means is aimed at grasping the molten state of the slag in the vicinity of the taphole or the adhesion and solidification state of the molten slag at the time of the tapping. As shown in FIG. The field-of-view range 210 was obtained by installing 200 on the wall on the side facing the tap hole.
However, as described above, the deposition of deposits on the wall surface is mainly caused by the deposition of volatilized substances contained in the exhaust gas, but the conventional monitoring technology does not monitor the exhaust gas duct. . This is thought to be because the inside of the exhaust gas duct is difficult to monitor with the imaging means because of high-concentration dust contained in the exhaust gas.
In view of the above-described problems of the prior art, an object of the present invention is to provide a monitoring device and a monitoring method for an exhaust gas duct that can satisfactorily monitor the inside of the exhaust gas duct even in exhaust gas in a high dust atmosphere. And

本発明はかかる課題を解決するために、第1の発明として、
溶融炉の出滓口側に設けられた排ガスダクトの内部を監視する排ガスダクトの監視装置において、
前記出滓口に連通する排ガスダクトの縦立部の上方に透過窓を設けるとともに、該縦立部のうち少なくとも前記出滓口高さから該出滓口下方までのダクト領域を撮像可能な赤外線カメラを前記透過窓の外側に配設したことを特徴とする。
In order to solve this problem, the present invention provides the first invention as follows:
In the exhaust gas duct monitoring device for monitoring the inside of the exhaust gas duct provided on the outlet side of the melting furnace,
Infrared rays that provide a transmission window above the vertical portion of the exhaust gas duct that communicates with the tap and that can image at least the duct area of the vertical portion from the height of the tap to the bottom of the tap The camera is disposed outside the transmission window.

かかる発明によれば、赤外線カメラにより排ガスダクト内を可視化しているため、煤塵や水蒸気粒子の影響が小さく、ダクト内を良好に視認することができる。また、出滓口に連通する排ガスダクトの縦立部は、排ガス中に含まれる揮散物が冷却されて析出しやすく、付着物が付き易い。特に、該縦立部のうち前記出滓口高さから該出滓口下方までのダクト内周壁は、下部に冷却水槽や水噴霧ノズル等の溶融スラグの冷却手段が存在し、また高温排ガスの通気量が少ないため、付着物により最も閉塞し易い。従って、前記ダクト領域を視野範囲とする赤外カメラを設置することにより、排ガスダクトの不具合を早期に発見することができる。
尚、前記赤外線カメラは、波長約8〜14μmの長波長領域の赤外線を利用することが好適である。
According to this invention, since the inside of the exhaust gas duct is visualized by the infrared camera, the influence of soot and water vapor particles is small, and the inside of the duct can be viewed well. In addition, in the vertical portion of the exhaust gas duct communicating with the tap outlet, the volatilized substances contained in the exhaust gas are easily cooled and deposited, and deposits are easily attached. In particular, the duct inner peripheral wall from the outlet height to the lower portion of the outlet of the vertical portion has a cooling means for molten slag such as a cooling water tank and a water spray nozzle at the bottom, Since the amount of ventilation is small, it is most likely to be clogged with deposits. Therefore, by installing an infrared camera having the duct area as the visual field range, it is possible to find out a defect of the exhaust gas duct at an early stage.
The infrared camera preferably uses infrared light having a long wavelength region with a wavelength of about 8 to 14 μm.

また第2の発明として、溶融炉の出滓口側に設けられた排ガスダクトの内部を監視する排ガスダクトの監視装置において、
前記出滓口に連通する排ガスダクトの縦立部の上方に配設されたマイクロ波距離計と、該マイクロ波距離計により得られたマイクロ波信号を解析処理する信号処理装置と、前記縦立部内に着脱自在に設けられた検量板と、を備え、
前記信号処理装置が、前記縦立部内に前記検量板を挿入した状態で検出された基準波形信号をもとに、前記検量板が撤去された状態で得られた波形信号を解析し、ダクト内の付着物の有無を判別するように構成されることを特徴とする。
As a second invention, in the exhaust gas duct monitoring device for monitoring the inside of the exhaust gas duct provided on the outlet side of the melting furnace,
A microwave distance meter disposed above a vertical portion of an exhaust gas duct communicating with the outlet, a signal processing device for analyzing and processing a microwave signal obtained by the microwave distance meter, and the vertical A calibration plate detachably provided in the unit,
The signal processing device analyzes a waveform signal obtained in a state where the calibration plate is removed based on a reference waveform signal detected in a state where the calibration plate is inserted in the upright portion, The present invention is characterized in that it is configured to discriminate the presence or absence of a deposit.

本発明においても、前記第1の発明と同様に、排ガスダクトの縦立部を測定領域とすることで、最も付着物が形成され易い部位を監視することができ、排ガスダクトの不具合の早期発見が可能となる。
さらに、本第2の発明によれば、赤外線より長波長のマイクロ波を利用しているため、より高濃度の煤塵雰囲気下においても付着物の存在を確実に検出することができる。本発明のように、マイクロ波を利用した計測においては、例えば揮散物やダクト壁面等のように測定対象以外の反射波も同時に検出されるため、予め前記基準波形信号により付着物が形成される距離を推定しておく。これにより、付着物の発生を正確に検出することが可能となる。
また、前記第1、第2の発明において、前記排ガスダクトが、前記縦立部の上方に屈曲部を有する排ガスダクトであって、前記屈曲部に略鉛直方向下方に向けて前記カメラ若しくは前記マイクロ波距離計を設置することが好ましい。
Also in the present invention, as in the first aspect of the present invention, the vertical part of the exhaust gas duct is used as a measurement region, so that the site where deposits are most likely to be formed can be monitored, and early detection of malfunctions in the exhaust gas duct can be performed. Is possible.
Furthermore, according to the second aspect of the invention, since microwaves having a longer wavelength than infrared rays are used, the presence of deposits can be reliably detected even in a higher concentration dust atmosphere. As in the present invention, in the measurement using microwaves, for example, reflected waves other than the measurement target such as volatilized materials and duct wall surfaces are detected at the same time, so that the deposit is formed in advance by the reference waveform signal. Estimate the distance. This makes it possible to accurately detect the occurrence of deposits.
In the first and second aspects of the invention, the exhaust gas duct is an exhaust gas duct having a bent portion above the upright portion, and the camera or the micro is directed substantially downward in the vertical direction to the bent portion. It is preferable to install a wave distance meter.

また、本第3発明として、溶融炉の排ガスダクトの内部を監視する排ガスダクトの監視装置において、
前記排ガスダクトの側面外部に設けられた赤外線カメラと、所定間隔を隔てて複数のリレーレンズが列置され、その先端に側視鏡が配置された筒体と、を具備し、
前記排ガスダクトの側面から挿入して該ダクトの内部に前記側視鏡が位置するように前記筒体を配設し、前記赤外線カメラにより前記筒体を介してダクト長手方向内部を撮像する構成としたことを特徴とする。
As the third invention, in the exhaust gas duct monitoring device for monitoring the inside of the exhaust gas duct of the melting furnace,
An infrared camera provided outside the side surface of the exhaust gas duct, and a cylindrical body in which a plurality of relay lenses are arranged at predetermined intervals, and a side endoscope is disposed at the tip thereof.
A configuration in which the cylindrical body is disposed so as to be inserted from a side surface of the exhaust gas duct and the endoscope is located inside the duct, and the inside of the duct longitudinal direction is imaged by the infrared camera through the cylindrical body; It is characterized by that.

かかる発明によれば、赤外線カメラを用いることで煤塵や水蒸気がダクト内に存在する場合においても、排ガスダクト内を良好に監視することができる。また、本発明ではリレーレンズを用いているため筒体を小さくすることができ、ダクト内に該装置を挿入してもダクトの機能を損なうことがない。さらに、側視鏡を用いた構成としているため、曲部を有するような複雑な形状のダクトにも利用可能である。
尚、前記赤外線カメラは、波長約8〜14μmの長波長領域の赤外線を利用することが好適である。
According to this invention, the inside of the exhaust gas duct can be satisfactorily monitored even when dust or water vapor is present in the duct by using the infrared camera. Further, in the present invention, since the relay lens is used, the cylindrical body can be made small, and even if the device is inserted into the duct, the function of the duct is not impaired. Furthermore, since it is set as the structure which used the side endoscope, it can utilize also for the duct of a complicated shape which has a curved part.
The infrared camera preferably uses infrared light having a long wavelength region with a wavelength of about 8 to 14 μm.

また、前記第1の発明に対応する方法の発明として、
溶融炉の出滓口側に設けられた排ガスダクトの内部を監視する排ガスダクトの監視方法において、
前記出滓口に連通する排ガスダクトの縦立部の上方に配置した赤外線カメラにより、前記縦立部のうち少なくとも前記出滓口高さから該出滓口下方までのダクト領域を撮像して前記ダクトの付着物状況を監視することを特徴とする。
As a method invention corresponding to the first invention,
In the monitoring method of the exhaust gas duct for monitoring the inside of the exhaust gas duct provided on the outlet side of the melting furnace,
The infrared camera disposed above the vertical portion of the exhaust gas duct communicating with the tap outlet images at least the duct area from the height of the tap outlet to the lower portion of the tap outlet in the vertical portion, and It is characterized by monitoring the state of adhering ducts.

また、前記第2の発明に対応する方法の発明として、
溶融炉の出滓口側に設けられた排ガスダクトの内部を監視する排ガスダクトの監視方法において、
前記出滓口に連通する排ガスダクトの縦立部の上方にマイクロ波距離計を配置し、
予め前記縦立部内に水平方向に検量板を挿入して前記マイクロ波距離計により基準波形信号を検出しておき、
前記検量板を撤去後の炉運転時に、前記マイクロ波距離計により検出された波形信号を解析し、前記基準波形信号に基づき付着物の有無を判別することを特徴とする。
As a method invention corresponding to the second invention,
In the monitoring method of the exhaust gas duct for monitoring the inside of the exhaust gas duct provided on the outlet side of the melting furnace,
A microwave rangefinder is disposed above the vertical portion of the exhaust gas duct communicating with the outlet,
Insert a calibration plate in the horizontal direction in the upright portion in advance to detect a reference waveform signal by the microwave distance meter,
During operation of the furnace after removing the calibration plate, the waveform signal detected by the microwave rangefinder is analyzed, and the presence or absence of deposits is determined based on the reference waveform signal.

さらにまた、前記第3の発明に対応する方法の発明として、
溶融炉の排ガスダクトの内部を監視する排ガスダクトの監視方法において、
前記排ガスダクトの側面外部に設けられた赤外線カメラにより、所定間隔を隔てて複数のリレーレンズが列置され、その先端に側視鏡が配置された筒体を介してダクト長手方向内部を撮像して前記ダクトの付着物状況を監視することを特徴とする。
Furthermore, as a method invention corresponding to the third invention,
In the monitoring method of the exhaust gas duct for monitoring the inside of the exhaust gas duct of the melting furnace,
An infrared camera provided outside the side surface of the exhaust gas duct images the inside of the duct in the longitudinal direction through a cylindrical body in which a plurality of relay lenses are arranged at predetermined intervals and a side endoscope is disposed at the tip thereof. And monitoring the state of deposits on the duct.

以上記載のごとく、本第1発明によれば、長波長の赤外線カメラを利用しているため、煤塵や水蒸気粒子の影響が小さく、ダクト内を良好に視認することができる。また、前記赤外線カメラの視野領域を、出滓口に連通する排ガスダクトの縦立部のうち前記出滓口高さから該出滓口下方までのダクト領域としているため、付着物により最も閉塞し易い部位を監視することができ、排ガスダクトの不具合を早期に発見することができる。
また、本第2発明によれば、赤外線より長波長のマイクロ波を利用しているめ、より高濃度の煤塵雰囲気下においても付着物の存在を確実に検出することができる。さらに、予め前記基準波形信号により付着物が形成される距離を推定しておくことにより、付着物の存在を正確に検出することが可能となる。
さらに、本第3発明によれば曲部を有するような複雑なダクト形状においても良好に監視可能である。
As described above, according to the first invention, since the long-wavelength infrared camera is used, the influence of dust and water vapor particles is small, and the inside of the duct can be seen well. In addition, the visual field area of the infrared camera is the duct area from the height of the outlet to the lower part of the vertical part of the exhaust gas duct that communicates with the outlet, so that it is most blocked by adhering matter. The easy part can be monitored, and the malfunction of the exhaust gas duct can be detected at an early stage.
In addition, according to the second invention, since microwaves having a longer wavelength than infrared rays are used, the presence of deposits can be reliably detected even in a higher concentration dust atmosphere. Furthermore, by preliminarily estimating the distance at which the deposit is formed based on the reference waveform signal, it is possible to accurately detect the presence of the deposit.
Furthermore, according to the third aspect of the present invention, it is possible to satisfactorily monitor even a complicated duct shape having a curved portion.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1は本発明の実施例1に係る排ガスダクトの監視装置を示す側断面図(A)とそのX−X線断面図(B)で、図2は図1の監視装置により得られる排ガスダクト内部の撮像画像である。
図1において、30は一般廃棄物や産業廃棄物、またはこれらを焼却処理した際に発生する焼却灰を処理対象とした溶融炉、31は該溶融炉30の底部に溜まった溶融スラグをオーバーフローして順次排出する出滓口、32は前記出滓口31に設けられた溶融スラグの出滓樋である。該出滓口31及び出滓樋32は耐火材で形成されている。
FIG. 1 is a side sectional view (A) showing an exhaust gas duct monitoring apparatus according to Embodiment 1 of the present invention and an XX line sectional view (B) thereof, and FIG. 2 is an exhaust gas duct obtained by the monitoring apparatus of FIG. It is an internal captured image.
In FIG. 1, 30 is a melting furnace for treating general waste and industrial waste, or incinerated ash generated when these are incinerated, and 31 overflows the molten slag accumulated at the bottom of the melting furnace 30. The outlet 32 and the outlet 32 for discharging the molten slag are provided at the outlet 31. The tap 31 and the tap 32 are made of a refractory material.

10は前記出滓口31に連通する排ガスダクトで、縦方向に延びる縦立部10aと、横方向に延びる横臥部10dとが屈曲部10bにより連結され、該屈曲部10bには傾斜面10cが形成されている。前記縦立部10aの下方には前記出滓樋32から落下した溶融スラグを冷却する冷却水槽、冷却水噴霧ノズル(何れも不図示)等が設けられている。
また、前記傾斜面10cには鉛直方向に筒部13が配設され、該筒部13の炉外側開口にはZnSe等で形成された覗き窓(透過窓)12が設けられている。
An exhaust gas duct 10 communicates with the tap port 31. A vertical portion 10a extending in the vertical direction and a horizontal flange portion 10d extending in the horizontal direction are connected by a bent portion 10b, and an inclined surface 10c is formed in the bent portion 10b. Is formed. A cooling water tank, a cooling water spray nozzle (both not shown), and the like for cooling the molten slag dropped from the tap 32 are provided below the upright portion 10a.
Further, a cylindrical portion 13 is disposed in the vertical direction on the inclined surface 10c, and a viewing window (transmission window) 12 formed of ZnSe or the like is provided in the furnace outside opening of the cylindrical portion 13.

そして、前記覗き窓12の近傍には、前記出滓口高さから該出滓口下方までのダクト領域をカバーする視野範囲21が得られるように、赤外線カメラ20が下方に向けて配設されている。該赤外線カメラ20は、レンズと赤外線感知部と画像処理部とで構成される。前記レンズは赤外線を収束し、赤外線感知部はレンズを介して収束された赤外線を検知し、画像処理部は検知された赤外線を画像処理してモニタ等に出力する。   An infrared camera 20 is disposed in the vicinity of the viewing window 12 so as to obtain a visual field range 21 covering the duct area from the height of the spout to the bottom of the spout. ing. The infrared camera 20 includes a lens, an infrared sensing unit, and an image processing unit. The lens converges infrared rays, the infrared sensing unit detects infrared rays converged through the lens, and the image processing unit performs image processing on the detected infrared rays and outputs the image to a monitor or the like.

また、前記覗き窓12と赤外線カメラ20との間にアパーチャ(不図示)を配設してもよく、該アパーチャにより赤外線カメラの絞りを変化させ光量を調整する。
尚、前記赤外線カメラは、波長約8〜14μmの長波長領域の赤外線を利用することが好適である。
溶融炉30の運転中には、処理対象物の成分や投入量により排ガス温度や排ガス中の煤塵濃度が変化する。従って、排ガスダクト10の監視時には前記赤外線カメラ20の波長領域やアパーチャによる光量調整を適宜行なって撮影画像が明瞭に解析できるようにする。
In addition, an aperture (not shown) may be disposed between the viewing window 12 and the infrared camera 20, and the aperture of the infrared camera is changed by the aperture to adjust the amount of light.
The infrared camera preferably uses infrared light having a long wavelength region with a wavelength of about 8 to 14 μm.
During operation of the melting furnace 30, the exhaust gas temperature and the concentration of dust in the exhaust gas change depending on the components of the processing object and the input amount. Therefore, when the exhaust gas duct 10 is monitored, the light amount is appropriately adjusted by the wavelength region or aperture of the infrared camera 20 so that the photographed image can be analyzed clearly.

ここで、本実施例1における視野範囲21の確認実験と付着物確認実験の結果を以下に示す。まず、通常運転前に、前記排ガスダクト10の側部から鉄板を挿入し、該鉄板が視認できる範囲を視野範囲とした。このとき、常温のためアパーチャは必要としなかった。
その結果、赤外線カメラ20で、図1に示した視野範囲21を得ることができた。このとき、前記出滓口高さから該出滓口下方のダクト領域では、少なくとも内壁から約100〜200mmまでの視野が確保できるため、付着物が形成され始めた早い時期に確実に確認できることとなる。
さらに、実際に炉運転中に確認したところ、図2に示されるような撮影画像を得ることができた。この撮影画像によれば、スラグの出滓口と対面する側に付着物による棚を明瞭に確認することができる。
Here, the result of the confirmation experiment of the visual field range 21 and the adhering matter confirmation experiment in the present Example 1 is shown below. First, before normal operation, an iron plate was inserted from the side of the exhaust gas duct 10, and the range in which the iron plate was visible was defined as the visual field range. At this time, the aperture was not necessary because of the normal temperature.
As a result, the visual field range 21 shown in FIG. At this time, in the duct area below the spout opening from the spout opening height, a visual field of at least about 100 to 200 mm from the inner wall can be secured, so that it can be surely confirmed at an early stage when the deposit starts to form. Become.
Furthermore, when actually confirmed during the furnace operation, a photographed image as shown in FIG. 2 could be obtained. According to this photographed image, it is possible to clearly confirm a shelf made of deposits on the side of the slag facing the spout.

このように本実施例によれば、赤外線カメラにより排ガスダクト内を可視化しているため、煤塵や水蒸気粒子の影響が小さく、ダクト内を良好に視認することができる。また、赤外線カメラ20により縦立部10aの上方から下方に向けて撮影しているため、容易に視野範囲21を確保することができ、最も閉塞し易いダクト領域において、早期に不具合を確認することができる。   Thus, according to the present Example, since the inside of the exhaust gas duct is visualized by the infrared camera, the influence of soot and water vapor particles is small, and the inside of the duct can be viewed well. In addition, since the infrared camera 20 shoots from the upper part to the lower part of the upright portion 10a, the visual field range 21 can be easily secured, and the defect is confirmed at an early stage in the duct area that is most easily closed. Can do.

本発明に係る実施例2はマイクロ波距離計を用いた構成となっており、図3は本発明の実施例2に係る排ガスダクトの監視装置を示す側断面図で、図4は検量板を装着した場合の図3のY−Y線断面図で、図5は図3の監視装置による基準波形信号を示す波形図で、図6は図3の監視装置にて付着塩類位置を異ならせた時の試験結果を示す各波形図である。   Example 2 according to the present invention has a configuration using a microwave distance meter, FIG. 3 is a side sectional view showing a monitoring device for an exhaust gas duct according to Example 2 of the present invention, and FIG. 4 shows a calibration plate. 3 is a cross-sectional view taken along the line YY of FIG. 3 when mounted, FIG. 5 is a waveform diagram showing a reference waveform signal by the monitoring device of FIG. 3, and FIG. It is each waveform figure which shows the test result of time.

図3において、図1に示される第1実施例と同様の構成については説明を省略する。
本実施例における監視装置は、実施例1における赤外線カメラの設置位置と同様に、前記排ガスダクト10の縦立部10aの上方にマイクロ波距離計23aを配設し、該マイクロ波距離計23aに接続された信号処理装置23bを具備した構成としている。該マイクロ波距離計23aは、マイクロ波の発生及び検出部と、ダクト内にマイクロ波信号の送出と反射波信号の検出を行なうアンテナ部とを有している。かかるマイクロ波距離計23は、前記筒部13を介して縦立部10aに向けてマイクロ波信号を送出し、縦立部10a内の対象物からの反射波信号を受信する。受信した反射波信号は前記信号処理装置23bに送信され、該信号処理装置23bにより解析処理される。
尚、前記マイクロ波距離計23aと排ガスダクト10の間には、覗き窓(不図示)を設置しても良く、このとき、該覗き窓にはバイコール又はパイレックス(登録商標)等を用いることが好適である。前記マイクロ波距離計23aの設置箇所が金属以外の材質であれば、勿論覗き窓を設置しない構成としても良い。
In FIG. 3, the description of the same configuration as that of the first embodiment shown in FIG. 1 is omitted.
Similar to the installation position of the infrared camera in the first embodiment, the monitoring device in the present embodiment has a microwave distance meter 23a disposed above the vertical portion 10a of the exhaust gas duct 10, and the microwave distance meter 23a is provided with the microwave distance meter 23a. The signal processing device 23b is connected. The microwave distance meter 23a includes a microwave generation and detection unit, and an antenna unit that transmits a microwave signal and detects a reflected wave signal in a duct. The microwave distance meter 23 transmits a microwave signal toward the vertical portion 10a via the cylindrical portion 13, and receives a reflected wave signal from an object in the vertical portion 10a. The received reflected wave signal is transmitted to the signal processing device 23b and analyzed by the signal processing device 23b.
A viewing window (not shown) may be installed between the microwave distance meter 23a and the exhaust gas duct 10, and at this time, Vicol or Pyrex (registered trademark) or the like may be used for the viewing window. Is preferred. Of course, if the microwave distance meter 23a is made of a material other than metal, a configuration in which the observation window is not installed may be adopted.

また、図4に示されるように、前記縦立部10aの前記出滓口31(図3参照)付近には着脱自在な鉄板(検量板)24a、24bが具備されている。尚、その他の部材については図1及び図2に示される第1実施例と同様であるため、説明を省略する。
本実施形態にかかる監視装置を用いた測定方法は、まず通常運転前に前記鉄板24aを挿入した状態で該マイクロ波距離計23aにより反射波信号を検出し、前記信号処理装置23bにて基準波形信号を測定しておく。これにより、検出した波形信号と実際の付着物の位置を関係付けておく。
尚、実機での模擬鉄板に対する反応性を試験したところ、図5に示されるような波形信号が得られた。(a)はhを1670mmとしたときの波形信号で、(b)はhを1240mmとしたときの波形信号である。図5からも明らかなように、鉄板位置が明瞭に検出できる。
Further, as shown in FIG. 4, detachable iron plates (calibration plates) 24a and 24b are provided in the vicinity of the tap opening 31 (see FIG. 3) of the vertical portion 10a. The other members are the same as those in the first embodiment shown in FIGS. 1 and 2, and the description thereof is omitted.
In the measurement method using the monitoring apparatus according to the present embodiment, first, the reflected wave signal is detected by the microwave distance meter 23a in a state where the iron plate 24a is inserted before normal operation, and the reference waveform is detected by the signal processing apparatus 23b. Measure the signal. Thereby, the detected waveform signal is related to the actual position of the deposit.
In addition, when the reactivity with the simulated iron plate in an actual machine was tested, a waveform signal as shown in FIG. 5 was obtained. (A) is a waveform signal when the 1670mm to h 1, (b) is a waveform signal when the 1240mm to h 2. As is clear from FIG. 5, the iron plate position can be detected clearly.

そして、前記鉄板24a、24bを撤去後に、前記マイクロ波距離計23aにより検出された波形信号を前記信号処理装置23bにより解析し、前記基準波形信号に基づき付着物の発生を判別する。このとき、検出された波形信号のうち、該波形信号に現れるピーク位置が、前記出滓口高さからその下方領域までの距離範囲に発生したもののみを判別するようにしてもよい。
このように、本実施例では赤外線より長波長のマイクロ波を利用しているめ、より高濃度の煤塵雰囲気下においても付着物の存在を確実に検出することができる。
Then, after removing the iron plates 24a, 24b, the waveform signal detected by the microwave distance meter 23a is analyzed by the signal processing device 23b, and the occurrence of deposits is determined based on the reference waveform signal. At this time, out of the detected waveform signals, only those in which the peak position appearing in the waveform signal is generated in a distance range from the height of the tap hole to the lower region may be determined.
As described above, in this embodiment, microwaves having a longer wavelength than infrared rays are used, so that the presence of deposits can be reliably detected even in a higher concentration dust atmosphere.

本実施例の監視装置により、ダクト内に付着する塩類の実運転時検出精度を確認する実験を行なったところ、図6に示されるような結果が得られた。計測対象とした塩類塊は、実機の排ガスダクトから取り出した塩類の塊(横280mm×縦200mm×厚130mm)とした。
図6(a)は対象物がない場合であるが、マイクロ波距離計23a先端からの距離hが3.57mの位置に信号強度のピークが現れた。これはダクト壁面位置と推定される。
また、塩類塊を置く場合には、夫々前記マイクロ波距離計23a先端からの距離hを(b)0.97m、(c)1.5m、(d)2.08m、(いずれも実測値)として測定した。
その結果、各波形図から求められた距離は、(b)0.984m、(c)1.53m、(d)1.973mと、何れも妥当な結果となった。従って、かかる監視装置によれば、正確な付着物の検出が可能であることが判る。
When the experiment for confirming the detection accuracy during actual operation of the salts adhering to the duct was performed by the monitoring device of this example, the result as shown in FIG. 6 was obtained. The salt mass to be measured was a salt mass (width 280 mm × length 200 mm × thickness 130 mm) taken out from the exhaust gas duct of the actual machine.
FIG. 6A shows a case where there is no object, but a signal intensity peak appears at a position where the distance h from the tip of the microwave rangefinder 23a is 3.57 m. This is estimated as the duct wall surface position.
In addition, when placing a salt mass, the distance h from the tip of the microwave rangefinder 23a was measured as (b) 0.97 m, (c) 1.5 m, (d) 2.08 m (all measured values). .
As a result, the distance obtained from each waveform diagram was (b) 0.984 m, (c) 1.53 m, and (d) 1.973 m, all of which were reasonable results. Therefore, according to such a monitoring device, it can be seen that accurate deposit detection is possible.

本実施例3に係る監視装置は、排ガスダクト10内部の付着物を監視するための赤外線高温スコープを用いた構成としている。かかる実施例3における赤外線高温スコープ25は、図7に示されるように、ダクト側面に設けた計測孔11の近傍に配設された赤外線カメラ20と、ZnSeやGe等からなる透過窓26と、リレーレンズ27aを所定間隔だけ離間させて複数列置し、その先端に所定角度傾けて側視鏡27bを配置した筒体27と、を具備している。
前記赤外線カメラ20は、前述した実施例1と略同様の構造を有しており、前記筒体27は高温雰囲気内で使用可能なように冷却構造とし、先端からは煤塵、水蒸気等が内部に侵入してこないように、ガス(空気等)を噴出する構造(パージ構造)とする。
The monitoring apparatus according to the third embodiment has a configuration using an infrared high-temperature scope for monitoring deposits inside the exhaust gas duct 10. As shown in FIG. 7, the infrared high-temperature scope 25 in Example 3 includes an infrared camera 20 disposed in the vicinity of the measurement hole 11 provided on the side surface of the duct, a transmission window 26 made of ZnSe, Ge, or the like, A plurality of rows of relay lenses 27a spaced apart from each other by a predetermined distance, and a cylindrical body 27 in which a side endoscope 27b is disposed at a tip thereof at a predetermined angle.
The infrared camera 20 has substantially the same structure as that of the first embodiment described above, and the cylindrical body 27 has a cooling structure so that it can be used in a high-temperature atmosphere. A structure (purge structure) for ejecting gas (air, etc.) is adopted so as not to enter.

また、前記リレーレンズ27aは赤外線を透過可能な材質で形成され、ZnSeやGe等が好適である。また前記側視鏡27bは金属材料で形成され、ダクト内部の長手方向を監視可能なように、取得した映像を略90°曲げる機能を有する。これにより、赤外線カメラ20の設置方向と略直角方向の視野範囲29を得ることができる。
かかる実施例によれば、赤外線カメラ20を用いた監視装置であるため、前記実施例1と同様の効果を得ることができるとともに、排ガスダクト10内を、側視鏡27b及びリレーレンズ27aを介して撮像しているため、直線的に撮像することが困難な曲部を有するダクトにおいても適用することができる。
The relay lens 27a is made of a material that can transmit infrared rays, and ZnSe, Ge, or the like is preferable. The endoscope 27b is made of a metal material and has a function of bending the acquired image by approximately 90 ° so that the longitudinal direction inside the duct can be monitored. Thereby, the visual field range 29 substantially perpendicular to the installation direction of the infrared camera 20 can be obtained.
According to this embodiment, since the monitoring device uses the infrared camera 20, the same effects as those of the first embodiment can be obtained, and the inside of the exhaust gas duct 10 can be provided via the side endoscope 27b and the relay lens 27a. Therefore, the present invention can also be applied to a duct having a curved portion that is difficult to image linearly.

本実施形態において、排ガス中の煤塵濃度が比較的低い場合には実施例1に示した赤外線カメラを利用した監視装置を用い、煤塵濃度が非常に高く赤外線カメラにより明瞭な撮影画像が得られない場合には、実施例2に示したマイクロ波距離計を利用した監視装置に付け替えるようにしても良い。   In this embodiment, when the concentration of soot in the exhaust gas is relatively low, the monitoring device using the infrared camera shown in Example 1 is used, and the soot concentration is very high and a clear photographed image cannot be obtained by the infrared camera. In this case, the monitoring apparatus using the microwave distance meter shown in the second embodiment may be replaced.

本発明の実施例1に係る排ガスダクトの監視装置を示す側断面図(A)とそのX−X線断面図(B)である。It is the sectional side view (A) which shows the monitoring apparatus of the exhaust gas duct which concerns on Example 1 of this invention, and its XX sectional view (B). 図1の監視装置により得られる排ガスダクト内部の撮像画像である。It is the captured image inside the exhaust gas duct obtained by the monitoring apparatus of FIG. 本発明の実施例2に係る排ガスダクトの監視装置を示す側断面図である。It is a sectional side view which shows the monitoring apparatus of the exhaust gas duct which concerns on Example 2 of this invention. 検量板を装着した場合の図3のY−Y線断面図である。It is the YY sectional view taken on the line of FIG. 3 at the time of mounting | wearing with a calibration board. 図3の監視装置による基準波形信号で、夫々鉄板位置hが1.24mの場合の波形図(a)、鉄板位置hが1.68mの場合の波形図(b)である。In reference waveform signal by the monitoring device of FIG. 3 is a waveform diagram when each iron plate position h 1 is 1.24 (a), a waveform diagram when an iron plate position h 2 is 1.68m (b). 図3の監視装置にて付着塩類位置を異ならせた時の試験結果で、対象物なしの場合の波形図(a)、塩類位置が0.97mの場合の波形図(b)、塩類位置が1.5mの場合の波形図(c)、塩類位置が2.08mの場合の波形図(d)である。FIG. 3 shows the test results when the position of the attached salt is changed by the monitoring device of FIG. 3 (a) when there is no object, (b) when the salt position is 0.97 m, and (b) when the salt position is 1.5. A waveform diagram (c) in the case of m and a waveform diagram (d) in the case where the salt position is 2.08 m. 本発明の実施例3に係る排ガスダクトの監視装置を示す側断面図である。It is a sectional side view which shows the monitoring apparatus of the exhaust gas duct which concerns on Example 3 of this invention. 従来の廃棄物溶融処理システムを示す全体概略図である。It is a whole schematic diagram showing a conventional waste melting treatment system. 赤外線カメラを具備した従来の監視装置を示す側断面図である。It is side sectional drawing which shows the conventional monitoring apparatus which comprised the infrared camera.

符号の説明Explanation of symbols

10 排ガスダクト
10a 縦立部
10b 屈曲部
10c 傾斜部
12 覗き窓(透過窓)
20 赤外線カメラ
23a マイクロ波距離計
23b 信号処理装置
24a、24b 鉄板(検量板)
25 赤外線高温スコープ本体
26 透過窓
27 筒体
27a リレーレンズ
27b 側視鏡
30 溶融炉
31 出滓口
32 出滓樋
DESCRIPTION OF SYMBOLS 10 Exhaust gas duct 10a Vertical standing part 10b Bending part 10c Inclined part 12 Viewing window (transmission window)
20 Infrared camera 23a Microwave distance meter 23b Signal processing device 24a, 24b Iron plate (calibration plate)
25 Infrared high-temperature scope body 26 Transmission window 27 Cylindrical body 27a Relay lens 27b Side endoscope 30 Melting furnace 31 Outlet 32 Outing

Claims (7)

溶融炉の排ガスダクトの内部を監視する排ガスダクトの監視装置において、
前記出滓口に連通する排ガスダクトの縦立部の上方に透過窓を設けるとともに、該縦立部のうち少なくとも前記出滓口高さから該出滓口下方までのダクト領域を撮像可能な赤外線カメラを前記透過窓の外側に配設したことを特徴とする排ガスダクトの監視装置。
In the exhaust gas duct monitoring device that monitors the inside of the exhaust gas duct of the melting furnace,
Infrared rays that provide a transmission window above the vertical portion of the exhaust gas duct that communicates with the tap and that can image at least the duct area of the vertical portion from the height of the tap to the bottom of the tap A monitoring device for an exhaust gas duct, wherein a camera is disposed outside the transmission window.
溶融炉の排ガスダクトの内部を監視する排ガスダクトの監視装置において、
前記出滓口に連通する排ガスダクトの縦立部の上方に配設されたマイクロ波距離計と、該マイクロ波距離計により得られたマイクロ波信号を解析処理する信号処理装置と、前記縦立部内に着脱自在に設けられた検量板と、を備え、
前記信号処理装置が、前記縦立部内に前記検量板を挿入した状態で検出された基準波形信号をもとに、前記検量板が撤去された状態で得られた波形信号を解析し、ダクト内の付着物の有無を判別するように構成されることを特徴とする排ガスダクトの監視装置。
In the exhaust gas duct monitoring device that monitors the inside of the exhaust gas duct of the melting furnace,
A microwave distance meter disposed above a vertical portion of an exhaust gas duct communicating with the outlet, a signal processing device for analyzing and processing a microwave signal obtained by the microwave distance meter, and the vertical A calibration plate detachably provided in the unit,
The signal processing device analyzes a waveform signal obtained in a state where the calibration plate is removed based on a reference waveform signal detected in a state where the calibration plate is inserted in the upright portion, A device for monitoring an exhaust gas duct, characterized in that it is configured to determine the presence or absence of deposits.
前記排ガスダクトが、前記縦立部の上方に屈曲部を有する排ガスダクトであって、
前記屈曲部に略鉛直方向下方に向けて前記カメラ若しくは前記マイクロ波距離計を設置したことを特徴とする請求項1若しくは2記載の排ガスダクトの監視装置。
The exhaust gas duct is an exhaust gas duct having a bent portion above the vertical portion,
The exhaust gas duct monitoring apparatus according to claim 1 or 2, wherein the camera or the microwave rangefinder is installed in the bent portion substantially downward in the vertical direction.
溶融炉の排ガスダクトの内部を監視する排ガスダクトの監視装置において、
前記排ガスダクトの側面外部に設けられた赤外線カメラと、所定間隔を隔てて複数のリレーレンズが列置され、その先端に側視鏡が配置された筒体と、を具備し、
前記排ガスダクトの側面から挿入して該ダクトの内部に前記側視鏡が位置するように前記筒体を配設し、前記赤外線カメラにより前記筒体を介してダクト長手方向内部を撮像する構成としたことを特徴とする排ガスダクトの監視装置。
In the exhaust gas duct monitoring device that monitors the inside of the exhaust gas duct of the melting furnace,
An infrared camera provided outside the side surface of the exhaust gas duct, and a cylindrical body in which a plurality of relay lenses are arranged at predetermined intervals, and a side endoscope is disposed at the tip thereof.
A configuration in which the cylindrical body is disposed so as to be inserted from a side surface of the exhaust gas duct and the endoscope is located inside the duct, and the inside of the duct longitudinal direction is imaged by the infrared camera through the cylindrical body; An exhaust gas duct monitoring device characterized by that.
溶融炉の出滓口側に設けられた排ガスダクトの内部を監視する排ガスダクトの監視方法において、
前記出滓口に連通する排ガスダクトの縦立部の上方に配置した赤外線カメラにより、前記縦立部のうち少なくとも前記出滓口高さから該出滓口下方までのダクト領域を撮像して前記ダクトの付着物状況を監視することを特徴とする排ガスダクトの監視方法。
In the monitoring method of the exhaust gas duct for monitoring the inside of the exhaust gas duct provided on the outlet side of the melting furnace,
The infrared camera disposed above the vertical portion of the exhaust gas duct communicating with the tap outlet images at least the duct area from the height of the tap outlet to the lower portion of the tap outlet in the vertical portion, and A method for monitoring an exhaust gas duct, characterized by monitoring the state of deposits on the duct.
溶融炉の出滓口側に設けられた排ガスダクトの内部を監視する排ガスダクトの監視方法において、
前記出滓口に連通する排ガスダクトの縦立部の上方にマイクロ波距離計を配置し、
予め前記縦立部内に水平方向に検量板を挿入して前記マイクロ波距離計により基準波形信号を検出しておき、
前記検量板を撤去後の炉運転時に、前記マイクロ波距離計により検出された波形信号を解析し、前記基準波形信号に基づき付着物の有無を判別することを特徴とする排ガスダクトの監視方法。
In the monitoring method of the exhaust gas duct for monitoring the inside of the exhaust gas duct provided on the outlet side of the melting furnace,
A microwave rangefinder is disposed above the vertical portion of the exhaust gas duct communicating with the outlet,
Insert a calibration plate in the horizontal direction in the upright portion in advance to detect a reference waveform signal by the microwave distance meter,
An exhaust gas duct monitoring method, comprising: analyzing a waveform signal detected by the microwave distance meter during operation of the furnace after removing the calibration plate, and determining the presence or absence of deposits based on the reference waveform signal.
溶融炉の排ガスダクトの内部を監視する排ガスダクトの監視方法において、
前記排ガスダクトの側面外部に設けられた赤外線カメラにより、所定間隔を隔てて複数のリレーレンズが列置され、その先端に側視鏡が配置された筒体を介してダクト長手方向内部を撮像して前記ダクトの付着物状況を監視することを特徴とする排ガスダクトの監視方法。
In the monitoring method of the exhaust gas duct for monitoring the inside of the exhaust gas duct of the melting furnace,
An infrared camera provided outside the side surface of the exhaust gas duct images the inside of the duct in the longitudinal direction through a cylindrical body in which a plurality of relay lenses are arranged at predetermined intervals and a side endoscope is disposed at the tip thereof. And monitoring the state of deposits on the duct.
JP2003391472A 2003-11-20 2003-11-20 Exhaust duct monitoring device and monitoring method Expired - Fee Related JP4188214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003391472A JP4188214B2 (en) 2003-11-20 2003-11-20 Exhaust duct monitoring device and monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003391472A JP4188214B2 (en) 2003-11-20 2003-11-20 Exhaust duct monitoring device and monitoring method

Publications (2)

Publication Number Publication Date
JP2005155944A true JP2005155944A (en) 2005-06-16
JP4188214B2 JP4188214B2 (en) 2008-11-26

Family

ID=34718483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003391472A Expired - Fee Related JP4188214B2 (en) 2003-11-20 2003-11-20 Exhaust duct monitoring device and monitoring method

Country Status (1)

Country Link
JP (1) JP4188214B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175474A (en) * 2007-01-19 2008-07-31 Takuma Co Ltd Dust monitoring removing method in apparatus
JP2010002150A (en) * 2008-06-23 2010-01-07 Takuma Co Ltd Furnace monitoring device, furnace monitoring method and furnace operation control method using the device and method
KR101299754B1 (en) * 2011-11-11 2013-08-23 주식회사 포스코 Dust cleaning apparatus for tube
RU2492442C1 (en) * 2012-02-21 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутская государственная сельскохозяйственная академия" Computer method to determine exhaust opacity of spent gases of diesel engines
CN112197604A (en) * 2020-10-27 2021-01-08 重庆国际复合材料股份有限公司 Glass fiber kiln waste gas treatment device and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175474A (en) * 2007-01-19 2008-07-31 Takuma Co Ltd Dust monitoring removing method in apparatus
JP2010002150A (en) * 2008-06-23 2010-01-07 Takuma Co Ltd Furnace monitoring device, furnace monitoring method and furnace operation control method using the device and method
KR101299754B1 (en) * 2011-11-11 2013-08-23 주식회사 포스코 Dust cleaning apparatus for tube
RU2492442C1 (en) * 2012-02-21 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутская государственная сельскохозяйственная академия" Computer method to determine exhaust opacity of spent gases of diesel engines
CN112197604A (en) * 2020-10-27 2021-01-08 重庆国际复合材料股份有限公司 Glass fiber kiln waste gas treatment device and method

Also Published As

Publication number Publication date
JP4188214B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
JP6045295B2 (en) High-temperature furnace monitoring device and high-temperature furnace monitoring system equipped with the same
KR100548119B1 (en) Temperature measuring device and measuring method of molten metal
JP5261038B2 (en) In-furnace monitoring apparatus, in-furnace monitoring method, and furnace operation control method using the same
FI98556C (en) Device for detecting migrating particles inside the furnace
US20140327192A1 (en) Method for operating an oxygen blowing lance in a metallurgical vessel and a measurement system for determining a measurement signal used in the method
JP4188214B2 (en) Exhaust duct monitoring device and monitoring method
US9239164B2 (en) Slag monitoring device for coal gasifier and coal gasifier
JP2003302024A (en) Melting furnace and slag removing method for molten slag discharge portion
HU212855B (en) Method and apparatus for ceramic welding
JP6385618B1 (en) Aluminum melting system and operation method thereof
JP2016035337A (en) Combustion furnace pipe clogging monitoring device and combustion furnace pipe clogging monitoring method
JP5054985B2 (en) Dust monitoring and removal method in equipment
JP4133106B2 (en) Furnace wall shape measuring device
JPH06201277A (en) Monitoring device for high temperature atmosphere room
CN214893684U (en) Boiler combustion layer infrared temperature measuring device with automatic coke cleaning function
JPH09243337A (en) Method for monitoring gate of waste fusion furnace
JP2002206728A (en) Melting furnace
JP2004091571A (en) Coal gasification plant and coal gasification plant monitoring method
JP2005180973A (en) In-furnace measuring instrument
JP2005214950A (en) Radiation thermometer for measuring internal temperature of molten metal
JP2005155947A (en) Temperature measuring device and monitoring device of melting furnace
JP3485751B2 (en) Wind box for incinerator
EP0760465A1 (en) Molten slag flow rate measuring device and furnace facilities using the same
Millman et al. Direct observation of the melting process in an EAF with a closed slag door
JP4025262B2 (en) Slag flow condition evaluation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees