[go: up one dir, main page]

JP2005016411A - Exhaust gas purification device - Google Patents

Exhaust gas purification device Download PDF

Info

Publication number
JP2005016411A
JP2005016411A JP2003181898A JP2003181898A JP2005016411A JP 2005016411 A JP2005016411 A JP 2005016411A JP 2003181898 A JP2003181898 A JP 2003181898A JP 2003181898 A JP2003181898 A JP 2003181898A JP 2005016411 A JP2005016411 A JP 2005016411A
Authority
JP
Japan
Prior art keywords
electrode
exhaust gas
plasma
gas purification
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003181898A
Other languages
Japanese (ja)
Inventor
Masanori Yamato
正憲 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003181898A priority Critical patent/JP2005016411A/en
Publication of JP2005016411A publication Critical patent/JP2005016411A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

【課題】排ガスとプラズマとを確実に接触させて排ガスを良好に浄化することができる排ガス浄化装置の提供を目的とする。
【解決手段】プラズマを利用して排ガスを浄化する排ガス浄化装置1は、排ガスを流通させる排気管Lの内部に配置され、排ガスの流れ方向上流側から下流側に向けて開口面積が漸減しているコーン部11を含む漏斗状の第1電極10と、第1電極10の下流側に配置されており、第1電極10と対をなす棒状の第2電極20とを備える。そして、第1電極10の下流端と第2電極20の先端との間の距離は、およそ−50〜100mmの範囲から選択される。
【選択図】 図1
An object of the present invention is to provide an exhaust gas purification device capable of satisfactorily purifying exhaust gas by reliably contacting exhaust gas and plasma.
An exhaust gas purification apparatus 1 for purifying exhaust gas using plasma is disposed inside an exhaust pipe L through which exhaust gas is circulated, and has an opening area that gradually decreases from the upstream side to the downstream side in the exhaust gas flow direction. A funnel-shaped first electrode 10 including a cone portion 11 and a rod-shaped second electrode 20 disposed on the downstream side of the first electrode 10 and paired with the first electrode 10. And the distance between the downstream end of the 1st electrode 10 and the front-end | tip of the 2nd electrode 20 is selected from the range of about -50-100 mm.
[Selection] Figure 1

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマを利用して排ガスを浄化する排ガス浄化装置に関する。
【0002】
【従来の技術】
従来から、車両用内燃機関の排気系統に組み込まれて当該内燃機関の排ガスを浄化する装置として、プラズマを利用して排ガスを浄化する排ガス浄化装置が知られている(例えば、特許文献1参照。)。この排ガス浄化装置は、内燃機関の排ガス通路に組み込まれた筒状の接地極と、接地極の中心部に配置されて排ガスの流れ方向に延びる棒状(針状)の放電極とを備える。これらの放電極と接地極との間には、電界を形成すべく高電圧が印加され、これにより、放電極と接地極との間で発せられたプラズマにより、排ガスが浄化されることになる。
【0003】
【特許文献1】
特開2002−21541号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上述のような従来の排ガス浄化装置において、一対の電極間にプラズマを高密度に発生させることは容易なことではなく、接地極内を流通する排ガスとプラズマとを確実に接触させて排ガス中の有害物質を十分に浄化することは困難であった。
【0005】
そこで、本発明は、排ガスとプラズマとを確実に接触させて排ガスを良好に浄化することができる排ガス浄化装置の提供を目的とする。
【0006】
【課題を解決するための手段】
本発明による排ガス浄化装置は、プラズマを利用して排ガスを浄化する排ガス浄化装置において、排ガスを流通させる排ガス流路内に配置され、排ガスの流れ方向上流側から下流側に向けて開口面積が漸減している領域を含む筒状の第1電極と、第1電極の下流側に配置されており、第1電極と対をなす第2電極とを備えることを特徴とする。
【0007】
この排ガス浄化装置は、排ガス流路内に配置される筒状の第1電極と、当該第1電極の下流側に配置される第2電極とを備える。これらの第1電極と第2電極とには高電圧が印加され、それにより、第1電極の下流端と第2電極との間にプラズマが発生させられる。ここで、この排ガス浄化装置の第1電極は、排ガスの流れ方向上流側から下流側に向けて開口面積が漸減している領域を含むように構成されている。このため、この排ガス浄化装置では、下流側に向かうにつれて開口面積が漸減している領域を含む第1電極により、第1電極の下流端と第2電極との間のプラズマに向けて排ガスが集められることになる。更に、この排ガス浄化装置では、開口面積が一定の筒状電極を第1電極として用いた場合と比較して、第1電極の下流端と第2電極との間の距離を短くすることが可能となり、第1電極と第2電極との間にプラズマを高密度に発生させることができる。この結果、この排ガス浄化装置によれば、排ガスとプラズマとを確実に接触させて、排ガス中の有害物質をプラズマにより良好に活性化等させることができるので、排ガスを良好に浄化することが可能となる。
【0008】
この場合、第1電極の下流端と第2電極の上流端との間の距離は、およそ−50〜100mmであると好ましい。
【0009】
また、第2電極は、第1電極に向けて排ガスの流れ方向に延在する棒状電極を含むと好ましい。
【0010】
【発明の実施の形態】
以下、図面と共に本発明による排ガス浄化装置の好適な実施形態について詳細に説明する。
【0011】
図1は、本発明による排ガス浄化装置を示す断面図である。同図に示される排ガス浄化装置1は、車両に適用されると好適なものであり、図示されない内燃機関の燃焼室から排出される排ガスを浄化するために、当該内燃機関の排気系統(排ガス流路)を構成する排気管Lに組み入れられる。本実施形態において、排ガス浄化装置1は、例えば三元触媒等を含む触媒装置(触媒コンバータ、図示省略)の前段に配置される。図1に示されるように、排ガス浄化装置1は、それぞれ排気管Lの内部に配置される第1電極10と第2電極20とを備え、互いに対をなす第1電極10と第2電極20とに高電圧を印加して発生させたプラズマを利用して排ガスを浄化する。
【0012】
第1電極10は、例えばステンレスといった金属等により概ね漏斗状(筒状)に形成されており、コーン部11と筒口部12とを含む。コーン部11は、その一端から他端に向けて開口面積(内径)が漸減する中空円錐台状に形成されている。また、筒口部12は、コーン部11の小径端部から延出されており、コーン部11の小径端部の内径と同一の内径を有する短尺円筒状に形成されている。第1電極10は、コーン部11が排ガスの流れ方向上流側、すなわち、内燃機関の燃焼室側に位置するように排気管Lの内部に絶縁部材2を介して固定される。そして、第1電極10は、その軸心が排気管Lの軸心と概ね一致した状態で延在する。
【0013】
一方、第2電極20は、金属製の棒状電極(針状電極)21と、棒状電極21を排気管Lの内部に固定するための支持部材22とを含む。第2電極20は、図1に示されるように、棒状電極21の先端(上流端)が第1電極10(筒口部12)の下流端から、排ガスの流れ方向(排気管Lの軸心方向)において所定の距離xだけ離間するように配置される。そして、棒状電極21は、排気管Lの軸心上に位置し、上流側の第1電極10に向けて排ガスの流れ方向に延在する。また、第2電極20(支持部材22)は、上述の絶縁部材2によって排気管Lから絶縁される。なお、棒状電極21の先端部には、複数の棘状の放電突起が放射状に設けられてもよい。
【0014】
図1に示されるように、第1電極10は、端子3を介して接地され、第2電極20は、給電端子4を介して高圧電源5に接続されている。本実施形態では、例えば第1電極10が受電極となると共に第2電極20が放電極となるようにして、第1電極10と第2電極20との間に高電圧が印加される。なお、高圧電源5としては、直流高圧電源、交流高圧電源および直流パルス電源の何れかを用いることができる。
【0015】
さて、上述のように構成される排ガス浄化装置1では、内燃機関の始動と共に、内燃機関の燃焼室からの排ガスが排気管L内に導入される。また、内燃機関の始動に合わせて、互いに対をなす第1電極10と第2電極20との間に高圧電源5によって高電圧が印加され、これにより、第1電極10(筒口部12)の下流端と第2電極20の先端との間にプラズマが発生させられる。
【0016】
ここで、排ガス浄化装置1の第1電極10は、排ガスの流れ方向上流側から下流側に向けて開口面積(内径)が漸減するように配置されるコーン部11を含んでいる。このため、排気管L内の排ガスは、第1電極10のコーン部11内を流通していくうちに、第1電極10の下流端と第2電極20との間のプラズマに向けて集められていくことになる。
【0017】
更に、開口面積(内径)が一定の筒状電極を第1電極として用いた場合と比較して、排ガス浄化装置1では、第1電極10の下流端と第2電極20の先端との間の距離を(排気管Lの径方向において)短くすることが可能となる。従って、排ガス浄化装置1では、第1電極10(筒口部12)の下流端と第2電極20の先端との間にプラズマを高密度に発生させることができる。
【0018】
この結果、排ガス浄化装置1によれば、排ガスとプラズマとを確実に接触させて、排ガス中に含まれるHC、CO、NOxといった有害物質を良好に活性化させることができるので、排ガスを良好に浄化することが可能となる。
【0019】
なお、上述の排ガス浄化装置1では、第2電極20として1本の棒状電極21を含むものが採用されているが、これに限られるものではない。すなわち、図2に示される排ガス浄化装置1Aのように、第1電極10に向けて延びる複数の棒状電極21を含む第2電極20Aが採用されてもよい。図2の例では、第1電極10の軸心上に配置された棒状電極21の周囲に位置するように、複数の棒状電極21が所定の間隔をおいて支持部材22に固定されている。この場合、中心の棒状電極21と外周側の何れかの棒状電極21との間の距離は、第1電極10の筒口部12の半径よりも多少大きい程度に設定されると好ましい。
【0020】
また、図3に示される排ガス浄化装置1Bのように、漏斗状の第1電極10と対をなす電極として、メッシュ状電極20Bが採用されてもよい。更に、図4に示される排ガス浄化装置1Cのように、漏斗状の第1電極10の筒口部12に、下流側の第2電極20に向けて延びる放電突起14が複数設けられてもよい。これらの図2〜図4に示される構成を採用しても、第1電極10と第2電極20,20Aまたは20Bとの間で確実かつ良好にプラズマを発生させることが可能となる。
【0021】
ところで、漏斗状の第1電極10と棒状の第2電極20との間に強い電界を生じさせるためには、第1電極10の下流端と第2電極20の先端との間の距離xを適切に設定することが重要となる。このため、本発明者は、第1電極10と第2電極20との間の距離xを最適化すべく次のような実験を行なった。
【0022】
この実験では、ステンレスにより漏斗状に形成された第1電極10と、ステンレス製の棒状電極21および支持部材22を含む第2電極20とを用意し、実際の排気管を模した石英管(内径およそ30mm)の内部に、第1電極10および第2電極20を所定距離xだけ互いに離間するように配置した。ここで、この実験では、第1電極10の下流端と第2電極20の先端との間の距離xの好適な値を把握すべく距離xの値を変化させ、実施例1においてx=10mmに、実施例2においてx=30mmに、実施例3においてx=60mmに設定した。
【0023】
また、この実験で使用された第1電極10の寸法は、図1に示されるように、コーン部11の排ガス入口における内径をaとし、コーン部11の全長(その軸心方向における長さ)をbとし、筒口部12の全長(その軸心方向における長さ)をcとし、筒口部12の内径(コーン部11の小径端部における内径)をdとすると、a=28mm,b=20mm,c=5mm,d=8mmであった。更に、この実験で使用された第2電極20は、外径1mm、全長20mmの棒状電極21を含むものであった。
【0024】
そして、実施例1〜実施例3に関しては、第1電極10および第2電極20を含む石英管を実験室用管状炉の内部に配置し、管状炉内をおよそ150℃まで昇温させた上で、石英管の内部に内燃機関の排ガスを模したモデルガスを導入した。モデルガスとしては、COを0.65%、Cを1000ppm、NOを1500ppm、COを10%、Oを0.7%、HOを5%含むものが使用された。更に、第1電極10と第2電極20との間に、第1電極10が受電極となると共に第2電極20が放電極となるようにして、電圧50kV、パルス幅10μsの直流パルス電圧を繰り返し周期2000Hzで印加し(消費電力105W)、第1電極10と第2電極20との間を通過したガスにおけるHC,CO,NOxの浄化率(電極間の通過前後における各物質の減少率)を測定した。
【0025】
また、この実験に際しては、上述の実施例1〜3に加えて、比較例1として、AlにPtを担持させた触媒を用意した。この触媒は、Al粉末19.8gをイオン交換水中に分散させると共に、この溶液に、Pt量0.2g相当のジニトロジアミンPt溶液を加え、濃縮乾固、乾燥、粉砕した後、およそ500℃の温度下で約2時間焼成して得たものを直径1〜2mmのペレット状に形成したものである。そして、ペレット状の触媒1.0gを石英管(内径およそ30mm)の内部に配置した上で、上記組成のモデルガスを当該石英管の内部に導入し、当該触媒を通過したガスにおけるHC,CO,NOxの浄化率を測定した。
【0026】
更に、この実験では、比較例2として、ステンレス製の円筒部材(内径30mm、全長60mm)と、当該円筒部材の中心に配置された棒状電極(外径1mm、全長60mm)とを含む放電装置(リアクタ)を用意し、石英管(内径およそ30mm)の内部に配置した。比較例2では、円筒部材が受電極となると共に棒状電極が放電極となるようにして、両電極間に、電圧50kV、パルス幅10μsの直流パルス電圧を繰り返し周期2000Hzで印加し(消費電力105W)、電極間を通過したガスにおけるHC,CO,NOxの浄化率を測定した。
【0027】
上述の実験の結果を次の表1に示す。まず、かかる表1に示される実験結果より、本発明のように漏斗状の第1電極10およびそれと対をなす第2電極20を用いれば、触媒を用いた場合(比較例1)や、円筒状の電極と棒状の電極とを含む放電装置(比較例2)を用いた場合と比較して、内燃機関の排ガス中に含まれるHC、CO、NOxといった有害物質を良好に浄化し得ることがわかる。そして、実施例1〜3に関する実験結果より、第1電極10の下流端と第2電極20の先端との間の距離xは、少なくとも、およそ−50〜100mmの範囲内、より好ましくは、およそ−30〜50mmの範囲内に設定されると実用上良好な結果が得られることがわかる。
【0028】
【表1】

Figure 2005016411
【0029】
なお、第1電極10のコーン部11の排ガス入口における内径aの値は、適用対象となる内燃機関の排気管Lの内径に合わせて適宜選択され得る。また、コーン部11の全長bの値は、およそ50〜2000mmの範囲から、第1電極10の筒口部12の全長cの値は、0mm〜およそ1950mmの範囲から、筒口部12の内径dの値は、およそ20〜50mmの範囲から適宜選択され得る。
【0030】
【発明の効果】
以上説明されたように、本発明によれば、排ガスとプラズマとを確実に接触させて排ガスを良好に浄化することができる排ガス浄化装置の実現が可能となる。
【図面の簡単な説明】
【図1】本発明による排ガス浄化装置を示す断面図である。
【図2】本発明による排ガス浄化装置の変形例を示す斜視図である。
【図3】本発明による排ガス浄化装置の他の変形例を示す斜視図である。
【図4】本発明による排ガス浄化装置の更に他の変形例を示す斜視図である。
【符号の説明】
1,1A,1B,1C 排ガス浄化装置
2 絶縁部材
5 高圧電源
10 第1電極
11 コーン部
12 筒口部
14 放電突起
20,20a,20B 第2電極
21 棒状電極
22 支持部材
L 排気管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification apparatus that purifies exhaust gas using plasma.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as an apparatus that is incorporated in an exhaust system of a vehicle internal combustion engine and purifies exhaust gas of the internal combustion engine, an exhaust gas purification apparatus that purifies exhaust gas using plasma is known (see, for example, Patent Document 1). ). This exhaust gas purification apparatus includes a cylindrical grounding electrode incorporated in an exhaust gas passage of an internal combustion engine, and a rod-like (needle-like) discharge electrode that is disposed at the center of the grounding electrode and extends in the exhaust gas flow direction. A high voltage is applied between these discharge electrodes and the ground electrode in order to form an electric field, whereby the exhaust gas is purified by the plasma generated between the discharge electrode and the ground electrode. .
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-21541
[Problems to be solved by the invention]
However, in the conventional exhaust gas purifying apparatus as described above, it is not easy to generate plasma between a pair of electrodes at high density, and the exhaust gas flowing in the ground electrode and the plasma are reliably brought into contact with each other. It was difficult to sufficiently clean the harmful substances inside.
[0005]
Therefore, an object of the present invention is to provide an exhaust gas purification apparatus that can reliably purify exhaust gas by bringing exhaust gas and plasma into contact with each other reliably.
[0006]
[Means for Solving the Problems]
The exhaust gas purifying apparatus according to the present invention is an exhaust gas purifying apparatus that purifies exhaust gas using plasma, and is disposed in an exhaust gas flow path for circulating exhaust gas, and the opening area gradually decreases from the upstream side to the downstream side in the exhaust gas flow direction. A cylindrical first electrode including a region in contact with the first electrode; and a second electrode disposed on the downstream side of the first electrode and paired with the first electrode.
[0007]
This exhaust gas purification apparatus includes a cylindrical first electrode disposed in the exhaust gas flow path, and a second electrode disposed on the downstream side of the first electrode. A high voltage is applied to the first electrode and the second electrode, whereby plasma is generated between the downstream end of the first electrode and the second electrode. Here, the first electrode of the exhaust gas purifying apparatus is configured to include a region where the opening area gradually decreases from the upstream side to the downstream side in the exhaust gas flow direction. For this reason, in this exhaust gas purification apparatus, exhaust gas is collected toward the plasma between the downstream end of the first electrode and the second electrode by the first electrode including the region where the opening area gradually decreases toward the downstream side. Will be. Furthermore, in this exhaust gas purification apparatus, it is possible to shorten the distance between the downstream end of the first electrode and the second electrode, compared to the case where a cylindrical electrode having a constant opening area is used as the first electrode. Thus, plasma can be generated at a high density between the first electrode and the second electrode. As a result, according to this exhaust gas purification device, the exhaust gas and the plasma can be reliably brought into contact with each other and harmful substances in the exhaust gas can be activated well by the plasma, so that the exhaust gas can be purified well. It becomes.
[0008]
In this case, it is preferable that the distance between the downstream end of the first electrode and the upstream end of the second electrode is approximately −50 to 100 mm.
[0009]
Moreover, it is preferable that the second electrode includes a rod-shaped electrode extending in the exhaust gas flow direction toward the first electrode.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of an exhaust gas purifying apparatus according to the present invention will be described in detail with reference to the drawings.
[0011]
FIG. 1 is a cross-sectional view showing an exhaust gas purifying apparatus according to the present invention. An exhaust gas purification apparatus 1 shown in the figure is suitable for use in a vehicle, and in order to purify exhaust gas discharged from a combustion chamber of an internal combustion engine (not shown), an exhaust system (exhaust gas flow) of the internal combustion engine is shown. Is incorporated in the exhaust pipe L constituting the road). In the present embodiment, the exhaust gas purifying apparatus 1 is disposed in front of a catalytic device (a catalytic converter, not shown) including, for example, a three-way catalyst. As shown in FIG. 1, the exhaust gas purification apparatus 1 includes a first electrode 10 and a second electrode 20 that are respectively disposed inside the exhaust pipe L, and the first electrode 10 and the second electrode 20 that make a pair with each other. In addition, the exhaust gas is purified using plasma generated by applying a high voltage.
[0012]
The first electrode 10 is formed in a substantially funnel shape (cylindrical shape) from a metal such as stainless steel, and includes a cone portion 11 and a tube opening portion 12. The cone part 11 is formed in a hollow truncated cone shape whose opening area (inner diameter) gradually decreases from one end to the other end. Further, the tube opening portion 12 extends from the small diameter end portion of the cone portion 11 and is formed in a short cylindrical shape having the same inner diameter as the inner diameter of the small diameter end portion of the cone portion 11. The first electrode 10 is fixed to the inside of the exhaust pipe L via the insulating member 2 so that the cone portion 11 is located on the upstream side in the exhaust gas flow direction, that is, on the combustion chamber side of the internal combustion engine. Then, the first electrode 10 extends in a state in which the axial center thereof substantially coincides with the axial center of the exhaust pipe L.
[0013]
On the other hand, the second electrode 20 includes a metal rod-like electrode (needle-like electrode) 21 and a support member 22 for fixing the rod-like electrode 21 inside the exhaust pipe L. As shown in FIG. 1, in the second electrode 20, the tip end (upstream end) of the rod-shaped electrode 21 extends from the downstream end of the first electrode 10 (cylinder opening portion 12) in the exhaust gas flow direction (axial direction of the exhaust pipe L). ) At a predetermined distance x. The rod-shaped electrode 21 is positioned on the axial center of the exhaust pipe L and extends in the exhaust gas flow direction toward the first electrode 10 on the upstream side. The second electrode 20 (support member 22) is insulated from the exhaust pipe L by the insulating member 2 described above. A plurality of spinous discharge protrusions may be provided radially at the tip of the rod-shaped electrode 21.
[0014]
As shown in FIG. 1, the first electrode 10 is grounded via the terminal 3, and the second electrode 20 is connected to the high-voltage power source 5 via the power supply terminal 4. In the present embodiment, for example, a high voltage is applied between the first electrode 10 and the second electrode 20 such that the first electrode 10 serves as a receiving electrode and the second electrode 20 serves as a discharge electrode. As the high-voltage power supply 5, any one of a DC high-voltage power supply, an AC high-voltage power supply, and a DC pulse power supply can be used.
[0015]
In the exhaust gas purification apparatus 1 configured as described above, the exhaust gas from the combustion chamber of the internal combustion engine is introduced into the exhaust pipe L as the internal combustion engine is started. Further, in accordance with the start of the internal combustion engine, a high voltage is applied between the first electrode 10 and the second electrode 20 that are paired with each other by the high-voltage power supply 5, whereby the first electrode 10 (cylinder opening 12) Plasma is generated between the downstream end and the tip of the second electrode 20.
[0016]
Here, the first electrode 10 of the exhaust gas purification apparatus 1 includes a cone portion 11 that is disposed so that the opening area (inner diameter) gradually decreases from the upstream side to the downstream side in the exhaust gas flow direction. For this reason, the exhaust gas in the exhaust pipe L is collected toward the plasma between the downstream end of the first electrode 10 and the second electrode 20 while flowing through the cone portion 11 of the first electrode 10. It will follow.
[0017]
Furthermore, in comparison with the case where a cylindrical electrode having a constant opening area (inner diameter) is used as the first electrode, in the exhaust gas purification apparatus 1, the gap between the downstream end of the first electrode 10 and the tip of the second electrode 20 The distance can be shortened (in the radial direction of the exhaust pipe L). Therefore, in the exhaust gas purification apparatus 1, plasma can be generated with high density between the downstream end of the first electrode 10 (cylinder opening portion 12) and the tip of the second electrode 20.
[0018]
As a result, according to the exhaust gas purification apparatus 1, the exhaust gas and the plasma can be reliably brought into contact with each other, and harmful substances such as HC, CO, and NOx contained in the exhaust gas can be activated well. It becomes possible to purify.
[0019]
In the exhaust gas purification apparatus 1 described above, the second electrode 20 including one rod-shaped electrode 21 is employed, but the present invention is not limited to this. That is, as in the exhaust gas purifying apparatus 1A shown in FIG. 2, the second electrode 20A including a plurality of rod-like electrodes 21 extending toward the first electrode 10 may be employed. In the example of FIG. 2, the plurality of rod-shaped electrodes 21 are fixed to the support member 22 at a predetermined interval so as to be positioned around the rod-shaped electrode 21 disposed on the axis of the first electrode 10. In this case, it is preferable that the distance between the central rod-shaped electrode 21 and any one of the rod-shaped electrodes 21 on the outer peripheral side is set to be slightly larger than the radius of the tube opening 12 of the first electrode 10.
[0020]
Further, as in the exhaust gas purifying apparatus 1B shown in FIG. 3, a mesh electrode 20B may be employed as an electrode paired with the funnel-shaped first electrode 10. Further, as in the exhaust gas purifying apparatus 1C shown in FIG. 4, a plurality of discharge protrusions 14 extending toward the second electrode 20 on the downstream side may be provided at the tube opening 12 of the funnel-shaped first electrode 10. Even if the configurations shown in FIGS. 2 to 4 are employed, it is possible to generate plasma reliably and satisfactorily between the first electrode 10 and the second electrode 20, 20A or 20B.
[0021]
By the way, in order to generate a strong electric field between the funnel-shaped first electrode 10 and the rod-shaped second electrode 20, the distance x between the downstream end of the first electrode 10 and the tip of the second electrode 20 is set to It is important to set appropriately. For this reason, the inventor conducted the following experiment to optimize the distance x between the first electrode 10 and the second electrode 20.
[0022]
In this experiment, a first electrode 10 formed in a funnel shape with stainless steel and a second electrode 20 including a rod-shaped electrode 21 made of stainless steel and a support member 22 are prepared, and a quartz tube (inner diameter) simulating an actual exhaust pipe is prepared. The first electrode 10 and the second electrode 20 are disposed so as to be separated from each other by a predetermined distance x. Here, in this experiment, the value of the distance x is changed in order to grasp a suitable value of the distance x between the downstream end of the first electrode 10 and the tip of the second electrode 20, and x = 10 mm in the first embodiment. In Example 2, x = 30 mm, and in Example 3, x = 60 mm.
[0023]
In addition, the dimensions of the first electrode 10 used in this experiment are as shown in FIG. 1, where the inner diameter of the cone portion 11 at the exhaust gas inlet is a, and the entire length of the cone portion 11 (length in the axial direction). Where b is the total length (length in the axial direction) of the tube opening 12 and c is the inner diameter of the tube opening 12 (the inner diameter at the small diameter end of the cone portion 11), d is a = 28 mm, b = 20 mm. , C = 5 mm, d = 8 mm. Furthermore, the second electrode 20 used in this experiment included a rod-shaped electrode 21 having an outer diameter of 1 mm and a total length of 20 mm.
[0024]
And about Example 1-Example 3, after arrange | positioning the quartz tube containing the 1st electrode 10 and the 2nd electrode 20 inside the tubular furnace for laboratory, and heating up the inside of a tubular furnace to about 150 degreeC. Therefore, a model gas imitating the exhaust gas of an internal combustion engine was introduced inside the quartz tube. The model gas, a CO 0.65% C 3 to H 6 1000 ppm, 1500 ppm of NO, CO 2 10%, the O 2 0.7% those containing H 2 O 5% was used. Further, a DC pulse voltage having a voltage of 50 kV and a pulse width of 10 μs is provided between the first electrode 10 and the second electrode 20 so that the first electrode 10 serves as a receiving electrode and the second electrode 20 serves as a discharge electrode. Purification rate of HC, CO, NOx in the gas that passed between the first electrode 10 and the second electrode 20 when applied at a repetition period of 2000 Hz (power consumption 105 W) (reduction rate of each substance before and after passing between the electrodes) Was measured.
[0025]
In addition, in this experiment, in addition to Examples 1 to 3 described above, as Comparative Example 1, a catalyst in which Pt was supported on Al 2 O 3 was prepared. This catalyst was prepared by dispersing 19.8 g of Al 2 O 3 powder in ion-exchanged water, adding a dinitrodiamine Pt solution corresponding to 0.2 g of Pt to this solution, concentrating to dryness, drying and grinding, What was obtained by baking for about 2 hours at a temperature of 500 ° C. was formed into pellets having a diameter of 1 to 2 mm. Then, after placing 1.0 g of the pellet-shaped catalyst inside the quartz tube (inner diameter of about 30 mm), the model gas having the above composition is introduced into the quartz tube, and the HC, CO in the gas that has passed through the catalyst. , NOx purification rate was measured.
[0026]
Furthermore, in this experiment, as Comparative Example 2, a discharge device including a stainless steel cylindrical member (inner diameter 30 mm, total length 60 mm) and a rod-shaped electrode (outer diameter 1 mm, total length 60 mm) arranged at the center of the cylindrical member ( Reactor) was prepared and placed inside a quartz tube (inner diameter approximately 30 mm). In Comparative Example 2, a direct current pulse voltage having a voltage of 50 kV and a pulse width of 10 μs was applied between both electrodes at a repetition period of 2000 Hz so that the cylindrical member was a receiving electrode and the rod-shaped electrode was a discharging electrode (power consumption 105 W). ), The purification rate of HC, CO, NOx in the gas passing between the electrodes was measured.
[0027]
The results of the above experiment are shown in Table 1 below. First, from the experimental results shown in Table 1, when the funnel-shaped first electrode 10 and the second electrode 20 paired therewith are used as in the present invention, a catalyst is used (Comparative Example 1), or a cylinder Compared with the case where a discharge device (Comparative Example 2) including a rod-shaped electrode and a rod-shaped electrode is used, harmful substances such as HC, CO, and NOx contained in the exhaust gas of the internal combustion engine can be purified well. Recognize. From the experimental results regarding Examples 1 to 3, the distance x between the downstream end of the first electrode 10 and the tip of the second electrode 20 is at least within a range of approximately −50 to 100 mm, more preferably approximately. It can be seen that a practically good result can be obtained when it is set within the range of -30 to 50 mm.
[0028]
[Table 1]
Figure 2005016411
[0029]
Note that the value of the inner diameter a at the exhaust gas inlet of the cone portion 11 of the first electrode 10 can be appropriately selected according to the inner diameter of the exhaust pipe L of the internal combustion engine to be applied. In addition, the value of the total length b of the cone part 11 is in the range of about 50 to 2000 mm, and the value of the total length c of the cylinder port 12 of the first electrode 10 is in the range of 0 mm to about 1950 mm. The value can be appropriately selected from a range of approximately 20 to 50 mm.
[0030]
【The invention's effect】
As described above, according to the present invention, it is possible to realize an exhaust gas purifying apparatus capable of purifying exhaust gas satisfactorily by reliably contacting exhaust gas and plasma.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an exhaust gas purifying apparatus according to the present invention.
FIG. 2 is a perspective view showing a modification of the exhaust gas purifying apparatus according to the present invention.
FIG. 3 is a perspective view showing another modification of the exhaust gas purifying apparatus according to the present invention.
FIG. 4 is a perspective view showing still another modification of the exhaust gas purifying apparatus according to the present invention.
[Explanation of symbols]
1, 1A, 1B, 1C Exhaust gas purification device 2 Insulating member 5 High-voltage power source 10 First electrode 11 Cone portion 12 Cylinder opening portion 14 Discharge protrusions 20, 20a, 20B

Claims (3)

プラズマを利用して排ガスを浄化する排ガス浄化装置において、
排ガスを流通させる排ガス流路内に配置され、排ガスの流れ方向上流側から下流側に向けて開口面積が漸減している領域を含む筒状の第1電極と、
前記第1電極の下流側に配置されており、前記第1電極と対をなす第2電極とを備えることを特徴とする排ガス浄化装置。
In an exhaust gas purification device that purifies exhaust gas using plasma,
A cylindrical first electrode that is disposed in an exhaust gas flow channel for circulating exhaust gas and includes a region in which an opening area gradually decreases from the upstream side to the downstream side in the flow direction of the exhaust gas;
An exhaust gas purification apparatus, comprising: a second electrode disposed downstream of the first electrode and paired with the first electrode.
前記第1電極の下流端と前記第2電極の上流端との間の距離は、およそ−50〜100mmであることを特徴とする請求項1に記載の排ガス浄化装置。The exhaust gas purifying apparatus according to claim 1, wherein a distance between a downstream end of the first electrode and an upstream end of the second electrode is approximately -50 to 100 mm. 前記第2電極は、前記第1電極に向けて排ガスの流れ方向に延在する棒状電極を含むことを特徴とする請求項1または2に記載の排ガス浄化装置。3. The exhaust gas purification apparatus according to claim 1, wherein the second electrode includes a rod-shaped electrode extending in a flow direction of the exhaust gas toward the first electrode.
JP2003181898A 2003-06-25 2003-06-25 Exhaust gas purification device Pending JP2005016411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003181898A JP2005016411A (en) 2003-06-25 2003-06-25 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003181898A JP2005016411A (en) 2003-06-25 2003-06-25 Exhaust gas purification device

Publications (1)

Publication Number Publication Date
JP2005016411A true JP2005016411A (en) 2005-01-20

Family

ID=34182435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003181898A Pending JP2005016411A (en) 2003-06-25 2003-06-25 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP2005016411A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269095A (en) * 2005-03-22 2006-10-05 Takeshi Nagasawa Plasma generation device
WO2007055535A1 (en) * 2005-11-11 2007-05-18 Korea Institute Of Machinery And Materials Apparatus for treating exhaust praticulate matter
JP2011112026A (en) * 2009-11-30 2011-06-09 Denso Corp Electric power supply device for exhaust emission control device
JP2012145114A (en) * 2007-07-30 2012-08-02 Korea Inst Of Machinery & Materials Plasma burner, and smoke filtering device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269095A (en) * 2005-03-22 2006-10-05 Takeshi Nagasawa Plasma generation device
WO2007055535A1 (en) * 2005-11-11 2007-05-18 Korea Institute Of Machinery And Materials Apparatus for treating exhaust praticulate matter
US8900520B2 (en) 2005-11-11 2014-12-02 Korea Institute Of Machinery And Materials Apparatus for treating exhaust particulate matter
JP2012145114A (en) * 2007-07-30 2012-08-02 Korea Inst Of Machinery & Materials Plasma burner, and smoke filtering device
JP2011112026A (en) * 2009-11-30 2011-06-09 Denso Corp Electric power supply device for exhaust emission control device

Similar Documents

Publication Publication Date Title
JP4870303B2 (en) Exhaust gas treatment device for a motor equipped with an internal combustion engine
US7510600B2 (en) Gas purifying apparatus
JP4803186B2 (en) Fuel reformer
EP1287242A1 (en) Apparatus for removing soot and no x? in exhaust gas from diesel engines
EP2299073B1 (en) Exhaust gas treatment apparatus
JPH06509266A (en) Exhaust treatment systems and methods
JP2008248728A (en) Exhaust gas purification device
CN101391171B (en) Low-temperature plasma purifier
JP4292868B2 (en) Exhaust gas purification device
JP2005016411A (en) Exhaust gas purification device
WO2008120819A1 (en) Exhaust gas purifying apparatus
JP2004028026A (en) Exhaust gas purification equipment
JP2005240738A (en) Power source for plasma reactor, plasma reactor, exhaust gas purification device and exhaust gas purification method
JP2004245091A (en) Exhaust gas treating device
JP2004019534A (en) Exhaust gas purification device
JP2002357119A (en) Highly efficient gas processing system using electric discharge
US8544257B2 (en) Electrically stimulated catalytic converter apparatus, and method of using same
AU2003271860A1 (en) Improvement in and relating to gas cleaning devices
JP2004011592A (en) Exhaust gas purification device
CN219910906U (en) Low-temperature plasma synergistic catalysis overweight technology diesel vehicle tail purifying device
JP3207519B2 (en) Exhaust gas purification device for diesel engine
JP2004132338A (en) Exhaust emission control device
JP2005036667A (en) Exhaust purification device
WO2003067046A1 (en) Discharge type gas cleaner
JP2004239257A (en) Exhaust gas purification device