[go: up one dir, main page]

JP2005007338A - Method and apparatus for controlling injection of flocculant - Google Patents

Method and apparatus for controlling injection of flocculant Download PDF

Info

Publication number
JP2005007338A
JP2005007338A JP2003176037A JP2003176037A JP2005007338A JP 2005007338 A JP2005007338 A JP 2005007338A JP 2003176037 A JP2003176037 A JP 2003176037A JP 2003176037 A JP2003176037 A JP 2003176037A JP 2005007338 A JP2005007338 A JP 2005007338A
Authority
JP
Japan
Prior art keywords
flocculant
floc
area
stock solution
injection rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003176037A
Other languages
Japanese (ja)
Other versions
JP4238983B2 (en
JP2005007338A5 (en
Inventor
Hiroichi Kawasaki
博一 河崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishigaki Co Ltd
Original Assignee
Ishigaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishigaki Co Ltd filed Critical Ishigaki Co Ltd
Priority to JP2003176037A priority Critical patent/JP4238983B2/en
Publication of JP2005007338A publication Critical patent/JP2005007338A/en
Publication of JP2005007338A5 publication Critical patent/JP2005007338A5/ja
Application granted granted Critical
Publication of JP4238983B2 publication Critical patent/JP4238983B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for controlling the injection of a flocculant, wherein the amount of the flocculant to be added is adjusted by taking a picture of the flocculated state of a floc in an original liquid. <P>SOLUTION: The picture of the floc is taken by setting a television camera (15) at an inspection window (14) on an original liquid supplying pipe (13) connected to a dehydrator (12). The analyzable area per one floc is integrated by binarizing the taken picture by using an arithmetic unit (17). The integrated area is compared with a preset reference area by sequencer proportional control (22). The number of revolution of a flocculant injecting pump (9) is controlled on the basis of the formed state of the floc. Since the flow velocity in the pipe (13) is low and flocs are hardly superimposed on one another, an accurate picture can be taken. Since the picture of the floc itself to be supplied to the dehydrator (12) is taken, the analyzable area of the floc in a stabilized state can be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、上水汚泥、下水汚泥及び産業排水汚泥等の凝集状態を撮影して、凝集剤注入率を調整する凝集剤注入制御方法とその制御装置の改良に関する。
【0002】
【従来の技術】
従来、懸濁物質を含有する原液は、凝集剤を添加して懸濁物質のフロックを形成させ、脱水汚泥の含水率の低減を図っている。この原液中の懸濁物質の凝集状態の制御装置としては、凝集混和槽中の懸濁物質の凝集状態を撮影し、あるいは、原液と凝集剤の一部を小型の試験槽に供給し、懸濁物質を凝集させたフロックを撮影して2値化処理し、フロックの数で懸濁物質の凝集状態を解析する汚泥凝集処理装置は、例えば、特許文献1に記載してあるように公知である。また、2値化画像により凝集塊群の平均粒径を求める制御装置も、特許文献2に記載してあるように公知である。
【0003】
【特許文献1】
特許第3136554号公報(段落番号0012乃至段落番号0016,図1)
【特許文献2】
特公平6−61410号公報(請求項1,図1)
【0004】
【発明が解決しようとする課題】
上記従来の汚泥凝集処理装置は、フロックの影響を受けることがなく、凝集状態の評価をオンラインにて自動計測が可能であり、添加量を自動調整できる利点がある。しかしながら、懸濁物質の凝集状態をフロックの数で評価するものは、濃度が変われば、同率の凝集剤添加でもフロック数が変わる。粒径を測定する手段は、フロックの形状がいびつであり、粒径の評価が困難である。そして、凝集混和槽や試験槽には槽の奥行きによるフロックの重なりがあり、正確な撮影ができない。撹拌機が回転しているため、フロックの動きが早く、撮影できない欠点がある。この発明は、原液の配管ラインにテレビカメラを配設し、フロックの重なりが少なく、脈動のない適度な流速に下がる配管中でフロックの大きさを撮影する凝集剤注入制御方法並びにその制御装置を提供する。
【0005】
【課題を解決するための手段】
この発明に係る凝集剤注入制御方法は、凝集混和槽の原液中に凝集剤を添加して懸濁物質のフロックを形成させ、その原液を脱水機に供給する汚泥処理装置において、脱水機に原液を供給する原液供給管中のフロックの大きさを撮影し、輝度信号を電気信号に変換させ、電気信号からフロックの大きさを2値化させると共に、フロックの2値画像からのフロック1個当たりの平均面積を計算し、その平均解析面積とあらかじめ設定したフロックの基準面積を比較して適正値を計算し、フロックの形成状況に基づき比例設定値の凝集剤注入率を制御するもので、原液供給管の原液は、適度に流速が下がり、原液の液層の厚みも小さくなる。フロック間の重なりが少なくなり、正確な撮影が可能となる。さらに、脱水機に供給するフロックそのものを撮影するので信頼性が高くなる。
【0006】
凝集剤注入制御方法の請求項2に記載の発明は、原液供給管中のフロックを所定時間ごとに撮影し、2値化処理したデータの数回分を平均し、そのフロックの解析面積とあらかじめ設定してある基準面積と比較して適正値を計算し、凝集剤注入ポンプの回転数を増減させて凝集剤注入率を変更し、数分間後に再測定するもので、フロック同士の重なりによる測定誤差が解除され、安定したフロックの状態で解析面積を測定できる。
【0007】
凝集剤注入制御方法の請求項3に記載の発明は、原液中に含まれる懸濁物質量の変動に対する凝集剤注入率を変更して、フロックの平均解析面積と基準面積を比較し、平均解析面積が基準面積より大きい時には、凝集剤注入ポンプの回転数を減少させ、平均解析面積が基準面積の上限値以内に達した時に、現時点での凝集剤注入率を維持すると共に、まだ平均解析面積が基準面積より大きくて、この操作を繰り返して凝集剤注入率が設定した下限値に達した時には、凝集剤注入ポンプの回転数を維持しながら異常信号を出すもので、上限値と下限値の間で管理して、凝集剤注入制御方法の自動化が可能となる。
【0008】
凝集剤注入制御方法の請求項4に記載の発明は、原液中の懸濁物質量の変動に対する凝集剤注入率を変更して、フロックの平均解析面積と基準面積を比較し、平均解析面積が基準面積より小さい時には、凝集剤注入ポンプの回転数を増加させ、平均解析面積が基準面積の下限値以内に達した時に、現時点での凝集剤注入率を維持すると共に、まだ解析面積が基準面積より小さくて、この操作を繰り返して凝集剤注入率が設定した上限値に達した時には、凝集剤注入ポンプの回転数を維持しながら異常信号を出すものである。
【0009】
凝集剤注入制御方法の請求項5に記載の発明は、脱水機に一定の原液量を供給する時には、フロックの平均解析面積と基準面積を比較し、平均解析面積が基準面積より大きければ、凝集剤注入率を減少させ、平均解析面積が基準面積の上限値以内に達した時には、現時点での凝集剤注入率を維持すると共に、上記操作を繰り返して凝集剤注入率が設定した下限値に達した時には、凝集剤注入ポンプの回転数を維持しながら異常信号を出すもので、異常信号により、原液の性状の異なる液の混入が考えられ、泥質の要素が影響を及ぼし、調整不可能となる状態が察知でき、技術者の原因の調査が可能となる。
【0010】
凝集剤注入制御方法の請求項6に記載の発明は、脱水機に一定の原液量を供給する時には、フロックの平均解析面積と基準面積を比較し、平均解析面積が基準面積より小さければ、凝集剤注入ポンプの回転数を増加させ、平均解析面積が基準面積の下限値以内に達した時に、現時点での凝集剤注入率を維持すると共に、上記操作を繰り返して凝集剤注入率が設定した上限値に達した時には、凝集剤注入ポンプの回転数を維持しながら異常信号を出すものである。
【0011】
凝集剤注入制御方法の請求項7に記載の発明は、演算したフロックの平均解析面積が基準面積より大きい時には、凝集剤注入率を減少して、同時に凝集混和槽の撹拌機の回転数を増加させ、平均解析面積が基準面積の上限値以内に達した時に、現時点での凝集剤注入率と撹拌機の回転数を維持すると共に、上記操作を繰り返し、凝集剤注入率が設定した下限値に達した時には、凝集剤注入ポンプと撹拌機の回転数を維持しながら異常信号を出すもので、フロックが弱く、大きい場合があり、むしろ撹拌機の回転を増やし小さいフロックをつくった方がよいケースもある。そして、フロックが強くても小さ過ぎる場合には、撹拌機の回転数を少なくし、フロックを大きくすることができる。
【0012】
凝集剤注入制御方法の請求項8に記載の発明は、演算したフロックの解析面積が基準面積より小さい時には、凝集剤注入率を増加させ、同時に凝集混和槽の撹拌機の回転数を減少し、フロックの解析面積が基準面積の下限値以内に達した時に、現時点での凝集剤注入率と撹拌機の回転数を維持すると共に、上記操作を繰り返し、凝集剤注入率が設定した下限値に達した時には、凝集剤注入ポンプと撹拌機の回転数を維持しながら異常信号を出すものである。
【0013】
上記の制御方法を実施するための凝集剤注入制御装置の請求項9に記載の発明は、原液と凝集剤を密閉状の凝集混和槽に供給し、原液中に含まれる懸濁物質のフロックを形成させ、その原液を凝集混和槽のタンク圧で脱水機に供給する原液供給装置において、脱水機に連結した原液供給管に検視窓を設け、検視窓に懸濁物質のフロックの大きさを撮影するテレビカメラを配設し、撮影したフロック画像を2値化してフロック1個当たりの平均解析面積を積算する演算装置を設けると共に、積算したフロックの平均解析面積とあらかじめ設定した基準面積を比較して、フロックの形成状況に基づき指令信号を発信するシーケンサー比例制御と、指令信号に基づき回転数を制御する凝集剤注入ポンプを設けたもので、配管内の流速は凝集混和槽の撹拌機によるフロックの撹拌速度ほど速くなく、正確にフロックの撮影が行える。タンク圧入により原液の脈動も少なくなる。
【0014】
凝集剤注入制御装置の請求項10に記載の発明は、原液中に含まれる懸濁物質量の変動に対する比例設定値の凝集剤注入率を変更し、原液供給管のフロック1個当たりの平均解析面積と基準面積を比較して、凝集剤注入ポンプの回転数を制御すると共に、シーケンサー比例制御に異常信号装置を併設し、凝集剤注入率の上限値と下限値で異常信号を発信させるもので、異常信号により、調整不可能となる状態が察知でき、技術者の原因の調査が可能となり、凝集剤注入制御装置の自動化が可能となる。
【0015】
凝集剤注入制御装置の請求項11に記載の発明は、脱水機に一定の原液量を供給する時には、原液供給管のフロックの平均解析面積と基準面積を比較し、凝集剤注入ポンプの回転数を制御すると共に、シーケンサー比例制御に異常信号装置を併設し、凝集剤注入率の上限値と下限値で異常信号を発信させてもよいもので、上限値と下限値の間で管理して、技術者の原因の調査が可能となる。
【0016】
凝集剤注入制御装置の請求項12に記載の発明は、フロックの平均解析面積と基準面積を比較して、平均解析面積が基準面積より大きい時には、凝集剤注入ポンプの回転数を増加させ,同時に凝集混和槽の撹拌機の回転数を減少させると共に、フロックの平均解析面積が基準面積より小さい時には、凝集剤注入ポンプの回転数を減少させ,同時に、撹拌機の回転数を増加させるもので、大きくても弱いフロックを強くして、小さすぎるフロックを大きくすることができる。高分子の減量と撹拌強化が行える。
【0017】
【発明の実施の形態】
この発明に係る凝集剤注入制御方法並びにその制御装置は上記のように構成してあり、あらかじめ原液供給量の変動と濃度の変動に対する凝集剤の注入率の比例値を設定し、凝集混和槽からタンク圧で抜出した原液中のフロックを撮像して、懸濁物質のフロックの平均面積を算出し、基準面積としてコンピュータに予め入力しておく。そして、凝集混和槽から脱水機に供給される原液を配管ラインに設けた検視管から撮像し、15〜30秒間に1回フロックの大きさを撮影し、輝度信号を電気信号に変換する。このフロック画像を演算装置で2値化し、2値化データの4回分(1〜2分間データ)を平均し、コンピュータで高分子増減の評価を行う。凝集剤供給量を変更した直後は、2〜3分待ってから撮影をスタートさせる。このようにして算出したフロックの1ヶ当たりの平均解析面積と基準面積を比較して、平均解析面積に応じて凝集剤注入率を変動させて、原液中のフロックに対する凝集剤注入率の比例制御を行う。
【0018】
濃度が変われば同率の凝集剤添加でもフロックの数が変わるため、懸濁物質の凝集状態をフロックの面積で評価する。フロックの大きさで解析すれば、より正確に配管中に含まれるフロックの大きさを2値化させることができる。原液供給量を一定で運転するときにも、フロックの1ヶ当たりの平均解析面積と基準面積を比較して、平均解析面積に応じて凝集剤注入率を変動させる。また、凝集剤比例注入および撹拌機回転によるコントロール方法は、凝集剤注入比率を規定量増減させ、所定の速度で撹拌する撹拌機の回転数を変動させる。凝集剤注入率と撹拌機の回転数が、上限値あるいは下限値に達した時には、異常信号を出し、技術者が状況を調査する。
【0019】
【実施例】
この発明に係る凝集剤注入制御装置を図面に基づき詳述すると、図1は凝集剤注入制御装置に用いる機器類の構成図であって、懸濁物質を含有する原液が撹拌機1を配設した原液貯留槽2に貯留してあり、原液供給ポンプ3で圧入管4から密閉状の凝集混和槽5の槽底に一定量の原液を圧入する。凝集剤が撹拌機6を配設した高分子凝集剤溶解槽7に貯留してあり、可変容量の凝集剤注入ポンプ9で圧入管4の原液に0.3〜1.0%の範囲で添加して、凝集混和槽5の槽底に供給する。凝集剤注入ポンプ9は凝集剤の添加率を段階的に0.1%増減できるようにしてある。なお、凝集剤は凝集混和槽5に直接供給してもよいものである。凝集混和槽5には可変速駆動機10に連結した撹拌機11が配設してあり、原液と高分子凝集剤を通常40rpmの速度で撹拌し、段階的に3〜5rpmの増速と減速を可能としてある。
【0020】
図1に示すように、凝集混和槽5の上部には、フロックを形成した原液を脱水機のスクリュープレス12に供給させる原液供給管13が連結してある。原液供給ポンプ3の凝集混和槽5への圧入圧を利用して、凝集混和槽5のタンク圧で原液をスクリュープレス12に圧入し、凝集した懸濁物質のフロックが脈動により壊れないようにしてある。原液供給管13に凝集した懸濁物質のフロックの状況を撮影する検視窓14が設けてある。原液供給管13の検視窓14から30〜40cm離れた位置にテレビカメラ15が設置してある。図2は凝集剤注入制御装置の画像解析制御フローであって、原液供給管13中の懸濁物質のフロックの大きさをテレビカメラ15で15〜30秒間に1回撮影し、その輝度信号をデジタル信号に変換する。電気信号の輝度情報はコントローラ16に送信され、コントローラ16がフロック画像を演算装置17に伝送する。テレビカメラ15から伝送されてくるフロック群の画像輝度情報は、演算装置17の画像ボード18で記憶される。この画像情報は2値化回路19により輝度レベルに応じて2値化される。
【0021】
2値化されたフロック群の画像情報は平均面積演算回路20に入力されて、2値化データの4回分(1〜2分間データ)を平均してフロック群面積の平均値を求める。このフロック1ヶ当たりの平均面積を一画面における平均解析面積とする。測定回数の理由は、一回程度の測定ではフロック同士の重なりがあり、測定誤差がある。測定回数が多いほど正確となるが、早い操作をする目的もあり、4回程度が適当である。平均面積演算回路20の処理結果は、演算装置17から信号変換機21に送られ、デジタル信号をアナログ信号に変換し、シーケンサー比例制御22に送信する。シーケンサー比例制御22には、あらかじめ凝集混和槽5から抜出した原液中のフロックを撮影して、懸濁物質のフロックの平均面積を算出し、基準面積としてシーケンサー比例制御22に入力してある。そして、あらかじめ原液中の懸濁物質量の変動と濃度の変動に対する凝集剤の注入率の比例値を設定してある。
【0022】
図3(a)、(b)、(c)は、テレビカメラ15で撮影した懸濁物質のフロックの画像であって、図3(a)の画像は小さいフロックであり、凝集剤の添加率を増やし、あるいは、撹拌機の回転数を遅くして、図3(b)の最適フロックとする必要がある。また、凝集剤の添加率を増やしながら、撹拌機の回転数を遅くすることも考えられる。図3(c)の画像は過大なフロックであり、凝集剤の添加率を少なくし、あるいは、撹拌機の回転数を早くして、図3(b)の最適フロックとする必要がある。この場合にも、凝集剤の添加率を少なくしながら、撹拌機の回転数を早くすることも考えられる。
【0023】
【表1】

Figure 2005007338
【0024】
表1はシーケンサー比例制御に入力するフロックの基準面積の解析データであって、凝集混和槽5の原液流入量(m)に対するあらかじめ設定する凝集剤添加率(%)を、原液流入量10mに対する凝集剤添加率を0.2%、0.3%、0.4%の3段階に設定した。このデータに基づき、原液中の懸濁物質を凝集させ、フロックを撮影して、凝集汚泥のフロックを大きい順に20点を平均した。そのフロック画像の面積データは、表1のとおりである。あらかじめ汚泥流入量に対する凝集剤の注入率を設定し、その原液中のフロック1個当たりの平均面積を、フロックの基準面積としてシーケンサー比例制御22に入力してある。
【0025】
シーケンサー比例制御22には凝集剤注入率を増減させる比例設定値があらかじめ入力してあり、フロックの1ヶ当たりの平均解析面積が基準面積より大きい場合は、現状の設定値から凝集剤添加率を0.1%少なくし、平均解析面積が基準面積より小さい場合、現状の設定値から凝集剤添加率を0.1%多くするようにしてある。シーケンサー比例制御22は演算装置17から送信されるフロックの1ヶ当たりの平均解析面積と、設定した基準面積を比較演算し、凝集剤注入ポンプ9からの凝集剤の注入率を制御する。凝集剤注入率の上限値と下限値が設定してあり、この発明の実施例では、0.3〜1.0%、好ましくは、0.5〜0.7%としてある。凝集剤注入ポンプ9の回転数が上限値あるいは下限値に到達した時に、シーケンサー比例制御22に併設した異常信号装置23が、異常信号を出すようにしてある。原液の泥の質以外の要素、または全く異なった液の混入などの要素が影響を及ぼし、調整不能となっていることが考えられ、技術者が原因を調査する。なお、異常信号を警報としてもよいものである。
【0026】
そして、凝集混和槽5に設置した撹拌機11は、所定の回転数で撹拌するようにしてあり、この発明の実施例では、40rpmとしてある。シーケンサー比例制御22にはフロックの平均解析面積に対応して、凝集混和槽5に設置した撹拌機11の可変速駆動機10の回転数を切替える規定値(3〜5rpm)が設定してある。シーケンサー比例制御22は凝集剤注入ポンプ9からの凝集剤の注入率を制御すると共に、平均解析面積と基準面積を比較して、撹拌機11の回転数を制御する。この実施例では、解析面積が基準面積より大きい場合は、撹拌機11の回転数を3〜5rpm規定値より増速させる。解析面積が基準面積より小さい場合は、撹拌機11の回転数を3〜5rpm規定値より減速させる。
【0027】
撹拌機11の回転数は上限値と下限値が設定してあり、撹拌機11の回転数が規定値の上限値に上昇あるいは下限値に降下した時には、シーケンサー比例制御22に併設した異常信号装置23が異常信号を発するようにしてある。撹拌機11の回転数の上限値と下限値の設定は、凝集混和槽5の大きさ、原液流量、及び濃度により異なるものであり、適宜設定すればよいものである。演算装置17のフロックの平均面積の演算値に基づき、シーケンサー比例制御22はフロックの平均面積が規定値になるように、凝集剤注入ポンプ9からの注入率と撹拌機11の回転数を制御する。凝集剤注入率を変化させた場合、フロックの粒径が変化するまでの数分間の時間を考慮する。この発明の実施例では、2〜3分後に再びテレビカメラ15で撮像するが、凝集混和槽5の容量により待機時間が変わるものである。
【0028】
この発明に係る凝集剤注入制御装置は上記のように構成してあり、その制御装置による凝集剤注入制御方法について説明すると、先ず、原液中の懸濁物質量の変動に対する凝集剤注入率の比例制御によるコントロール方法は、フロックの1ヶ当たりの解析面積(平均面積)が基準面積より大きい場合、凝集剤注入率の比例設定値を変更させ、凝集剤注入率を0.1%少なくし、2〜3分間待ち再測定する。まだ、解析面積が基準面積より大きい場合、上記操作を繰り返す。凝集剤注入率が下限値の0.3%に達した時、現状を維持しながら、異常信号を出す。逆に、フロックの1ヶ当たりの平均解析面積が基準面積より小さい場合は、凝集剤の注入率0.1%を増加させ、2〜3分間待ち再測定する。凝集剤の注入率が上限値の1.0%になった時は、現状維持しながら異常信号を出す。異常信号が表示され、或いは警報があった時には、技術者が原因を調査する。平均解析面積が基準面積の範囲内(0.3〜1.0%)にある時には、現時点の凝集剤注入率を維持しながら、テレビカメラ15で連続撮影してフロックの状態を監視する。
【0029】
脱水機12に定量の原液を供給して比例制御を使わない場合には、フロックの平均解析面積が基準面積より大きくなった時に、凝集剤供給量を現状より設定値0.1%少なくし、2〜3分間待ち再測定する。まだ平均解析面積が基準面積より大きい時は、上記操作を繰り返し、凝集剤注入率の下限値0.3%に達した場合は現状維持しながら異常信号を出す。逆に、平均解析面積が基準面積より小さい場合は、凝集剤注入ポンプ9の回転数を増加させ、凝集剤注入率を0.1%増加させて2〜3分間待ち再測定する。凝集剤の注入率が上限値の1.0%となった時には、凝集剤の注入率を維持しながら異常信号を出す。異常信号が表示され、或いは警報があった時には、技術者が原因を調査する。
【0030】
凝集剤注入率の比例制御と撹拌機回転によるコントロール方法は、平均解析面積が基準面積より大きい場合には、凝集剤注入比率を規定量の0.1%を減少させ、2〜3分間待ち再測定する。まだ平均解析面積が基準面積より大きい時には、撹拌機11の回転数は所定の回転数40rpmを維持しながら、凝集剤注入比率を0.1%減少させる。上記の操作を繰り返しまだ平均解析面積が基準面積より大きい場合は、撹拌機11の回転数を規定値の3〜5rpm速める。弱い大きいフロックは、撹拌機11の回転数を増やして小さくし、凝集剤を撹拌混合してフロックを強くする。撹拌機11の回転数が上限値となった時には、異常信号を出す。逆に平均解析面積が基準面積より小さい場合には、凝集剤の注入率を設定値の0.1%増加させ、2〜3分間待ち再測定する。凝集剤の注入率が上限値1.0%、になった場合、撹拌機11の回転を規定値の3〜5rpm下げる。撹拌機11の回転数は下限値を設定しておき、下限値に達してもフロックが小さい場合は異常信号を出す。異常信号が表示され、或いは警報があった時には、技術者が原因を調査する。
【0031】
【発明の効果】
以上のように、この発明の凝集剤注入制御方法並びにその制御装置は、凝集混和槽から出た配管ラインで懸濁物質のフロックを面積で撮影するので、フロックの重なりが少なくなり、信頼性の高いフロックの解析面積が得られる。配管ラインの流速も適度に下がり、タンク圧入を行うので脈動も少なくなり、テレビカメラの撮影が容易となる。即ち、凝集混和槽等でフロックを撮影する従来技術にあっては、槽の奥行きによるフロックの重なりと、撹拌機の回転により正確な撮影ができない欠点がある。そして、凝集状態をフロックの数で評価する従来装置は、濃度が変わればフロック数が変わり、凝集混和槽ではフロックの重なりがあり、正確な撮影ができないものであるが、この発明に係る凝集剤注入制御方法にあっては、脱水機の原液供給管に含まれるフロックの大きさを撮影し、フロックの2値画像からのフロック1個当たりの平均面積を計算し、その平均解析面積とあらかじめ設定したフロックの基準面積と比較して適正値を計算し、フロックの形成状況に基づき凝集剤の注入率を制御するもので、フロック同士の重なりによる測定誤差が解除され、安定したフロックの状態で解析面積が測定できる。脱水機に供給するフロックそのものを撮影するので信頼性が高くなる。
【0032】
凝集剤注入制御方法を実施するための制御装置は、原液供給管の検視窓にテレビカメラと、撮影したフロック1個当たりの平均解析面積を積算する演算装置と、平均解析面積と基準面積を比較して指令信号を発信するシーケンサー比例制御と、指令信号に基づき作動させる凝集剤注入ポンプを設けたので、配管内の流速は凝集混和槽の撹拌機によるフロックの撹拌速度ほど速くなく、正確にフロックの撮影が行える。そして、シーケンサー比例制御に異常信号装置を併設し、凝集剤注入率の上限値と下限値で異常信号を発信させるので、調整不可能となる状態が察知でき、技術者の原因の調査が可能となり、凝集剤注入制御装置の自動化が行なえる。
【図面の簡単な説明】
【図1】この発明に係る凝集剤注入制御装置に用いる機器類の構成図である。
【図2】この発明に係る凝集剤注入制御装置の画像解析制御フローである。
【図3】テレビカメラで撮影した懸濁物質のフロックの画像であって、図3(a)は小さいフロック、図3(b)は最適フロック、図3(c)は過大なフロックを示す。
【符号の説明】
5 凝集混和槽
9 凝集剤注入ポンプ
11 撹拌機
12 スクリュープレス
13 原液供給管
14 検視窓
15 テレビカメラ
17 演算装置
22 シーケンサー比例制御
23 異常信号装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flocculant injection control method for adjusting the flocculant injection rate by photographing the agglomeration state of clean water sludge, sewage sludge, industrial wastewater sludge, and the like, and an improvement of the control device.
[0002]
[Prior art]
Conventionally, a stock solution containing suspended solids has added flocculants to form flocs of suspended solids to reduce the water content of dehydrated sludge. As a control device for the aggregated state of suspended substances in the stock solution, the aggregated state of suspended substances in the coagulation mixing tank is photographed, or a part of the stock solution and the flocculant is supplied to a small test tank. A sludge agglomeration processing apparatus that captures a binarized image of flocs obtained by agglomerating suspended substances and analyzes the agglomerated state of the suspended solids by the number of flocs is known as described in Patent Document 1, for example. is there. Also, a control device that obtains the average particle size of the aggregate group from the binarized image is known as described in Patent Document 2.
[0003]
[Patent Document 1]
Japanese Patent No. 3136554 (paragraph numbers 0012 to 0016, FIG. 1)
[Patent Document 2]
Japanese Examined Patent Publication No. 6-61410 (Claim 1, FIG. 1)
[0004]
[Problems to be solved by the invention]
The conventional sludge flocculation treatment apparatus is not affected by flocs, and has an advantage that the flocculation state can be automatically measured online and the addition amount can be automatically adjusted. However, in the case where the aggregation state of the suspended substance is evaluated by the number of flocs, if the concentration is changed, the floc number is changed even when the flocculant is added at the same rate. As for the means for measuring the particle size, the floc shape is irregular and it is difficult to evaluate the particle size. The flocculent mixing tank and the test tank have floc overlap due to the depth of the tank, so that accurate photographing cannot be performed. Since the agitator is rotating, the flock moves quickly, and there is a disadvantage that photography cannot be performed. The present invention provides a flocculant injection control method and a control apparatus for photographing a floc size in a pipe in which a TV camera is disposed in a raw material piping line, and flocs are overlapped and the flow rate is reduced to an appropriate flow rate without pulsation. provide.
[0005]
[Means for Solving the Problems]
The flocculant injection control method according to the present invention is a sludge treatment apparatus that adds flocculant to a stock solution in a flocculent mixing tank to form a floc of suspended solids and supplies the stock solution to a dehydrator. The size of the floc in the stock solution supply pipe is taken, the luminance signal is converted into an electric signal, the floc magnitude is binarized from the electric signal, and one floc from the binary image of the floc The average analysis area is calculated, the average analysis area is compared with the preset floc reference area, the appropriate value is calculated, and the proportional setting value flocculant injection rate is controlled based on the floc formation status. The flow rate of the stock solution in the supply pipe is appropriately reduced, and the thickness of the liquid layer of the stock solution is also reduced. Overlap between flocs is reduced, and accurate shooting is possible. Furthermore, since the floc supplied to the dehydrator is photographed, the reliability is improved.
[0006]
According to the second aspect of the flocculant injection control method, the floc in the stock solution supply pipe is photographed every predetermined time, and the binarized data is averaged several times, and the analysis area of the floc is set in advance. It calculates the appropriate value compared with the standard area, changes the coagulant injection rate by increasing or decreasing the rotation speed of the coagulant injection pump, and measures again after a few minutes. Is released, and the analysis area can be measured in a stable flock state.
[0007]
The invention according to claim 3 of the flocculant injection control method changes the flocculant injection rate with respect to fluctuations in the amount of suspended solids contained in the stock solution, compares the average analysis area of flocs with the reference area, and calculates the average analysis. When the area is larger than the reference area, the rotational speed of the flocculant injection pump is decreased, and when the average analysis area reaches the upper limit of the reference area, the current flocculant injection rate is maintained and the average analysis area is still Is larger than the reference area, and when this operation is repeated and the coagulant injection rate reaches the set lower limit value, an abnormal signal is output while maintaining the rotational speed of the coagulant injection pump. It is possible to automate the flocculant injection control method.
[0008]
The invention according to claim 4 of the flocculant injection control method changes the flocculant injection rate with respect to fluctuations in the amount of suspended solids in the stock solution, compares the average analysis area of the floc and the reference area, and the average analysis area is When the average area is less than the lower limit of the reference area, the current coagulant injection rate is maintained and the analysis area is still the reference area. When the coagulant injection rate reaches a set upper limit value by repeating this operation smaller, an abnormal signal is output while maintaining the rotational speed of the coagulant injection pump.
[0009]
The invention according to claim 5 of the flocculant injection control method compares the average analysis area of the flock with the reference area when supplying a constant stock solution amount to the dehydrator, and if the average analysis area is larger than the reference area, When the average injection area is within the upper limit of the reference area, the current coagulant injection rate is maintained, and the above procedure is repeated to reach the lower limit set by the coagulant injection rate. When this occurs, an abnormal signal is output while maintaining the rotation speed of the flocculant injection pump.The abnormal signal may cause mixing of liquids with different properties of the stock solution, affecting the elements of the mud and cannot be adjusted. Can be detected, and the cause of the engineer can be investigated.
[0010]
The invention according to claim 6 of the flocculant injection control method compares the average analysis area of the flock with the reference area when supplying a constant stock solution amount to the dehydrator, and if the average analysis area is smaller than the reference area, When the average analysis area reaches within the lower limit of the reference area by increasing the rotation speed of the agent injection pump, the current coagulant injection rate is maintained, and the above operation is repeated to set the upper limit of the coagulant injection rate When the value is reached, an abnormal signal is output while maintaining the rotational speed of the coagulant injection pump.
[0011]
According to the seventh aspect of the flocculant injection control method, when the calculated average analysis area of flocs is larger than the reference area, the flocculant injection rate is decreased and at the same time the rotation speed of the stirrer of the flocculent mixing tank is increased. When the average analysis area reaches within the upper limit of the reference area, the current coagulant injection rate and the rotation speed of the stirrer are maintained, and the above operation is repeated until the coagulant injection rate is set to the lower limit value set. When it reaches, it will give an abnormal signal while maintaining the rotation speed of the flocculant injection pump and the stirrer, and the floc may be weak and large, but rather it is better to increase the rotation of the stirrer and make a small floc There is also. If the floc is strong but too small, the rotation speed of the stirrer can be reduced and the floc can be increased.
[0012]
The invention according to claim 8 of the flocculant injection control method increases the flocculant injection rate when the calculated floc analysis area is smaller than the reference area, and simultaneously decreases the rotation speed of the stirrer of the flocculent mixing tank, When the analysis area of the floc reaches the lower limit of the reference area, while maintaining the current flocculant injection rate and the rotation speed of the stirrer, the above operation is repeated and the flocculant injection rate reaches the lower limit set. When this occurs, an abnormal signal is output while maintaining the rotation speed of the flocculant injection pump and the agitator.
[0013]
The invention according to claim 9 of the flocculant injection control device for carrying out the above control method supplies the stock solution and the flocculant to the sealed flocculent mixing tank, and the flocs of the suspended substances contained in the stock solution are supplied. In the stock solution supply device that forms and feeds the stock solution to the dehydrator at the tank pressure of the agglomeration tank, an inspection window is provided in the stock solution supply pipe connected to the dehydrator, and the size of the floc of suspended solids is photographed in the inspection window And a computing device that binarizes the captured flock images and integrates the average analysis area per floc, and compares the average analysis area of the integrated flock with a preset reference area. In addition, a sequencer proportional control that sends a command signal based on the flock formation status and a flocculant injection pump that controls the rotation speed based on the command signal are provided. No fast as stirring rate of floc by agitator, it can be performed accurately captured floc. The pulsation of the undiluted solution is reduced by the tank press-fitting.
[0014]
The invention according to claim 10 of the flocculant injection control device changes the flocculant injection rate of the proportional setting value with respect to the fluctuation of the suspended solids contained in the stock solution, and performs an average analysis per floc of the stock solution supply pipe Comparing the area with the reference area to control the rotation speed of the flocculant injection pump, and an abnormal signal device is added to the sequencer proportional control to send an abnormal signal at the upper and lower limits of the flocculant injection rate. Thus, it is possible to detect a state in which adjustment is impossible due to the abnormal signal, the cause of the engineer can be investigated, and the flocculant injection control device can be automated.
[0015]
According to the eleventh aspect of the flocculant injection control device, when supplying a constant stock solution amount to the dehydrator, the average analysis area of the floc of the stock solution supply pipe is compared with the reference area, and the rotation speed of the flocculant injection pump is compared. And an abnormal signal device in the sequencer proportional control, and an abnormal signal may be transmitted at the upper limit value and the lower limit value of the coagulant injection rate, and managed between the upper limit value and the lower limit value, The cause of the engineer can be investigated.
[0016]
The invention according to claim 12 of the flocculant injection control device compares the average analysis area of the floc and the reference area, and when the average analysis area is larger than the reference area, the rotation speed of the flocculant injection pump is increased, While reducing the rotation speed of the stirrer in the coagulation mixing tank, when the average analysis area of the floc is smaller than the reference area, the rotation speed of the flocculant injection pump is decreased and at the same time the rotation speed of the stirrer is increased. Even if it is large, a weak floc can be strengthened, and a floc that is too small can be enlarged. It can reduce the amount of polymer and strengthen the stirring.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The flocculant injection control method and the control device thereof according to the present invention are configured as described above, and set in advance a proportional value of the flocculant injection rate with respect to fluctuations in the stock solution supply amount and concentration, and The flocs in the stock solution extracted with the tank pressure are imaged, the average area of the flocs of suspended solids is calculated, and is input in advance to the computer as a reference area. Then, the stock solution supplied to the dehydrator from the coagulation / mixing tank is imaged from a sight tube provided in the piping line, the size of the floc is photographed once every 15 to 30 seconds, and the luminance signal is converted into an electrical signal. This flock image is binarized by an arithmetic device, averaged four times of binarized data (data for 1 to 2 minutes), and polymer increase / decrease is evaluated by a computer. Immediately after changing the flocculant supply amount, wait for 2 to 3 minutes before starting to shoot. By comparing the average analysis area per floc calculated in this way with the reference area, the flocculant injection rate is varied according to the average analysis area, and proportional control of the flocculant injection rate with respect to the floc in the stock solution I do.
[0018]
If the concentration changes, the number of flocs changes even with the addition of the same rate of flocculant, so the aggregated state of the suspended matter is evaluated by the floc area. If analysis is performed using the size of the floc, the size of the floc contained in the pipe can be binarized more accurately. Even when the stock solution is supplied at a constant amount, the average analysis area per floc is compared with the reference area, and the flocculant injection rate is varied according to the average analysis area. Further, in the control method using the coagulant proportional injection and the rotation of the stirrer, the flocculant injection ratio is increased or decreased by a specified amount, and the rotation speed of the stirrer stirred at a predetermined speed is changed. When the coagulant injection rate and the rotation speed of the stirrer reach the upper limit value or the lower limit value, an abnormal signal is issued and the technician investigates the situation.
[0019]
【Example】
The flocculant injection control device according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram of equipment used in the flocculant injection control device, and a stock solution containing suspended substances is provided with an agitator 1. The stock solution is stored in the stock solution storage tank 2, and a fixed amount of the stock solution is press-fitted from the press-fit pipe 4 to the bottom of the sealed coagulation and mixing tank 5 by the stock solution supply pump 3. The flocculant is stored in a polymer flocculant dissolution tank 7 provided with a stirrer 6 and added to the stock solution of the press-fitting pipe 4 by a variable capacity flocculant injection pump 9 in the range of 0.3 to 1.0%. And it supplies to the tank bottom of the aggregation mixing tank 5. FIG. The flocculant injection pump 9 can increase or decrease the addition rate of the flocculant stepwise by 0.1%. The flocculant may be directly supplied to the flocculent mixing tank 5. The agglomeration and mixing tank 5 is provided with a stirrer 11 connected to a variable speed driving machine 10, and the stock solution and the polymer flocculant are usually stirred at a speed of 40 rpm, and the speed is increased and decreased at 3 to 5 rpm stepwise. Is possible.
[0020]
As shown in FIG. 1, a stock solution supply pipe 13 is connected to the upper part of the agglomeration mixing tank 5 to feed a stock solution in which flocks are formed to a screw press 12 of a dehydrator. Utilizing the press-fitting pressure of the stock solution supply pump 3 into the coagulation mixing tank 5, the stock solution is pressed into the screw press 12 at the tank pressure of the coagulation mixing tank 5 so that the flocs of the aggregated suspended solids are not broken by pulsation. is there. An inspection window 14 is provided for photographing the state of flocs of the suspended substance aggregated in the stock solution supply pipe 13. A television camera 15 is installed at a position 30 to 40 cm away from the inspection window 14 of the stock solution supply pipe 13. FIG. 2 is an image analysis control flow of the flocculant injection control device. The size of the floc of the suspended substance in the stock solution supply pipe 13 is photographed once every 15 to 30 seconds by the TV camera 15, and the luminance signal is obtained. Convert to digital signal. The luminance information of the electrical signal is transmitted to the controller 16, and the controller 16 transmits the flock image to the arithmetic device 17. The image brightness information of the flock group transmitted from the TV camera 15 is stored in the image board 18 of the arithmetic unit 17. This image information is binarized by the binarization circuit 19 according to the luminance level.
[0021]
The binarized flock group image information is input to the average area calculation circuit 20, and the binarized data is averaged four times (1-2 minutes data) to obtain the average value of the flock group area. The average area per floc is defined as the average analysis area on one screen. The reason for the number of times of measurement is that there is an overlap between flocs in a single measurement and there is a measurement error. The more the number of measurements, the more accurate it is. However, for the purpose of fast operation, about 4 times is appropriate. The processing result of the average area calculation circuit 20 is sent from the calculation device 17 to the signal converter 21, converts the digital signal into an analog signal, and transmits it to the sequencer proportional control 22. In the sequencer proportional control 22, flocs in the stock solution extracted in advance from the coagulation mixing tank 5 are photographed, and the average area of the suspended flocs is calculated and input to the sequencer proportional control 22 as a reference area. And the proportional value of the injection rate of the flocculant with respect to the fluctuation | variation of the amount of suspended solids in a stock solution and the fluctuation | variation of a density | concentration is preset.
[0022]
3 (a), 3 (b), and 3 (c) are floc images of the suspended matter taken with the television camera 15, and the image in FIG. 3 (a) is a small floc, and the addition rate of the flocculant Or the rotational speed of the stirrer must be slowed down to obtain the optimum floc of FIG. It is also conceivable to reduce the rotational speed of the stirrer while increasing the addition rate of the flocculant. The image in FIG. 3 (c) is an excessive floc, and it is necessary to reduce the addition rate of the flocculant or to increase the rotation speed of the stirrer to obtain the optimum floc in FIG. 3 (b). In this case, it is also conceivable to increase the rotational speed of the stirrer while reducing the addition rate of the flocculant.
[0023]
[Table 1]
Figure 2005007338
[0024]
Table 1 shows analysis data of the standard area of floc input to the sequencer proportional control, and the flocculant addition rate (%) set in advance with respect to the stock solution inflow amount (m 3 ) of the coagulation mixing tank 5 is determined as the stock solution inflow amount 10 m 3. The flocculant addition rate was set to three levels of 0.2%, 0.3%, and 0.4%. Based on this data, suspended substances in the stock solution were agglomerated, flocs were photographed, and the flocs of agglomerated sludge were averaged over 20 points in descending order. The area data of the flock image is as shown in Table 1. The injection rate of the flocculant with respect to the sludge inflow rate is set in advance, and the average area per floc in the stock solution is input to the sequencer proportional control 22 as the floc reference area.
[0025]
In the sequencer proportional control 22, a proportional set value for increasing / decreasing the flocculant injection rate is input in advance, and when the average analysis area per floc is larger than the reference area, the flocculant addition rate is determined from the current set value. When the average analysis area is smaller than the reference area by 0.1%, the flocculant addition rate is increased by 0.1% from the current set value. The sequencer proportional control 22 compares the average analysis area per floc transmitted from the arithmetic unit 17 with the set reference area, and controls the injection rate of the flocculant from the flocculant injection pump 9. An upper limit value and a lower limit value of the flocculant injection rate are set, and in the embodiment of the present invention, the upper limit value and the lower limit value are set to 0.3 to 1.0%, preferably 0.5 to 0.7%. When the rotation speed of the coagulant injection pump 9 reaches the upper limit value or the lower limit value, the abnormality signal device 23 provided in the sequencer proportional control 22 outputs an abnormality signal. Factors other than the quality of the mud in the stock solution or factors such as mixing of completely different fluids may have affected and may not be adjustable, and the engineer will investigate the cause. The abnormal signal may be used as an alarm.
[0026]
And the stirrer 11 installed in the coagulation mixing tank 5 is made to stir at predetermined rotation speed, and is 40 rpm in the Example of this invention. The sequencer proportional control 22 is set with a specified value (3 to 5 rpm) for switching the rotation speed of the variable speed drive 10 of the stirrer 11 installed in the coagulation mixing tank 5 corresponding to the average analysis area of flocs. The sequencer proportional control 22 controls the injection rate of the flocculant from the flocculant injection pump 9 and compares the average analysis area with the reference area to control the rotation speed of the stirrer 11. In this embodiment, when the analysis area is larger than the reference area, the rotational speed of the stirrer 11 is increased from a specified value of 3 to 5 rpm. When the analysis area is smaller than the reference area, the rotational speed of the stirrer 11 is decelerated from a specified value of 3 to 5 rpm.
[0027]
An upper limit value and a lower limit value are set for the rotation speed of the stirrer 11, and when the rotation speed of the stirrer 11 rises to the upper limit value of the specified value or falls to the lower limit value, an abnormal signal device attached to the sequencer proportional control 22 23 emits an abnormal signal. The setting of the upper limit value and the lower limit value of the rotation speed of the stirrer 11 varies depending on the size of the agglomeration mixing tank 5, the stock solution flow rate, and the concentration, and may be set as appropriate. The sequencer proportional control 22 controls the injection rate from the coagulant injection pump 9 and the rotation speed of the stirrer 11 so that the average area of the floc becomes a specified value based on the calculated value of the average area of the floc of the arithmetic unit 17. . When the flocculant injection rate is changed, a time of several minutes until the floc particle size changes is taken into consideration. In the embodiment of the present invention, the image is picked up again by the television camera 15 after 2 to 3 minutes, but the waiting time varies depending on the capacity of the agglomeration mixing tank 5.
[0028]
The flocculant injection control device according to the present invention is configured as described above, and the flocculant injection control method by the control device will be described. First, the proportion of the flocculant injection rate to the variation in the amount of suspended solids in the stock solution When the analysis area (average area) per floc is larger than the reference area, the proportional setting value of the flocculant injection rate is changed to reduce the flocculant injection rate by 0.1%. Wait ~ 3 minutes and remeasure. If the analysis area is still larger than the reference area, the above operation is repeated. When the coagulant injection rate reaches 0.3% of the lower limit, an abnormal signal is issued while maintaining the current state. On the contrary, when the average analysis area per floc is smaller than the reference area, the flocculant injection rate is increased by 0.1% and the measurement is waited for 2 to 3 minutes. When the injection rate of the flocculant reaches 1.0% of the upper limit, an abnormal signal is issued while maintaining the current state. When an abnormal signal is displayed or there is an alarm, an engineer investigates the cause. When the average analysis area is within the range of the reference area (0.3 to 1.0%), the TV camera 15 is continuously photographed to monitor the flock state while maintaining the current flocculant injection rate.
[0029]
When supplying a fixed amount of undiluted solution to the dehydrator 12 and not using proportional control, when the average analysis area of the floc becomes larger than the reference area, the flocculant supply amount is reduced by 0.1% from the current state, Wait 2-3 minutes and remeasure. When the average analysis area is still larger than the reference area, the above operation is repeated, and when the lower limit of the flocculant injection rate reaches 0.3%, an abnormal signal is output while maintaining the current state. Conversely, when the average analysis area is smaller than the reference area, the rotation speed of the coagulant injection pump 9 is increased, the coagulant injection rate is increased by 0.1%, and the measurement is waited for 2 to 3 minutes. When the coagulant injection rate reaches 1.0% of the upper limit, an abnormal signal is output while maintaining the coagulant injection rate. When an abnormal signal is displayed or there is an alarm, an engineer investigates the cause.
[0030]
When the average analysis area is larger than the reference area, the control method by proportional control of the flocculant injection rate and the agitator rotation reduces the flocculant injection ratio by 0.1% of the specified amount and waits for 2 to 3 minutes. taking measurement. When the average analysis area is still larger than the reference area, the flocculant injection ratio is decreased by 0.1% while maintaining the rotation speed of the agitator 11 at a predetermined rotation speed of 40 rpm. If the average analysis area is still larger than the reference area by repeating the above operation, the rotational speed of the stirrer 11 is increased by 3 to 5 rpm, which is a specified value. The weak large floc is made small by increasing the number of rotations of the stirrer 11, and the floc is strengthened by stirring and mixing the flocculant. When the rotational speed of the agitator 11 reaches the upper limit value, an abnormal signal is output. On the contrary, when the average analysis area is smaller than the reference area, the injection rate of the flocculant is increased by 0.1% of the set value, and the measurement is waited again for 2 to 3 minutes. When the injection rate of the flocculant reaches the upper limit value of 1.0%, the rotation of the stirrer 11 is lowered by the specified value of 3 to 5 rpm. A lower limit value is set for the rotational speed of the agitator 11, and an abnormal signal is output if the floc is small even if the lower limit value is reached. When an abnormal signal is displayed or there is an alarm, an engineer investigates the cause.
[0031]
【The invention's effect】
As described above, since the flocculant injection control method and the control apparatus according to the present invention photograph the flocs of suspended solids in the area of the piping line coming out of the flocculent mixing tank, the floc overlap is reduced and the reliability is improved. High flock analysis area can be obtained. The flow speed of the piping line is also reduced moderately and tank press-fitting reduces pulsation, making it easier to shoot with a TV camera. In other words, the conventional technique for photographing flocs in an agglomeration mixing tank or the like has a drawback that accurate photographing cannot be performed due to floc overlap due to the depth of the tank and rotation of the stirrer. The conventional apparatus for evaluating the aggregation state by the number of flocs changes the number of flocs if the concentration changes, and flocs overlap in the agglomeration mixing tank, so that accurate photographing cannot be performed. In the injection control method, the size of the floc contained in the stock solution supply pipe of the dehydrator is photographed, the average area per floc is calculated from the binary image of the floc, and the average analysis area is set in advance. Compared with the standard area of the flocs calculated, an appropriate value is calculated, and the injection rate of the flocculant is controlled based on the floc formation status. The measurement error due to the overlap of flocs is released, and analysis is performed in a stable floc state. The area can be measured. Since the flock supplied to the dehydrator is photographed, the reliability increases.
[0032]
The control device for carrying out the flocculant injection control method compares the average analysis area and the reference area with a television camera and an arithmetic unit that accumulates the average analysis area per captured flock in the inspection window of the stock solution supply pipe Since a sequencer proportional control that sends a command signal and a flocculant injection pump that operates based on the command signal are provided, the flow rate in the pipe is not as fast as the floc stirring speed of the stirrer in the flocculent mixing tank, Can be taken. In addition, an abnormal signal device is added to the sequencer proportional control, and an abnormal signal is transmitted with the upper and lower limits of the coagulant injection rate, so it is possible to detect the situation where adjustment is impossible, and the cause of the engineer can be investigated. The flocculant injection control device can be automated.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of devices used in a flocculant injection control device according to the present invention.
FIG. 2 is an image analysis control flow of the flocculant injection control device according to the present invention.
FIGS. 3A and 3B are images of suspended flocs taken with a television camera, in which FIG. 3A shows a small floc, FIG. 3B shows an optimal floc, and FIG. 3C shows an excessive floc.
[Explanation of symbols]
5 Coagulation Mixing Tank 9 Coagulant Injection Pump 11 Stirrer 12 Screw Press 13 Stock Solution Supply Pipe 14 Viewing Window 15 Television Camera 17 Computing Device 22 Sequencer Proportional Control 23 Abnormal Signal Device

Claims (12)

凝集混和槽(5)の原液中に凝集剤を添加して懸濁物質のフロックを形成させ、その原液を脱水機(12)に供給する汚泥処理装置において、脱水機(12)に原液を供給する原液供給管(13)中のフロックの大きさを撮影し、輝度信号を電気信号に変換させ、電気信号からフロックの大きさを2値化させると共に、フロックの2値画像からのフロック1個当たりの平均面積を計算し、その平均解析面積とあらかじめ設定したフロックの基準面積を比較して適正値を計算し、フロックの形成状況に基づき比例設定値の凝集剤注入率を制御することを特徴とする凝集剤注入制御方法。In the sludge treatment apparatus that adds flocculant to the stock solution in the coagulation mixing tank (5) to form suspended substance flocs and supplies the stock solution to the dehydrator (12), the stock solution is supplied to the dehydrator (12). The size of the floc in the stock solution supply pipe (13) is photographed, the luminance signal is converted into an electric signal, the floc magnitude is binarized from the electric signal, and one floc from the binary image of the floc The average analysis area is calculated, the average analysis area is compared with a preset standard area of flocs, an appropriate value is calculated, and the flocculant injection rate of the proportional setting value is controlled based on the formation state of flocs A control method for injecting the flocculant 上記原液供給管(13)中のフロックを所定時間ごとに撮影し、2値化処理したデータの数回分を平均し、そのフロックの解析面積とあらかじめ設定してある基準面積と比較して適正値を計算し、凝集剤注入ポンプ(9)の回転数を増減させて比例設定値の凝集剤注入率を変更し、数分間後に再測定することを特徴とする請求項1に記載の凝集剤注入制御方法。The flocs in the stock solution supply pipe (13) are photographed every predetermined time, and the binarized data is averaged for several times, and an appropriate value is compared with the analysis area of the flocs and a preset reference area. The coagulant injection according to claim 1, wherein the coagulant injection rate is changed, the coagulant injection rate of the proportional set value is changed by increasing or decreasing the rotation speed of the coagulant injection pump (9), and remeasured after a few minutes. Control method. 上記原液中に含まれる懸濁物質量の変動に対する凝集剤注入率を変更して、フロックの平均解析面積と基準面積を比較し、平均解析面積が基準面積より大きい時には、凝集剤注入ポンプ(9)の回転数を減少させ、平均解析面積が基準面積の上限値以内に達した時に、現時点での凝集剤注入率を維持すると共に、まだ平均解析面積が基準面積より大きくて、この操作を繰り返して凝集剤注入率が設定した下限値に達した時には、凝集剤注入ポンプ(9)の回転数を維持しながら異常信号を出すことを特徴とする請求項1または2に記載の凝集剤注入制御方法。The flocculant injection rate for the change in the amount of suspended solids contained in the stock solution is changed, the average analysis area of the floc is compared with the reference area, and when the average analysis area is larger than the reference area, the flocculant injection pump (9 ) When the average analysis area reaches the upper limit of the reference area, the current coagulant injection rate is maintained and the average analysis area is still larger than the reference area, and this operation is repeated. The flocculant injection control according to claim 1 or 2, wherein when the flocculant injection rate reaches a set lower limit value, an abnormal signal is output while maintaining the rotational speed of the flocculant injection pump (9). Method. 上記原液中の懸濁物質量の変動に対する凝集剤注入率を変更して、フロックの平均解析面積と基準面積を比較し、平均解析面積が基準面積より小さい時には、凝集剤注入ポンプ(9)の回転数を増加させ、平均解析面積が基準面積の下限値以内に達した時に、現時点での凝集剤注入率を維持すると共に、また平均解析面積が基準面積より小さくて、この操作を繰り返して凝集剤注入率が設定した上限値に達した時には、凝集剤注入ポンプ(9)の回転数を維持しながら異常信号を出すことを特徴とする請求項1乃至3の何れか1項に記載の凝集剤注入制御方法。The flocculant injection rate for the change in the amount of suspended solids in the stock solution is changed, the average analysis area of floc is compared with the reference area, and when the average analysis area is smaller than the reference area, the flocculant injection pump (9) When the number of rotations is increased and the average analysis area reaches within the lower limit of the reference area, the current coagulant injection rate is maintained and the average analysis area is smaller than the reference area. The agglomeration according to any one of claims 1 to 3, wherein when the agent injection rate reaches a set upper limit, an abnormal signal is output while maintaining the rotational speed of the agglutinating agent injection pump (9). Agent injection control method. 上記脱水機(12)に一定の原液量を供給する時には、フロックの平均解析面積と基準面積を比較し、平均解析面積が基準面積より大きければ、凝集剤注入率を減少させ、平均解析面積が基準面積の上限値以内に達した時には、現時点での凝集剤注入率を維持すると共に、上記操作を繰り返して凝集剤注入率が設定した下限値に達した時には、凝集剤注入ポンプ(9)の回転数を維持しながら異常信号を出すことを特徴とする請求項1または2に記載の凝集剤注入制御方法。When supplying a constant stock solution amount to the dehydrator (12), the average analysis area of the floc is compared with the reference area. If the average analysis area is larger than the reference area, the injection rate of the flocculant is decreased and the average analysis area is When the upper limit of the reference area is reached, the current coagulant injection rate is maintained, and when the coagulant injection rate reaches the set lower limit by repeating the above operation, the coagulant injection pump (9) 3. The flocculant injection control method according to claim 1, wherein an abnormal signal is output while maintaining the rotational speed. 上記脱水機(12)に一定の原液量を供給する時には、フロックの平均解析面積と基準面積を比較し、平均解析面積が基準面積より小さければ、凝集剤注入ポンプ(9)の回転数を増加させ、平均解析面積が基準面積の下限値以内に達した時に、現時点での凝集剤注入率を維持すると共に、上記操作を繰り返して凝集剤注入率が設定した上限値に達した時には、凝集剤注入ポンプ(9)の回転数を維持しながら異常信号を出すことを特徴とする請求項1、2、5のいずれか1項に記載の凝集剤注入制御方法。When supplying a certain amount of stock solution to the dehydrator (12), compare the average analysis area of the floc and the reference area, and if the average analysis area is smaller than the reference area, increase the rotation speed of the coagulant injection pump (9) When the average analysis area reaches within the lower limit of the reference area, the current coagulant injection rate is maintained, and when the coagulant injection rate reaches the set upper limit by repeating the above operation, the coagulant The flocculant injection control method according to any one of claims 1, 2, and 5, wherein an abnormal signal is output while maintaining the rotation speed of the injection pump (9). 上記演算したフロックの平均解析面積が基準面積より大きい時には、凝集剤注入率を減少して、同時に凝集混和槽(5)の撹拌機(11)の回転数を増加させ、平均解析面積が基準面積の上限値以内に達した時に、現時点での凝集剤注入率と撹拌機(11)の回転数を維持すると共に、上記操作を繰り返し、凝集剤注入率が設定した下限値に達した時には、凝集剤注入ポンプ(9)と撹拌機(11)の回転数を維持しながら異常信号を出すことを特徴とする請求項1、2、3、5の何れか1項に記載の凝集剤注入制御方法。When the calculated average analysis area of flocs is larger than the reference area, the flocculant injection rate is decreased, and at the same time, the rotation speed of the stirrer (11) of the agglomeration mixing tank (5) is increased. When the flocculant injection rate and the rotation speed of the stirrer (11) are maintained, the above operation is repeated and the flocculant injection rate reaches the lower limit value set. The flocculant injection control method according to any one of claims 1, 2, 3, and 5, wherein an abnormal signal is output while maintaining the rotation speed of the agent injection pump (9) and the agitator (11). . 上記演算したフロックの解析面積が基準面積より小さい時には、凝集剤注入率を増加させ、同時に凝集混和槽(5)の撹拌機(11)の回転数を減少し、フロックの解析面積が基準面積の下限値以内に達した時に、現時点での凝集剤注入率と撹拌機(11)の回転数を維持すると共に、上記操作を繰りし、凝集剤注入率が設定した下限値に達した時には、凝集剤注入ポンプ(9)と撹拌機(11)の回転数を維持しながら異常信号を出すことを特徴とする請求項1、2、4、6の何れか1項に記載の凝集剤注入制御方法。When the calculated floc analysis area is smaller than the reference area, the flocculant injection rate is increased, and at the same time, the rotation speed of the stirrer (11) of the flocculent mixing tank (5) is decreased. When the lower limit value is reached, while maintaining the current coagulant injection rate and the rotation speed of the agitator (11), the above operation is repeated, and when the coagulant injection rate reaches the set lower limit value, The flocculant injection control method according to any one of claims 1, 2, 4, and 6, wherein an abnormal signal is output while maintaining the rotational speed of the agent injection pump (9) and the agitator (11). . 原液と凝集剤を密閉状の凝集混和槽(5)に供給し、原液中に含まれる懸濁物質のフロックを形成させ、その原液を凝集混和槽(5)のタンク圧で脱水機(12)に供給する原液供給装置において、脱水機(12)に連結した原液供給管(13)に検視窓(14)を設け、検視窓(14)に懸濁物質のフロックの大きさを撮影するテレビカメラ(15)を配設し、撮影したフロック画像を2値化してフロック1個当たりの平均解析面積を積算する演算装置(17)を設けると共に、積算したフロックの平均解析面積とあらかじめ設定した基準面積を比較して、フロックの形成状況に基づき指令信号を発信するシーケンサー比例制御(22)と、指令信号に基づき回転数を制御する凝集剤注入ポンプ(9)を設けたことを特徴とする凝集剤注入制御装置。The stock solution and the flocculant are supplied to a closed flocculent mixing tank (5) to form a floc of suspended solids contained in the stock solution, and the stock solution is dehydrated by the tank pressure of the flocculent mixing tank (5). In the stock solution supply apparatus to be supplied to the TV, a viewing window (14) is provided in the stock solution supply pipe (13) connected to the dehydrator (12), and the viewing window (14) captures the size of the floc of the suspended substance. (15) is provided, and an arithmetic unit (17) for binarizing the captured flock image and accumulating the average analysis area per floc is provided, and the average analysis area of the accumulated frock and a preset reference area are provided. And a coagulant proportional control (22) for transmitting a command signal based on the state of floc formation and a coagulant injection pump (9) for controlling the rotational speed based on the command signal. Injection Control device. 上記原液中に含まれる懸濁物質量の変動に対する比例設定値の凝集剤注入率を変更し、原液供給管(13)のフロック1個当たりの平均解析面積と基準面積を比較して、凝集剤注入ポンプ(9)の回転数を制御すると共に、シーケンサー比例制御(22)に異常信号装置(23)を併設し、凝集剤注入率の上限値と下限値で異常信号を発信させることを特徴とする請求項9に記載の凝集剤注入制御装置。The flocculant injection rate of the set value proportional to the fluctuation of the suspended solids contained in the stock solution is changed, and the average analysis area per floc of the stock solution supply pipe (13) is compared with the reference area, and the flocculant The number of revolutions of the infusion pump (9) is controlled, and an abnormal signal device (23) is provided in addition to the sequencer proportional control (22) to transmit an abnormal signal with the upper limit value and the lower limit value of the coagulant injection rate. The flocculant injection control device according to claim 9. 上記脱水機(12)に一定の原液量を供給する時には、原液供給管(13)のフロックの平均解析面積と基準面積を比較し、凝集剤注入ポンプ(9)の回転数を制御すると共に、シーケンサー比例制御(22)に異常信号装置(23)を併設し、凝集剤注入率の上限値と下限値で異常信号を発信させることを特徴とする請求項9に記載の凝集剤注入制御装置。When supplying a constant amount of stock solution to the dehydrator (12), the average analysis area of the floc of the stock solution supply pipe (13) is compared with the reference area, and the rotational speed of the flocculant injection pump (9) is controlled, The flocculant injection control device according to claim 9, wherein an abnormal signal device (23) is provided in addition to the sequencer proportional control (22), and an abnormal signal is transmitted at an upper limit value and a lower limit value of the flocculant injection rate. 上記フロックの平均解析面積と基準面積を比較して、平均解析面積が基準面積より大きい時には、凝集剤注入ポンプ(9)の回転数を増加させ,同時に凝集混和槽(5)の撹拌機(11)の回転数を減少させると共に、フロックの平均解析面積が基準面積より小さい時には、凝集剤注入ポンプ(9)の回転数を減少させ,同時に、撹拌機(11)の回転数を増加させることを特徴とする請求項9乃至11の何れか1項に記載の凝集剤注入制御装置。The average analysis area of the floc and the reference area are compared, and when the average analysis area is larger than the reference area, the rotation speed of the flocculant injection pump (9) is increased, and at the same time, the stirrer (11 ), And when the average analysis area of flocs is smaller than the reference area, the rotation speed of the flocculant injection pump (9) is decreased and at the same time the rotation speed of the agitator (11) is increased. The flocculant injection control device according to any one of claims 9 to 11, characterized in that
JP2003176037A 2003-06-20 2003-06-20 Flocculant injection control method and control apparatus therefor Expired - Lifetime JP4238983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003176037A JP4238983B2 (en) 2003-06-20 2003-06-20 Flocculant injection control method and control apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003176037A JP4238983B2 (en) 2003-06-20 2003-06-20 Flocculant injection control method and control apparatus therefor

Publications (3)

Publication Number Publication Date
JP2005007338A true JP2005007338A (en) 2005-01-13
JP2005007338A5 JP2005007338A5 (en) 2005-10-06
JP4238983B2 JP4238983B2 (en) 2009-03-18

Family

ID=34099028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003176037A Expired - Lifetime JP4238983B2 (en) 2003-06-20 2003-06-20 Flocculant injection control method and control apparatus therefor

Country Status (1)

Country Link
JP (1) JP4238983B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167362A (en) * 2009-01-22 2010-08-05 Ishigaki Co Ltd Inspection apparatus, pollution flocculating treating apparatus and pollution flocculating treating system
JP2010247151A (en) * 2009-03-27 2010-11-04 Metawater Co Ltd Method for automatically controlling sludge coagulation state and sludge coagulation system
JP2010264413A (en) * 2009-05-18 2010-11-25 Ishigaki Co Ltd Inspection window for cohesion of supply piping
JP2011005403A (en) * 2009-06-25 2011-01-13 Kubota Corp Monitoring device for flocculation mixing tank
JP2011110481A (en) * 2009-11-26 2011-06-09 Sanki Eng Co Ltd Flocculation stirring tank, sludge treatment system and method for operating the sludge treatment system
JP2011189321A (en) * 2010-03-16 2011-09-29 Ishigaki Co Ltd Sludge treatment apparatus and sludge treatment method
CN104061880A (en) * 2014-06-21 2014-09-24 河南科技大学 Method for determining biological soil crust coverage
JP2019055406A (en) * 2019-01-07 2019-04-11 株式会社東芝 Coagulation sediment control device, coagulation sediment control method, and computer program
JP2020082029A (en) * 2018-11-30 2020-06-04 株式会社石垣 Operation control method for flocculant dissolving device
JP2022140787A (en) * 2019-03-12 2022-09-27 株式会社日立製作所 Sludge treatment method
CN116812998A (en) * 2023-04-24 2023-09-29 爱环吴世(苏州)环保股份有限公司 Coagulant put-in flow determining method and device based on flocculation image analysis
CN119143330A (en) * 2024-11-05 2024-12-17 云南翰能环保科技有限公司 Novel efficient equipment for groundwater pollution treatment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5593045B2 (en) * 2009-08-27 2014-09-17 株式会社石垣 Sludge treatment apparatus and sludge treatment method

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117043A (en) * 1984-07-03 1986-01-25 Hitachi Ltd Monitoring device for substances suspended in water
JPS6285843A (en) * 1985-10-11 1987-04-20 Hitachi Ltd Flock image recognition device
JPS62241512A (en) * 1986-04-10 1987-10-22 Hitachi Ltd Device for controlling injection of flocculant
JPS6345000A (en) * 1986-04-02 1988-02-25 Masataka Sugawara Device for flocculating sludge of water treatment
JPS63166500A (en) * 1986-12-22 1988-07-09 パサバント−ウエルケ・アクチエンゲゼルシヤフト Method for conditioning and dehydrating sludge
JPH02152507A (en) * 1988-12-02 1990-06-12 Hitachi Ltd Coagulant injection control device
JPH0448905A (en) * 1990-06-15 1992-02-18 Kubota Corp Method for controlling floccuration mixing tank
JPH04148849A (en) * 1990-10-12 1992-05-21 Toyota Motor Corp Aggregated floc monitoring apparatus
JPH05285308A (en) * 1992-04-08 1993-11-02 Mitsubishi Electric Corp Controller for injecting flocculant
JPH05317612A (en) * 1992-05-19 1993-12-03 Meidensha Corp Floc measuring control device
JPH06277406A (en) * 1993-03-31 1994-10-04 Toshiba Corp Flocculant feed control device for water purification plant
JPH079000A (en) * 1993-06-23 1995-01-13 Sumitomo Heavy Ind Ltd Apparatus for evaluating agglomeration condition of sludge
JPH07124408A (en) * 1993-11-05 1995-05-16 Kubota Corp Control method of coagulation mixing tank
JPH07167770A (en) * 1994-09-14 1995-07-04 Hitachi Ltd Device for monitoring substances suspended in water
JPH0810511A (en) * 1994-06-29 1996-01-16 Ishigaki Mech Ind Co Shaft seal device for flocculating and mixing tank for sludge or the like
JPH1034196A (en) * 1996-07-24 1998-02-10 Ishigaki:Kk Mobile sludge dewatering vehicle
JP2003154206A (en) * 2001-11-22 2003-05-27 Kurita Water Ind Ltd Water or sludge treatment system
JP2004167401A (en) * 2002-11-20 2004-06-17 Toshiba Corp Waste water treatment equipment and waste water treatment method

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117043A (en) * 1984-07-03 1986-01-25 Hitachi Ltd Monitoring device for substances suspended in water
JPS6285843A (en) * 1985-10-11 1987-04-20 Hitachi Ltd Flock image recognition device
JPS6345000A (en) * 1986-04-02 1988-02-25 Masataka Sugawara Device for flocculating sludge of water treatment
JPS62241512A (en) * 1986-04-10 1987-10-22 Hitachi Ltd Device for controlling injection of flocculant
JPS63166500A (en) * 1986-12-22 1988-07-09 パサバント−ウエルケ・アクチエンゲゼルシヤフト Method for conditioning and dehydrating sludge
JPH02152507A (en) * 1988-12-02 1990-06-12 Hitachi Ltd Coagulant injection control device
JPH0448905A (en) * 1990-06-15 1992-02-18 Kubota Corp Method for controlling floccuration mixing tank
JPH04148849A (en) * 1990-10-12 1992-05-21 Toyota Motor Corp Aggregated floc monitoring apparatus
JPH05285308A (en) * 1992-04-08 1993-11-02 Mitsubishi Electric Corp Controller for injecting flocculant
JPH05317612A (en) * 1992-05-19 1993-12-03 Meidensha Corp Floc measuring control device
JPH06277406A (en) * 1993-03-31 1994-10-04 Toshiba Corp Flocculant feed control device for water purification plant
JPH079000A (en) * 1993-06-23 1995-01-13 Sumitomo Heavy Ind Ltd Apparatus for evaluating agglomeration condition of sludge
JPH07124408A (en) * 1993-11-05 1995-05-16 Kubota Corp Control method of coagulation mixing tank
JPH0810511A (en) * 1994-06-29 1996-01-16 Ishigaki Mech Ind Co Shaft seal device for flocculating and mixing tank for sludge or the like
JPH07167770A (en) * 1994-09-14 1995-07-04 Hitachi Ltd Device for monitoring substances suspended in water
JPH1034196A (en) * 1996-07-24 1998-02-10 Ishigaki:Kk Mobile sludge dewatering vehicle
JP2003154206A (en) * 2001-11-22 2003-05-27 Kurita Water Ind Ltd Water or sludge treatment system
JP2004167401A (en) * 2002-11-20 2004-06-17 Toshiba Corp Waste water treatment equipment and waste water treatment method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010167362A (en) * 2009-01-22 2010-08-05 Ishigaki Co Ltd Inspection apparatus, pollution flocculating treating apparatus and pollution flocculating treating system
JP2010247151A (en) * 2009-03-27 2010-11-04 Metawater Co Ltd Method for automatically controlling sludge coagulation state and sludge coagulation system
JP2010264413A (en) * 2009-05-18 2010-11-25 Ishigaki Co Ltd Inspection window for cohesion of supply piping
JP2011005403A (en) * 2009-06-25 2011-01-13 Kubota Corp Monitoring device for flocculation mixing tank
JP2011110481A (en) * 2009-11-26 2011-06-09 Sanki Eng Co Ltd Flocculation stirring tank, sludge treatment system and method for operating the sludge treatment system
JP2011189321A (en) * 2010-03-16 2011-09-29 Ishigaki Co Ltd Sludge treatment apparatus and sludge treatment method
CN104061880A (en) * 2014-06-21 2014-09-24 河南科技大学 Method for determining biological soil crust coverage
JP2020082029A (en) * 2018-11-30 2020-06-04 株式会社石垣 Operation control method for flocculant dissolving device
JP2019055406A (en) * 2019-01-07 2019-04-11 株式会社東芝 Coagulation sediment control device, coagulation sediment control method, and computer program
JP2022140787A (en) * 2019-03-12 2022-09-27 株式会社日立製作所 Sludge treatment method
JP7416876B2 (en) 2019-03-12 2024-01-17 株式会社日立製作所 Sludge treatment method
CN116812998A (en) * 2023-04-24 2023-09-29 爱环吴世(苏州)环保股份有限公司 Coagulant put-in flow determining method and device based on flocculation image analysis
CN119143330A (en) * 2024-11-05 2024-12-17 云南翰能环保科技有限公司 Novel efficient equipment for groundwater pollution treatment

Also Published As

Publication number Publication date
JP4238983B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP4238983B2 (en) Flocculant injection control method and control apparatus therefor
JP7146548B2 (en) Water treatment method and water treatment equipment
JP6774977B2 (en) Coagulant addition amount control device, sludge concentration system, coagulant addition amount control method
JP4871965B2 (en) Inspection apparatus, pollution aggregation processing apparatus, and pollution aggregation processing system
JP5334899B2 (en) Method for automatically controlling sludge coagulation state and sludge coagulation system
CN114269689A (en) Water treatment system, control device, water treatment method, and program
JP5593045B2 (en) Sludge treatment apparatus and sludge treatment method
WO2022018974A1 (en) Machine learning device, data processing system, and machine learning method
JP2005007338A5 (en)
JPS6345000A (en) Device for flocculating sludge of water treatment
JP7300380B2 (en) Threshold update device, learning device, control device, threshold update method, and control program
JP6726696B2 (en) Diluted sludge imaging system, flocculant addition amount control system, sludge concentration system, diluted sludge imaging method
JP4966985B2 (en) Inspection apparatus, pollution aggregation processing apparatus, and pollution aggregation processing system
JP7285138B2 (en) Water treatment equipment, water treatment method, abnormality diagnosis device and diagnosis method for flotation separation equipment
JP3136554B2 (en) Sludge coagulation equipment
JP5271942B2 (en) Sludge treatment method
JP4785454B2 (en) Method and apparatus for adjusting sludge solids supply in sludge dewatering machine
KR102664265B1 (en) Automatic operation system and method of belt press type dehydrator using AI based on image analysis and machine learning
JPH06226011A (en) Flocculant injection control method in water treatment flocculation process and flocculant injection control device
JP7580365B2 (en) Information processing device, driving assistance method, driving assistance program, and control system
JPH0785053B2 (en) Image recognition device for aggregates
JP2019162601A (en) Flocculant addition amount control device, sludge concentration system, and flocculant addition amount control method
JP2022159606A (en) Flocculation separation processing system, flocculation separation processing method, flocculation state detection device and flocculation state detection method
JP4485392B2 (en) Method and apparatus for adjusting sludge solids supply in sludge dewatering machine
JPH05285308A (en) Controller for injecting flocculant

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4238983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term