JP2004523735A - 器械を取り付けられた機器およびプロセスのための推論信号生成装置 - Google Patents
器械を取り付けられた機器およびプロセスのための推論信号生成装置 Download PDFInfo
- Publication number
- JP2004523735A JP2004523735A JP2002544612A JP2002544612A JP2004523735A JP 2004523735 A JP2004523735 A JP 2004523735A JP 2002544612 A JP2002544612 A JP 2002544612A JP 2002544612 A JP2002544612 A JP 2002544612A JP 2004523735 A JP2004523735 A JP 2004523735A
- Authority
- JP
- Japan
- Prior art keywords
- sensor
- signal
- similarity
- sensors
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 125
- 230000008569 process Effects 0.000 title claims abstract description 98
- 230000015654 memory Effects 0.000 claims abstract description 29
- 238000012544 monitoring process Methods 0.000 claims abstract description 18
- 239000013598 vector Substances 0.000 claims description 42
- 230000000875 corresponding effect Effects 0.000 claims description 31
- 230000002596 correlated effect Effects 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 8
- 238000004891 communication Methods 0.000 claims description 7
- 230000004044 response Effects 0.000 claims description 7
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 2
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 230000004913 activation Effects 0.000 claims 1
- 238000012549 training Methods 0.000 abstract description 38
- 238000012545 processing Methods 0.000 abstract description 6
- 238000004458 analytical method Methods 0.000 abstract description 3
- 238000011524 similarity measure Methods 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 description 15
- 239000011159 matrix material Substances 0.000 description 15
- 238000005259 measurement Methods 0.000 description 6
- 244000000626 Daucus carota Species 0.000 description 4
- 235000002767 Daucus carota Nutrition 0.000 description 4
- 230000006399 behavior Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000011143 downstream manufacturing Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013501 data transformation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000012774 diagnostic algorithm Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000000551 statistical hypothesis test Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B17/00—Systems involving the use of models or simulators of said systems
- G05B17/02—Systems involving the use of models or simulators of said systems electric
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D3/00—Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
- G01D3/08—Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for safeguarding the apparatus, e.g. against abnormal operation, against breakdown
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0286—Modifications to the monitored process, e.g. stopping operation or adapting control
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Selective Calling Equipment (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
【0001】
発明の分野
本発明は、差し迫っている機器故障またはプロセス外乱を早期検出するために物理プロセスを監視すること、およびセンサ動作のオンラインの連続的妥当性確認に関する。より詳細には、本発明は、故障したセンサに対しての置換信号を、および直接に器械を装備したものではない物理パラメータに対しての推論した信号を生成するためのシステムおよび方法に関する。
【背景技術】
【0002】
発明の背景
ほとんどのプロセス(精錬、化学品、鉄鋼、エネルギー生産など)の性能の監視は、センサを使用して、動作が規定された制約内で維持されていること、および機器が仕様内で動作していることを保証し、許容可能な製品品質および歩留まりを確保することを必要とする。機器やマシン(自動車システム、ジェットエンジン、組立型生産など)の性能の監視および最適化も、同様に、安全な動作とピーク性能を確保するためにセンサに依拠している。プロセスおよび機器の電気的、熱的、化学的、物理的なパラメータを測定するために、きわめて多数のセンサが開発されている。センサのタイプには、熱電対、加速度計、質量流量計、音響センサ、応力および歪みインジケータ、振動センサなどが含まれる。
【0003】
非常に重要なプロセス、機器の監視、および制御の応用に対しては、今日では、センサは電気で動作し、測定しようと試みるパラメータの電気的な示度(インジケーション)(アナログまたはデジタル)を提供する。更に、多くの場合、センサはバスまたはネットワークを介して接続され、センサデータをパケット化してそれをネットワーク上で伝送するのに十分な処理力を搭載している場合がある。場合によっては、センサは、センサデータを遠隔地に伝送するために、無線送信器またはトランシーバと接続されるか、またはそれらを内蔵している。
【0004】
センサデータは、様々な形で、プロセスまたは機器動作において使用することができる。センサは、制御設定が有効であったことの妥当性検査を行い、典型的には、センサ読取り値(reading、読み)が安全閾値または許容閾値を超えた時または下回った時に警報を示す。センサデータはまた、オフライン分析および傾向の把握のためにデータリポジトリへ流すことができ、これを使用してメンテナンスを予定したり、プロセスを洗練する。センサデータを更に使用して、機器の一部のプロセスの動作を連続制御するためのフィードバックを提供することもできる。例えば、自動車エンジンでは、最適なエンジン性能のために、あるいは或る最低限の清浄空気要件を満たすために、いくつかのサブシステムがセンサデータを使用してダウンストリーム設定を計算する。
【0005】
センサを使用して所望のパラメータを測定するのが困難または不可能な様々な状況がある。例えば、問題をはらむほど高濃度の腐食性の酸を含有するガスの流れを測定する際のように、センサが配置される環境が、センサの寿命に対してや、更には適切に機能させることに関して厳しいことがある。あるいは、法外に高価な、または入手困難なセンサを、その環境で必要とされることがある。別の状況では、試みられる測定が、一部が液体で満たされた珍しい形状のチャンバの残りの空き容量を決定しようと試みる際のように、合理的に直接測定するのが不可能なことがある。更に他の状況では、センサを配置することが、監視されるプロセスまたはシステムを意に反して弱めたり、あるいは別の影響を及ぼす可能性がある。例えば、液圧システムなどの閉じた流体システムでは、流体の特性を直接測定するためにシステムの壁を通してセンサを配置することにより、閉じたシステムに弱点や潜在的な故障点がもたらされる。問題となるパラメータを間接的に測定する方法が求められている。
【0006】
そのような状況下では、所望のパラメータを推論するために、1つまたは複数の他のパラメータを測定しようと試みる。これは、プロセスまたは機器に追加のセンサを装備すること、およびコンピューティング資源を使用して、推論されるパラメータを計算することを必要とする。しかし、これをうまく行うのは一般には困難である。更に、通常は、プロセスまたは機器について相当な調査および知識を、あるいはシステムの「第1原理」力学の理解を必要とし、これは不合理な研究時間とコストをかけることなしに容易に得ることはできない。システムの力学および必要とされるパラメータについて完全な知識を必要とすることなしに、何らかの形で相関関係にあるシステムの他の測定されたパラメータから、測定が困難なパラメータを推論する効果的な方法が求められている。
【0007】
フィードバック制御、安全、または性能最適化のためにセンサを使用する、エンジンまたは他のマシンなどのような、器械を取り付けられた製品を製造する状況に対しても、そのような必要性がある。あらゆるパラメータに対してセンサを製品に装備するのではなく、他のセンサからの読取り値に基づいて一部のパラメータを推論することにより、製品を生産するコストを削減することが非常に望ましい。そのような推論は、マシンまたはエンジンに対するセンサのサブセットを使用して、すべてのパラメータの挙動の広範な知識と連結して可能とすることができる。しかし、必要な知識は、開発するのが困難であり、コストがかかる。更に、推論されるセンサ値を計算するために製品に搭載して必要とされる追加の計算力のコストは、はじめに除去したセンサのコスト節約を凌駕する可能性がある。実際に製品の生産ユニットに組み込まれたセンサの値から、生産ユニットから「除去」されたセンサの値を推論する計算上効率的な方法が求められている。
【0008】
センサの故障に伴って他の難点がある。一例として、センサは、プロセスまたは機器を監視して「正常」な、または正しい動作から逸脱したときに検出するために使用することができる。正常とは、許容可能な機能状態を意味することも、1組の様々な許容可能な状態のうちの最も好ましい状態とすることもできる。しかし、実際には、偏りは、センサによって測定される基礎となるパラメータが変化したことに、または不完全なセンサに、起因する可能性がある。従って、これらのセンサの健全性も知られることが不可欠であり、センサ故障によって起こされた外乱が識別されてプロセスの偏りと区別されているべきである。センサが故障していても、プロセス動作を続行することが望ましく、故障したセンサを、同じ情報を提供する「仮想」センサまたは置換物と置換しなければならないことがしばしばである。連続動作を可能にするように、システム内で故障したセンサに代わる出力または推定値を提供する方法が求められている。
【0009】
「第1原理(First Principles)」技法は、当技術分野では、他の実センサデータに基づいて「仮想」センサデータを生成することであると知られている。Maloney(マロニー)その他は、「Pneumatic And Thermal State Estimators For Production Engine Control And Diagnostics」、Electronic Engine Controls、1998年の中で、生産水準の速度−密度エンジン管理システム(EMS)で実施される推定(estimator)アルゴリズムについて述べている。EMS制御および診断アルゴリズムの設計では、エンジンの状態を説明する情報が入手できることが不可欠であり基本的に必要とされる。推定アルゴリズムは、制御、診断、および他の推定アルゴリズムによって一般に使用するためのエンジンの質量流量、圧力、温度の推定値を提供する。Maloneyその他は、実センサ信号から離れて仮想信号を計算するために、研究所内で完全に器械を取り付けられたエンジンを用いてのそのような第1原理モデルの開発について述べている。この開発は、与えられた応用例に関係し、きわめて特化している。従って、第1原理モデルの開発に頼ることを必要とすることなしに、欠けている値または仮想信号を生成するための一般的な方法を提供することが望ましいであろう。
【0010】
関連する傾向では、プロセスまたはマシンが、相関されたセンサ値を全体として監視するソフトウェアベースのシステムによって監視される。そのようなシステムは、Gross(グロス)その他の米国特許第5,764,509号に述べられており、その教示を参照により本明細書に組み込む。プロセスまたはマシンを監視または制御するそのようなシステムは、従来の閾値型センサベースの監視および制御より優れている。なぜなら、一般に、閾値システムよりかなり前に、プロセスまたはマシンの正常または許容可能な挙動を、許容不可または警報状態と区別することができるからである。Grossその他は、監視されるプロセスまたはマシンの線形または非線形の相関されたパラメータについて1組の電流センサ読取り値を入力として受け入れ、これらの電流センサ読取り値が何であるべきかの推定値を出力として生成する経験的モデル化技法を教示している。次いで、各センサについて統計的仮説テストを使用してこれを計算して、いずれかのセンサが、予想されるよりも統計的に著しい逸脱を示しているかどうか判定する。Grossその他の経験的モデルは、監視されるプロセスまたはマシンについて予想される動作範囲を表す収集済みデータの履歴から作り出される。
【0011】
そのようなシステムに関する重要な問題は、プロセスまたは機能的な逸脱ではなく、センサの故障が生じたときのシステムの強さである。そのようなシステムに入力された不良のセンサ信号は、プロセスまたはマシン内のセンサすべてに対してのモデルによって作成された推定値に影響を及ぼす可能性がある。更に、監視するシステムの外部にある他の制御モジュールが、不良のセンサ信号に依拠している可能性がある。そのようなシステムでは、正確な推定値を生成し、従って、プロセスまたはマシンの動作状態を正確に表現するためのシステムの能力に対して、故障センサの影響を低減することは有益となるであろう。更に、故障センサの代わりの置換信号を生成し、通常は生のリアルタイムのセンサ信号に依拠している他の制御システムにも使用可能とすることができるのは有利であろう。これらの状況下の不良センサを、Grossその他によるもののような経験的モデル化システムで扱うための方法が求められている。
【発明の開示】
【課題を解決するための手段】
【0012】
発明の概要
本発明は、物理パラメータを監視するために適所に1または複数のセンサを有する機器およびプロセスで、故障したセンサの代わりの置換信号、および器械を装備したものではない物理パラメータについての推論したセンサ信号を生成する改良されたシステムおよび方法を提供する。このシステムは、予想されるパラメータ値、ならびに予想された信号と入力信号との間の差を提供することができ、あるいは、システムは、入力信号の集合体と許容可能なモデル化された状態の集合体との間の生の類似性(similarity、相似性)の測定値を提供することができる。
【0013】
対象とするパラメータすべてに関してセンサを完全に装備したプロセスまたはマシンでは、センサデータを、同じまたは類似のプロセスまたはマシンの予想される後の動作のすべての状況のために、収集する。この収集されたデータは履歴を形成し、この履歴から、本発明のシステムは、センサデータの代表的な集合への抽出を行うトレーニングルーチンを使用して、プロセスまたはマシンの所望のまたは正常の動作を「学ぶ」ことができる。このセンサデータの代表的トレーニング集合を使用して、説明する実施形態では、プロセスまたはマシンをリアルタイム動作で(または、好適であればバッチモードで)監視し、履歴データが収集されているが故障したか又はプロセスまたはマシンから除去された幾つかのセンサについて推定値を生成する。本発明は、実際のセンサが故障しているときに、置換センサ信号を生成するようにトリガされる安全装置として使用することができる(自動連携または置換モード)。また、マシンを監視および制御するために必要とされるセンサの数を削減することによってマシンの生産コストを削減するように、推論した信号を生成するために使用することもできる(推論モード)。
【0014】
本発明の装置は、「仮想」信号の生成の対象とされるプロセスまたはマシンに接してまたは近接して物理的に位置する、メモリおよびプロセッサを有する電気式デバイスとして配備することができる。別法として、ネットワークまたは無線伝送設備を介してプロセスまたはマシン上の生きたセンサからセンサデータを受信するコンピュータ内モジュールとして、プロセスまたはマシンから遠隔に配置することができる。それに応じて生成された置換センサ信号または推論センサ信号は、プロセスまたはマシンにとってローカルまたは遠隔もしくは更に異なる遠隔に位置する制御システムまたはディスプレイシステムに返すことができる。
【0015】
代表的トレーニング集合またはその変換(transformation)を記憶するためのメモリがプロセッサに結合されている。プロセッサは、実際にプロセスまたはマシン上にあるセンサから実値を具体的に表す信号を入力データから受信し、またこれらをリアルタイムで受信することができる。プロセッサは、入力から実際のセンサの1組の読取り値を取り、そして、代表的トレーニング集合センサデータに対する入力センサデータの相似性を測定した結果によって重み付け(加重)された、代表的トレーニング集合センサデータの線形的組み合わせを用いて、1つまたは複数の所望の推論するセンサの推定値を生成するように、配置されている。
【0016】
従って、プロセスまたはマシンの他の物理パラメータに関するセンサ値に基づいて、また、過去の動作を表すプロセスまたはマシンに関する1組のセンサデータに基づいて、プロセスまたはマシンの物理パラメータの推定値を生成する方法を提供することが有利であろう。改良された監視システムは、プロセスまたはマシンに関する入力センサデータの集合を受け入れ、センサ入力の中にないプロセスまたはマシンのパラメータの少なくとも1つの推定値を出力として提供する。センサによって監視されたプロセスまたはマシン内のパラメータについての置換信号を生成するための、計算上効率的な方法および装置はまた、センサが故障したと判定されたときにも望ましいものである。この目的で、他のパラメータあるいはプロセスまたはマシンの入力に基づいて、故障したセンサの代わりの置換センサ信号、または器械を装備されたものではないパラメータに関する推論したセンサ信号を生成するための、また、ディスプレイまたは制御システムへ推定値を出力するための、コンピュータ実行可能なモジュールを提供することは有利であろう。マイクロプロセッサベースのコンポーネントをマシンに追加して、マシン内でセンサデータとインターフェースして、センサによって測定されない少なくとも1つの追加の物理パラメータの推論した推定値を提供することができる。
【0017】
本発明の特徴的と思われる新規な特徴は、添付の特許請求の範囲に述べられている。しかし、本発明自体、ならびに好ましい使用モード、その他の目的および利点は、添付の図面と共に以下の実施形態の詳細な説明を参照することによって最もよく理解される。
【発明を実施するための最良の形態】
【0018】
好ましい実施の形態の詳細な説明
図1を参照すると、フロー・チャートにより、本発明に従って、機械的か電気的か生物学的かにかかわらず、プロセス、マシン、システム、または他の機器をセットアップおよび使用するためのステップが示されている。ステップ110では、動作時に、推論した信号または置換信号を生成することができるプロセスまたはマシンの既述の実施形態は、仮想信号の生成の対象であるパラメータを含む、対象のパラメータすべてを測定するのに十分なセンサを、完全に取り付けられる。ステップ120では、後に予想される動作範囲すべてにわたってプロトタイプを動作してセンサデータが収集される。ステップ130では、いくつかの「トレーニング(訓練)」方法の1つを使用して、ステップ120で収集されたセンサデータから、動作範囲と、その範囲全体にわたるセンサ間の相関とを表すのに十分なサブセットを抽出する。これらの方法について以下で述べることになる。ステップ140では、プロトタイプが装備された(すべての)センサのそれぞれに対応するデータ・エレメントを含む、抽出された代表的センサデータ、またはそのデータの変換が、プロセッサメモリにロードされ、プロセッサメモリは、正常動作時のプロセスまたはマシンに対する仮想センサ信号を生成する。ステップ150では、仮想センサ信号を生成する応用例が、動作時に故障したセンサの代わりの置換センサ信号としてのものである。ステップ160では、仮想センサ信号を生成する応用例が、除去されたセンサまたは類似のマシンまたは機器の生産ラン内に組み込まれていないセンサの代わりの推論した信号としてのものであり、従って、無いセンサの分のコストを節約しつつ、ダウンストリームの処理のための信号が提供される。
【0019】
説明する実施形態は、動作時に仮想信号が生成される対象となるプロセスまたはマシンを実質的に提供する。例えば、エンジンの場合には、研究所のベンチ設定で、プロトタイプエンジンにすべてのパラメータ用のセンサを完全に取り付けることができる。次いで、様々な動作範囲全体にわたってプロトタイプエンジンを動作し、センサすべてについてセンサデータを記録するが、ここで通常は、データは、センサ出力に接続されて通信状態にあるデジタルコンピュータによりデジタル化されタイムスタンプの付けられた値として記録する。次いで、この実施形態のコンピュータプロセッサおよびソフトウェアを使用して、収集されたセンサデータから、データが収集された動作範囲を表すセンサデータのサブセットが抽出される。目標が、組み込むセンサをより少なくすることによって生産コストを削減してこのエンジンを大量生産し、さらに依然としてすべてのセンサ信号をエンジンの監視および制御用に使用可能とすることである場合には、抽出された代表的データは、本発明のコンピュータソフトウェアモジュールに、また、それを実行するためにプロセッサハードウェアに提供され、プロセッサハードウェアは、エンジン監視または制御システムに組み込むことができ、以下で詳述するように欠けているセンサの代わりに仮想信号を生成する。好ましい実施形態で述べられているシステムは、情報プロセッサで監視することが可能な複数のセンサを取り付けられた機器を監視する。システムの物理パラメータを記述する動作値を受信するために情報プロセッサと共に使用するための、データ獲得入力フロントエンドが設けられる。予想される動作状態を表す時間相関したセンサデータ、および器械を装備された機器から動作中に観察された信号は、情報プロセッサによって使用されて、器械を装備された機器から観察された信号を含む、またはそれに加えて提供することができるパラメータを記述する出力を生成する。情報プロセッサは、器械を装備された機器の複数のセンサに応答して動作し、機器の1つまたは複数のプロセスパラメータとコンポーネント信号との間の関係を確立して、システムのプロセスパラメータに対応する1つまたは複数のパラメータ信号を生成する。
【0020】
別の一例として、腐食性または有害な環境内にセンサを配置することを必要とするパラメータ測定が望ましいプロセスの場合、完全に器械を取り付けて、研究所設定でプロセスのモックアップを構築することができる。後の予想される動作範囲全体にわたってモックアップを動作させ、これらの範囲全体にわたってデータを収集することができる。この方法では十分なデータが収集されるまでに最終的に1つまたは複数のセンサが破壊される可能性はあるが、後続の本発明の推論モデルは、その後更に破壊されたセンサを置換することを必要とせずに、対象となるプロセスのフルスケールの動作を可能にすることになる。パラメータは、この実施形態のコンピュータモデルにより、研究所内で収集されたデータから抽出された代表的データを参照して、動作時に生成することができる。
【0021】
代表的トレーニング集合を提供するために収集しなければならない履歴データの量は、当然ながら特定の応用例、ならびに正常な監視された動作時に遭遇することになる様々な動作モードおよび範囲次第で決まるが、どのような場合でも、システムの第1原理モデルを導出するためにその範囲すべてにわたってシステムを調査するのに必要とされるものより、はるかに少ない時間と努力である。収集されたデータは、動作モードにあった何れものヒステリシスの両側を含むべきであることが重要である。
【0022】
従って、この実施形態は、プロセスまたはマシンの監視または制御のための置換センサ信号または推論センサ信号を提供することに対して、非常に有益な経験的手法を提供する。第1原理モデルを開発し、器械を装備されたパラメータすべての間の関係を理解するという非常に時間のかかる、またはおそらくは克服不可能な課題を回避する。
【0023】
図2を参照すると、ステップ120から収集されたセンサデータを、代表的トレーニングデータ集合を作り出すように抽出するためのステップ130の方法がグラフで示されている。5つのセンサ信号202、204、206、208および210が、プロセスまたはマシンについて示されており、後にこの5つのうち1つまたは複数を推論的に生成することになる。横軸215は、収集されたセンサデータのサンプル数またはタイムスタンプであり、データはデジタル的にサンプリングされ、センサデータは時間によって相関されている。縦軸220は、サンプルまたは「スナップショット」にわたる各センサ読取り値の相対的な振幅を表す。各スナップショットは5つの要素のベクトルを表し、このスナップショットではセンサごとに1つの読取り値である。このトレーニング方法によれば、ステップ120で収集されたセンサデータすべて(スナップショットすべて)のうち、これら5要素スナップショットだけが、所与のセンサについてのグローバル最小値またはグローバル最大値を含む代表的トレーニング集合に含まれる。従って、センサ202の場合、グローバル最大値225は、グローバル最大値225を含む、線230と各センサ信号との交点で、5要素のベクトルとして、5つのセンサ値を代表的トレーニング集合に含むことを正当化する。同様に、センサ202の場合、グローバル最小値235は、各センサ信号と線240の交点で5つのセンサ値を含むことを正当化する。
【0024】
代表的データの選択を図3に更に示す。ステップ130で収集されたデータは、N個のセンサおよびL個の観察結果またはスナップショット、またはN個の行およびL個の列のアレイXを含む時間相関された数組のセンサデータを有する。ステップ304で、要素数を表すカウンタiが0に初期設定され、観察結果またはスナップショットカウンタtが1に初期設定される。各センサについて収集されたデータにわたってのそれぞれ最大値および最小値を容れるための2つのアレイ「max」および「min」は、それぞれ、Xの第1列に等しく設定されたN個の要素をもつベクトルになるように初期設定される。各センサについて収集されたデータにおいて見られる最大および最小の値の観察数を保持するための2つの追加のアレイTmaxおよびTminは、それぞれ、すべて0の要素N個のベクトルになるように初期設定される。
【0025】
ステップ307で、Xにおけるスナップショットtでセンサiのセンサ値が、収集されたデータ内でそのセンサについてまだ見られていない最大より大きい場合には、ステップ310で、max(i)が更新されてセンサ値に等しくなり、Tmax(i)が観察結果の数tを記憶する。大きくなかった場合には、ステップ314および317で、そのセンサの最小値について同様のテストが行われる。ステップ320で観察数カウンタtが増分される。ステップ322で、所与のセンサについて観察結果すべてが見直された場合(t=L)には、ステップ325で、tがリセットされ、iが増分される(次のセンサについて最大および最小を見つけるため)。ステップ328で最後のセンサについて終了した場合(i=N)には、冗長が除去され、XからのベクトルのサブセットからアレイDが作り出される。
【0026】
まずステップ330で、カウンタiおよびjが1に初期設定される。ステップ333で、アレイTmaxおよびTminが連結され、2N個の要素を有する単一のベクトルTtmpを形成する。これらの要素は、ステップ336で昇順(または降順)にソートされ、アレイTを形成する。ステップ339で、ホルダtmpがT(センサの最大または最小を含んでいる観察数)の第1の値に設定される。Dの第1列は、Tの第1要素である観察数に対応するXの列に等しく設定される。判断ステップ341で始まるループで、Tのi番目の要素が、Tの前の要素を含んでいるtmpの値と比較される。それらが等しい場合(対応する観察ベクトルが1より多くのセンサについての最小または最大である)には、それはすでにDに含まれており、再度含ませることを必要としない。ステップ350でカウンタiが増分される。それらが等しくない場合には、ステップ344で、Dが、T(i)の観察数に対応するXからの列を含むように更新され、tmpがT(i)での値で更新される。次いで、ステップ347でカウンタjが増分される。ステップ352で、Tの要素すべてがチェックされていた場合には、ステップ355でトレーニング集合Dへの抽出が終わる。
【0027】
図4を参照すると、抽出するためにプロセスまたはマシンの挙動データを集めるための研究所ワークベンチ構成の略図が示されている。マシンプロトタイプ410が示されており、これは、仮想センサが必要とされるまたは望ましい任意の種類のマシンとすることができる。例えば、マシン410は、内燃機関、電気モータ、ポンプ、圧縮機、冷凍機などとすることができる。マシン410はプロトタイプと呼ばれているが、重要なことは、同じセンサによって測定されるであろう、マシンの生産モデルで予想される実際のパラメータ値と実質的に同じセンサデータを生成するべきであることである。当然ながら、プロトタイプを生産モデル自体の実例(instance)とすることもでき、理想的には、他の生産モデルと決して異なっている必要はない。マシン410は制御システム420に接続されて制御されることができ、一般に、制御システムは、必要に応じて適切なアナログ/デジタルおよびデジタル/アナログの入出力を有するマイクロコントローラまたはマイクロプロセッサをベースにするデジタルシステムを備える。マシン410は、出力430に沿ってセンサ値を提供するセンサを取り付けられている。対象のパラメータすべてに対してこの研究所ワークベンチ構成では器械を取り付けられているが、マシン410の生産モデルではセンサのサブセット440だけを使用することになり、一方、センサの第2のサブセット450は、マシン410の生産モデルで使用されないかまたは高い信頼性で使用することができないことを理解されたい。これは、センサ450のコストを回避するために行うことができ、あるいは、生産モデルで必要とされている限りにおいては、センサ450を使用することが困難または不可能であることに起因し得る。マシン410は、予想される動作範囲全体にわたって動作させ、次いで、データ獲得システム460を使用して、マシン410に取り付けられたセンサ430すべての値を記録することができる。更に、制御システム420からの制御信号もまた、データ獲得システム460によって記録することができ、また、他のセンサ信号と相関関係にある「センサ信号」として使用することができる。
【0028】
従って、データ獲得システム460によって獲得されたデータを、コンピュータモジュール480を使用して処理し、上述のトレーニング方法または当技術分野で知られているような他の方法を使用して、マシン410の動作範囲を表す抽出されたトレーニングデータ集合を生成することができる。
【0029】
今述べた実施形態において、搭載型プロセッサが図5に示されており、マシン(またはプロセス)508は、マシン上に位置する制御システム517によって制御される。マシン508は、マシンを制御する際に対象となる物理パラメータまたは論理パラメータのいくつかに関するセンサを取り付けられており、これらのセンサに関する出力は出力導体523として示され、制御システム517へ供給される。これらはまた、出力導体523上の信号から少なくとも1つの仮想信号の集合530を生成するために、コンピューティングプログラムを実行するように配置された、マシン内またはマシン上に位置するプロセッサ545へ供給される。プロセッサは、やはりマシン上またはマシン内にあるメモリ551に接続され、メモリ551は、マシン508の予想される動作状態を表すように抽出されたトレーニング集合を含むデータを記憶する。メモリ551はまた、プロセッサ545によって実行するためのプログラムを記憶することができる。プロセッサ545によって生成される仮想信号530は、マシンの物理パラメータまたは論理パラメータに関する本物のセンサ値の代わりに、制御システム517へ送られる。このようにして、マシン上またはマシン内に位置するプロセッサおよびメモリを使用して、マシン用の制御システムは、コスト節約を考慮したことに起因して又は1または複数の物理パラメータに関する器械取り付けが非現実的であることに起因して、物理パラメータのいくつかに対しての器械を取り付けられていない場合でも、マシンを効果的に制御するのに十分なマシン用の物理パラメータ値を提供することができる。
【0030】
プロセッサ545はまた、制御システム517の一部とすることができ、実際、制御システムがデジタル計算型制御システムである場合には、制御システムルーチンが実行されるプロセッサとすることができる。プロセッサ545およびメモリ551は、制御システムと同じ電源によって給電することが理想である。しかし、ある種の状況下では、仮想信号530を、器械を装備したことに基づく真のパラメータであるかのように、適時に送るために、制御システムのプロセッサおよび/またはメモリから独立してプロセッサおよびメモリを提供することが好ましい可能性もある。例えば、制御システムに対して、本当に取り付けられた器械からのパラメータと区別できないような形で仮想信号を提供するために、プロセッサ545が、制御システム内で使用可能などのプロセッサよりも高いクロック速度で動作しなければならないことが必要である可能性がある。また、プロセッサ545およびメモリ551は、既存のマシンおよび制御システムに改良装置の組み込みができるように、制御システムから分離し、それ自体の電源を有するユニットとして構成することができる。
【0031】
他の実施形態によれば、プロセス603が、出力リード606を有するセンサを取り付けられように、図6に示されている。これらは、プロセスを制御する制御システム610へセンサ信号を送る。これらの信号はまた遠隔通信リンク613へ送られ、遠隔通信リンク613は、センサ信号のデジタル値を物理的に遠隔の場所に位置する第2の遠隔通信リンク615へ通信するように配置されている。リンク615によって受信されたセンサ信号を使用して、プロセス603の推論した物理パラメータを示す少なくとも1つの仮想センサ信号を生成する、コンピューティングシステムおよびソフトウェアを備えることができるプロセッサ618が設けられている。上述の抽出方法に従って、プロセス603の予想される動作挙動を表すトレーニング集合データを記憶するために、メモリ620が設けられている。更に、センサ信号606、またはそこから導出された仮想信号、またはこれら両方を含む、プロセス603を記述するデータを表示するために、ディスプレイ623を遠隔地に設けることができる。プロセッサ618によって生成された仮想信号はまた、リンク615からリンク613へ送り戻され、リード627を介して制御システム610へ入力し、プロセスを有利に制御することができる。オリジナルのセンサ信号および/または仮想のセンサ信号を含むデータはまた、ディスプレイ633上で表示するために、更に第3の遠方の場所に位置する第3の遠隔通信リンク630へ送信され、それによって、プロセスの物理的プラントにも仮想信号を計算する場所にも位置しない関係者に、プロセスに関する貴重な情報を提供することができる。
【0032】
遠隔通信リンクは、公衆電気通信インフラストラクチャを介したインターネットプロトコルベースのパケット通信、直接のポイント・ツー・ポイントのリース回線通信、無線または衛星を含む、当技術分野で周知の様々な技法から選択することができる。より具体的には、遠隔リンク613、615および630は、データをメッセージとして蓄積、待ち行列入れ、および送信するためのアプリケーションソフトウェア、ならびにメッセージとして到着するデータを受信および再構築するためのキューを有する、インターネットで使用可能なサーバとすることができる。別法として、通信は、無線リンクを介した同期(非同期の、メッセージをベースとする通信と対照的な意味)とすることができる。
【0033】
図6に示す本発明の実施形態は、仮想信号を用いて監視および/または制御されるプロセス(またはマシン)から地理的に離れて位置するコンピューティング資源を使用して仮想信号を計算する。この1つの便益は、仮想信号を生成するためのコンピューティング資源を、多数のプロセスまたはマシンで共用することができ、メモリ620は、様々の監視されるプロセスおよびマシンを特徴付ける複数組のトレーニングデータ集合を保持することができることである。別の便益は、監視されているプロセスから離れて位置する関係者が、仮想信号の結果を表示することができ、また、更なる分析に使用することが可能であることである。
【0034】
情報プロセッサによって実施される計算について以下で詳しく述べる。合計15個の対象とする物理パラメータを有する、大量生産されることになるマシンを一例として使用し、それらのうちの10個は、マシン動作中に実信号を提供する実センサを装備することによりもたらされ、5つの信号は最初の10個から推論し、その結果、これら5つのパラメータ用のセンサのコストによってマシンを生産するためのコストを削減すると仮定する。以下では、下付き文字「in」は、一般に、値が計算へ入力される10個の実センサに対応し、下付き文字「out」は、一般に、計算によって出力される5つの推論したセンサ値に対応する。
【0035】
上記の説明に従う代表的トレーニング集合を提供するステップにより、値のマトリクスDが得られ、このマトリクスは、15の行(試験または研究所設定で測定された15個のパラメータすべてに対応)と、十分な数nの列(同時または時間的に関連するセンサ読取り値の集合)とを有し、マシンの完全な予想される動的動作範囲を適切に表す。マトリクスDは、それぞれn個の列を有する2つの随伴するマトリクスDinおよびDoutを含み、Dinは10個の行(10個の実センサに対応)を有し、Doutは、5つの推論したセンサに対応する5つの行を有する。Dにおいて列の順番は問題とならないが、DinとDoutのi番目の列は対応しなければならない。
【0036】
次いで、10個の実センサの値に(好ましくはリアルタイムで)対応する10個の要素を有するベクトルを示すyinを使用して、
【0037】
【数1】
【0038】
に従って、5つの推論したセンサ値に対応する5つの要素を有するベクトルyoutを生成する。上式で、Wは、Dにある列の数と同じ要素数Nを有する加重ベクトルであり、
【0039】
【数2】
【0040】
【数3】
【0041】
によって生成される。
上式で、
【0042】
【数4】
【0043】
は、下記で更に詳しく述べるアレイを生じる2つのオペランド間の相似性演算(similarity operation)を表す。ここで上付き文字「T」は、マトリクスの転置行列を表し、上付き文字「−1」は、マトリクスまたは得られたアレイの逆関数を表す。youtおよびDoutについて、およびyinおよびDinの行について、同じセンサに対して行が対応しなければならないことが重要である。即ち、代表的トレーニング集合マトリクスDinの第1の行が、マシンの第1のセンサに関する値に対応する場合、yinの第1の要素もまた、その同じ第1のセンサの現行値(リアルタイムで動作する場合)でなければならない。
【0044】
図7を参照すると、1つまたは複数の置換信号または推論した信号の生成についてをフロー・チャートで示している。このフロー・チャートは、この実施形態における1つの置換信号または推論信号の生成を示し、リアルタイム動作での実際のセンサ値の1つのスナップショットの入力を提供する。ステップ705で、計算のために入力スナップショットベクトルyinおよびアレイAと共に、マトリクスDinが提供される。ステップ708でカウンタiが1に初期設定され、トレーニングマトリクスDinにおける観察数を計数するために使用される。ステップ712で、別のカウンタkが1に初期設定され(スナップショットおよび観察においてセンサ数を計数するために使用)、アレイAが、要素に対して0を収容するように初期設定される。
【0045】
ステップ715で、yinのk番目の要素とDinの(i番目、k番目)の要素との間で、要素対要素の相似性演算が実行される。これらの要素は対応するセンサ値であり、1つは実際の入力からのものであり、1つはトレーニング履歴Dinの観察結果からのものである。相似性演算は、2つの値の相似性の測度(測定値)、通常は0(相似性なし)と1(同一)の間の値を返し、これは一時的変数rに割り当てられる。ステップ720で、rをセンサ数Mで割ったものが、1次元アレイAのi番目の値に付加される。従って、Aのi番目の要素は、Dinのi番目の観察結果に対するyinの要素相似性についての平均相似性を保持する。ステップ724で、カウンタkが増分される。
【0046】
ステップ729で、Dinの特定の観察におけるすべてのセンサがyinの対応する要素と比較されていた場合には、kがMより大きくなり、ステップ731でiを増分することが
できる。そうでなかった場合には、yinの次の要素が、Dinのその対応する要素に対して、相似性について比較される。
【0047】
現在の実際のスナップショットyinのすべての要素が、Dinの観察結果のすべての要素と比較されたとき、ステップ735で、これがDinの観察結果の最後であるかどうかが検査される。そうである場合には、カウンタiがDinの観察数Nより大きくなり、処理はステップ738へ移行する。そうでない場合には、処理がステップ712へ戻り、アレイAが0にリセットされ、要素(センサ)カウンタkが1にリセットされる。ステップ738で、加重ベクトルWキャロットが、図示されている式から計算される。式中、
【0048】
【数5】
【0049】
は相似性演算を表し、一般に、ステップ715で使用されたものと同じ相似性演算子である。ステップ743で、Wキャロットは、Wキャロットのすべての加重要素の和を用いて正規化され、これにより、後続のステップでWキャロットの特に大きな要素の影響が改善され、正規化された加重ベクトルWが生成される。ステップ746で、これを使用し、Doutを使用して置換出力または推論出力youtを生成する。1つのみの置換信号または推論信号が生成される場合には、出力ベクトルは要素を1つだけ有する可能性があり、あるいは、生成される各「仮想」センサに対応する複数の要素を有する可能性もある。以上、マトリクスDoutについて、生成される、センサ(1または複数)に対する相対するトレーニングデータを含むものとして述べた。
【0050】
相似性演算は、第2のオペランドの列に対する第1のオペランドの行の相似性または数値的近似性の測定値を生成する様々な周知の演算子から選択することができる。演算の結果はマトリクスであり、そのi番目の行およびj番目の列の要素は、第1のオペランドのi番目の行と第2のオペランドのj番目の列とから決定される。得られる要素(i、j)は、これら2つのベクトルの類似の測定値である。この実施形態では、第1のオペランドのi番目の行は、一般に、マシンの所与の時間的に関連する状態に対するセンサ値に対応する要素を有し、これは第2のオペランドのj番目の列についても同じである。事実上、得られる相似性測定値のアレイは、一方のオペランドにおける各状態ベクトルの、他方のオペランドにおける各状態ベクトルに対する相似性(類似性)を表す。
【0051】
例として、使用することができる1つの相似性演算子は、要素ごとに2つのベクトル(i番目の行およびj番目の列)を比較する。対応する要素だけ、例えば、要素(i、m)が要素(j、m)と比較されるが、要素(i、m)は要素(j、n)と比較されない。そのような比較のそれぞれについて、相似性は、2つの値の小さい方を2つの値の大きい方で割ったものの絶対値に等しい。従って、値が同一である場合には、相似性が1に等しくなり、値が著しく等しくない場合には、相似性が0に接近する。要素の相似性をすべて計算するとき、2つのベクトルの全体的な相似性は、要素の相似性の平均に等しい。平均化の代わりに、要素の相似性の差分統計的組合せ、例えば、メジアンを使用することもできる。
【0052】
使用することができる相似性演算子の別の例は、図8を参照しながら理解することができる。この相似性演算子に関して、Wegerich(ウェゲリック)その他の米国特許第5,987,399号の教示が関連しており、その全体を参照により組み込む。各センサまたは物理パラメータについて、三角形804が形成され、そのセンサまたはパラメータに関する2つの値の間の相似性を決定する。三角形の底辺807は、トレーニング集合全体内でそのセンサについて観察された最小値812と、トレーニング集合全体にわたってそのセンサについて観察された最大値815との間の差に等しい長さに設定される。その底辺807の上方で角度Ωが形成され、三角形804を作り出す。次いで、ベクトル対ベクトル演算における任意の2つの要素の間の相似性は、底辺807に沿って図でX0およびX1と示された2つの要素の値の位置をプロットすることによって見出されるものであり、底辺807をスケーリングするために一方の端部で最小値812の値を用い、他方の端部で最大値815の値を用いる。底辺807上のX0およびX1の位置に引かれた線分821および825が、角度θを形成する。角度θと角度Ωの比率が、対象とするセンサに対するトレーニング集合における値の範囲全体にわたってのX0とX1の間の差の測定値を与える。この比率、またはこの比率を何らかのアルゴリズムで変更したものを1の値から減算することにより、X0とX1の相似性の測定値である0と1の間の数が得られる。
【0053】
相似性を作り出すために、180度より小さい何れの角度サイズも、および底辺807の上方でその角度のための何れの位置も選択することもできるが、選択されたものは何であれ、そのプロセスまたはマシンの特定のセンサおよび物理パラメータに対応するすべての相似性測定に使用しなければならない。従って、異なる形状の三角形804を、別の様センサについて使用することができる。三角形の全体的な形状を選択する1つの方法は、何れの形状により一貫して最も正確な仮想信号結果が得られるかを経験的に試験することである。
【0054】
計算効率のために、角度Ωを直角にすることができる(図示せず)。線分831を底辺807の上方の角度Ωの高さhとして示すと、要素iについて所与の要素対要素の相似性に対する角度θは、
【0055】
【数6】
【0056】
によって得られる。次いで、要素の相似性は、
【0057】
【数7】
【0058】
である。上記で示したように、要素の相似性は、統計的に平均化することができ、または、システムによって必要されているかのように、統計処理してスナップショットと別のスナップショットとの全体的な相似性を生成することができる。
【0059】
この実施形態で使用することができる更に別の種類の相似性演算子は、n空間内で、或る状態ベクトルと別の状態ベクトルとの近接度を説明することを伴い、ここにおいてnは、監視されているプロセスまたはマシンの現在のスナップショットの状態ベクトルの次元である。近接度が比較的近い場合には、2つの状態ベクトルの相似性は高く、一方、近接度が離れているまたは大きい場合には、相似性が減少し、最終的にはなくなる。例として、2つの状態ベクトル間のユークリッド距離を使用して相似性を決定することができる。例えば、20個のセンサを取り付けられているプロセスであって、器械を取り付けしていない21番目のパラメータを推論することが有益なプロセスでは、20要素の状態ベクトルを含む現在監視されているスナップショットと、トレーニング集合の各状態ベクトル(仮想センサに対応する21番目の要素が除外されている20要素ベクトルを含む)との間のユークリッド距離により、以下のように相似性の測定値が得られる。
【0060】
【数8】
【0061】
上式で、Xは現在のスナップショットであり、dはトレーニング集合からの状態ベクトルであり、λおよびcはユーザ選択可能な定数である。
図9を参照すると、故障したセンサについてチェックし、それに応答して、本発明に従って置換信号を生成する方法についての判断論理が示されている。そのような方法は、当業者に周知であるように、プロセッサおよびメモリで実施することができ、マシンまたはプロセスをリアルタイムで監視し、マシンまたはプロセス上で検出されたセンサの故障に応答して、必要に応じて1つまたは複数の置換仮想信号を生成するシステムを提供する。ステップ903で、FLAG(フラグ)変数が0に初期設定され、スナップショットカウンタtもまた0に初期設定される。この方法を通じての第1のループで、ステップ906においてtが0である場合には、ステップ908で最初のトレーニングが実施される。この実施形態で抽出されたトレーニング集合912は、スナップショットのトレーニングマトリクスを提供する917。ステップ908で、マトリクスDinおよびDoutが917のマトリクスDに等しく設定され、FLAGが0に設定され、tが1に設定され、相似性演算を用いて、
【0062】
【数9】
【0063】
によって中間マトリクスG0が見出される。
次いで、実センサデータ920の獲得によるマシンまたはプロセスのリアルタイムまたはオンラインの監視はステップ922へ進み、時間的に相関された、または同時に起こるデータのスナップショットXtが、マシンまたはプロセス上のセンサから獲得される。獲得されたデータは、
【0064】
【数10】
【0065】
に従って、すべてのセンサについて推定された値を計算するために使用される。すべてのセンサのそのような推定値は、上述のGrossその他などのような従来技術で周知のように、実センサ値と比較し、プロセス変化が発生しているときにそれを検出するために有用である。この図から容易に理解できるように、監視されているマシンまたはプロセス上のセンサが故障していない場合にはマトリクスDoutおよびDin(0)が等しくなる。
【0066】
ステップ926で、判断エンジンはセンサが故障しているかどうかを調べる。従来技術で周知のセンサ故障を検出するための様々な技法のいずれかを使用することができ、オリジナルの監視されたデータだけを調べることにより、または、監視されたデータを推定されたデータと比較することにより、働かせることができる。例として、センサが故障しているかどうかを判定するための1つの技法は、センサからの読取り値が、変化しているべき一連の読取りにわたって単一の値に固定化しているかどうかを監視することである。別の例として、センサ読取り値が急な不連続となるかまたは0へ降下しているとき、特に、センサによって測定されている物理パラメータが0になり得ないときに、センサ故障を決定することができる。更に、センサが故障したことを示すある種の「スマート」センサが市販されている。ステップ930で、1つまたは複数のセンサが故障している場合には、ステップ933でフラグがたてらて、FLAG変数が1に設定される。どのセンサも故障と判定されなかった場合には、ステップ906で処理が続行する。
【0067】
ステップ906に戻ると、この時点で、tは、ステップ908で1に設定されていて0ではない。カウンタtは、本物のセンサからのデータの次のスナップショットの読取りに対応して、ステップ937で増分される。ステップ940でFLAGの状態をチェックし、FLAGが依然として0(プロセスを通じての最後のループ以降にセンサが故障していない)である場合には、ステップ945でDinおよびGが同じままであり、再度ステップ922により続行して次のスナップショットが獲得され処理される。他方、ステップ940でチェックしたときにステップ933でFLAGが1に設定されていた場合には、アレイDinおよびGをステップ950で再計算しなければならない。故障したセンサに対応する行がDinから除去される(Doutからは除去されない)。新しいDinに基づいてアレイGが再計算される。FLAGが0にリセットされる。次いでステップ922で、監視されるプロセスまたはマシンのスナップショットが獲得されると、同じ故障したセンサに対応する入力ベクトルXの要素が削除される。しかし、Doutはどの行も除去されていないので、ステップ922で生成されたXの推定値は、欠けている行、即ち、故障したセンサに関する推定値を含む。従って、これらの推定値は、故障したセンサの代わりの置換値として計算された仮想センサ値である。
【0068】
従って、有利にも本実施形態は、実際のデータと比較するための推定値を計算するために相似性演算を使用して、監視システムにおいて故障したセンサの代わりの置換信号をオンザフライで生成する能力を提供する。そのような置換信号は、故障したセンサ(1または複数)からのセンサ信号を必要とするダウンストリームの処理へ提供することができる。従って、複合センサ信号を複数の相関された入力へと分解し、システムの、器械を取り付けたものではない物理パラメータの推論測定値を提供することができる。
【0069】
図10を参照すると、液圧ポンプの実施形態100が示されており、その例では、ディーゼルエンジン102は液圧システム100のシャフト104を駆動し、それがシリンダ108内のピストン106を作動させて、四方方向弁110によって供給される液圧供給量を制御する。この実施形態では、可変流量を容易にするように液圧システムに8ステップサイクルが提供されている。システム100は加速度計112を備え、加速度計は、往復するピストン106に関連付けられたポンプシリンダの可変変位の縦方向の振動を観察するように位置することが好ましい。粒子や金属粒などのような液圧ループ内に汚染物質が導入されることにより、システムのバルブおよびピストンが摩耗し、液圧の変化を引き起こす。圧力の損失を補償する可能性があるため、これによりポンプからの振動が変化する。
【0070】
液圧システム100と関連して、仮想信号とともに推定されることが望ましいパラメータは、システムによって供給される圧力または流れであり得る。しかし、液圧ラインに侵入する圧力トランスデューサは障害物となり、故障しやすい可能性がある。従って、代わりに加速度計112を使用して、加速度計112に相関される仮想の圧力読取りを容易にすることが望ましい。これは、加速度計112からパワースペクトル分析器114へ複合信号を出力することによって行われ、これは、データ獲得デバイスを加速度計112に接続して、ソフトウェアモジュールを動作させるコンピュータで実施することができる。分析器114によって出力されるパワースペクトル密度(PSD)は、加速度計によって測定された振動のパワーを、その振動の周波数の関数として提供し、そのためには、上述の相似性計算のための入力観察ベクトルとして、提供されるパワースペクトル全体にわたっての周波数ビンを提供する1024サンプルの高速フーリエ変換(FFT)スライディングウィンドウを使用する。周波数ビンは、例えば30周波数ビンなどのように、ユーザ選択可能とすることができる。従って、ユーザ選択可能なビンに関連付けられた周波数成分は、複数の観察結果の入力を提供する。推論信号生成装置への多変数入力としてPSDを使用することができる。液圧、または望まれる場合には流量の、器械を取り付けたものではない物理パラメータは、推論した信号である。PSDからの入力は実際の信号である。これらの入力は、以下のいくつかの代替形態から選択することができる。
【0071】
第1の代替形態では、選択された周波数だけを入力として使用することができる。例えば、液圧システム100において対象となりそうな振動周波数の何らかの知識を用いて、いくつかの周波数を選択することができ、これらの周波数のそれぞれにおけるパワーの値を「センサ」入力として使用することができる。
【0072】
別の代替形態では、いくつかの周波数帯にわたって周波数を「ビン化(binned)」または札付けする(tallied)ことができる。この場合、周波数の所与の帯(バンド)またはビンに関する値(または「センサ」信号)は、ビン内の最高パワー値、ビン内の最低パワー値、ビン全体にわたる平均パワー値、またはビン内のメジアンパワー値のうちの1つとすることができる。他の変形形態もまた明らかに有効であり、それらも本発明の範囲および精神内にある。
【0073】
従って、説明した実施形態は、器械を取り付けたものではない物理パラメータを推論することのための入力として、分解された複合信号を用いて動作することの便益を提供する。例示的な一実施形態では、熱シンクとして働く大きな室内で、様々な予想される条件にわたって動作する標準的な窓取付け型の室内空調機からデータを収集した。合計23個のセンサからの出力を使用し、蒸発器および凝縮器にわたる温度勾配の測定値を表した。データはk型熱電対から獲得され、100サンプル毎秒のサンプリングレート設定を有するデータ獲得基板(DAQ)を使用してデジタル化された。データは、空調機が室内環境を比較的一定の温度で維持している間に収集された。データは、本明細書に述べられている方法に従ってトレーニング集合へと抽出された。センサ数に比べて多数のトレーニングスナップショット(92個、センサ変数の数の4倍)を使用して、動作時の空調機の経験的モデルを作った。
【0074】
経験的モデルの忠実度を測定するために、合計600個のランダムに選択された動作観察結果を、トレーニングから開発したモデルを使用して推定した。そのような観察結果のそれぞれについて、全23センサのスナップショットをモデルへ入力し、次いでモデルにより、これら同じセンサについて23個の推定値の出力が生成された。基準モデル推定誤差は、残差(推定のセンサ値と実際のセンサ値の間の差)の平均の平方自乗平均(RMS)の、実際のセンサ値におけるノイズの標準偏差に対する比率と定義された。23個のセンサすべてがモデル入力として使用可能であったとき、平均推定誤差は0.271であった。これはセンサの平均ノイズの一部である。
【0075】
正確に表現された仮想センサ信号の効力は、センサ故障をシミュレーションするように値を0に設定したランダムに選択されるセンサよって次々にアクセスされる。最大12個のセンサが故障し、これは当初の使用可能なセンサの52%を失ったことに対応する。上述の推定誤差は、故障センサ数の増加に対して、すべてのセンサにわたる平均として以下の表に示されている。予想されるように、推定誤差は、故障センサ数が増加するにつれて増加した。しかし、すべてのセンサにわたっての推定誤差は比較的低いままであり、「故障」していなかったセンサについても、更に「故障」していたセンサについても、センサ推定値が実用的に正確であったことを示していることに留意されたい。
【0076】
【表1】
【0077】
図11を参照すると、オリジナルのセンサおよび他の2個が故障し、それらを経験的モデルへの入力として除外した後の、空調機用に生成された仮想センサ信号の図が示されている。また、オリジナルのセンサの実際の値も示されている。図の横軸は、分を単位とする時間である。縦軸は、センサの値、即ち、温度である。理解できるように、センサ(ならびに23の集合のうちの他の2個)が故障したものとして扱われ、経験的モデルへ送られなかったとき、それにもかかわらず、モデルは、入力として提供された他のセンサ値に基づいて、実用的で使用可能なセンサ値の推定値を生成している。
【0078】
前述の好ましい実施形態に対して、様々な態様で変更を加えることができることは、当業者なら理解できよう。本発明は、特徴と共に添付の特許請求の範囲に述べられている。本発明の精神および範囲は、当業者および本願の教示に通じている者にとって自明である好ましい実施形態に対するそのような変形および変更を包含するものとする。
【図面の簡単な説明】
【0079】
【図1】図1は、プロセスまたはマシンに対しての本発明の仮想信号生成をセットアップするステップを示す。
【図2】図2は、本発明で使用するための、収集されたセンサ・データから代表的な「トレーニング」データ集合を作り出す方法を示す。
【図3】図3は、本発明で使用するための、収集されたセンサデータから代表的な「トレーニング」データ集合を作り出すためのフロー・チャートである。
【図4】図4は、本発明で使用するための、マシンに対してのデータ集合履歴を得るための構成の図である。
【図5】図5は、監視されているまたは制御されているマシンまたはプロセスに対しての仮想信号を生成するための、本発明の搭載型プロセッサの実施形態を示す。
【図6】図6は、監視されているまたは制御されているマシンまたはプロセスに対しての仮想信号を生成するための、本発明の遠隔監視式の実施形態を示す。
【図7】図7は、本発明に従った1または複数の仮想センサ信号の集合を生成するためのフロー・チャートを示す。
【図8】図8は、本発明の相似性演算子の1つの計算を示す。
【図9】図9は、本発明に従った、監視されているプロセスまたはマシンにおいて置換仮想信号を生成する判断論理のフロー・チャートを示す。
【図10】図10は、複合信号を使用して本発明を用いて監視することが可能な液圧システムを示す。
【図11】図11は、本発明に従った、対応する実際のセンサ信号と比較した、生成された仮想信号のチャートを示す。
Claims (30)
- 動作中の機器を監視するシステムであって、
前記機器へ取り付け可能なセンサと、
前記センサと結合され、前記センサから導出された複数のコンポーネント信号を提供するデータ獲得フロントエンドと、
前記センサに応答して動作し、前記複数のコンポーネント信号と前記機器の1または複数のプロセスパラメータとの間で観察された関係を用いて、前記機器の前記1または複数のプロセスパラメータに対応するパラメータ信号を生成する情報プロセッサと
を備えるシステム。 - 複数のセンサを備える請求項1に記載のシステム。
- 前記情報プロセッサが、相似性演算子を使用して、前記複数のコンポーネント信号と前記プロセスパラメータのうち1つとの間の相似性の測度を得てパラメータ信号を生成する、請求項2に記載のシステム。
- 前記情報プロセッサが、前記プロセスパラメータのうち1つに対応する前記パラメータ信号を推定する、請求項1に記載のシステム。
- 前記情報プロセッサが、前記複数のセンサのうち1つによって監視されるプロセスパラメータに対応する前記パラメータ信号を推定する、請求項2に記載のシステム。
- 前記情報プロセッサが、前記センサに関連するデータ獲得の失敗を判定し、前記データ獲得フロントエンドが、前記センサから前記情報プロセッサへ前記コンポーネント信号を提供するのを禁止され、前記情報プロセッサが、前記データ獲得の失敗に応答して、前記センサからの前記コンポーネント信号に対応する前記パラメータ信号を推定する、請求項2に記載のシステム。
- 前記データ獲得の失敗が前記センサの故障に対応し、前記情報プロセッサが前記センサの故障を判定する、請求項6に記載のシステム。
- 前記センサからの前記コンポーネント信号がプロセスパラメータを含む、請求項6に記載のシステム。
- 前記機器の前記1または複数のプロセスパラメータが、監視されている動作中の前記機器の温度、圧力、または変位を含む物理的動作特性に対応する、請求項1に記載のシステム。
- 推論信号生成装置であって、
プロセスまたはマシンから選択されたシステムの予想される動作状態を表す、時間に相関したセンサデータ集合を記憶するメモリと、
前記システムの物理パラメータを記述するセンサ値を前記システムから動作中に受信するための信号獲得入力と、
前記信号獲得入力から前記センサ値を受信し、前記メモリ内の前記センサデータ集合と前記信号獲得入力からの前記センサ値との相似性を比較することにより、受信された前記センサ値によって測定されるパラメータの中にはないシステムのパラメータを記述する少なくとも1つの出力値を生成するように配置されたプロセッサと
を備える推論信号生成装置。 - 前記プロセッサが、前記少なくとも1つの出力値を、前記センサデータ集合と前記センサ値との前記相似性に従って調整された前記センサデータ集合の線形的結合によって、生成する、請求項10に記載の推論信号生成装置。
- 前記メモリ内の前記センサデータ集合に対する前記信号獲得入力からの前記センサ値の前記相似性は、前記メモリ内の同じセンサに関する値の全範囲と、同じセンサ値との数値的近似性を要素ごとに要素比較することによって、測定される、請求項11に記載の推論信号生成装置。
- 前記メモリ内の前記センサデータ集合が、センサデータの複数のスナップショットを含み、そのようなスナップショットのそれぞれが、前記システムの前記センサからの時間相関された値を含む、請求項11に記載の推論信号生成装置。
- 前記システムから動作中に前記信号獲得入力によって受信された前記センサ値が、前記システムのセンサのサブセットからの時間相関された値のスナップショットを含む、請求項13に記載の推論信号生成装置。
- 前記プロセッサが、前記メモリ内の各スナップショットと前記信号獲得入力によって受信された前記スナップショットとの前記相似性に従って調整された、前記メモリ内の複数のスナップショットの線形結合によって、前記少なくとも1つの出力値を生成する、請求項14に記載の推論信号生成装置。
- 前記信号獲得入力が、前記システムのセンサに電気的に接続されたデータバスを備える、請求項10に記載の推論信号生成装置。
- 前記信号獲得入力が、前記センサ値を含む伝送を受信するように配置された無線通信リンクを備える、請求項10に記載の推論信号生成装置。
- プロセスまたはマシンから選択されたシステムのための制御装置であって、
制御信号を前記システムへ伝導するために前記システムへ接続された少なくとも1つの作動信号ラインと、
前記システムの少なくとも1つのセンサからの前記システムの物理パラメータを示す信号を伝導するために、前記システムに接続された少なくとも1つのセンサ信号ラインと、
前記システムの予想される動作状態を表す、時間相関されたセンサデータの集合を記憶するメモリと、
前記作動信号ラインへ提供する制御信号を生成するために、前記少なくとも1つのセンサ信号ラインから信号を受信するように配置されたプロセッサであって、前記制御信号は、前記メモリ内の前記センサデータ集合に対しての前記センサ信号ラインからの前記信号の相似性を比較して、前記システムの第2の物理パラメータを記述する少なくとも1つの計算値を生成することにより生成されるものであり、前記制御信号は前記計算値に基づいて生成されるものである、プロセッサと、
を備える制御装置。 - 前記プロセッサが、前記センサデータ集合に対しての前記センサ信号の前記相似性に従って調整された前記センサデータ集合の組合せから、前記少なくとも1つの計算値を生成する、請求項18に記載の制御装置。
- 前記相似性が、前記メモリ内の同じセンサデータに対しての前記少なくとも1つのセンサ信号ラインからの前記センサ信号の数値的近似性によって測定される、請求項19に記載の制御装置。
- マシンまたはプロセスから選択されたシステムに関する少なくとも1つの推論したセンサ信号を生成する方法であって、
前記システムの複数の物理パラメータを測定するために前記システムにセンサを取り付けるステップと、
少なくとも1つの動作状態で前記システムを動作させるステップと、
前記少なくとも1つの動作状態について前記複数の物理パラメータに関して前記センサ群からセンサデータを獲得するステップと、
獲得された前記センサデータをメモリに記憶するステップと、
前記システムが動作している間に、前記センサのサブセットの値を監視するステップと、
記憶された前記センサデータに対しての監視されたセンサ値の相似性の測度に従って、記憶された前記センサデータを線形的に結み合わせることにより、前記センサのサブセットによって測定された前記物理パラメータの中にない物理パラメータに対応する少なくとも1つの推論したセンサ信号を計算するステップと
を備える方法。 - 前記相似性の測度が、記憶された前記センサデータにおけるの同じセンサの値に対しての監視された前記センサ値の、値の数値的近似性の要素ごとの比較である、請求項21に記載の方法。
- 物理システムを記述する仮想センサ信号を生成するコンピュータであって、
前記システムの物理的状態を記述するセンサ値を要素としてそれぞれが有する複数の基準状態ベクトルを記憶するメモリと、
前記基準状態ベクトルのそれぞれにおいてセンサのサブセットに対応するセンサ値を要素として有する、前記物理システムを記述する現在の状態ベクトルを受信するように配置され、前記現在の状態ベクトルを前記基準状態ベクトルのそれぞれと比較してそれらの間の相似性の測度を決定する第1の計算モジュールと、
前記現在の状態ベクトルと前記基準状態ベクトルのそれぞれとの間の相似性の測度を受信し、前記現在相似性の測度によって加重された前記基準状態ベクトルの組合せから、前記センサのサブセットから外れたままである前記基準状態ベクトルにおけるセンサに対応する前記センサ値の推定値を要素として有する仮想信号ベクトルを生成するように、配置される第2の計算モジュールと
を備えるコンピュータ。 - 前記第2の計算モジュールが、前記基準状態ベクトルのセンサのサブセットに対応するセンサ値に加えて、仮想信号を提供するように、前記物理システムのパラメータを記述する少なくとも1つの出力値を生成する、請求項23に記載のコンピュータ。
- 前記第2の計算モジュールが、前記システムを記述する観察されたセンサデータに対しての前記基準状態ベクトルの相似性の測度に従って調整された前記基準状態ベクトルの線形的組み合わせとして前記仮想信号を生成する、請求項24に記載のコンピュータ。
- 器械を取り付けられた機器を監視するシステムであって、
器械を取り付けられた前記機器から監視することが可能な複数のセンサと、
情報プロセッサと、
前記複数のセンサから、前記システムの物理パラメータを記述する動作値を受信するための、前記情報プロセッサへのデータ獲得入力と、
予想される動作状態を表す時間相関されたセンサデータの集合と、器械を取り付けられた前記機器の動作中に観察された信号とを記憶するために、前記信号獲得入力と結合されるように動作可能なメモリと
を備え、
前記情報プロセッサが、器械を取り付けられた前記機器から観察された信号に加えて、器械を取り付けられた前記機器のパラメータを記述する少なくとも1つの出力値を生成するものであり、
前記情報プロセッサが、前記予想される動作状態と、器械を取り付けられた前記機器からの前記観察された信号との間の関係を用いて、前記信号獲得入力に応答して動作して、前記観察された信号に加えて、器械を取り付けられた前記機器のパラメータを記述する出力値から前記機器の1つまたは複数のプロセスパラメータに対応する更なる信号を生成する、
システム。 - 前記情報プロセッサが、相似性演算子を用いて、前記予想される動作状態と、器械を取り付けられた前記機器からの前記観察された信号との間の相似性の測度を得る、請求項26に記載のシステム。
- 前記情報プロセッサが、様々な前記センサの少なくとも1つから前記データ獲得入力に関連するデータ獲得失敗を断定する、請求項26に記載のシステム。
- 前記情報プロセッサが、複数の前記センサからの前記システムの前記物理パラメータを記述する動作状態の複数のスナップショットを含む前記メモリ内のデータと共に相似性演算子を用いるものであり、各スナップショットが、複数の前記センサからの時間相関されたデータを含む、請求項26に記載のシステム。
- 前記情報プロセッサによって使用される関係は、前記予想される動作状態と前記観察された信号との数値的近似性として相似性を測定する、請求項26に記載のシステム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/718,592 US6556939B1 (en) | 2000-11-22 | 2000-11-22 | Inferential signal generator for instrumented equipment and processes |
PCT/US2001/043661 WO2002042720A2 (en) | 2000-11-22 | 2001-11-21 | Inferential signal generator for instrumented equipment and processes |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004523735A true JP2004523735A (ja) | 2004-08-05 |
JP2004523735A5 JP2004523735A5 (ja) | 2005-05-26 |
JP3993825B2 JP3993825B2 (ja) | 2007-10-17 |
Family
ID=24886669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002544612A Expired - Fee Related JP3993825B2 (ja) | 2000-11-22 | 2001-11-21 | 器械を取り付けられた機器およびプロセスのための推論信号生成装置 |
Country Status (9)
Country | Link |
---|---|
US (2) | US6556939B1 (ja) |
EP (2) | EP2182327B1 (ja) |
JP (1) | JP3993825B2 (ja) |
AT (1) | ATE462120T1 (ja) |
AU (2) | AU2002236463B2 (ja) |
CA (1) | CA2428033C (ja) |
DE (1) | DE60141645D1 (ja) |
ES (2) | ES2540859T3 (ja) |
WO (1) | WO2002042720A2 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009520948A (ja) * | 2005-11-18 | 2009-05-28 | キャタピラー インコーポレイテッド | プロセスモデルベースの仮想センサシステムおよび方法 |
WO2014091695A1 (ja) * | 2012-12-13 | 2014-06-19 | 日野自動車株式会社 | 水温センサのバックアップシステム |
WO2018235152A1 (ja) * | 2017-06-20 | 2018-12-27 | 三菱電機株式会社 | センサ管理装置、センサ管理方法及びセンサ管理プログラム |
JPWO2018016278A1 (ja) * | 2016-07-19 | 2019-05-16 | 株式会社日立製作所 | 弾性波計測解析方法および弾性波計測解析装置 |
Families Citing this family (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001046939A1 (en) * | 1999-12-20 | 2001-06-28 | Connor Henry Moncrieff O | Method for generating and displaying complex data utilizing color-coded signals |
US6957172B2 (en) | 2000-03-09 | 2005-10-18 | Smartsignal Corporation | Complex signal decomposition and modeling |
US6917839B2 (en) * | 2000-06-09 | 2005-07-12 | Intellectual Assets Llc | Surveillance system and method having an operating mode partitioned fault classification model |
US6556939B1 (en) * | 2000-11-22 | 2003-04-29 | Smartsignal Corporation | Inferential signal generator for instrumented equipment and processes |
US7552029B2 (en) * | 2000-12-22 | 2009-06-23 | Thermo Fisher Scientific Inc. | Equipment monitoring system and method |
US7539597B2 (en) * | 2001-04-10 | 2009-05-26 | Smartsignal Corporation | Diagnostic systems and methods for predictive condition monitoring |
US20020183971A1 (en) * | 2001-04-10 | 2002-12-05 | Wegerich Stephan W. | Diagnostic systems and methods for predictive condition monitoring |
GB0109643D0 (en) * | 2001-04-19 | 2001-06-13 | Isis Innovation | System and method for monitoring and control |
JP2003018307A (ja) * | 2001-06-29 | 2003-01-17 | Mitsutoyo Corp | 測定データ処理方法およびその装置 |
US7099417B2 (en) * | 2001-12-28 | 2006-08-29 | Agilent Technologies, Inc. | Trace video filtering using wavelet de-noising techniques |
US6763278B1 (en) * | 2002-04-26 | 2004-07-13 | Advanced Micro Devices, Inc. | Operating a processing tool in a degraded mode upon detecting a fault |
DE10342769A1 (de) * | 2003-09-16 | 2005-04-21 | Voith Paper Patent Gmbh | System zur computergestützten Messung von Qualitäts- und/oder Prozessdaten |
US7793188B2 (en) * | 2004-03-23 | 2010-09-07 | The Regents Of The University Of California | Apparatus and method for improving reliability of collected sensor data over a network |
US7204123B2 (en) * | 2004-03-26 | 2007-04-17 | Honeywell International Inc. | Accuracy enhancement of a sensor during an anomalous event |
US20060293859A1 (en) * | 2005-04-13 | 2006-12-28 | Venture Gain L.L.C. | Analysis of transcriptomic data using similarity based modeling |
US7818131B2 (en) | 2005-06-17 | 2010-10-19 | Venture Gain, L.L.C. | Non-parametric modeling apparatus and method for classification, especially of activity state |
US7336222B2 (en) * | 2005-06-23 | 2008-02-26 | Enerlab, Inc. | System and method for measuring characteristics of a continuous medium and/or localized targets using multiple sensors |
US7869965B2 (en) * | 2005-08-17 | 2011-01-11 | Oracle America, Inc. | Inferential power monitor without voltage/current transducers |
DE102005041427A1 (de) * | 2005-08-31 | 2007-03-01 | Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG | Sensorsimulator |
AU2006325153B2 (en) | 2005-11-29 | 2013-03-28 | Prolaio, Inc. | Residual-based monitoring of human health |
US8275577B2 (en) * | 2006-09-19 | 2012-09-25 | Smartsignal Corporation | Kernel-based method for detecting boiler tube leaks |
US8311774B2 (en) | 2006-12-15 | 2012-11-13 | Smartsignal Corporation | Robust distance measures for on-line monitoring |
US8285513B2 (en) * | 2007-02-27 | 2012-10-09 | Exxonmobil Research And Engineering Company | Method and system of using inferential measurements for abnormal event detection in continuous industrial processes |
EP2143063A4 (en) * | 2007-03-26 | 2012-10-17 | Bpl Global Ltd | SYSTEM AND METHOD FOR INTEGRATED ASSET PROTECTION |
US7751910B2 (en) * | 2007-04-16 | 2010-07-06 | Oracle America, Inc. | High-accuracy virtual sensors for computer systems |
US7630820B2 (en) * | 2007-04-24 | 2009-12-08 | Honeywell International Inc. | Feedback control system and method that selectively utilizes observer estimates |
US7689368B2 (en) * | 2007-10-26 | 2010-03-30 | Caterpillar Inc. | Systems and methods for early detection of machine component failure |
US8204697B2 (en) * | 2008-04-24 | 2012-06-19 | Baker Hughes Incorporated | System and method for health assessment of downhole tools |
DE102008027130A1 (de) * | 2008-05-29 | 2009-12-10 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur trennenden Bearbeitung von Werkstücken mit einem Laserstrahl |
US20100042327A1 (en) * | 2008-08-13 | 2010-02-18 | Baker Hughes Incorporated | Bottom hole assembly configuration management |
US20100038135A1 (en) * | 2008-08-14 | 2010-02-18 | Baker Hughes Incorporated | System and method for evaluation of structure-born sound |
US8290630B2 (en) * | 2008-09-30 | 2012-10-16 | Rockwell Automation Technologies, Inc. | Condition monitoring parameter normalization system and method |
US20100228692A1 (en) * | 2009-03-03 | 2010-09-09 | Honeywell International Inc. | System and method for multi-modal biometrics |
US9495272B2 (en) * | 2009-06-11 | 2016-11-15 | Oracle America, Inc. | Method and system for generating a power consumption model of at least one server |
CA2787170C (en) * | 2010-01-14 | 2018-05-08 | Venture Gain LLC | Multivariate residual-based health index for human health monitoring |
EP2697610A4 (en) * | 2011-04-15 | 2014-11-05 | Yei Corp | SENSOR DEVICES WITH ERROR CORRECTION DETECTION TABLES AND METHOD THEREFOR |
US8793004B2 (en) * | 2011-06-15 | 2014-07-29 | Caterpillar Inc. | Virtual sensor system and method for generating output parameters |
US9250625B2 (en) | 2011-07-19 | 2016-02-02 | Ge Intelligent Platforms, Inc. | System of sequential kernel regression modeling for forecasting and prognostics |
US9256224B2 (en) | 2011-07-19 | 2016-02-09 | GE Intelligent Platforms, Inc | Method of sequential kernel regression modeling for forecasting and prognostics |
US8660980B2 (en) | 2011-07-19 | 2014-02-25 | Smartsignal Corporation | Monitoring system using kernel regression modeling with pattern sequences |
US8620853B2 (en) | 2011-07-19 | 2013-12-31 | Smartsignal Corporation | Monitoring method using kernel regression modeling with pattern sequences |
US9255799B2 (en) | 2012-06-14 | 2016-02-09 | Yost Labs Inc. | Determining and correcting error of positional vector-valued sensors using a fixed angle calibration process |
EP2861940A4 (en) * | 2012-06-14 | 2015-09-16 | Yei Corp | ERROR DETERMINATION AND CORRECTION OF POSITION SENSORS BASED ON VECTORS USING A FIXED ANGLE CALIBRATION METHOD |
US9079305B2 (en) | 2012-08-28 | 2015-07-14 | Rethink Robotics, Inc. | Monitoring robot sensor consistency |
FR3001809A1 (fr) * | 2013-02-06 | 2014-08-08 | Peugeot Citroen Automobiles Sa | Dispositif de pilotage d'actionneur de vehicule automobile |
US20140257729A1 (en) * | 2013-03-07 | 2014-09-11 | Eric A. Wolf | Time synchronized redundant sensors |
DE112013000245B4 (de) * | 2013-04-12 | 2017-05-18 | Komatsu Ltd. | Huboperationsdiagnoseunterstützungsvorrichtung für einen Hydraulikzylinder |
EP2881822A1 (de) * | 2013-12-05 | 2015-06-10 | Bayer Technology Services GmbH | Computer-implementiertes Verfahren und System zur automatischen Überwachung und Statusermittlung ganzer Prozessabschnitte in einer Process Unit |
GB2547852B (en) | 2014-12-09 | 2020-09-09 | Sensia Netherlands Bv | Electric submersible pump event detection |
US10378994B2 (en) * | 2015-03-05 | 2019-08-13 | Ai Alpine Us Bidco Inc. | Wireless vibration monitoring of movable engine parts |
US10271115B2 (en) * | 2015-04-08 | 2019-04-23 | Itt Manufacturing Enterprises Llc. | Nodal dynamic data acquisition and dissemination |
US10101049B2 (en) | 2015-11-12 | 2018-10-16 | Oracle International Corporation | Determining parameters of air-cooling mechanisms |
US10078062B2 (en) * | 2015-12-15 | 2018-09-18 | Palo Alto Research Center Incorporated | Device health estimation by combining contextual information with sensor data |
CN107290099B (zh) | 2016-04-11 | 2021-06-08 | 森萨塔科技公司 | 压力传感器、用于压力传感器的插塞件和制造插塞件的方法 |
EP3236226B1 (en) | 2016-04-20 | 2019-07-24 | Sensata Technologies, Inc. | Method of manufacturing a pressure sensor |
US10545064B2 (en) | 2017-05-04 | 2020-01-28 | Sensata Technologies, Inc. | Integrated pressure and temperature sensor |
GB2563242B (en) * | 2017-06-07 | 2020-01-29 | Ge Aviat Systems Ltd | A method and system for enabling component monitoring redundancy in a digital network of intelligent sensing devices |
US10323998B2 (en) | 2017-06-30 | 2019-06-18 | Sensata Technologies, Inc. | Fluid pressure sensor |
DE102017211737B4 (de) * | 2017-07-10 | 2019-03-28 | Siemens Aktiengesellschaft | Überwachungsvorrichtung und Verfahren zur Überwachung eines Systems |
US10724907B2 (en) | 2017-07-12 | 2020-07-28 | Sensata Technologies, Inc. | Pressure sensor element with glass barrier material configured for increased capacitive response |
US10557770B2 (en) | 2017-09-14 | 2020-02-11 | Sensata Technologies, Inc. | Pressure sensor with improved strain gauge |
DE102018207846A1 (de) * | 2018-05-18 | 2019-11-21 | Siemens Aktiengesellschaft | System zur Steuerung einer Kühleinheit eines Transformators |
CN109656149B (zh) * | 2018-12-10 | 2021-07-30 | 上海卫星装备研究所 | 星箭耦合多体系统动力学计算试验方法及系统 |
TWI791949B (zh) * | 2019-03-15 | 2023-02-11 | 日商住友重機械工業股份有限公司 | 監視裝置、顯示裝置、監視方法及監視程式 |
KR102661642B1 (ko) * | 2019-08-14 | 2024-04-29 | 삼성전자주식회사 | 전자 장치 및 전자 장치의 제어 방법 |
US12210340B2 (en) | 2022-06-28 | 2025-01-28 | Saudi Arabian Oil Company | Method for vibration measurement and diagnostics using single vibration measurement probe |
WO2023237252A1 (de) * | 2023-04-21 | 2023-12-14 | Siemens Aktiengesellschaft | Kombinierte rigorose und datenbasierte modellierung eines industriellen prozesses |
Family Cites Families (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4060716A (en) | 1975-05-19 | 1977-11-29 | Rockwell International Corporation | Method and apparatus for automatic abnormal events monitor in operating plants |
GB8317224D0 (en) | 1983-06-24 | 1983-07-27 | Atomic Energy Authority Uk | Monitoring system |
US4707796A (en) | 1983-10-19 | 1987-11-17 | Calabro Salvatore R | Reliability and maintainability indicator |
JPS6149297A (ja) | 1984-08-17 | 1986-03-11 | ホーチキ株式会社 | 火災報知装置 |
FR2570182B1 (fr) | 1984-09-13 | 1988-04-15 | Framatome Sa | Methode de validation de la valeur d'un parametre |
US4841456A (en) | 1986-09-09 | 1989-06-20 | The Boeing Company | Test system and method using artificial intelligence control |
US4823290A (en) | 1987-07-21 | 1989-04-18 | Honeywell Bull Inc. | Method and apparatus for monitoring the operating environment of a computer system |
US5119287A (en) | 1987-09-11 | 1992-06-02 | Kabushiki Kaisha Yaskawa Denki Seisakusho | Optimum tracking control method for periodic target value |
US5251285A (en) | 1988-03-25 | 1993-10-05 | Hitachi, Ltd. | Method and system for process control with complex inference mechanism using qualitative and quantitative reasoning |
US5025499A (en) | 1988-04-13 | 1991-06-18 | Hitachi, Ltd. | Process control method and control system |
JP2717665B2 (ja) | 1988-05-31 | 1998-02-18 | 株式会社豊田中央研究所 | 内燃機関の燃焼予測判別装置 |
US5003950A (en) | 1988-06-15 | 1991-04-02 | Toyota Jidosha Kabushiki Kaisha | Apparatus for control and intake air amount prediction in an internal combustion engine |
US4985857A (en) | 1988-08-19 | 1991-01-15 | General Motors Corporation | Method and apparatus for diagnosing machines |
US4937763A (en) | 1988-09-06 | 1990-06-26 | E I International, Inc. | Method of system state analysis |
US5309351A (en) | 1988-10-27 | 1994-05-03 | Texas Instruments Incorporated | Communications, information, maintenance diagnostic and training system |
US5119468A (en) | 1989-02-28 | 1992-06-02 | E. I. Du Pont De Nemours And Company | Apparatus and method for controlling a process using a trained parallel distributed processing network |
DE4008560C2 (de) | 1989-03-17 | 1995-11-02 | Hitachi Ltd | Verfahren und Vorrichtung zum Bestimmen einer Restlebensdauer eines Aggregats |
JP3100406B2 (ja) | 1991-03-06 | 2000-10-16 | ジヤトコ・トランステクノロジー株式会社 | 工作機械の故障予知装置 |
US5481647A (en) | 1991-03-22 | 1996-01-02 | Raff Enterprises, Inc. | User adaptable expert system |
US5680541A (en) | 1991-12-16 | 1997-10-21 | Fuji Xerox Co., Ltd. | Diagnosing method and apparatus |
AU668370B2 (en) | 1991-12-20 | 1996-05-02 | Snap-On Technologies, Inc. | Automotive service equipment expert system |
US5459675A (en) | 1992-01-29 | 1995-10-17 | Arch Development Corporation | System for monitoring an industrial process and determining sensor status |
US5223207A (en) | 1992-01-29 | 1993-06-29 | The United States Of America As Represented By The United States Department Of Energy | Expert system for online surveillance of nuclear reactor coolant pumps |
US5213080A (en) | 1992-07-10 | 1993-05-25 | Gas Research Institute | Ignition timing control |
US5285494A (en) | 1992-07-31 | 1994-02-08 | Pactel Corporation | Network management system |
US5445347A (en) | 1993-05-13 | 1995-08-29 | Hughes Aircraft Company | Automated wireless preventive maintenance monitoring system for magnetic levitation (MAGLEV) trains and other vehicles |
JP3147586B2 (ja) | 1993-05-21 | 2001-03-19 | 株式会社日立製作所 | プラントの監視診断方法 |
JP3169036B2 (ja) | 1993-06-04 | 2001-05-21 | 株式会社日立製作所 | プラント監視診断システム、プラント監視診断方法および非破壊検査診断方法 |
US5406502A (en) * | 1993-06-29 | 1995-04-11 | Elbit Ltd. | System and method for measuring the operation of a device |
US5386373A (en) | 1993-08-05 | 1995-01-31 | Pavilion Technologies, Inc. | Virtual continuous emission monitoring system with sensor validation |
US5539638A (en) | 1993-08-05 | 1996-07-23 | Pavilion Technologies, Inc. | Virtual emissions monitor for automobile |
US5629878A (en) | 1993-10-07 | 1997-05-13 | International Business Machines Corporation | Test planning and execution models for generating non-redundant test modules for testing a computer system |
US5566092A (en) | 1993-12-30 | 1996-10-15 | Caterpillar Inc. | Machine fault diagnostics system and method |
US5500940A (en) | 1994-04-25 | 1996-03-19 | Hewlett-Packard Company | Method for evaluating failure in an electronic data storage system and preemptive notification thereof, and system with component failure evaluation |
US5817958A (en) | 1994-05-20 | 1998-10-06 | Hitachi, Ltd. | Plant monitoring and diagnosing method and system, as well as plant equipped with the system |
SE504401C2 (sv) | 1994-06-02 | 1997-02-03 | Asea Atom Ab | Förfarande för att övervaka neutrondetektorer i kärnreaktor |
FR2721123B1 (fr) | 1994-06-08 | 1996-09-06 | Digilog | Procédé et système pour l'estimation optimale non linéaire des processus dynamique en temps réel. |
JP3253450B2 (ja) | 1994-06-21 | 2002-02-04 | 株式会社東芝 | 炉心性能推定装置および炉心性能推定方法 |
US5486997A (en) | 1994-08-04 | 1996-01-23 | General Electric Company | Predictor algorithm for actuator control |
US5596507A (en) | 1994-08-15 | 1997-01-21 | Jones; Jeffrey K. | Method and apparatus for predictive maintenance of HVACR systems |
US5668944A (en) | 1994-09-06 | 1997-09-16 | International Business Machines Corporation | Method and system for providing performance diagnosis of a computer system |
US5495168A (en) | 1994-09-12 | 1996-02-27 | Fluke Corporation | Method of signal analysis employing histograms to establish stable, scaled displays in oscilloscopes |
BR9509446A (pt) * | 1994-10-26 | 1997-12-23 | Siemens Ag | Processo para a análise de um valor medido como também de um analisador de valor medido para a execução do processo |
US5553239A (en) | 1994-11-10 | 1996-09-03 | At&T Corporation | Management facility for server entry and application utilization in a multi-node server configuration |
JPH08249133A (ja) | 1994-12-15 | 1996-09-27 | Internatl Business Mach Corp <Ibm> | ディスク・ドライブ・アレイの故障対策の方法及びシステム |
US5710723A (en) | 1995-04-05 | 1998-01-20 | Dayton T. Brown | Method and apparatus for performing pre-emptive maintenance on operating equipment |
US5600726A (en) | 1995-04-07 | 1997-02-04 | Gemini Systems, L.L.C. | Method for creating specific purpose rule-based n-bit virtual machines |
US5699403A (en) | 1995-04-12 | 1997-12-16 | Lucent Technologies Inc. | Network vulnerability management apparatus and method |
US5708780A (en) | 1995-06-07 | 1998-01-13 | Open Market, Inc. | Internet server access control and monitoring systems |
US5680409A (en) | 1995-08-11 | 1997-10-21 | Fisher-Rosemount Systems, Inc. | Method and apparatus for detecting and identifying faulty sensors in a process |
SE510029C2 (sv) | 1995-10-03 | 1999-04-12 | Volvo Ab | Diagnossystem i ett driftsystem för motorer jämte en diagnosfunktionsmodul (DF-modul) i ett driftsystem för motorer |
US5761090A (en) | 1995-10-10 | 1998-06-02 | The University Of Chicago | Expert system for testing industrial processes and determining sensor status |
DE19537694A1 (de) | 1995-10-10 | 1997-04-17 | Schenck Ag Carl | Verfahren zur Überwachung einer Maschine oder Anlage |
US5864773A (en) * | 1995-11-03 | 1999-01-26 | Texas Instruments Incorporated | Virtual sensor based monitoring and fault detection/classification system and method for semiconductor processing equipment |
US5845230A (en) * | 1996-01-30 | 1998-12-01 | Skf Condition Monitoring | Apparatus and method for the remote monitoring of machine condition |
JP2735064B2 (ja) | 1996-01-31 | 1998-04-02 | 日本電気株式会社 | 波形解析装置 |
US6076088A (en) | 1996-02-09 | 2000-06-13 | Paik; Woojin | Information extraction system and method using concept relation concept (CRC) triples |
US5754451A (en) | 1996-02-29 | 1998-05-19 | Raytheon Company | Preventative maintenance and diagonstic system |
US5995916A (en) | 1996-04-12 | 1999-11-30 | Fisher-Rosemount Systems, Inc. | Process control system for monitoring and displaying diagnostic information of multiple distributed devices |
US6110214A (en) | 1996-05-03 | 2000-08-29 | Aspen Technology, Inc. | Analyzer for modeling and optimizing maintenance operations |
US5764509A (en) | 1996-06-19 | 1998-06-09 | The University Of Chicago | Industrial process surveillance system |
US5796633A (en) | 1996-07-12 | 1998-08-18 | Electronic Data Systems Corporation | Method and system for performance monitoring in computer networks |
JPH1055497A (ja) | 1996-08-09 | 1998-02-24 | Yazaki Corp | 故障予知方法、及びこれを用いた制御ユニット並びに負荷制御システム |
US5963884A (en) | 1996-09-23 | 1999-10-05 | Machine Xpert, Llc | Predictive maintenance system |
US5970430A (en) | 1996-10-04 | 1999-10-19 | Fisher Controls International, Inc. | Local device and process diagnostics in a process control network having distributed control functions |
US5956487A (en) | 1996-10-25 | 1999-09-21 | Hewlett-Packard Company | Embedding web access mechanism in an appliance for user interface functions including a web server and web browser |
US5905989A (en) | 1996-11-27 | 1999-05-18 | Bently Nevada Corporation | Knowledge manager relying on a hierarchical default expert system: apparatus and method |
US5753805A (en) | 1996-12-02 | 1998-05-19 | General Motors Corporation | Method for determining pneumatic states in an internal combustion engine system |
US5714683A (en) | 1996-12-02 | 1998-02-03 | General Motors Corporation | Internal combustion engine intake port flow determination |
US5757309A (en) | 1996-12-18 | 1998-05-26 | The United States Of America As Represented By The Secretary Of The Navy | Spatial frequency feature extraction for a classification system using wavelets |
US5961560A (en) | 1996-12-19 | 1999-10-05 | Caterpillar Inc. | System and method for managing access of a fleet of mobile machines to a service resource |
US5790977A (en) | 1997-02-06 | 1998-08-04 | Hewlett-Packard Company | Data acquisition from a remote instrument via the internet |
JP3507270B2 (ja) | 1997-02-20 | 2004-03-15 | 株式会社日立製作所 | ネットワーク管理システム、ネットワーク機器、ネットワーク管理方法およびネットワーク管理ツール |
US6023507A (en) | 1997-03-17 | 2000-02-08 | Sun Microsystems, Inc. | Automatic remote computer monitoring system |
US6236908B1 (en) * | 1997-05-07 | 2001-05-22 | Ford Global Technologies, Inc. | Virtual vehicle sensors based on neural networks trained using data generated by simulation models |
CA2207670A1 (fr) | 1997-05-29 | 1998-11-29 | Andre Marguinaud | Procede de synthese d'un filtre numerique a reponse impulsionnelle finie et filtre obtenu selon le procede |
US5845627A (en) | 1997-05-30 | 1998-12-08 | General Motors Corporation | Internal combustion engine pneumatic state estimator |
US5933818A (en) | 1997-06-02 | 1999-08-03 | Electronic Data Systems Corporation | Autonomous knowledge discovery system and method |
US6006260A (en) | 1997-06-03 | 1999-12-21 | Keynote Systems, Inc. | Method and apparatus for evalutating service to a user over the internet |
US6026348A (en) | 1997-10-14 | 2000-02-15 | Bently Nevada Corporation | Apparatus and method for compressing measurement data correlative to machine status |
DE19835416A1 (de) * | 1998-08-05 | 2000-02-17 | Siemens Ag | Verfahren und Einrichtung zur Inbetriebsetzung von Anlagen der Grundstoffindustrie |
US6356857B1 (en) * | 1998-08-17 | 2002-03-12 | Aspen Technology, Inc. | Sensor validation apparatus and method |
US6539783B1 (en) * | 1998-12-28 | 2003-04-01 | General Electric Co. | Methods and apparatus for estimating engine health |
AU4676300A (en) | 1999-04-30 | 2000-11-17 | Dryken Technologies, Inc. | Method and system for nonlinear state estimation |
US6502082B1 (en) * | 1999-06-01 | 2002-12-31 | Microsoft Corp | Modality fusion for object tracking with training system and method |
US6519552B1 (en) * | 1999-09-15 | 2003-02-11 | Xerox Corporation | Systems and methods for a hybrid diagnostic approach of real time diagnosis of electronic systems |
WO2001061615A1 (en) * | 2000-02-14 | 2001-08-23 | Infoglide Corporation | Monitoring and control of processes and machines |
US7739096B2 (en) * | 2000-03-09 | 2010-06-15 | Smartsignal Corporation | System for extraction of representative data for training of adaptive process monitoring equipment |
US6556939B1 (en) * | 2000-11-22 | 2003-04-29 | Smartsignal Corporation | Inferential signal generator for instrumented equipment and processes |
US20020183971A1 (en) * | 2001-04-10 | 2002-12-05 | Wegerich Stephan W. | Diagnostic systems and methods for predictive condition monitoring |
-
2000
- 2000-11-22 US US09/718,592 patent/US6556939B1/en not_active Expired - Lifetime
-
2001
- 2001-11-21 AU AU2002236463A patent/AU2002236463B2/en not_active Ceased
- 2001-11-21 EP EP20100001611 patent/EP2182327B1/en not_active Expired - Lifetime
- 2001-11-21 EP EP01985992A patent/EP1336081B1/en not_active Expired - Lifetime
- 2001-11-21 ES ES10001611.2T patent/ES2540859T3/es not_active Expired - Lifetime
- 2001-11-21 ES ES01985992T patent/ES2343836T3/es not_active Expired - Lifetime
- 2001-11-21 CA CA002428033A patent/CA2428033C/en not_active Expired - Fee Related
- 2001-11-21 AU AU3646302A patent/AU3646302A/xx active Pending
- 2001-11-21 JP JP2002544612A patent/JP3993825B2/ja not_active Expired - Fee Related
- 2001-11-21 WO PCT/US2001/043661 patent/WO2002042720A2/en active Application Filing
- 2001-11-21 AT AT01985992T patent/ATE462120T1/de not_active IP Right Cessation
- 2001-11-21 DE DE60141645T patent/DE60141645D1/de not_active Expired - Lifetime
-
2003
- 2003-03-20 US US10/393,338 patent/US6876943B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009520948A (ja) * | 2005-11-18 | 2009-05-28 | キャタピラー インコーポレイテッド | プロセスモデルベースの仮想センサシステムおよび方法 |
WO2014091695A1 (ja) * | 2012-12-13 | 2014-06-19 | 日野自動車株式会社 | 水温センサのバックアップシステム |
JP2014118828A (ja) * | 2012-12-13 | 2014-06-30 | Hino Motors Ltd | 水温センサのバックアップシステム |
US9920682B2 (en) | 2012-12-13 | 2018-03-20 | Hino Motors, Ltd. | Water-temperature-sensor backup system |
JPWO2018016278A1 (ja) * | 2016-07-19 | 2019-05-16 | 株式会社日立製作所 | 弾性波計測解析方法および弾性波計測解析装置 |
WO2018235152A1 (ja) * | 2017-06-20 | 2018-12-27 | 三菱電機株式会社 | センサ管理装置、センサ管理方法及びセンサ管理プログラム |
JPWO2018235152A1 (ja) * | 2017-06-20 | 2019-11-07 | 三菱電機株式会社 | センサ管理装置、センサ管理方法及びセンサ管理プログラム |
Also Published As
Publication number | Publication date |
---|---|
AU3646302A (en) | 2002-06-03 |
EP2182327A1 (en) | 2010-05-05 |
CA2428033C (en) | 2010-01-19 |
EP1336081A4 (en) | 2006-03-08 |
US6876943B2 (en) | 2005-04-05 |
EP2182327B1 (en) | 2015-04-29 |
EP1336081A2 (en) | 2003-08-20 |
US20030158694A1 (en) | 2003-08-21 |
DE60141645D1 (de) | 2010-05-06 |
EP1336081B1 (en) | 2010-03-24 |
AU2002236463B2 (en) | 2007-01-04 |
JP3993825B2 (ja) | 2007-10-17 |
ES2343836T3 (es) | 2010-08-11 |
ATE462120T1 (de) | 2010-04-15 |
ES2540859T3 (es) | 2015-07-14 |
WO2002042720A2 (en) | 2002-05-30 |
US6556939B1 (en) | 2003-04-29 |
WO2002042720A3 (en) | 2002-07-18 |
CA2428033A1 (en) | 2002-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004523735A (ja) | 器械を取り付けられた機器およびプロセスのための推論信号生成装置 | |
AU2002236463A1 (en) | Inferential signal generator for instrumented equipment and processes | |
US6952662B2 (en) | Signal differentiation system using improved non-linear operator | |
US7827006B2 (en) | Heat exchanger fouling detection | |
US10430531B2 (en) | Model based system monitoring | |
CN102880170B (zh) | 基于基线模型和贝叶斯因子的系统故障早期预警方法 | |
Centomo et al. | The design of a digital-twin for predictive maintenance | |
CN102803918A (zh) | 用于发动机诊断的振动传感器信号的预处理 | |
CN102713777B (zh) | 诊断装置及诊断方法 | |
US20030040878A1 (en) | Automatic machinery fault diagnostic method and apparatus | |
CN104712542A (zh) | 一种基于物联网的往复压缩机敏感特征提取与故障诊断方法 | |
CN111474475B (zh) | 一种电机故障诊断系统及方法 | |
WO2004040465A1 (en) | System and method for remote diagnosis of distributed objects | |
KR102368396B1 (ko) | K-평균 군집화 알고리즘을 이용한 주기변동 랜덤신호의 정렬방법 및 이를 이용한 내연기관의 이상진단 시스템 및 방법 | |
JP6523815B2 (ja) | プラント診断装置及びプラント診断方法 | |
WO2011073613A1 (en) | A method, apparatus and computer program for diagnosing a mode of operation of a machine | |
US11429900B1 (en) | Systems and methods for automatic detection of error conditions in mechanical machines | |
Kullaa | Vibration-based structural health monitoring under variable environmental or operational conditions | |
He et al. | A review of optimal sensor deployment to diagnose manufacturing systems | |
Rogers et al. | Digital twinning for condition monitoring of marine propulsion assets | |
CN119648208B (zh) | 一种用于机电设施的数字化运维管控系统及方法 | |
Cempel et al. | System life cycle‐system life: The model‐based technical diagnostics‐A view on holistic modelling | |
JP2018055391A (ja) | セキュリティ診断装置およびセキュリティ診断方法 | |
Zhao et al. | Development of a distributed bearing health monitoring and assessing system | |
Barad et al. | Intelligent condition assessment of gas turbine engine. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040721 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061013 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061207 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20070306 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20070313 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070607 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070712 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070727 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100803 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110803 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120803 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130803 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |