[go: up one dir, main page]

JP2004356338A - 薄膜磁気センサ及びその製造方法 - Google Patents

薄膜磁気センサ及びその製造方法 Download PDF

Info

Publication number
JP2004356338A
JP2004356338A JP2003151523A JP2003151523A JP2004356338A JP 2004356338 A JP2004356338 A JP 2004356338A JP 2003151523 A JP2003151523 A JP 2003151523A JP 2003151523 A JP2003151523 A JP 2003151523A JP 2004356338 A JP2004356338 A JP 2004356338A
Authority
JP
Japan
Prior art keywords
film
thin film
yoke
thin
gmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003151523A
Other languages
English (en)
Inventor
Nobukiyo Kobayashi
伸聖 小林
Kiwamu Shirakawa
究 白川
Yasushi Kaneda
安司 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Research Institute for Electromagnetic Materials
Original Assignee
Daido Steel Co Ltd
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Research Institute for Electromagnetic Materials filed Critical Daido Steel Co Ltd
Priority to JP2003151523A priority Critical patent/JP2004356338A/ja
Priority to US10/853,586 priority patent/US20040239320A1/en
Priority to EP20040012425 priority patent/EP1482319A2/en
Priority to CNA2004100474907A priority patent/CN1573349A/zh
Publication of JP2004356338A publication Critical patent/JP2004356338A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3176Structure of heads comprising at least in the transducing gap regions two magnetic thin films disposed respectively at both sides of the gaps
    • G11B5/3179Structure of heads comprising at least in the transducing gap regions two magnetic thin films disposed respectively at both sides of the gaps the films being mainly disposed in parallel planes
    • G11B5/3183Structure of heads comprising at least in the transducing gap regions two magnetic thin films disposed respectively at both sides of the gaps the films being mainly disposed in parallel planes intersecting the gap plane, e.g. "horizontal head structure"
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3916Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide
    • G11B5/3919Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path
    • G11B5/3922Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path the read-out elements being disposed in magnetic shunt relative to at least two parts of the flux guide structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

【課題】巨大磁気抵抗効果を有するGMR膜の両側に軟磁性材料からなる薄膜ヨークを配置した薄膜磁気センサにおいて、GMR膜と薄膜ヨークとの間の電気的接触状態のばらつきを低減し、かつ磁界感度を向上させること。
【解決手段】本発明に係る薄膜磁気センサ20は、軟磁性材料からなり、かつギャップ24aを介して対向させた一対の第1薄膜ヨーク24b及び第2薄膜ヨーク24cと、第1薄膜ヨーク24b及び第2薄膜ヨーク24cと電気的に接続されるようにギャップ24a間に形成されたGMR膜26と、第1薄膜ヨーク24b及び第2薄膜ヨーク24c及並びに前GMR膜26を支持する絶縁基板22とを備え、ギャップ24aのギャップ長は、第1薄膜ヨーク24bと第2薄膜ヨーク24cとの対向面に堆積させたGMR膜26の膜厚によって規定されていることを特徴とする。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜磁気センサ及びその製造方法に関し、さらに詳しくは、自動車の車軸、ロータリーエンコーダ、産業用歯車等の回転情報の検出、油圧式シリンダ/空気式シリンダのストロークポジション、工作機械のスライド等の位置・速度情報の検出、工業用溶接ロボットのアーク電流等の電流情報の検出、地磁気方位センサなどに好適な薄膜磁気センサ及びその製造方法に関する。
【0002】
【従来の技術】
磁気センサは、電磁気力(例えば、電流、電圧、電力、磁界、磁束など。)、力学量(例えば、位置、速度、加速度、変位、距離、張力、圧力、トルク、温度、湿度など。)、生化学量等の被検出量を、磁界を介して電圧に変換する電子デバイスである。磁気センサは、磁界の検出方法に応じて、ホールセンサ、異方的磁気抵抗(AMR: Anisotropic Magneto−Resistivity)センサ、巨大磁気抵抗(GMR: Gaiant MR)センサ等に分類される。
【0003】
これらの中でもGMRセンサは、(1)ホールセンサやAMRセンサに比べて電気比抵抗の変化率の最大値(すなわち、MR比=△ρ/ρ(△ρ=ρ−ρ:ρは、外部磁界Hにおける電気比抵抗、ρは、外部磁界ゼロにおける電気比抵抗))が極めて大きい、(2)ホールセンサに比べて抵抗値の温度変化が小さい、(3)巨大磁気抵抗効果を有する材料が薄膜材料であるために、マイクロ化に適している、等の利点がある。そのため、GMRセンサは、コンピュータ、電力、自動車、家電、携帯機器等に用いられる高感度マイクロ磁気センサとしての応用が期待されているものである。
【0004】
GMR効果を示す材料としては、(1)強磁性層(例えば、パーマロイ等)と非磁性層(例えば、Cu、Ag、Au等)の多層膜、あるいは、反強磁性層、強磁性層(固定層)、非磁性層及び強磁性層(自由層)の4層構造を備えた多層膜(いわゆる、「スピンバルブ」)からなる金属人工格子、(2)強磁性金属(例えば、パーマロイ等)からなるnmサイズの微粒子と、非磁性金属(例えば、Cu、Ag、Au等)からなる粒界相とを備えた金属−金属系ナノグラニュラー材料、(3)スピン依存トンネル効果によってMR効果が生ずるトンネル接合膜、(4)nmサイズの強磁性金属合金微粒子と、非磁性・絶縁性材料からなる粒界相とを備えた金属−絶縁体系ナノグラニュラー材料、等が知られている。
【0005】
これらの内、スピンバルブに代表される多層膜は、一般に、低磁界における感度が高いという特徴がある。しかしながら、多層膜は、種々の材料からなる薄膜を高精度で積層する必要があるために、安定性や歩留まりが悪く、製作コストを抑えるには限界がある。そのため、この種の多層膜は、専ら付加価値の大きなデバイス(例えば、ハードディスク用の磁気ヘッド)にのみ用いられ、単価の安いAMRセンサやホールセンサとの価格競争を強いられる磁気センサに応用するのは困難であると考えられている。また、多層膜間の拡散が生じやすく、GMR効果が消失しやすいため、耐熱性が悪いという大きな欠点がある。
【0006】
一方、ナノグラニュラー材料は、一般に、作製が容易で、再現性も良い。そのため、これを磁気センサに応用すれば、磁気センサを低コスト化することができる。特に、金属−絶縁体系ナノグラニュラー材料は、(1)その組成を最適化すれば、室温において10%を越える高いMR比を示す、(2)電気比抵抗が桁違いに高いので、磁気センサの超小型化と低消費電力化が可能である、(3)耐熱性の悪い反強磁性膜を含むスピンバルブ膜と異なり、高温環境下でも使用可能である、等の利点がある。しかしながら、金属−絶縁体系ナノグラニュラー材料は、低磁界における磁界感度が非常に小さいという問題がある。
【0007】
そこでこの問題を解決するために、特許文献1には、巨大磁気抵抗薄膜の両端に軟磁性薄膜を配置し、巨大磁気抵抗薄膜の磁界感度を上げる点が記載されている。また、同文献には、基板上に膜厚2μmのパーマロイ薄膜(軟磁性膜)を形成し、パーマロイ薄膜にイオンビームエッチング装置を用いて幅約9μmの隙間を作製し、隙間の部分にCo38.641.047.4組成を有するナノグラニュラーGMR膜を積層する薄膜磁気センサの製造方法が記載されている。
【0008】
また、特許文献2には、巨大磁気抵抗薄膜の両端に軟磁性薄膜を配置した薄膜磁気抵抗素子において、磁界感度をさらに向上させるために、巨大磁気抵抗薄膜の膜厚を軟磁性薄膜の膜厚以下とする点が記載されている。
【0009】
【特許文献1】
特開平11−087804号公報の請求項1及び段落番号「0019」
【特許文献2】
特開平11−274599号公報の請求項1
【0010】
【発明が解決しようとする課題】
大きな飽和磁化を有し、透磁率の高い軟磁性材料は、磁界感度が極めて高く、相対的に弱い外部磁界で極めて大きな磁化を示す。そのため、軟磁性材料からなる薄膜ヨークで挟まれた狭いギャップ内に、薄膜ヨークと電気的に接続するように、大きな電気比抵抗を有し、かつ巨大磁気抵抗効果を有する薄膜(GMR膜)を配置した薄膜磁気センサに対して外部磁界を作用させると、弱い外部磁界によって薄膜ヨークが磁化し、GMR膜には、外部磁界の100〜10000倍の強い磁界が作用する。その結果、GMR膜の磁界感度を著しく大きくすることができる。なお、GMR膜としては、現在、金属−絶縁体系ナノグラニュラー薄膜が知られている。
【0011】
図11(a)及び図11(b)に、従来の薄膜磁気センサの平面図及びそのA−A’線断面図を示す。図11(a)及び図11(b)において、薄膜磁気センサ10は、絶縁性・非磁性材料からなる絶縁基板12と、軟磁性材料からなり、かつギャップ14aを介して対向する一対の薄膜ヨーク14、14と、ギャップ14a内に形成されたGMR膜16と、各薄膜ヨーク14、14の端部にそれぞれ形成された電極18、18と、薄膜ヨーク14、14及びGMR膜16を保護するための保護膜19とを備えている。
【0012】
従来、このような薄膜磁気センサ10は、絶縁基板12表面に成膜された軟磁性薄膜の不要部分を除去することにより、ギャップ14a(凹溝)を介して対向する一対の薄膜ヨーク14、14を形成し、さらにギャップ14a近傍以外の部分をマスクしてGMR膜16を堆積させる方法により製造されていた。
【0013】
しかしながら、このような方法により製造された薄膜磁気センサ10は、電気的特性及び磁気的特性に大きなばらつきが生ずるという問題があった。その原因について詳細に調べたところ、従来の製造方法では、薄膜ヨーク14、14と、GMR膜16との間の電気的接触が不十分となったり、GMR膜16のギャップ内膜厚が一様でないなど、不安定になる場合があることが分かった。
【0014】
すなわち、図11(c)に示すように、狭いギャップ14aを介して対向する薄膜ヨーク14、14の上からGMR膜16を堆積させると、薄膜ヨーク14、14の上面に堆積したGMR膜16aの膜厚が増加するに伴い、背の高い薄膜ヨーク14、14の側壁にGMR膜16aが徐々に張り出す。そのため、ギャップ14a底部の角部が薄膜ヨーク14、14の側壁に堆積したGMR膜16aによって影となり、ギャップ14a底部の角部へのGMR膜16bの堆積が阻害される。その結果、GMR膜16bの断面形状が三角形状又は台形状となり、GMR膜16bと薄膜ヨーク14、14との間の接触電気抵抗が大きくばらつく原因となっていた。特に、薄膜ヨークの背が高く、狭いギャップを持つ高性能型においては、この現象が顕著となり、最悪の場合には、無限大の電気抵抗となることもあった。従って、実用化の大きな障害となっていた。
【0015】
さらに、GMR膜16の磁界感度を高めるためには、薄膜ヨーク14、14から漏れる磁束が空間に分散するのを抑制し、漏れ磁束を効率よくGMR膜16に作用させる必要がある。そのためには、ギャップ14aのギャップ長は、極力、短くすることが好ましい。しかしながら、従来の製造方法では、ギャップ長が短くなるほど、ギャップ14a内へのGMR膜16の堆積がさらに大きく阻害され、ギャップ14a内に健全なGMR膜16を形成するのが不能になるという問題がある。
【0016】
本発明が解決しようとする課題は、ギャップ長が極めて短く、磁界感度の高い薄膜磁気センサ、及びこのような薄膜磁気センサを再現性良く、かつ低コストで製造可能な薄膜磁気センサの製造方法を提供することにある。
【0017】
また、本発明が解決しようとする他の課題は、GMR膜の両側に軟磁性材料からなる薄膜ヨークを配置した薄膜磁気センサ及びその製造方法において、GMR膜と薄膜ヨークとの間の電気的接触状態のばらつきを低減し、磁気特性の安定化を図ることにある。
【0018】
【課題を解決するための手段】
上記課題を解決するために本発明は、軟磁性材料からなり、かつギャップを介して対向させた一対の第1薄膜ヨーク及び第2薄膜ヨークと、前記第1薄膜ヨーク及び前記第2薄膜ヨークと電気的に接続されるように前記ギャップ間に形成された、前記軟磁性材料より高い電気比抵抗を有するGMR膜と、前記第1薄膜ヨーク及び前記第2薄膜ヨーク並びに前記GMR膜を支持する絶縁性・非磁性材料からなる絶縁基板とを備えた薄膜磁気センサであって、前記ギャップのギャップ長は、前記第1薄膜ヨークと前記第2薄膜ヨークとの対向面に堆積させた前記GMR膜の膜厚によって規定されていることを要旨とする。
【0019】
また、本発明の2番目は、軟磁性材料からなり、かつギャップを介して対向させた一対の第1薄膜ヨーク及び第2薄膜ヨークと、前記第1薄膜ヨーク及び前記第2薄膜ヨークと電気的に接続されるように前記ギャップ間に形成された、前記軟磁性材料より高い電気比抵抗を有するGMR膜と、前記第1薄膜ヨーク及び前記第2薄膜ヨーク並びに前記GMR膜を支持する絶縁性・非磁性材料からなる絶縁基板とを備えた薄膜磁気センサであって、
(イ)前記絶縁基板表面に前記軟磁性材料からなる第1の薄膜を堆積させ、その先端に前記第2薄膜ヨークとの対向面を有する前記軟磁性材料からなる第1薄膜ヨークを形成し、
(ロ)該第1薄膜ヨークと電気的に接続されるように、前記対向面上に前記GMR膜を堆積させ、
(ハ)前記GMR膜と前記第2薄膜ヨークとが、前記対向面上に堆積させた前記GMR膜の膜表面において電気的に接続されるように、前記絶縁基板表面に前記軟磁性材料からなる第2の薄膜を堆積させ、前記軟磁性材料からなる前記第2薄膜ヨークを形成すること、
により得られるものからなることを要旨とする。
【0020】
さらに、本発明に係る薄膜磁気センサの製造方法は、絶縁性・非磁性材料からなる絶縁基板表面に軟磁性材料からなる第1の薄膜を堆積させ、その先端に第2薄膜ヨークとの対向面を有する前記軟磁性材料からなる第1薄膜ヨークを形成する第1薄膜ヨーク形成工程と、前記第1薄膜ヨークと電気的に接続されるように、前記対向面上に、前記軟磁性材料より高い電気比抵抗を有するGMR膜を堆積させるGMR膜形成工程と、前記GMR膜と前記第2薄膜ヨークとが、前記対向面上に堆積させた前記GMR膜の膜表面において電気的に接続されるように、前記絶縁基板表面に前記軟磁性材料からなる第2薄膜を堆積させ、前記軟磁性材料からなる第2薄膜ヨークを形成する第2薄膜ヨーク形成工程とを備えていることを要旨とする。
【0021】
対向面を介して対向する一対の薄膜ヨークの内、第1薄膜ヨークをまず絶縁基板表面に形成し、次いでGMR膜を堆積させると、第1薄膜ヨークの対向面上に健全なGMR膜を形成することができる。次いで、このGMR膜上に第2薄膜ヨークを堆積させると、GMR膜と第2薄膜ヨークとがGMR膜の膜表面において電気的に接続される。このような方法により製造された薄膜磁気センサは、ギャップ長がGMR膜の膜厚とほぼ同等であるので、磁界感度が著しく向上する。また、GMR膜が形成される領域が背の高いヨーク壁によって挟まれることがないので、健全なGMR膜を再現性良く形成することが可能となり、磁気特性が安定化する。
【0022】
【発明の実施の形態】
以下に、本発明の一実施の形態について図面を参照しながら詳細に説明する。図1(a)、図1(b)及び図1(c)に、それぞれ、本発明の第1の実施の形態に係る薄膜磁気センサ20の平面図、そのA−A’線断面図及びギャップ近傍の拡大断面図を示す。
【0023】
図1において、薄膜磁気センサ20は、絶縁基板22と、ギャップ24aを介して対向する一対の第1薄膜ヨーク24b及び第2薄膜ヨーク24cと、この第1薄膜ヨーク24b及び第2薄膜ヨーク24cと電気的に接続されるようにギャップ24a間に形成されたGMR膜26とを備えている。第1薄膜ヨーク24b及び第2薄膜ヨーク24cは、その端部に電極28、28が接合されている。さらに、絶縁基板22の最上面は、第2保護膜32により覆われている。
【0024】
初めに、絶縁基板22について説明する。絶縁基板22は、第1薄膜ヨーク24b及び第2薄膜ヨーク24c、並びにGMR膜26を支持するためのものであり、絶縁性・非磁性材料からなる。絶縁基板22の材質としては、具体的には、ガラス、あるいは、スパッタ膜によって表面を平坦化したアルミナ、熱酸化膜付Si、アルミナ・チタンカーバイドなどのセラミックス等の高剛性材が好適な一例として挙げられる。
【0025】
絶縁基板22のその他の部分の形状については、特に限定されるものではなく、薄膜磁気センサ20の用途、要求特性等に応じて最適な形状を選択すれば良い。また、図1においては、絶縁基板22上に第1薄膜ヨーク24b及び第2薄膜ヨーク24c、並びにGMR膜26からなる1個の素子のみが記載されているが、これは単なる例示であり、量産の場合には、同一の絶縁基板22上に複数個の素子を同時に形成する。
【0026】
薄膜磁気センサは、温度による基準電位の変動を防ぐため、通常、2個の素子を直列に接続し、中点電位を計測することによって外部磁界の検出を行うようになっている。また、薄膜磁気センサは、2つの素子の感磁軸が互いに直交するように配列させた直交形と、2個の素子の感磁軸が互いに平行になるように配列させた平行形に分類される。また、出力を倍にするために、4個の素子を用いてブリッジ回路を構成する場合もある。この場合、絶縁基板22上に1個の素子のみを形成し、これを複数個組み合わせて磁気センサとして用いても良く、あるいは、同一の絶縁基板22上に複数個の素子を形成し、これらを接続して用いても良い。
【0027】
次に、第1薄膜ヨーク24b及び第2薄膜ヨーク24cについて説明する。第1薄膜ヨーク24b及び第2薄膜ヨーク24cは、GMR膜26の磁界感度を高めるためのものであり、軟磁性材料からなる。弱磁界に対する高い磁界感度を得るためには、第1薄膜ヨーク24b及び第2薄膜ヨーク24cには、透磁率μ及び/又は飽和磁化Msの高い材料を用いるのが好ましい。具体的には、その透磁率μは、100以上が好ましく、さらに好ましくは、1000以上である。また、その飽和磁化Msは、5(kGauss)以上が好ましく、さらに好ましくは、10(kGauss)以上である。
【0028】
第1薄膜ヨーク24b及び第2薄膜ヨーク24cの材質としては、具体的には、パーマロイ(40〜90%Ni−Fe合金)、センダスト(Fe74SiAl17)、ハードパーム(Fe12Ni82Nb)、Co88NbZrアモルファス合金、(Co94Fe70Si1515アモルファス合金、ファインメット(Fe75.6Si13.28.5Nb1.9Cu0.8)、ナノマックス(Fe83HF11)、Fe85Zr10合金、Fe93Si合金、Fe711118合金、Fe71.3Nd9.619.1ナノグラニュラー合金、Co70Al1020ナノグラニュラー合金、Co65FeAl1020合金等が好適な一例として挙げられる。
【0029】
第1薄膜ヨーク24bは、絶縁基板22表面に軟磁性材料からなる第1の薄膜を堆積させ、エッチング等により、その先端に第2薄膜ヨーク24cとの対向面を形成したものからなる。
【0030】
本実施の形態において、対向面は、第1薄膜ヨーク24bの端面に形成されている。また、第1薄膜ヨーク24bの対向面と絶縁基板22表面とのなす角θ(以下、これを「傾斜角θ」という。)は、0°より大きく、かつ90°より小さくなっている。高い磁界感度を得るためには、傾斜角θは、90°に近い方が望ましい。さらに、第1薄膜ヨーク24b及び第2薄膜ヨーク24cから漏れる磁束が空間に分散するのを抑制するためには、第1薄膜ヨーク24bと第2薄膜ヨーク24cの長手方向の中心線間の距離は、短い方が望ましい。
【0031】
換言すれば、本実施の形態において、ギャップ24a側から電極28側に向かう第1薄膜ヨーク24bの表面に対して平行なベクトルと、第2薄膜ヨーク24c側から第1薄膜ヨーク24b側に向かう対向面に対して垂直なベクトルとのなす角φ(=90°−θ、以下、これを「流入角φ」という。)は、0°より大きく、かつ90°より小さくなっている。また、高い磁界感度を得るためには、流入角φは、0°に近い方が望ましい。なお、傾斜角θ(又は、流入角φ)の大きさは、後述する製造条件を最適化することにより、任意に変化させることができる。
【0032】
一方、第2薄膜ヨーク24cは、第1薄膜ヨークの対向面上に、所定の厚さを有するGMR膜26を堆積させた後、GMR膜26と第2薄膜ヨーク26cとが、対向面上に堆積させたGMR膜26の膜表面において電気的に接続されるように、絶縁基板22表面に軟磁性材料からなる第2の薄膜を堆積させることにより得られるものからなる。すなわち、第1薄膜ヨーク24bの対向面と、第2薄膜ヨーク24cの対向面との距離、すなわち、ギャップ24aのギャップ長は、GMR膜26とほぼ同等になっている。この点が、従来の薄膜磁気センサとは異なる。
【0033】
第1薄膜ヨーク24b及び第2薄膜ヨーク24cのその他の部分の形状については、特に限定されるものではないが、GMR膜26の磁界感度を高めるためには、第1薄膜ヨーク24b及び第2薄膜ヨーク24cの形状は、以下のような条件を満たしていることが望ましい。
【0034】
第1に、第1薄膜ヨーク24b及び第2薄膜ヨーク24cは、ギャップ24a側の断面積が外部磁界の流入・流出端である電極28側の断面積より小さくなっていることが望ましい。ギャップ24a側の断面積を小さくすると、ギャップ24a先端における磁束密度が大きくなり、GMR膜26に強い磁界を作用させることができる。
【0035】
第2に、第1薄膜ヨーク24b及び第2薄膜ヨーク24cは、その電極側の横幅Wに対するそのギャップ長方向の長さLの比(L/W)が適度に大きいことが望ましい。第1薄膜ヨーク24b及び第2薄膜ヨーク24cのギャップ長方向の長さが相対的に長くなるほど、ギャップ長方向に発生する反磁界が小さくなるので、電極28側の端面を外部磁界の流入・流出端として有効に機能させることができる。
【0036】
第3に、第1薄膜ヨーク24b及び第2薄膜ヨーク24cの形状は、ギャップ24aを挟んで左右対称になっていることが望ましい。第1薄膜ヨーク24b及び第2薄膜ヨーク24cの形状が左右非対称であると、磁気特性の悪い薄膜ヨークによって薄膜磁気センサ20の特性が支配されるので好ましくない。
【0037】
なお、第1薄膜ヨーク24b及び第2薄膜ヨーク24cの厚さは、特に限定されるものではなく、第1薄膜ヨーク24b及び第2薄膜ヨーク24cの材質、薄膜磁気センサ20に要求される特性等に応じて、最適な厚さを選択すればよい。また、図1(a)に示す例においては、第1薄膜ヨーク24b及び第2薄膜ヨーク24cの先端側(ギャップ24a側)の平面形状は、テーパ状になっているが、第1薄膜ヨーク24b及び第2薄膜ヨーク24cの先端に平行部を設けても良い。第1薄膜ヨーク24b及び第2薄膜ヨーク24cの先端に平行部を設けると、第1薄膜ヨーク24b及び第2薄膜ヨーク24c先端における磁束の分散が抑制されるので、GMR膜26により強い磁界を作用させることができる。
【0038】
次に、GMR膜26について説明する。GMR膜26は、外部磁界の変化を電気抵抗の変化として感じ、結果的に電圧の変化として検出するためのものであり、巨大磁気抵抗効果を有する材料からなる。外部磁界の変化を高い感度で検出するためには、GMR膜26のMR比の絶対値は、外部磁界Hが数百(Oe)以下で、5%以上が好ましく、さらに好ましくは、10%以上である。
【0039】
また、本発明において、GMR膜26は、第1薄膜ヨーク24b及び第2薄膜ヨーク24cと直接、電気的に接続されるので、第1薄膜ヨーク24b及び第2薄膜ヨーク24cより高い電気比抵抗を有するものが用いられる。一般に、電気比抵抗が小さすぎる材料の場合には、第1薄膜ヨーク24b−第2薄膜ヨーク24c間が電気的に短絡するので好ましくない。一方、電気比抵抗が高すぎる材料の場合には、ノイズが増加し、外部磁界の変化を電圧変化として検出するのが困難となる。GMR膜26の電気比抵抗は、10μΩcm以上1012μΩcm以下が好ましく、さらに好ましくは、10μΩcm以上1011μΩcm以下である。
【0040】
このような条件を満たす材料には、種々の材料があるが、中でも上述した金属−絶縁体系ナノグラニュラー材料が特に好適である。金属−絶縁体系ナノグラニュラー材料は、高いMR比と高い電気比抵抗を有するだけでなく、僅かな組成変動によってMR比が大きく変動することがないので、安定した磁気特性を有する薄膜を、再現性良く、かつ低コストで作製することができるという利点がある。
【0041】
GMR膜26として用いられる巨大磁気抵抗効果を有する金属−絶縁体系ナノグラニュラー材料としては、具体的には、Co−Y系ナノグラニュラー合金、Co−Al系ナノグラニュラー合金、Co−Sm系ナノグラニュラー合金、Co−Dy系ナノグラニュラー合金、FeCo−Y系ナノグラニュラー合金、Fe−MgF、FeCo−MgF、Fe−CaF等のフッ化物系ナノグラニュラー合金等が好適な一例として挙げられる。
【0042】
GMR膜26は、上述したように、第1薄膜ヨーク24bの先端に形成された対向面上に堆積させたものからなる。従って、GMR膜26の膜厚は、要求されるギャップ長が得られるように、GMR膜26の材質、薄膜磁気センサ20に要求される特性等に応じて、最適な厚さを選択するのが好ましい。高い磁界感度を得るためには、GMR膜26は、その物理的特性が変化せず、かつ第1薄膜ヨーク24b−第2薄膜ヨーク24c間が電気的に短絡しない限り、薄い程良い。
【0043】
なお、第1薄膜ヨーク24bを形成した後に形成されるGMR膜26パターンの横幅は、第1薄膜ヨーク24b及び第2薄膜ヨーク24cのギャップ24a側先端の横幅より広くても良い。GMR膜26の横幅の方が広い場合には、GMR膜26によって第1薄膜ヨーク24b−第2薄膜ヨーク24c間を電気的に分離することができるばかりでなく、第2薄膜ヨーク24cをパターン形成する時に、第1薄膜ヨーク24bを損傷させないための保護膜としての機能をも持つので、製造工程に自由度を持たせることができるという利点がある。また、一般に、ギャップ幅に比してGMR膜26の横幅が広くなると、薄膜ヨークの横幅方向に漏れる弱い磁束に感応するGMR膜領域が増加し、磁界感度が低下する場合がある。このような場合には、第2薄膜ヨーク24cをパターン形成するとき、これをすべてのマスクとして、その下にあるGMR膜26と第1薄膜ヨーク24bの先端部を同時にエッチングすれば、第2薄膜ヨーク24c先端の横幅方向にはみ出している余分なGMR膜26を抜いてしまうということもできる。
【0044】
一方、GMR膜26の横幅の内、第1薄膜ヨーク24bと第2薄膜ヨーク24cの双方に電気的に接触している部分は、薄膜ヨークのギャップ側先端の横幅より狭くても良い。この場合、第1薄膜ヨーク24b及び第2薄膜ヨーク24cと電気的に接触させない部分には、第1薄膜ヨーク24b−第2薄膜ヨーク24c間を電気的に分離するための絶縁性・非磁性材料からなる薄膜をさらに形成する必要があるので、工数が若干増加するという欠点がある。しかしかがら、GMR膜26の横幅の内、第1薄膜ヨーク24b及び第2薄膜ヨーク24cの双方に接触している部分の幅を狭くすると、第1薄膜ヨーク24b及び第2薄膜ヨーク24cから漏れる磁束が横幅方向に分散しにくくなるので、磁界感度が向上するという利点がある。
【0045】
電極28、28は、出力を取り出すためのものであり、導電性材料が用いられる。具体的には、Cu、Ag、Au等が好適である。電極28、28の形状は、特に限定されるものではなく、薄膜磁気センサ20の大きさ、薄膜ヨーク24、24の形状等に応じて、最適な形状を選択すればよい。
【0046】
第2保護膜32は、絶縁基板22の表面に露出しているGMR膜26、並びに第1薄膜ヨーク24b及び第2薄膜ヨーク24cを大気から遮断し、これらを保護するためのものである。また、第2保護膜32には、絶縁性・非磁性材料が用いられる。第2保護膜32の材質としては、具体的には、Al、SiO、Si、200℃以上でハードベークしたフォトレジスト等が好適な一例として挙げられる。
【0047】
次に、本実施の形態に係る薄膜磁気センサ20の製造方法について説明する。図2〜図4に、その工程図を示す。本実施の形態に係る製造方法は、第1薄膜ヨーク形成工程と、GMR膜形成工程と、第2薄膜ヨーク形成工程と、電極形成工程と、表面保護膜形成工程とを備えている。
【0048】
初めに、第1薄膜ヨーク形成工程について説明する。第1薄膜ヨーク形成工程は、絶縁性・非磁性材料からなる絶縁基板22表面に軟磁性材料からなる第1の薄膜(以下、これを「第1軟磁性薄膜」という。)24dを堆積させ、その先端に第2薄膜ヨーク24cとの対向面を有する軟磁性材料からなる第1薄膜ヨーク24bを形成する工程である。第1薄膜ヨーク24bは、具体的には、以下のような方法により形成するのが好ましい。
【0049】
すなわち、まず、図2(a)に示すように、絶縁基板22の表面全面に、軟磁性薄膜24dを形成する。次いで、図2(b)に示すように、第1軟磁性薄膜24dの上にフォトレジスト37を塗布した後、絶縁基板22の上方に所定の開口部を有するマスク36を配置し、露光する。次に、現像処理により感光部を除去することにより、図2(c)に示すように、第1薄膜ヨーク24bを形成する部分に、フォトレジスト膜38が形成される。
【0050】
この場合、フォトレジスト膜38を形成した後、80〜120℃×0.05〜1.0hのポストベークを行うのが好ましい。ポストベークを行うと、フォトレジスト膜38から溶剤が揮発して若干収縮するために、フォトレジスト膜38の側壁面に傾斜を持たせることができる。フォトレジスト膜38の側壁面に若干の傾斜があると、エッチングの際に影ができにくくなるので、第1軟磁性薄膜24dのエッチングを効率よく行うことができるという利点がある。
【0051】
次に、図2(d)に示すように、絶縁基板22を回転させながらArイオンビームエッチングを行う。この時、絶縁基板22の回転速度、Arイオンビームの照射角度等の照射条件を最適化すると、図2(d)に示すように、フォトレジスト膜38の境界線に沿って、第1軟磁性薄膜24dの端面を所定の傾斜角θで斜めにエッチングすることができる。
【0052】
第1軟磁性薄膜24dの不要部分が完全に除去されるまでArイオンビームエッチングを行った後、第1軟磁性薄膜24d表面に残ったフォトレジスト膜38を除去(ハクリ)すると、図2(e)に示すように、その一端に所定の傾斜角θを有する対向面を備えた第1薄膜ヨーク24bが得られる。
【0053】
次に、GMR膜形成工程について説明する。GMR膜形成工程は、第1薄膜ヨーク24bの対向面にGMR膜26を形成する工程である。GMR膜26は、具体的には、以下のような方法により形成するのが好ましい。
【0054】
すなわち、まず、図2(f)に示すように、第1薄膜ヨーク24bが形成された絶縁基板22の表面全面に、所定の組成を有するGMR膜26を、所定の厚さとなるまで、第1薄膜ヨーク24bと電気的に接続されるように堆積させる。次に、第1薄膜ヨーク形成工程で説明したのと同様の方法にて、図2(g)に示すように、GMR膜26を残したい部分にフォトレジスト膜38を形成する。
【0055】
さらに、図2(h)に示すように、絶縁基板22を回転させながら、所定の条件下でArイオンビームエッチングを行い、GMR膜26の不要部分を除去する。エッチング終了後、残ったフォトレジスト膜38を除去(ハクリ)すれば、図2(i)に示すように、第1薄膜ヨーク24bの対向面上及びその近傍にGMR膜26を形成することができる。この場合、Arイオンビームエッチングに限定されるものではなく、他の膜とのエッチング選択比の良いウエットエッチや反応性イオンエッチング(RIE)などを用いても良い。一方、GMR膜26を残したい部分を開口し、残部にフォトレジスト膜38を形成し、その後、GMR膜26を堆積させ、フォトレジスト膜38を除去すると同時に余部GMR膜26を除いてしまう「リフトオフ」法を用いても良い。
【0056】
なお、GMR膜26の横幅が、第1薄膜ヨーク24bの対向面の横幅より広い場合には、GMR膜26によって第1薄膜ヨーク24bと第2薄膜ヨーク24cとが直接接触することがないので、この場合には、そのまま次工程に進み、GMR膜26の上に、直接、第2薄膜ヨーク24cを形成すればよい。
【0057】
一方、GMR膜26の横幅を第1薄膜ヨーク24bの対向面の横幅より狭くする場合には、第2薄膜ヨーク24cを形成する前に、第1薄膜ヨーク24bと第2薄膜ヨーク24cとが直接接触するのを防ぐための絶縁性・非磁性材料からなる薄膜を、GMR膜26の両側に堆積させ、例えば、リフトオフ法により所定の形状にすれば良い。また、第1薄膜ヨーク24bの対向面の横幅より広い横幅を有するGMR膜26を対向面上に堆積させ、GMR膜26の一部を絶縁性・非磁性材料からなる薄膜で覆い、第2薄膜ヨーク24cと接する部分の横幅を狭くしても良い。
【0058】
次に、第2薄膜ヨーク形成工程について説明する。第2薄膜ヨーク形成工程は、GMR膜26と第2薄膜ヨーク26cとが、第1薄膜ヨーク24bの対向面上に堆積させたGMR膜26の膜表面において電気的に接続されるように、絶縁基板22表面に軟磁性材料からなる第2の薄膜(以下、これを「第2軟磁性薄膜」という。)24eを堆積させ、軟磁性材料からなる第2薄膜ヨーク24cを形成する工程である。第2薄膜ヨーク24cは、具体的には、以下のような方法により形成するのが好ましい。
【0059】
すなわち、まず、第1薄膜ヨーク形成工程で説明したのと同様の方法にて、図3(a)に示すように、第2薄膜ヨーク24cを形成する部分を除いて、絶縁基板22の表面にフォトレジスト膜38を形成する。この場合、新たに堆積させる第2軟磁性薄膜24eが、既に絶縁基板22上に形成された第1薄膜ヨーク24bの上にも堆積するように、フォトレジスト膜38を形成するのが好ましい。
【0060】
次に、図3(b)に示すように、絶縁基板22の表面全面に、第2軟磁性薄膜24eを、所定の厚さとなるまで堆積させる。その後、フォトレジスト膜38を除去(リフトオフ)すれば、図3(c)に示すように、第1薄膜ヨーク24b及びその対向面上に形成されたGMR膜26の双方と電気的に接続している第2軟磁性薄膜24eが得られる。なお、これ以外にも、図2(i)の状態から全面に第2軟磁性薄膜24eを堆積し、その後、第2薄膜ヨーク形状を形成するためのフォトレジストマスクを作り、さらに不要部分をArイオンエッチで除くことにより、同様の構造が得られる。
【0061】
次に、第2軟磁性薄膜24eの内、第1薄膜ヨーク24bと直接接触している不要部分を除去し、第2薄膜ヨーク24cを形成する。不要部分の除去は、具体的には、以下のような方法により行うのが好ましい。
【0062】
すなわち、まず、図3(d)に示すように、絶縁基板22の全面に、絶縁性・非磁性材料からなる第1保護膜30を所定の厚さとなるまで堆積させる。第1保護膜30は、不要部分を除去する際に第1薄膜ヨーク24b及び第2軟磁性薄膜24eを保護するためと、その下にある構造物による凹凸を平坦化するためのものである。また、第1保護膜30の材質は、不要部分を除去する方法に応じて、最適なものを選択する。
【0063】
次に、第1薄膜ヨーク24bと第2軟磁性薄膜24eとが直接接触している部分がなくなるまで、不要部分を除去する。第1保護膜30で保護された不要部分の除去方法は、特に限定されるものではなく、種々の方法を用いることができる。具体的には、以下のような方法を用いるのが好ましい。
【0064】
第1の方法は、絶縁基板22の表面全面に第1保護膜30を形成した後、第1薄膜ヨーク24bの上に堆積した第2軟磁性薄膜24eが完全に除去されるまで、絶縁基板22の表面を機械研磨する方法(以下、これを「機械研磨法」という。)である。この場合、第1保護膜30には、Al膜、SiO膜、ポストベークしたフォトレジスト膜、200℃以上でハードベークしたフォトレジスト膜等を用いるのが好ましい。
【0065】
第2の方法は、絶縁基板22の表面全面に第1保護膜30を形成した後、絶縁基板22の表面をイオンビームによりエッチングする方法(以下、これを「エッチバック法」という。)である。この場合、第1保護膜30には、90℃以下でプリベーク又は90〜120℃×1hでポストベークしたフォトレジスト膜を用いるのが好ましい。
【0066】
図3(d)に示すように、絶縁基板22の表面にフォトレジスト膜(第1保護膜30)を形成し、エッチングを行うと、まず、フォトレジスト膜のみがエッチングされる。エッチングが進行すると、やがて第2軟磁性薄膜24eの凸部がフォトレジスト膜の表面に露出するので、それ以後は、フォトレジスト膜と第2軟磁性薄膜24eの凸部が同時にエッチングされる。
【0067】
一般に、フォトレジスト膜表面が完全に平坦にならず、かつ、第2軟磁性薄膜24eとフォトレジスト膜のエッチング速度に差があるので、1回のエッチングで第2軟磁性薄膜24eの不要部分を完全に除去するのは困難である。そのため、図3(e)に示すように、フォトレジスト膜が完全になくなる前にエッチングを一旦止め、図3(f)に示すように、フォトレジスト膜を除去(ハクリ)する。そして、第1薄膜ヨーク24bの上に堆積した第2軟磁性薄膜24eが完全に除去されるまで、(1)フォトレジスト膜の形成及びプリベーク又はポストベーク、(2)エッチング、及び(3)ハクリを所定回数繰り返す。
【0068】
なお、第1薄膜ヨーク24bの対向面上に形成した時点でのGMR膜26の横幅が第1薄膜ヨーク24b先端の横幅より広い場合において、エッチングをやや過剰に行うと、第2薄膜ヨーク24cをマスクとして、第2薄膜ヨーク24c先端の横幅方向にはみ出している余分なGMR膜26を除去することができる。
【0069】
機械研磨法、エッチバック法等の方法により、第2軟磁性薄膜24eの不要部分(第1薄膜ヨーク24bと直接接している部分)が完全に除去されると、図3(g)に示すように、所定の傾斜角θを有する対向面を備えた第1薄膜ヨーク24bと、対向面上に堆積させたGMR膜26と、GMR膜26の膜面においてGMR膜26とのみ電気的に接続している第2薄膜ヨーク24cが得られる。
【0070】
次に、電極形成工程について説明する。電極形成工程は、第1薄膜ヨーク24b及び第2薄膜ヨーク24cの端部に、それぞれ、電極28、28を形成する工程である。具体的には、まず、第1薄膜ヨーク形成工程で説明したものと同様の方法にて、電極28、28を形成する領域を除いて、新たにフォトレジスト膜38を形成し(図4(a))、フォトレジスト膜38の上から、所定の厚さを有する導電性材料からなる薄膜28aを堆積させ(図4(b))、フォトレジスト膜38を除去(リフトオフ)する。これにより、図4(c)に示すように、第1薄膜ヨーク24b及び第2薄膜ヨーク24cの端部に電極28、28を形成することができる。
【0071】
次に、表面保護膜形成工程について説明する。表面保護膜形成工程は、絶縁基板22の最表面に、第1薄膜ヨーク24b及び第2薄膜ヨーク24c、並びにGMR膜26を保護するための第2保護膜32を形成する工程である。具体的には、まず、第1薄膜ヨーク形成工程で説明したものと同様の方法にて、第2保護膜32を形成する領域を除いて、新たにフォトレジスト膜38を形成する(図4(d))。この場合、電極28の一部が第2保護膜32で覆われるように、フォトレジスト膜38を形成すると良い。次いで、フォトレジスト膜38の上から、所定の厚さを有する第2保護膜32を堆積させ(図4(e))、フォトレジスト膜38を除去(リフトオフ)する。これにより、図4(f)に示すように、本実施の形態に係る薄膜磁気センサ20が得られる。
【0072】
次に、本実施の形態に係る薄膜磁気センサの20作用について説明する。従来の薄膜磁気センサは、絶縁基板表面に堆積させた軟磁性薄膜に幅の狭い凹溝(ギャップ)を形成して凹溝を介して対向する薄膜ヨークとした後、この上からGMR膜を堆積させるという方法により製造されていた。
【0073】
しかしながら、このような方法では、凹溝内に形成されたGMR膜の断面が三角形状又は台形状となる。そのため、薄膜ヨークとGMR膜との接触面積は、GMR膜の平均膜厚に比べて著しく小さくなり、極端な場合には、両者が線接触した状態となる。その結果、わずかな製造条件の変動によって薄膜ヨークとGMR膜との間の接触電気抵抗が大きく変動し、かつ磁気特性も安定しない原因となっていた。
【0074】
また、金属−絶縁体系ナノグラニュラー材料は、優れた磁気特性を有しているが、脆いために、凹溝内に薄膜状に堆積させたときに、平面部からの薄膜成長と壁からの薄膜成長の境界線において、亀裂が生じやすい。そのため、これを薄膜磁気センサのGMR膜として用いた場合において、凹溝内にGMR膜を堆積させたときには、電気的にも磁気的にも極めて不安定となりやすかった。
【0075】
これに対し、本実施の形態に係る薄膜磁気センサ20は、対向する一対の第1薄膜ヨーク24b及び第2薄膜ヨーク24bの内、第1薄膜ヨーク24bのみを先に堆積させているので、GMR膜26を堆積させる領域が、背の高い薄膜ヨークの側壁によって挟まれることがない。
【0076】
そのため、第1薄膜ヨーク24bの対向面上に、亀裂のない健全なGMR膜26を形成することができる。また、第1薄膜ヨーク24b及び第2薄膜ヨーク24cとGMR膜26とが、GMR膜26の膜表面において確実に面接触した状態となるので、薄膜磁気センサ20の磁気特性が向上する。
【0077】
しかも、このようにして得られた薄膜磁気センサ20は、ギャップ長がGMR膜26の膜厚によって規定されているので、第1薄膜ヨーク24b及び第2薄膜ヨーク24cからの磁束がGMR膜26に有効に作用し、空間に漏れる磁束が少ない。そのため、従来の薄膜磁気センサに比べて、極めて高い理想的磁界感度を示す。
【0078】
次に、本発明の第2の実施の形態に係る薄膜磁気センサについて説明する。図5(a)、図5(b)及び図5(c)に、それぞれ、本発明の第2の実施の形態に係る薄膜磁気センサ40の平面図、そのA−A’線断面図及びギャップ近傍の拡大断面図を示す。
【0079】
図5において、薄膜磁気センサ40は、絶縁基板42と、ギャップ44aを介して対向する一対の第1薄膜ヨーク44b及び第2薄膜ヨーク44cと、この一対の第1薄膜ヨーク44b及び第2薄膜ヨーク44cと電気的に接続されるようにギャップ44a間に形成されたGMR膜46とを備えている。第1薄膜ヨーク44b及び第2薄膜ヨーク44cは、それぞれ、その端部に電極48、48が接合され、絶縁基板42の最上面は、第2保護膜52により覆われている。
【0080】
本実施の形態に係る薄膜磁気センサ40は、第1薄膜ヨーク44bの対向面と絶縁基板42の表面とが平行になっている点に特徴がある。すなわち、対向面は、第1薄膜ヨーク44bの上面側に形成されている。また、第1薄膜ヨーク44bの対向面の傾斜角θは0°(すなわち、流入角φは90°)になっている。
【0081】
なお、絶縁基板42、第1薄膜ヨーク44b、第2薄膜ヨーク44c、GMR膜46、電極48、48及び第2保護膜52のその他の点については、第1の実施の形態に係る薄膜磁気センサ20の絶縁基板22、第1薄膜ヨーク24b、第2薄膜ヨーク24c、GMR膜26、電極28、28及び第2保護膜32と同様であるので説明を省略する。
【0082】
次に、本実施の形態に係る薄膜磁気センサ40の製造方法について説明する。図6及び図7に、その工程図を示す。本実施の形態に係る製造方法は、第1薄膜ヨーク形成工程と、GMR膜形成工程と、第2薄膜ヨーク形成工程と、電極形成工程と、表面保護膜形成工程とを備えている。
【0083】
初めに、第1薄膜ヨーク形成工程について説明する。第1薄膜ヨーク形成工程は、絶縁基板42表面に第1軟磁性薄膜44dを堆積させ、その先端に第2薄膜ヨークとの対向面を有する第1薄膜ヨーク44bを形成する工程である。傾斜角θが0°である対向面を備えた第1薄膜ヨーク44bは、具体的には、以下のような方法により形成することができる。
【0084】
すなわち、まず、図6(a)に示すように、絶縁基板42の表面に反射防止膜34を形成する。この反射防止膜34は、後述するフォトレジストでパターニングする際に、パターン精度を高めるためのものである。反射防止膜34には、一般に、Cr薄膜、Ti薄膜等が用いられる。
【0085】
次に、図6(b)に示すように、第1薄膜ヨーク44bを形成しない部分に、フォトレジスト膜38を形成する。
【0086】
この場合、フォトレジスト膜38を形成した後、ポストベークを行うのが好ましい点は、第1の実施の形態と同様である。フォトレジスト膜38のポストベークを行うと、その側壁面に若干の傾斜ができるので、エッチングの際に影ができにくくなる。また、エッチング条件を最適化すると、フォトレジスト膜38の境界線に沿って、絶縁基板42をほぼ垂直にエッチングすることができる。
【0087】
次に、図6(c)に示すように、絶縁基板42を回転させながらイオンビームエッチングを行う。この時、絶縁基板42の回転速度、イオンビームの照射角度等の照射条件を最適化すると、図6(c)に示すように、フォトレジスト膜38の境界線に沿って、絶縁基板42の表面をほぼ垂直にエッチングすることができる。
【0088】
エッチング終了後、絶縁基板42表面に残ったフォトレジスト膜38を除去(ハクリ)する。これにより、図6(d)に示すように、絶縁基板42の表面に、その側壁が絶縁基板42の表面に対してほぼ垂直である下に凸のくぼみを形成することができる。
【0089】
次に、図6(e)に示すように、絶縁基板42の表面全面に第1軟磁性薄膜44dを堆積させる。次いで、図6(f)に示すように、第1軟磁性薄膜40dの上にさらに第1保護膜30を形成し、上述した機械研磨法、エッチバック法等の手段を用いて、第1軟磁性薄膜44dの内、絶縁基板42の表面の下に凸のくぼみに堆積させた部分以外の不要部分を除去する。これにより、図6(g)に示すように、対向面の傾斜角θがほぼ0°である第1薄膜ヨーク44bが得られる。なお、第1軟磁性薄膜44dの不要部分を除去した時点で、第1保護膜30は、完全になくなっていても良く、あるいは、残っていても良い。
【0090】
次に、GMR膜形成工程について説明する。GMR膜形成工程は、第1薄膜ヨーク44bの対向面上に、GMR膜を形成する工程である。GMR膜46の形成方法は、第1の実施の形態に係るGMR膜26の形成方法と、ほぼ同様である。
【0091】
すなわち、まず、第1薄膜ヨーク44bが形成された絶縁基板42の表面全面に、所定の組成を有するGMR膜46を、所定の厚さとなるまで堆積させる(図7(a))。次いで、第1薄膜ヨーク44bの対向面上及びその近傍にフォトレジスト膜38を形成する(図7(b))。さらに、所定の条件下でイオンビームエッチングを行い、GMR膜46の不要部分を除去する(図7(c))。エッチング終了後、残ったフォトレジスト膜38を除去(ハクリ)すれば、図7(d)に示すように、対向面及びその近傍にGMR膜46を形成することができる。
【0092】
なお、GMR膜46の横幅が第1薄膜ヨーク44bの対向面の横幅より狭い場合、又はGMR膜46の横幅の内、第1薄膜ヨーク44b及び第2薄膜ヨーク44cの双方に接触する部分の幅を狭くする場合には、第2薄膜ヨーク44cを形成する前に、GMR膜46の両脇に又はGMR膜46の表面の一部を覆うように、絶縁性・非磁性材料からなる薄膜を形成する必要がある点は、第1の実施の形態と同様である。
【0093】
次に、第2薄膜ヨーク形成工程について説明する。第2薄膜ヨーク形成工程は、GMR膜46と第2薄膜ヨーク46cとが、第1薄膜ヨーク44bの対向面上に堆積させたGMR膜46の膜表面において電気的に接続されるように、絶縁基板22表面に第2軟磁性薄膜44eを堆積させ、軟磁性材料からなる第2薄膜ヨーク44cを形成する工程である。第2薄膜ヨーク24cは、具体的には、以下のような方法により形成するのが好ましい。
【0094】
すなわち、まず、図7(e)に示すように、絶縁基板42の表面全面に第2軟磁性薄膜44eを堆積させる。次いで、第2軟磁性薄膜44eの内、残したい部分にフォトレジスト膜38を形成する。この場合、フォトレジスト膜38は、第1薄膜ヨーク44bの対向面のほぼ中央まで形成するのが好ましい。この時、第1薄膜ヨーク44bの先端からの「距離」で、GMR膜46の電気抵抗が規定される。
【0095】
次に、図7(g)に示すように、絶縁基板42を回転させながら、所定の条件下でArイオンビームエッチングを行う。エッチングは、少なくとも、第1薄膜ヨーク44bと第2軟磁性薄膜44eとが直接接触している部分が除去されるまで行う。この時、エッチング条件を最適化すると、第2軟磁性薄膜44eがフォトレジスト膜38の境界線から斜めにエッチングされ、第1薄膜ヨーク44bと接触している部分を完全に除去できる。また、エッチング条件を最適化すれば、GMR膜46を形成した時点での横幅が第2薄膜ヨーク46c先端の横幅より広い場合であっても、GMR膜46の形状を第2薄膜ヨーク44cの先端形状とほぼ同じにパターニング加工することができる。エッチング終了後、残ったフォトレジスト膜38を除去(ハクリ)すれば、図7(h)に示すように、所定の傾斜角θを有する対向面を備えた第1薄膜ヨーク44bと、対向面上に堆積させたGMR膜46と、GMR膜46の膜表面においてGMR膜46と電気的に接続している第2薄膜ヨーク44cが得られる。
【0096】
この後、第1の実施の形態と同様の手順に従い、第1薄膜ヨーク44b及び第2薄膜ヨーク44cの端部に、それぞれ、電極48、48を形成し(電極形成工程)、さらに、絶縁基板42の表面全面に第2保護膜52を形成すれば、本実施の形態に係る薄膜磁気センサ40が得られる。
【0097】
次に、本実施の形態に係る薄膜磁気センサ40の作用について説明する。絶縁基板42の表面に下に凸のくぼみを形成し、この上に第1軟磁性薄膜44dを堆積させ、第1軟磁性薄膜44bの内、絶縁基板42に形成された下に凸の部分以外の不要部分を除去すると、対向面が絶縁基板42の表面に対して平行である第1薄膜ヨーク44bが得られる。
【0098】
次いで、この対向面の上にGMR膜46を堆積させ、さらにその上に第2薄膜ヨーク44cを形成すると、第2薄膜ヨーク44cとGMR膜46とを、GMR膜46の膜表面において、電気的に接続させることができる。
【0099】
このようにして得られた薄膜磁気センサ40は、ギャップを介して対向する一対の第1薄膜ヨーク44b及び第2薄膜ヨーク44cがGMR膜46の膜表面を介して確実に面接触しているので、磁気特性が安定化する。しかも、ギャップ長がGMR膜46の膜厚によって規定されているので、第1薄膜ヨーク44b及び第2薄膜ヨーク44cからの漏れ磁束が空間に分散するのが抑制され、高い磁界感度を示す。
【0100】
さらに、本実施の形態に係る薄膜磁気センサ40は、対向面が絶縁基板42の表面に対して平行になっているので、対向面の形成、及び対向面上へのGMR膜46の形成が極めて容易である。そのため、磁気特性の安定した薄膜磁気センサ40を低コストで、かつ再現性良く製造することができる。
【0101】
次に、本発明の第3の実施の形態に係る薄膜磁気センサについて説明する。図8(a)、図8(b)及び図8(c)に、それぞれ、本発明の第3の実施の形態に係る薄膜磁気センサ60の平面図、そのA−A’線断面図及びギャップ近傍の拡大断面図を示す。
【0102】
図8において、薄膜磁気センサ60は、絶縁基板62と、ギャップ64aを介して対向する一対の第1薄膜ヨーク64b及び第2薄膜ヨーク64cと、この一対の第1薄膜ヨーク64b及び第2薄膜ヨーク64cと電気的に接続されるようにギャップ64a間に形成されたGMR膜66とを備えている。第1薄膜ヨーク64b及び第2薄膜ヨーク64cは、その端部に電極68、68が接合され、絶縁基板62の最上面は、第2保護膜72により覆われている。
【0103】
本実施の形態に係る薄膜磁気センサ60は、第1薄膜ヨーク64bの対向面と絶縁基板62の表面とがほぼ垂直になっている点に特徴がある。すなわち、対向面は、薄膜ヨーク64bの端面に形成されている。また、第1薄膜ヨーク64bの対向面の傾斜角θは90°(すなわち、流入角φは0°)になっている。
【0104】
なお、絶縁基板62、第1薄膜ヨーク64b、第2薄膜ヨーク64c、GMR膜66、電極68、68及び第2保護膜72のその他の点については、第1の実施の形態に係る薄膜磁気センサ20の絶縁基板22、第1薄膜ヨーク24b、第2薄膜ヨーク24c、GMR膜26、電極28、28及び第2保護膜32と同様であるので説明を省略する。
【0105】
次に、本実施の形態に係る薄膜磁気センサ60の製造方法について説明する。図9及び図10に、その工程図を示す。本実施の形態に係る製造方法は、第1薄膜ヨーク形成工程と、GMR膜形成工程と、第2薄膜ヨーク形成工程と、電極形成工程と、表面保護膜形成工程とを備えている。
【0106】
本実施の形態に係る薄膜磁気センサ60は、第1薄膜ヨーク64bの傾斜面θが90°である点に特徴があるが、このような薄膜磁気センサ60は、絶縁基板62表面に堆積させた第1軟磁性薄膜64dをエッチングにより除去する際に、エッチング条件を変更するだけで作製することができる。その他の点については、第1の実施の形態に係る薄膜磁気センサ60の製造方法と同様である。
【0107】
すなわち、まず、絶縁基板62の表面全面に第1軟磁性薄膜64dを堆積させる(図9(a))。次いで、第1薄膜ヨーク64bを形成する部分にフォトレジスト膜38を形成する(図9(b))。この場合、フォトレジスト膜38のポストベークを行うのが好ましい点は、第1の実施の形態と同様である。
【0108】
次に、絶縁基板62を回転させながら、所定の条件下でArイオンビームエッチングを行う。この時、エッチング条件を最適化すると、フォトレジスト膜38の境界線に沿って、第1軟磁性薄膜64dをほぼ垂直にエッチングすることができる(図9(c))。エッチング終了後、残ったフォトレジスト膜38を除去(ハクリ)すれば、傾斜角θが90°である第1薄膜ヨーク64bが得られる(図9(d))。
【0109】
次に、絶縁基板62の表面全面にGMR膜66を堆積させる(図9(e))。次いで、第1薄膜ヨーク64bの対向面上及びその近傍に新たにフォトレジスト膜38を形成する(図9(f))。さらに、イオンビームエッチングによりGMR膜66の不要部分を除去し(図9(g))、残ったフォトレジスト膜38を除去(ハクリ)する(図9(h))。これにより、傾斜角θが90°である対向面上に、GMR膜66を形成することができる。
【0110】
次に、第2薄膜ヨーク64cを形成する部分を除いて、絶縁基板62の表面に新たにフォトレジスト膜38を形成する(図10(a))。この場合、第1薄膜ヨーク64bの上にも第2軟磁性薄膜64eが堆積するように、フォトレジスト膜38を形成するのが好ましい点は、第1の実施の形態と同様である。次いで、絶縁基板62の表面全面に、第2軟磁性薄膜64eを、所定の厚さとなるまで堆積させ(図10(b))、その後、フォトレジスト膜38を除去(リフトオフ)する(図10(c))。
【0111】
次に、絶縁基板62の表面全面に、第1保護膜30を形成する(図10(d))。次いで、機械研磨により、あるいは、エッチバック(すなわち、第1保護膜30の形成(図10(d))、エッチング(図10(e))及びハクリ(図10(f))を所定回数繰り返すこと)により、第2軟磁性薄膜64eの不要部分を除去する。これにより、GMR膜66の膜表面においてGMR膜66と電気的に接続している第2薄膜ヨーク64cが得られる(図10(g))。
【0112】
この後、第1の実施の形態と同様の手順に従い、第1薄膜ヨーク64b及び第2薄膜ヨーク64cの端部に、それぞれ、電極68、68を形成し(電極形成工程)、さらに、絶縁基板62の表面全面に第2保護膜72を形成(表面保護膜形成工程)すれば、本実施の形態に係る薄膜磁気センサ60が得られる。
【0113】
次に、本実施の形態に係る薄膜磁気センサ60の作用について説明する。絶縁基板62の表面に第1軟磁性薄膜64dを堆積させ、所定の条件下で不要部分を除去すると、対向面の傾斜角θが90°である第1薄膜ヨーク64bが得られる。次いで、この対向面にGMR膜64を堆積させ、さらにその上に第2薄膜ヨーク64cを形成すると、第2薄膜ヨーク64cとGMR膜66とを、GMR膜66の膜表面において、電気的に接続することができる。
【0114】
このようにして得られた薄膜磁気センサ60は、ギャップ64aを介して対向する一対の第1薄膜ヨーク64b及び第2薄膜ヨーク64cがGMR膜46の膜表面を介して確実に面接触しているので、磁気特性が安定化する。しかも、ギャップ長がGMR膜66の膜厚によって規定されているので、第1薄膜ヨーク44b及び第2薄膜ヨーク44cからの漏れ磁束が空間に分散するのが抑制され、高い磁界感度を示す。さらに、GMR膜66は、磁束が流れる方向に対して垂直に配置されているので、第1薄膜ヨーク44b及び第2薄膜ヨーク44cからの漏れ磁束の空間への分散がさらに抑制され、高い磁界感度が得られる。
【0115】
【実施例】
(実施例1)
図2〜図4に示す方法を用いて、図1に示す薄膜磁気センサ20を作製した。なお、絶縁基板22には、無アルカリガラス基板を用い、GMR膜26には、FeCo−MgF組成を有する金属−絶縁体系ナノグラニュラー材料を用い、第1薄膜ヨーク24b及び第2薄膜ヨーク24cには、CoFeSiBアモルファスを用いた。さらに、第1薄膜ヨーク24b及び第2薄膜ヨーク24cの厚さは、1.0μmとし、ギャップ長(すなわち、GMR膜26の膜厚)は、0.2μmとした。また、試料数nは、5(試料No.1〜5)とした。
【0116】
(実施例2)
図6及び図7に示す用法を用いて、図5に示す薄膜磁気センサ40を作製した。なお、ギャップ長を0.25μmとし、試料数nを2(試料No.6、7)とした以外は、実施例1と同一の条件とした。
【0117】
(実施例3)
図9及び図10に示す方法を用いて、図8に示す薄膜磁気センサ60を作製した。なお、ギャップ長を0.12〜0.15μmとし、試料数nを3(試料No.8〜10)とした以外は、実施例1と同一の条件とした。
【0118】
(比較例1)
以下の手順に従い、図11に示す形状を有する薄膜磁気センサ10を作製した。すなわち、無アルカリ基板ガラスからなる絶縁基板12の表面に、CoFeSiBアモルファスからなる厚さ1.0μmの軟磁性薄膜を堆積させた。次いで、軟磁性薄膜のエッチングを行うことにより、ギャップ長2.0μmのギャップ(凹溝)14aを介して対向する薄膜ヨーク14、14を形成した。
【0119】
次に、ギャップ14a領域を除いて絶縁基板12の表面をマスクし、FeCo−MgF組成を有する厚さ0.5μmの金属−絶縁体系ナノグラニュラー材料からなるGMR膜16を堆積させた。さらに、薄膜ヨーク14、14の端部に電極18を形成し、さらに薄膜ヨーク14、14及びGMR膜16の上に保護膜19を形成し、薄膜磁気センサ10を得た。なお、試料数nは、5(試料No.11〜15)とした。
【0120】
実施例1〜3及び比較例1で得られた薄膜磁気センサについて、5(Oe)でのMR比(%)を測定した。表1に、その結果を示す。表1より、比較例1の場合、MR比の絶対値が小さく、バラツキも大きい(1.0〜4.0%)のに対し、実施例1、2及び3で得られた薄膜磁気センサは、MR比の絶対値が比較例1より大きく、しかも大きなMR比を持つものが安定して得られている(実施例1で8.6〜9.5%、実施例2で5.5〜6.0%、実施例3で9.8〜11.0%)ことが分かる。
【0121】
【表1】
Figure 2004356338
【0122】
以上、本発明の実施の形態について詳細に説明したが、本発明は、上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。
【0123】
例えば、GMR膜とその両端に配置された薄膜ヨークを備えた本発明に係る素子は、磁気センサとして特に好適であるが、本発明に係る素子の用途は、これに限定されるものではなく、磁気メモリ、磁気ヘッド等としても用いることができる。
【0124】
また、薄膜ヨークからの漏れ磁束が空間に分散するのを抑制するためには、流入角φは、90°以下が好ましいが、流入角φは、90°より大きくても良い。この場合、磁束の空間への分散が大きくなるので、流入角φを90°以下とした場合に比べて、磁界感度は若干低下する。しかしながら、ギャップ長がGMR膜の膜厚によって規定されている(すなわち、ギャップ長が著しく小さい)ので、従来の薄膜磁気センサに比べて磁束がGMR膜に有効に作用し、高い磁界感度を得ることができる。
【0125】
また、流入角φが90°を越える対向面は、上述した製造条件(具体的には、絶縁基板のエッチング条件、絶縁基板表面に堆積させた軟磁性薄膜の膜厚、軟磁性薄膜のエッチング条件等)を適宜変更することにより、製造することができる。
【0126】
【発明の効果】
本発明に係る薄膜磁気センサは、所定の傾斜角θを有する対向面を備えた第1薄膜ヨークと、対向面上に堆積させたGMR膜と、GMR膜の膜表面においてGMR膜と電気的に接続している第2薄膜ヨークとを備えているので、GMR膜と第1及び第2薄膜ヨークとが確実に面接触し、電気的及び磁気的特性が安定化するという効果がある。また、ギャップ長がGMR膜の膜厚と同等であるので、磁界感度が向上するという効果がある。
【0127】
本発明に係る薄膜磁気センサの製造方法は、絶縁基板上に第1薄膜ヨークを形成し、次いで、第1薄膜ヨークの対向面にGMR膜を堆積させ、さらにGMR膜の膜表面においてGMR膜と電気的に接続するように第2薄膜ヨークが形成されるので、ギャップ内に健全なGMR膜を形成することができ、安定した電気的及び磁気的特性を示す薄膜磁気センサが得られるという効果がある。また、ギャップ長がGMR膜の膜厚と同等になるので、磁界感度の高い薄膜磁気センサが得られるという効果がある。
【図面の簡単な説明】
【図1】図1(a)、図1(b)及び図1(c)は、それぞれ、本発明の第1の実施の形態に係る薄膜磁気センサの平面図、そのA−A’線断面図及びギャップ近傍の拡大断面図である。
【図2】図1に示す薄膜磁気センサの製造方法を示す工程図である。
【図3】図2に示す工程図の続きである。
【図4】図3に示す工程図の続きである。
【図5】図5(a)、図5(b)及び図5(c)は、それぞれ、本発明の第2の実施の形態に係る薄膜磁気センサの平面図、そのA−A’線断面図及びギャップ近傍の拡大断面図である。
【図6】図5に示す薄膜磁気センサの製造方法を示す工程図である。
【図7】図6に示す工程図の続きである。
【図8】図8(a)、図8(b)及び図8(c)は、それぞれ、本発明の第3の実施の形態に係る薄膜磁気センサの平面図、そのA−A’線断面図及びギャップ近傍の拡大断面図である。
【図9】図8に示す薄膜磁気センサの製造方法を示す工程図である。
【図10】図9に示す工程図の続きである。
【図11】図11(a)、図11(b)及び図11(c)は、それぞれ、従来の薄膜磁気センサの平面図、そのA−A’線断面図及びギャップ近傍の拡大断面図である。
【符号の説明】
20、40、60 薄膜磁気センサ
22、42、62 絶縁基板
24a、44a、64a ギャップ
24b、44b、64b 第1薄膜ヨーク
24c、44c、64c 第2薄膜ヨーク
26、46、66 GMR膜

Claims (6)

  1. 軟磁性材料からなり、かつギャップを介して対向させた一対の第1薄膜ヨーク及び第2薄膜ヨークと、
    前記第1薄膜ヨーク及び前記第2薄膜ヨークと電気的に接続されるように前記ギャップ間に形成された、前記軟磁性材料より高い電気比抵抗を有するGMR膜と、
    前記第1薄膜ヨーク及び前記第2薄膜ヨーク並びに前記GMR膜を支持する絶縁性・非磁性材料からなる絶縁基板とを備えた薄膜磁気センサであって、
    前記ギャップのギャップ長は、前記第1薄膜ヨークと前記第2薄膜ヨークとの対向面に堆積させた前記GMR膜の膜厚によって規定されていることを特徴とする薄膜磁気センサ。
  2. 軟磁性材料からなり、かつギャップを介して対向させた一対の第1薄膜ヨーク及び第2薄膜ヨークと、
    前記第1薄膜ヨーク及び前記第2薄膜ヨークと電気的に接続されるように前記ギャップ間に形成された、前記軟磁性材料より高い電気比抵抗を有するGMR膜と、
    前記第1薄膜ヨーク及び前記第2薄膜ヨーク並びに前記GMR膜を支持する絶縁性・非磁性材料からなる絶縁基板とを備えた薄膜磁気センサであって、
    (イ)前記絶縁基板表面に前記軟磁性材料からなる第1の薄膜を堆積させ、その先端に前記第2薄膜ヨークとの対向面を有する前記軟磁性材料からなる第1薄膜ヨークを形成し、
    (ロ)該第1薄膜ヨークと電気的に接続されるように、前記対向面上に前記GMR膜を堆積させ、
    (ハ)前記GMR膜と前記第2薄膜ヨークとが、前記対向面上に堆積させた前記GMR膜の膜表面において電気的に接続されるように、前記絶縁基板表面に前記軟磁性材料からなる第2の薄膜を堆積させ、前記軟磁性材料からなる前記第2薄膜ヨークを形成すること、により得られる薄膜磁気センサ。
  3. 前記対向面と前記基板表面とのなす角は、0°以上90°以下である請求項2に記載の薄膜磁気センサ。
  4. 前記GMR膜は、金属−絶縁体系ナノグラニュラー材料からなる請求項1から3までのいずれかに記載の薄膜磁気センサ。
  5. 絶縁性・非磁性材料からなる絶縁基板表面に軟磁性材料からなる第1の薄膜を堆積させ、その先端に第2薄膜ヨークとの対向面を有する前記軟磁性材料からなる第1薄膜ヨークを形成する第1薄膜ヨーク形成工程と、
    前記第1薄膜ヨークと電気的に接続されるように、前記対向面上に、前記軟磁性材料より高い電気比抵抗を有するGMR膜を堆積させるGMR膜形成工程と、
    前記GMR膜と前記第2薄膜ヨークとが、前記対向面上に堆積させた前記GMR膜の膜表面において電気的に接続されるように、前記絶縁基板表面に前記軟磁性材料からなる第2薄膜を堆積させ、前記軟磁性材料からなる第2薄膜ヨークを形成する第2薄膜ヨーク形成工程とを備えた薄膜磁気センサの製造方法。
  6. 前記第1薄膜ヨーク形成工程は、前記対向面と前記絶縁基板表面とのなす角が0°以上90°以下である前記第1薄膜ヨークを形成するものである請求項5に記載の薄膜磁気センサの製造方法。
JP2003151523A 2003-05-28 2003-05-28 薄膜磁気センサ及びその製造方法 Pending JP2004356338A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003151523A JP2004356338A (ja) 2003-05-28 2003-05-28 薄膜磁気センサ及びその製造方法
US10/853,586 US20040239320A1 (en) 2003-05-28 2004-05-24 Thin film magnetic sensor and method of manufacturing the same
EP20040012425 EP1482319A2 (en) 2003-05-28 2004-05-26 Thin film magnetic sensor and method of manufacturing the same
CNA2004100474907A CN1573349A (zh) 2003-05-28 2004-05-28 薄膜磁传感器及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151523A JP2004356338A (ja) 2003-05-28 2003-05-28 薄膜磁気センサ及びその製造方法

Publications (1)

Publication Number Publication Date
JP2004356338A true JP2004356338A (ja) 2004-12-16

Family

ID=33128259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151523A Pending JP2004356338A (ja) 2003-05-28 2003-05-28 薄膜磁気センサ及びその製造方法

Country Status (4)

Country Link
US (1) US20040239320A1 (ja)
EP (1) EP1482319A2 (ja)
JP (1) JP2004356338A (ja)
CN (1) CN1573349A (ja)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261400A (ja) * 2005-03-17 2006-09-28 Yamaha Corp 磁気センサおよびその製法
JP2006261401A (ja) * 2005-03-17 2006-09-28 Yamaha Corp 磁気センサおよびその製法
US7476953B2 (en) * 2005-02-04 2009-01-13 Allegro Microsystems, Inc. Integrated sensor having a magnetic flux concentrator
US7768083B2 (en) 2006-01-20 2010-08-03 Allegro Microsystems, Inc. Arrangements for an integrated sensor
JP2011154032A (ja) * 2011-03-11 2011-08-11 Yamaha Corp 磁気センサの製法
US8143169B2 (en) 2007-03-29 2012-03-27 Allegro Microsystems, Inc. Methods for multi-stage molding of integrated circuit package
US8178361B2 (en) 2005-03-17 2012-05-15 Yamaha Corporation Magnetic sensor and manufacturing method therefor
US8461677B2 (en) 2008-12-05 2013-06-11 Allegro Microsystems, Llc Magnetic field sensors and methods for fabricating the magnetic field sensors
US8629539B2 (en) 2012-01-16 2014-01-14 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US9411025B2 (en) 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet
US9494660B2 (en) 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9720054B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9719806B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a ferromagnetic target object
US9810519B2 (en) 2013-07-19 2017-11-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US9812588B2 (en) 2012-03-20 2017-11-07 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US9817078B2 (en) 2012-05-10 2017-11-14 Allegro Microsystems Llc Methods and apparatus for magnetic sensor having integrated coil
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10041810B2 (en) 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10215550B2 (en) 2012-05-01 2019-02-26 Allegro Microsystems, Llc Methods and apparatus for magnetic sensors having highly uniform magnetic fields
US10234513B2 (en) 2012-03-20 2019-03-19 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US10260905B2 (en) 2016-06-08 2019-04-16 Allegro Microsystems, Llc Arrangements for magnetic field sensors to cancel offset variations
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10712403B2 (en) 2014-10-31 2020-07-14 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US10725100B2 (en) 2013-03-15 2020-07-28 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an externally accessible coil
US10816615B2 (en) 2017-05-19 2020-10-27 Asahi Kasei Microdevices Corporation Magnetic sensor
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10866117B2 (en) 2018-03-01 2020-12-15 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US10921391B2 (en) 2018-08-06 2021-02-16 Allegro Microsystems, Llc Magnetic field sensor with spacer
US10935612B2 (en) 2018-08-20 2021-03-02 Allegro Microsystems, Llc Current sensor having multiple sensitivity ranges
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US10991644B2 (en) 2019-08-22 2021-04-27 Allegro Microsystems, Llc Integrated circuit package having a low profile
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11255700B2 (en) 2018-08-06 2022-02-22 Allegro Microsystems, Llc Magnetic field sensor
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
WO2022209548A1 (ja) * 2021-03-30 2022-10-06 株式会社村田製作所 磁気センサ
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11567108B2 (en) 2021-03-31 2023-01-31 Allegro Microsystems, Llc Multi-gain channels for multi-range sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents
US11994541B2 (en) 2022-04-15 2024-05-28 Allegro Microsystems, Llc Current sensor assemblies for low currents

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363157A (ja) * 2003-06-02 2004-12-24 Res Inst Electric Magnetic Alloys 薄膜磁気センサ及びその製造方法
CN1928582B (zh) * 2006-10-20 2011-06-15 北京赛迪机电新技术开发公司 硅钢磁性能测量用磁导计
JP5151551B2 (ja) * 2008-02-27 2013-02-27 大同特殊鋼株式会社 薄膜磁気センサ
WO2010035873A1 (ja) * 2008-09-29 2010-04-01 オムロン株式会社 磁界検出素子および信号伝達素子
US8196285B1 (en) * 2008-12-17 2012-06-12 Western Digital (Fremont), Llc Method and system for providing a pole for a perpendicular magnetic recording head using a multi-layer hard mask
US8254060B1 (en) 2009-04-17 2012-08-28 Western Digital (Fremont), Llc Straight top main pole for PMR bevel writer
US8225488B1 (en) 2009-05-22 2012-07-24 Western Digital (Fremont), Llc Method for providing a perpendicular magnetic recording (PMR) pole
US9346672B1 (en) 2009-08-04 2016-05-24 Western Digital (Fremont), Llc Methods for fabricating damascene write poles using ruthenium hard masks
JP2017018188A (ja) * 2015-07-08 2017-01-26 株式会社バンダイ 磁気応答玩具
JP6583208B2 (ja) * 2016-10-14 2019-10-02 株式会社デンソー 磁気検出素子
JP2018072026A (ja) * 2016-10-25 2018-05-10 Tdk株式会社 磁場検出装置
CN107765198A (zh) * 2017-09-02 2018-03-06 太原理工大学 一种利用柔性薄膜磁传感器检测磁场的方法
CN113063841B (zh) * 2021-02-09 2022-05-17 江门市润宇传感器科技有限公司 一种高灵敏湿度探测器
CN113063840B (zh) * 2021-02-09 2022-09-13 苏州市迈佳凯电子科技有限公司 一种基于磁电阻效应的湿度探测器
CN113063839B (zh) * 2021-02-09 2023-01-17 于孟今 一种基于磁隧道结的湿度探测器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196715A (ja) * 1991-12-20 1993-08-06 Sharp Corp 超電導磁気センサ
DE69727574T2 (de) * 1996-07-05 2004-12-16 Koninklijke Philips Electronics N.V. Magnetfeldfühler und verfahren zur herstellung eines magnetfeldfühlers
JPH1098220A (ja) * 1996-09-20 1998-04-14 Sanyo Electric Co Ltd 磁気抵抗効果素子
US6519119B1 (en) * 1999-11-03 2003-02-11 Seagate Technology, Llc Structure for current perrpendicular to plane giant magnetoresistive read heads
US6501268B1 (en) * 2000-08-18 2002-12-31 The United States Of America As Represented By The Secretary Of The Army Magnetic sensor with modulating flux concentrator for 1/f noise reduction
CN100403048C (zh) * 2000-10-26 2008-07-16 财团法人电气磁气材料研究所 薄膜磁传感器
US6944939B2 (en) * 2003-03-21 2005-09-20 Headway Technologies, Inc. Method for forming a GMR sensor having improved longitudinal biasing
JP2004363157A (ja) * 2003-06-02 2004-12-24 Res Inst Electric Magnetic Alloys 薄膜磁気センサ及びその製造方法

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476953B2 (en) * 2005-02-04 2009-01-13 Allegro Microsystems, Inc. Integrated sensor having a magnetic flux concentrator
US9054028B2 (en) 2005-03-17 2015-06-09 Yamaha Corporation Magnetic sensor and manufacturing method therefor
JP2006261401A (ja) * 2005-03-17 2006-09-28 Yamaha Corp 磁気センサおよびその製法
US8178361B2 (en) 2005-03-17 2012-05-15 Yamaha Corporation Magnetic sensor and manufacturing method therefor
JP2006261400A (ja) * 2005-03-17 2006-09-28 Yamaha Corp 磁気センサおよびその製法
US7768083B2 (en) 2006-01-20 2010-08-03 Allegro Microsystems, Inc. Arrangements for an integrated sensor
US10069063B2 (en) 2006-01-20 2018-09-04 Allegro Microsystems, Llc Integrated circuit having first and second magnetic field sensing elements
US9859489B2 (en) 2006-01-20 2018-01-02 Allegro Microsystems, Llc Integrated circuit having first and second magnetic field sensing elements
US8629520B2 (en) 2006-01-20 2014-01-14 Allegro Microsystems, Llc Arrangements for an integrated sensor
US9082957B2 (en) 2006-01-20 2015-07-14 Allegro Microsystems, Llc Arrangements for an integrated sensor
US8952471B2 (en) 2006-01-20 2015-02-10 Allegro Microsystems, Llc Arrangements for an integrated sensor
US8143169B2 (en) 2007-03-29 2012-03-27 Allegro Microsystems, Inc. Methods for multi-stage molding of integrated circuit package
US8486755B2 (en) 2008-12-05 2013-07-16 Allegro Microsystems, Llc Magnetic field sensors and methods for fabricating the magnetic field sensors
US8461677B2 (en) 2008-12-05 2013-06-11 Allegro Microsystems, Llc Magnetic field sensors and methods for fabricating the magnetic field sensors
JP2011154032A (ja) * 2011-03-11 2011-08-11 Yamaha Corp 磁気センサの製法
US8629539B2 (en) 2012-01-16 2014-01-14 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US9299915B2 (en) 2012-01-16 2016-03-29 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US10333055B2 (en) 2012-01-16 2019-06-25 Allegro Microsystems, Llc Methods for magnetic sensor having non-conductive die paddle
US9620705B2 (en) 2012-01-16 2017-04-11 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US11961920B2 (en) 2012-03-20 2024-04-16 Allegro Microsystems, Llc Integrated circuit package with magnet having a channel
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US10234513B2 (en) 2012-03-20 2019-03-19 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US9812588B2 (en) 2012-03-20 2017-11-07 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US10230006B2 (en) 2012-03-20 2019-03-12 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an electromagnetic suppressor
US11828819B2 (en) 2012-03-20 2023-11-28 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US10916665B2 (en) 2012-03-20 2021-02-09 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an integrated coil
US9494660B2 (en) 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US11677032B2 (en) 2012-03-20 2023-06-13 Allegro Microsystems, Llc Sensor integrated circuit with integrated coil and element in central region of mold material
US11444209B2 (en) 2012-03-20 2022-09-13 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an integrated coil enclosed with a semiconductor die by a mold material
US10215550B2 (en) 2012-05-01 2019-02-26 Allegro Microsystems, Llc Methods and apparatus for magnetic sensors having highly uniform magnetic fields
US11680996B2 (en) 2012-05-10 2023-06-20 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having integrated coil
US9817078B2 (en) 2012-05-10 2017-11-14 Allegro Microsystems Llc Methods and apparatus for magnetic sensor having integrated coil
US10725100B2 (en) 2013-03-15 2020-07-28 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an externally accessible coil
US9411025B2 (en) 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US11313924B2 (en) 2013-07-19 2022-04-26 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10254103B2 (en) 2013-07-19 2019-04-09 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US10670672B2 (en) 2013-07-19 2020-06-02 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US12061246B2 (en) 2013-07-19 2024-08-13 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US9810519B2 (en) 2013-07-19 2017-11-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US10712403B2 (en) 2014-10-31 2020-07-14 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9719806B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a ferromagnetic target object
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10753769B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10753768B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9720054B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US11307054B2 (en) 2014-10-31 2022-04-19 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
US10260905B2 (en) 2016-06-08 2019-04-16 Allegro Microsystems, Llc Arrangements for magnetic field sensors to cancel offset variations
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10837800B2 (en) 2016-06-08 2020-11-17 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10041810B2 (en) 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10816615B2 (en) 2017-05-19 2020-10-27 Asahi Kasei Microdevices Corporation Magnetic sensor
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US11768256B2 (en) 2017-05-26 2023-09-26 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US11073573B2 (en) 2017-05-26 2021-07-27 Allegro Microsystems, Llc Packages for coil actuated position sensors
US11320496B2 (en) 2017-05-26 2022-05-03 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10649042B2 (en) 2017-05-26 2020-05-12 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US11313700B2 (en) 2018-03-01 2022-04-26 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US10866117B2 (en) 2018-03-01 2020-12-15 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US11255700B2 (en) 2018-08-06 2022-02-22 Allegro Microsystems, Llc Magnetic field sensor
US10921391B2 (en) 2018-08-06 2021-02-16 Allegro Microsystems, Llc Magnetic field sensor with spacer
US11686599B2 (en) 2018-08-06 2023-06-27 Allegro Microsystems, Llc Magnetic field sensor
US10935612B2 (en) 2018-08-20 2021-03-02 Allegro Microsystems, Llc Current sensor having multiple sensitivity ranges
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US10991644B2 (en) 2019-08-22 2021-04-27 Allegro Microsystems, Llc Integrated circuit package having a low profile
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
JPWO2022209548A1 (ja) * 2021-03-30 2022-10-06
WO2022209548A1 (ja) * 2021-03-30 2022-10-06 株式会社村田製作所 磁気センサ
US11567108B2 (en) 2021-03-31 2023-01-31 Allegro Microsystems, Llc Multi-gain channels for multi-range sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents
US11994541B2 (en) 2022-04-15 2024-05-28 Allegro Microsystems, Llc Current sensor assemblies for low currents
US12235294B2 (en) 2022-04-15 2025-02-25 Allegro MicroSystem, LLC Current sensor assemblies for low currents

Also Published As

Publication number Publication date
US20040239320A1 (en) 2004-12-02
EP1482319A2 (en) 2004-12-01
CN1573349A (zh) 2005-02-02

Similar Documents

Publication Publication Date Title
JP2004356338A (ja) 薄膜磁気センサ及びその製造方法
JP4323220B2 (ja) 薄膜磁気センサ及びその製造方法
US7218103B2 (en) Methods for manufacturing a thin film magnetic sensor
JP4630544B2 (ja) ブリッジ構造を構成する複数の磁気素子のうち選択された磁気素子の磁性層の磁化方向を他の磁気素子の磁性層の磁化方向と反対方向に配向する方法
US5972420A (en) Magnetoresistive sensor manufacturing method
US5256249A (en) Method of manufacturing a planarized magnetoresistive sensor
US6315875B1 (en) Method of manufacturing thin-film magnetic head and method of manufacturing magnetoresistive device
JP2006179051A (ja) 磁気抵抗センサ及びその製造方法
US20020135937A1 (en) Thin-film magnetic head and method of manufacturing same
JP5392108B2 (ja) 薄膜磁気センサ及びその製造方法
JP2010134997A (ja) Cpp構造の磁気抵抗効果型ヘッド
JP3089828B2 (ja) 強磁性磁気抵抗素子
US6673633B2 (en) Method of forming patterned thin film and method of manufacturing thin-film magnetic head
US20160293186A9 (en) Magnetoresistive sensor with stop-layers
JP4334914B2 (ja) 薄膜磁気センサ
US6770210B2 (en) Magnetoresistance effect element and method for producing same
JP4624864B2 (ja) 薄膜磁気センサ
US6558516B1 (en) Method of frame plating and method of forming magnetic pole of thin-film magnetic head
JPH10163544A (ja) 磁気抵抗効果素子及びその製造方法
JP4229257B2 (ja) 薄膜デバイス及び薄膜磁気ヘッド集合体の製造方法
JP5070883B2 (ja) トンネル型磁気抵抗効果素子及びその製造方法
CN2556792Y (zh) 隧道效应磁电阻器件
JP2000099928A (ja) 薄膜磁気ヘッド
JP2002324304A (ja) 薄膜磁気ヘッドおよびその製造方法
JP2008283016A (ja) 磁気検出素子及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100223