[go: up one dir, main page]

JP2004340583A - X-ray measuring instrument - Google Patents

X-ray measuring instrument Download PDF

Info

Publication number
JP2004340583A
JP2004340583A JP2003134098A JP2003134098A JP2004340583A JP 2004340583 A JP2004340583 A JP 2004340583A JP 2003134098 A JP2003134098 A JP 2003134098A JP 2003134098 A JP2003134098 A JP 2003134098A JP 2004340583 A JP2004340583 A JP 2004340583A
Authority
JP
Japan
Prior art keywords
ray
rays
irradiation direction
mirror
aperture means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003134098A
Other languages
Japanese (ja)
Inventor
Matsuki Baba
末喜 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003134098A priority Critical patent/JP2004340583A/en
Publication of JP2004340583A publication Critical patent/JP2004340583A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein the number of objects to be inspected not inspected heretofore only by visible light is increased as the development of a miniaturizing high density mounting technique for electronic parts in recent years, a measuring inspection system using X-ray inspection together is developed and the optical image and X-ray transmission image of the object to be inspected are taken by a TV camera of the same type and synthesized to be displayed on one screen but this system is complicated structurally and expensive, and no stability is obtained. <P>SOLUTION: This X-ray measuring instrument is constituted of an X-ray source for emitting X-rays, an iris means having an X-ray transmission part in an X-ray emitting direction and also having an X-ray cutting-off part in the direction other than the X-ray emitting direction and a mirror integrally provided to the X-ray transmission part of the iris means so as to form an angle with respect to the X-ray emitting direction and reflecting light with a desired wavelength but permitting X-rays to transmit. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、被検体をX線で測定するX線測定装置に関するものである。
【0002】
【従来の技術】
近年、電子部品の小型化高密度実装技術の進展に従い、可視光線だけでは検査出来ない被検査物が多くなり、X線による検査を併用する測定検査システムの開発がなされている。
【0003】
このような従来のX線測定装置は、可視光線による検査とX線による検査を同時に行うために、被検査物の視野に対して直線的に両検査機能を配置して、画像を採取している。このとき、同一視野を得るためにミラーを2箇所に設置しその反射像をTVカメラで撮像するように構成されている。また、X線画像の変換には蛍光板を用いているが、このような構成では発生する画像輝度が少ないため画像信号増幅用のマイクロチャンネルプレート画像増幅器を設置している。このため、構造が複雑となり、精度が低下するだけでなく、コストの大幅なアップとなる。(例えば特許文献1参照)
また、可視光線とX線の画像を同時に得て検査することの重要性について知られている。(例えば非特許文献1参照。)
図4は上記従来の可視光線・X線ハイブリッド透視装置を示しており、400は被検体、401はX線源、402はミラー、403はマイクロチャンネルプレート画像増幅器、404はTVカメラ、405は信号合成器、406は画像表示器である。
【0004】
以上のように構成されたX線測定装置について、その動作を説明する。X線源401より照射されたX線はミラー402を透過して被検体400の透過画像をマイクロチャンネルプレート画像増幅器403で増幅し、この画像を同一タイプの別のミラー402によりTVカメラ404で撮影する。また、被検体400の光学画像をミラー402に写し、同一のタイプのTVカメラ404で撮影する。この両方画像を信号合成器405で合成し、画像表示器406に表示する。被検体の光学画像とX線透過画像を同一タイプのTVカメラで撮影し、合成し、一つの画面に表示することが特徴である。ただし、X線透過画像を得る手法として、マイクロチャンネルプレート画像増幅器403を使用するために、構造が複雑となり、また、ミラー402の構成やTVカメラとの光学的な同軸性など設計的に困難な状態が生じやすい。
【0005】
【特許文献1】
米国特許5590170号
【非特許文献1】
Paul J. Handler, “Advanced in AOI and AXI Result in Increased Quality and Speed”, SMT Vol.16(2), 2002
【0006】
【発明が解決しようとする課題】
しかし、従来のX線測定装置は、構造が複雑となり安定性が得られず、また、高価であるという課題を有していた。
【0007】
本発明は、構造が簡単で高性能なX線測定装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するために本発明のX線測定装置は、X線を照射するX線源と、前記X線の照射方向に対してX線透過部を有し、それ以外の方向に対してX線遮蔽部を有する絞り手段と、前記絞り手段のX線透過部にX線の照射方向に対して角度を付けて所望の波長の光を反射するX線を通過するミラーを一体に設けたものである。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について、図1から図3を用いて説明する。
【0010】
(実施の形態1)
図1において、1はX線源、2はX線を透過するミラー、3はミラー2により反射された画像を撮影するための撮像体、4はX線透視画像を撮影するX線撮像体、5は光線の照射器、6は被検体、7は前記ミラー2と一体化されているX線遮蔽体で、8は画像データを収集するデータ処理装置、9は画像表示器、10は筐体である。
【0011】
以上のように構成されたX線測定装置について、その動作を説明する。
【0012】
X線源1の焦点から照射されたX線は、ミラー2と一体化されたX線遮蔽体7で被検体6の検査される部分にのみ通過するようにしており、この通過したX線により被検体6の透過画像をX線撮像体4で検出するようにしている。
【0013】
また、所望の波長の光を出射する照射器5により照射された光を被検体7に照射し、この被検体7からの反射光をミラー2で反射して撮像体3で撮像するようにしている。
【0014】
X線撮像体4の一例は、X線を可視光線に変換するシンチレータとこれに密着せて一体化された2次元光センサで構成される。これにより、従来のように構成複雑でないために、組み立て・調整が容易となり、精度が向上するとともに、安価となる。
【0015】
(実施の形態2)
本実施の形態において実施の形態1と同様の箇所については同一の符号を付して詳細な説明を省略する。
【0016】
図2において、X線源1の焦点と被検体6までの距離と、被検体6と、それからミラー2を反射した光が結像する光学の系の焦点までの距離を一致させている点が実施の形態1と異なる。
【0017】
以下、本実施の形態におけるX線測定装置について、その動作を説明する。
【0018】
X線源1の焦点から出たX線はミラー2を通過し、被検体6の透過画像をX線撮像体4に投影する。一方、被検体6の高さがあるため、撮像体3においては斜めからの入射成分が画像に影響を与える。そこで、所望の光線の結像において、撮像体3における焦点距離を、X線のそれに一致させることにより、比較される画像を同一とすることが出来る。これにより、周辺部においても、精度良く測定を行うことが出来るようになる。
【0019】
(実施の形態3)
本実施の形態において実施の形態1と同様の箇所については同一の符号を付して詳細な説明を省略する。
【0020】
図3において、X線源1の焦点と被検体6までの立体角と、被検体6と、それからミラー2を反射した光が結像する光学系の立体角を一致させた点が実施の形態1と異なる。
【0021】
以下、本実施の形態におけるX線測定装置について、その動作を説明する。
【0022】
X線源1の焦点から出たX線はミラー2を通過し、被検体6の透過画像をX線撮像体4に投影する。このとき被検体6の高さがあるため、撮像体3においては斜めよりの入射成分が画像に影響を与える。そこで、所望の光線の結像において、撮像体3における立体角を、X線のそれに一致させることにより、比較される画像を同一とすることが出来る。これにより、周辺部においても、精度良く測定を行うことが出来るようになる。
【0023】
以上のように、本実施の形態によれば、X線遮蔽体7と、ミラー2を一体化することにより撮像系の構成が容易となり、また、周辺部へのX線の漏洩が少なくなるため、筐体10を簡易化でき、安価で小型であるにもかかわらず高精度測定が可能となる。
【0024】
なお、実施の形態1において、X線撮像体1を2次元平面マトリックスセンサとしたが、X線撮像体1はこの限りでなくてもよい。
【0025】
【発明の効果】
以上のように、本発明はX線遮蔽体とミラーを一体化した構成とすることにより、安価で、高性能なX線計測装置を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1におけるX線計測装置の構成図
【図2】本発明の実施の形態2におけるX線計測装置の構成図
【図3】本発明の実施の形態3におけるX線計測装置の構成図
【図4】従来のX線測定装置の構成図
【符号の説明】
1 X線源
2 ミラー
3 撮像体
4 X線撮像体
5 照射器
6 被検体
7 X線遮蔽体
8 データ処理装置
9 画像表示器
10 筐体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an X-ray measuring device that measures a subject with X-rays.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the development of technology for downsizing and high-density mounting of electronic components, the number of inspection objects that cannot be inspected only with visible light has increased, and measurement and inspection systems that use X-ray inspection in combination have been developed.
[0003]
Such a conventional X-ray measurement apparatus arranges both inspection functions linearly with respect to the visual field of the object to be inspected in order to simultaneously perform the inspection by visible light and the inspection by X-ray, and collects an image. I have. At this time, in order to obtain the same field of view, mirrors are installed at two places, and their reflection images are taken by a TV camera. Although a fluorescent plate is used for conversion of the X-ray image, a micro-channel plate image amplifier for amplifying an image signal is provided because the generated image luminance is small in such a configuration. For this reason, the structure becomes complicated, not only the accuracy is reduced, but also the cost is significantly increased. (For example, see Patent Document 1)
It is also known about the importance of simultaneously obtaining and inspecting visible light and X-ray images. (For example, see Non-Patent Document 1.)
FIG. 4 shows the conventional visible light / X-ray hybrid fluoroscope, in which 400 is an object, 401 is an X-ray source, 402 is a mirror, 403 is a microchannel plate image amplifier, 404 is a TV camera, and 405 is a signal. A synthesizer 406 is an image display.
[0004]
The operation of the X-ray measuring device configured as described above will be described. The X-rays emitted from the X-ray source 401 are transmitted through a mirror 402, and a transmitted image of the subject 400 is amplified by a microchannel plate image amplifier 403, and this image is captured by a TV camera 404 by another mirror 402 of the same type. I do. Further, an optical image of the subject 400 is projected on a mirror 402 and photographed by a TV camera 404 of the same type. The two images are combined by the signal combiner 405 and displayed on the image display 406. It is characterized in that an optical image and an X-ray transmission image of a subject are photographed by the same type of TV camera, combined, and displayed on one screen. However, since the micro-channel plate image amplifier 403 is used as a technique for obtaining an X-ray transmission image, the structure becomes complicated, and the design of the mirror 402 and the optical coaxiality with the TV camera are difficult in terms of design. State is easy to occur.
[0005]
[Patent Document 1]
US Pat. No. 5,590,170 [Non-Patent Document 1]
Paul J. Handler, "Advanced in AOI and AXI Result in Incremented Quality and Speed", SMT Vol. 16 (2), 2002
[0006]
[Problems to be solved by the invention]
However, the conventional X-ray measuring apparatus has a problem that the structure is complicated, stability cannot be obtained, and the apparatus is expensive.
[0007]
An object of the present invention is to provide a high-performance X-ray measurement device having a simple structure.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, an X-ray measurement apparatus according to the present invention has an X-ray source for irradiating X-rays, and an X-ray transmitting unit for the irradiation direction of the X-rays. An aperture unit having an X-ray shielding unit, and a mirror that passes an X-ray that reflects light of a desired wavelength at an angle to an X-ray irradiation direction at an X-ray transmitting unit of the aperture unit are provided integrally. Things.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0010]
(Embodiment 1)
In FIG. 1, 1 is an X-ray source, 2 is a mirror that transmits X-rays, 3 is an imaging body for capturing an image reflected by the mirror 2, 4 is an X-ray imaging body that captures a fluoroscopic image, Reference numeral 5 denotes a light irradiator, 6 denotes an object, 7 denotes an X-ray shield integrated with the mirror 2, 8 denotes a data processing device for collecting image data, 9 denotes an image display, and 10 denotes a housing. It is.
[0011]
The operation of the X-ray measuring device configured as described above will be described.
[0012]
The X-rays emitted from the focal point of the X-ray source 1 are made to pass only through the portion of the subject 6 to be inspected by the X-ray shield 7 integrated with the mirror 2. The transmission image of the subject 6 is detected by the X-ray imaging body 4.
[0013]
In addition, the object 7 is irradiated with light emitted by the irradiator 5 that emits light of a desired wavelength, and the reflected light from the object 7 is reflected by the mirror 2 and imaged by the imaging body 3. I have.
[0014]
An example of the X-ray imaging body 4 includes a scintillator that converts X-rays into visible light and a two-dimensional optical sensor that is closely attached to the scintillator. As a result, since the configuration is not complicated as in the related art, assembly and adjustment are easy, accuracy is improved, and the cost is low.
[0015]
(Embodiment 2)
In the present embodiment, the same portions as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.
[0016]
In FIG. 2, the point that the distance between the focal point of the X-ray source 1 and the subject 6 matches the distance between the subject 6 and the focal point of the optical system where the light reflected by the mirror 2 forms an image. Different from the first embodiment.
[0017]
Hereinafter, the operation of the X-ray measurement apparatus according to the present embodiment will be described.
[0018]
X-rays emitted from the focal point of the X-ray source 1 pass through the mirror 2 and project a transmission image of the subject 6 onto the X-ray imaging body 4. On the other hand, since the subject 6 has a height, the oblique incident component on the imaging body 3 affects the image. Therefore, in forming a desired light beam, by making the focal length in the imaging body 3 coincide with that of the X-ray, the compared images can be made the same. As a result, the measurement can be performed with high accuracy even in the peripheral portion.
[0019]
(Embodiment 3)
In the present embodiment, the same portions as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.
[0020]
In FIG. 3, the solid angle between the focal point of the X-ray source 1 and the object 6 and the solid angle of the object 6 and the optical system on which the light reflected from the mirror 2 forms an image are matched. Different from 1.
[0021]
Hereinafter, the operation of the X-ray measurement apparatus according to the present embodiment will be described.
[0022]
X-rays emitted from the focal point of the X-ray source 1 pass through the mirror 2 and project a transmission image of the subject 6 onto the X-ray imaging body 4. At this time, since the object 6 has a height, the oblique incident component on the imaging body 3 affects the image. Therefore, in the imaging of a desired light beam, by making the solid angle in the imaging body 3 coincide with that of the X-ray, the compared images can be made the same. As a result, the measurement can be performed with high accuracy even in the peripheral portion.
[0023]
As described above, according to the present embodiment, since the X-ray shield 7 and the mirror 2 are integrated, the configuration of the imaging system becomes easy, and the leakage of X-rays to the peripheral portion is reduced. In addition, the housing 10 can be simplified, and high-precision measurement can be performed despite its low cost and small size.
[0024]
Although the X-ray imaging body 1 is a two-dimensional planar matrix sensor in the first embodiment, the X-ray imaging body 1 is not limited to this.
[0025]
【The invention's effect】
As described above, the present invention can realize an inexpensive and high-performance X-ray measuring apparatus by integrating the X-ray shield and the mirror.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an X-ray measurement device according to a first embodiment of the present invention; FIG. 2 is a configuration diagram of an X-ray measurement device according to a second embodiment of the present invention; FIG. Configuration diagram of X-ray measurement device [FIG. 4] Configuration diagram of conventional X-ray measurement device [Description of reference numerals]
REFERENCE SIGNS LIST 1 X-ray source 2 Mirror 3 Imager 4 X-ray imager 5 Irradiator 6 Subject 7 X-ray shield 8 Data processor 9 Image display 10 Housing

Claims (6)

X線を照射するX線源と、前記X線の照射方向に対してX線透過部を有し、それ以外の方向に対してX線遮蔽部を有する絞り手段と、前記絞り手段のX線透過部にX線の照射方向に対して角度を付けて所望の波長の光を反射するX線を通過するミラーを一体に設けたX線測定装置。X-ray source for irradiating X-rays, aperture means having an X-ray transmitting part in the X-ray irradiation direction, and X-ray shielding parts in other directions, and X-rays of the aperture means An X-ray measuring apparatus in which a transmitting part is integrally provided with a mirror that passes an X-ray that reflects light of a desired wavelength at an angle to an irradiation direction of the X-ray. ミラーを線抵抗値が100Ω・cm以下の抵抗を有する物質で形成した請求項1記載のX線測定装置。2. The X-ray measuring apparatus according to claim 1, wherein the mirror is formed of a substance having a line resistance of 100 Ω · cm or less. X線を照射するX線源と、前記X線の照射方向に対してX線透過部を有し、それ以外の方向に対してX線遮蔽部を有する絞り手段と、前記絞り手段のX線透過部にX線の照射方向に対して角度を付けて所望の波長の光を反射するX線を通過するミラーを一体に設け、X線の照射方向に平面マトリックスセンサを設けたX線測定装置。X-ray source for irradiating X-rays, aperture means having an X-ray transmitting part in the X-ray irradiation direction, and X-ray shielding parts in other directions, and X-rays of the aperture means An X-ray measuring apparatus in which a mirror that transmits an X-ray that reflects light of a desired wavelength at an angle with respect to the X-ray irradiation direction is integrally provided in a transmission unit, and a flat matrix sensor is provided in the X-ray irradiation direction. . X線を照射するX線源と、前記X線の照射方向に対してX線透過部を有し、それ以外の方向に対してX線遮蔽部を有する絞り手段と、前記絞り手段のX線透過部にX線の照射方向に対して角度を付けて所望の波長の光を反射するX線を通過するミラーを一体に設け、前記X線の照射方向に平面マトリックスX線センサを設け、前記ミラーで反射された波長の光を受ける2次元マトリックスセンサを設けたX線測定装置。X-ray source for irradiating X-rays, aperture means having an X-ray transmitting part in the X-ray irradiation direction, and X-ray shielding parts in other directions, and X-rays of the aperture means A mirror that transmits X-rays that reflects light of a desired wavelength at an angle to the X-ray irradiation direction is provided integrally with the transmission unit, and a flat matrix X-ray sensor is provided in the X-ray irradiation direction, An X-ray measurement apparatus provided with a two-dimensional matrix sensor that receives light having a wavelength reflected by a mirror. X線を照射するX線源と、前記X線の照射方向に対してX線透過部を有し、それ以外の方向に対してX線遮蔽部を有する絞り手段と、前記絞り手段のX線透過部にX線の照射方向に対して角度を付けて所望の波長の光を反射するX線を通過するミラーを一体に設け、前記X線の照射方向に平面マトリックスX線センサを設け、前記ミラーで反射された波長の光を受ける2次元マトリックスセンサを設け、前記X線の光源焦点と前記X線の照射方向に配置した被検体との距離と、前記反射光の受光センサの焦点距離が同一であるX線測定装置。X-ray source for irradiating X-rays, aperture means having an X-ray transmitting part in the X-ray irradiation direction, and X-ray shielding parts in other directions, and X-rays of the aperture means A mirror that transmits X-rays that reflects light of a desired wavelength at an angle to the X-ray irradiation direction is provided integrally with the transmission unit, and a flat matrix X-ray sensor is provided in the X-ray irradiation direction, A two-dimensional matrix sensor that receives light having a wavelength reflected by a mirror is provided, and a distance between a light source focal point of the X-rays and an object arranged in an irradiation direction of the X-rays, and a focal length of a light-receiving sensor of the reflected light are The same X-ray measurement device. X線を照射するX線源と、前記X線の照射方向に対してX線透過部を有し、それ以外の方向に対してX線遮蔽部を有する絞り手段と、前記絞り手段のX線透過部にX線の照射方向に対して角度を付けて所望の波長の光を反射するX線を通過するミラーを一体に設け、前記X線の照射方向に平面マトリックスX線センサを設け、前記ミラーで反射された波長の光を受ける2次元マトリックスセンサを設け、前記X線の光源焦点から前記X線の照射方向に配置した被検体を照射する角度と、前記反射光の受光センサが前記被検体を撮像する視野角度が同一であるX線測定装置。X-ray source for irradiating X-rays, aperture means having an X-ray transmitting part in the X-ray irradiation direction, and X-ray shielding parts in other directions, and X-rays of the aperture means A mirror that transmits X-rays that reflects light of a desired wavelength at an angle to the X-ray irradiation direction is provided integrally with the transmission unit, and a flat matrix X-ray sensor is provided in the X-ray irradiation direction, A two-dimensional matrix sensor for receiving light having a wavelength reflected by a mirror; an angle at which a subject arranged in a direction in which the X-rays are irradiated from a light source focal point of the X-rays; An X-ray measurement device having the same viewing angle for imaging a specimen.
JP2003134098A 2003-05-13 2003-05-13 X-ray measuring instrument Pending JP2004340583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003134098A JP2004340583A (en) 2003-05-13 2003-05-13 X-ray measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003134098A JP2004340583A (en) 2003-05-13 2003-05-13 X-ray measuring instrument

Publications (1)

Publication Number Publication Date
JP2004340583A true JP2004340583A (en) 2004-12-02

Family

ID=33524752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003134098A Pending JP2004340583A (en) 2003-05-13 2003-05-13 X-ray measuring instrument

Country Status (1)

Country Link
JP (1) JP2004340583A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340631A (en) * 2003-05-13 2004-12-02 Sony Corp Substrate inspection device
JP2006220640A (en) * 2005-01-14 2006-08-24 Beamsense Co Ltd X-ray stereo fluoroscopic apparatus and stereo observation method using it
JP2007218605A (en) * 2006-02-14 2007-08-30 Rigaku Corp Back reflection X-ray diffraction image observation device
WO2014061461A1 (en) * 2012-10-17 2014-04-24 株式会社システムスクエア Apparatus for inspecting packaging body
JP2018128401A (en) * 2017-02-10 2018-08-16 東芝Itコントロールシステム株式会社 X-ray fluoroscopic inspection apparatus
JP2020120058A (en) * 2019-01-28 2020-08-06 ヤマハ発動機株式会社 Nozzle maintenance method and nozzle inspection system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172544A (en) * 1985-01-28 1986-08-04 松下電器産業株式会社 X-ray diagnostic apparatus
JPH0695277A (en) * 1992-06-01 1994-04-08 Xerox Corp Digitalized x-ray-image generator
JPH06217973A (en) * 1993-01-27 1994-08-09 Toshiba Corp X-rays equipment
JP2539496B2 (en) * 1988-07-21 1996-10-02 三菱電機株式会社 Printed circuit board inspection equipment
US5590170A (en) * 1993-04-12 1996-12-31 Glenbrook Technologies X-ray inspection system
JPH11295242A (en) * 1998-04-10 1999-10-29 Matsushita Electric Ind Co Ltd X-ray substrate inspection equipment and visible light reflective film for x-ray
JP2002310954A (en) * 2001-04-18 2002-10-23 Shimadzu Corp Sample analyzer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172544A (en) * 1985-01-28 1986-08-04 松下電器産業株式会社 X-ray diagnostic apparatus
JP2539496B2 (en) * 1988-07-21 1996-10-02 三菱電機株式会社 Printed circuit board inspection equipment
JPH0695277A (en) * 1992-06-01 1994-04-08 Xerox Corp Digitalized x-ray-image generator
JPH06217973A (en) * 1993-01-27 1994-08-09 Toshiba Corp X-rays equipment
US5590170A (en) * 1993-04-12 1996-12-31 Glenbrook Technologies X-ray inspection system
JPH11295242A (en) * 1998-04-10 1999-10-29 Matsushita Electric Ind Co Ltd X-ray substrate inspection equipment and visible light reflective film for x-ray
JP2002310954A (en) * 2001-04-18 2002-10-23 Shimadzu Corp Sample analyzer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340631A (en) * 2003-05-13 2004-12-02 Sony Corp Substrate inspection device
JP2006220640A (en) * 2005-01-14 2006-08-24 Beamsense Co Ltd X-ray stereo fluoroscopic apparatus and stereo observation method using it
JP2007218605A (en) * 2006-02-14 2007-08-30 Rigaku Corp Back reflection X-ray diffraction image observation device
JP4589882B2 (en) * 2006-02-14 2010-12-01 株式会社リガク Back reflection X-ray diffraction image observation device
WO2014061461A1 (en) * 2012-10-17 2014-04-24 株式会社システムスクエア Apparatus for inspecting packaging body
JP5720029B2 (en) * 2012-10-17 2015-05-20 株式会社 システムスクエア Packaging inspection equipment
EP2887056A4 (en) * 2012-10-17 2016-04-06 System Square Inc APPARATUS FOR INSPECTING A PACKING BODY
JPWO2014061461A1 (en) * 2012-10-17 2016-09-05 株式会社 システムスクエア Packaging inspection equipment
US9541499B2 (en) 2012-10-17 2017-01-10 System Square Inc. Package inspection system
EP2887056B1 (en) 2012-10-17 2018-07-11 System Square Inc. Apparatus for inspecting packaging body
JP2018128401A (en) * 2017-02-10 2018-08-16 東芝Itコントロールシステム株式会社 X-ray fluoroscopic inspection apparatus
JP2020120058A (en) * 2019-01-28 2020-08-06 ヤマハ発動機株式会社 Nozzle maintenance method and nozzle inspection system
JP7321637B2 (en) 2019-01-28 2023-08-07 ヤマハ発動機株式会社 Nozzle maintenance method, nozzle inspection device

Similar Documents

Publication Publication Date Title
JP5394640B2 (en) Apparatus and method for multimode imaging
US7330532B2 (en) Dual energy imaging using optically coupled digital radiography system
JPS5917590B2 (en) X-ray fluoroscope
US10234406B2 (en) Radiation image acquisition system
US20120106702A1 (en) Apparatus and method for multi-modal imaging using multiple x-ray sources
WO2012101879A1 (en) Radiation image acquisition device
EP0803080B1 (en) Filmless x-ray apparatus and method
JP2010094209A (en) Radiation imaging apparatus
JP2012154734A (en) Device for taking radiation image
JPH09511660A (en) X-ray equipment
US9113784B2 (en) Apparatus and method for multi-modal imaging
JP6702788B2 (en) Radiation phase change detection method
CN108140650A (en) X-ray detector with high spatial resolution
JP2004340583A (en) X-ray measuring instrument
US20030021376A1 (en) High-resolution radiation detector
JP6671413B2 (en) Radiation image acquisition device
JP3204649U (en) Radiation image acquisition device and imaging unit
JP2002532713A (en) Inspection of objects with crystal lattice by radiography
JP3703856B2 (en) High-resolution real-time X-ray imaging device
KR101090184B1 (en) X-ray detection apparatus, X-ray imaging apparatus including the same, and X-ray image detection method
JP4073276B2 (en) X-ray analyzer
RU2293971C2 (en) Radiography and tomography device
JPH0483149A (en) Fluorescent image imaging device
JP4073278B2 (en) X-ray analyzer
FR2634094A1 (en) X-ray apparatus with display of the geometry of the X-ray beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060407

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909