JP2003045952A - Holding apparatus, method of manufacturing same, and plasma processing apparatus - Google Patents
Holding apparatus, method of manufacturing same, and plasma processing apparatusInfo
- Publication number
- JP2003045952A JP2003045952A JP2002142168A JP2002142168A JP2003045952A JP 2003045952 A JP2003045952 A JP 2003045952A JP 2002142168 A JP2002142168 A JP 2002142168A JP 2002142168 A JP2002142168 A JP 2002142168A JP 2003045952 A JP2003045952 A JP 2003045952A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- electrostatic chuck
- mounting
- sprayed layer
- mounting body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000000919 ceramic Substances 0.000 claims abstract description 27
- 238000007789 sealing Methods 0.000 claims abstract description 12
- 229920005989 resin Polymers 0.000 claims abstract description 9
- 239000011347 resin Substances 0.000 claims abstract description 9
- 239000000113 methacrylic resin Substances 0.000 claims description 33
- 239000007788 liquid Substances 0.000 claims description 25
- 239000002994 raw material Substances 0.000 claims description 23
- 238000011282 treatment Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 12
- 238000005507 spraying Methods 0.000 claims description 10
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 3
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- 229910010293 ceramic material Inorganic materials 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 abstract 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract 1
- 229910052710 silicon Inorganic materials 0.000 abstract 1
- 239000010703 silicon Substances 0.000 abstract 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 69
- 239000011148 porous material Substances 0.000 description 20
- 229920002050 silicone resin Polymers 0.000 description 18
- 230000002093 peripheral effect Effects 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 8
- 238000004040 coloring Methods 0.000 description 7
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- 238000005336 cracking Methods 0.000 description 6
- 238000001723 curing Methods 0.000 description 5
- 239000002826 coolant Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000001044 red dye Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 238000007865 diluting Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えばプラズマ処
理装置に用いられる載置装置及びその製造方法に関し、
更に詳しくは、被処理体を吸着固定する静電チャックを
一体化した載置装置及びその製造方法並びにプラズマ処
理装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mounting apparatus used in, for example, a plasma processing apparatus and a manufacturing method thereof,
More specifically, the present invention relates to a mounting apparatus in which an electrostatic chuck for adsorbing and fixing an object to be processed is integrated, a manufacturing method thereof, and a plasma processing apparatus.
【0002】[0002]
【従来の技術】従来のプラズマ処理装置に用いられる載
置装置は、例えば図8の(a)に示すように、載置体1
と、この載置体1上に配置された静電チャック2と、こ
の静電チャック2を囲んで載置体1の外周縁部上に配置
されたフォーカスリング3とを備え、静電チャック2を
介して被処理体(例えば、ウエハ)Wを吸着固定する。2. Description of the Related Art A mounting apparatus used in a conventional plasma processing apparatus is, for example, as shown in FIG.
And an electrostatic chuck 2 arranged on the mounting body 1, and a focus ring 3 arranged on the outer peripheral edge portion of the mounting body 1 so as to surround the electrostatic chuck 2 and the electrostatic chuck 2. An object to be processed (for example, a wafer) W is adsorbed and fixed via the.
【0003】而して、載置体1には整合器4Aを介して
高周波電源4が接続され、所定の真空度下で高周波電源
4から所定の高周波電力を印加して上部電極(図示せ
ず)との間でプロセスガスのプラズマを発生させ、フォ
ーカスリング3を介してプラズマをウエハWに集束させ
る。載置体1の内部には冷媒通路1Aが形成され、冷媒
通路1Aを冷媒が循環することにより載置体1を冷却
し、ひいてはプラズマ処理で昇温するウエハWを冷却し
て一定の処理温度を保持する。また、載置体1の内部に
は熱伝導性ガス(例えば、Heガス)のガス通路1Bが
形成され、このガス通路1Bは載置体1上面の複数箇所
で開口している。静電チャック2にはガス通路1Bに対
応する貫通孔2Aが形成され、ガス通路1Bから供給さ
れたHeガスを静電チャック2の貫通孔2Aから載置体
1とウエハW間の隙間に供給し、静電チャック2とウエ
ハW間の細隙に熱伝導性を付与し、載置体1によってウ
エハWを効率良く冷却する。静電チャック2は例えばア
ルミナ等のセラミックを焼結して板状に形成され、その
内部には直流電源5に接続された電極板2Bが介在して
いる。静電チャック2は直流電源5から印加された高電
圧で発生する静電気でウエハWを静電吸着する。A high frequency power source 4 is connected to the mounting body 1 via a matching unit 4A, and a predetermined high frequency power is applied from the high frequency power source 4 under a predetermined vacuum degree to an upper electrode (not shown). ) And plasma of the process gas are generated, and the plasma is focused on the wafer W via the focus ring 3. A cooling medium passage 1A is formed inside the mounting body 1. The cooling medium circulates through the cooling medium passage 1A to cool the mounting body 1 and thus to cool the wafer W whose temperature is raised by the plasma processing to maintain a constant processing temperature. Hold. Further, a gas passage 1B of a heat conductive gas (for example, He gas) is formed inside the mounting body 1, and the gas passages 1B are opened at a plurality of positions on the upper surface of the mounting body 1. A through hole 2A corresponding to the gas passage 1B is formed in the electrostatic chuck 2, and He gas supplied from the gas passage 1B is supplied from the through hole 2A of the electrostatic chuck 2 to the gap between the mounting body 1 and the wafer W. Then, thermal conductivity is given to the narrow gap between the electrostatic chuck 2 and the wafer W, and the wafer W is efficiently cooled by the mounting body 1. The electrostatic chuck 2 is formed into a plate shape by sintering a ceramic such as alumina, and an electrode plate 2B connected to the DC power source 5 is interposed inside the electrostatic chuck 2. The electrostatic chuck 2 electrostatically attracts the wafer W with static electricity generated by a high voltage applied from the DC power supply 5.
【0004】ところで、静電チャック2は上述のように
セラミックを焼結して薄板状に作製されているため、ウ
エハWの大口径化に即した静電チャック2を作製するこ
とが難しくなってきている。そのため、最近はセラミッ
ク溶射技術を用いて静電チャックを作製し、静電チャッ
クの大口径化に対応している(例えば、特許第2971
369号)。セラミック溶射による静電チャックはセラ
ミック粒子間に気孔が形成され吸水性を持つため、例え
ばシリコーン樹脂原料液を用いて封孔処理を行い、シリ
コーン樹脂で気孔を封止する。封孔処理を行う場合に
は、例えばメチルシリルトリイソシアネートを酢酸エチ
ルに溶解したシリコーン樹脂原料液を静電チャックのア
ルミナ溶射層に含浸させた後、例えば大気中で70℃、
8時間加熱するとメチルシリルトリイソシアネートは重
合、硬化してシリコーン樹脂になる。この含浸、硬化を
複数回繰り返して封孔処理を終了する。By the way, since the electrostatic chuck 2 is manufactured in the shape of a thin plate by sintering ceramics as described above, it becomes difficult to manufacture the electrostatic chuck 2 in accordance with the increase in the diameter of the wafer W. ing. Therefore, recently, an electrostatic chuck has been manufactured by using a ceramic spraying technique to cope with an increase in the diameter of the electrostatic chuck (for example, Japanese Patent No. 2971).
369). Since an electrostatic chuck by ceramic spraying has water absorbency by forming pores between ceramic particles, for example, a sealing treatment is performed using a silicone resin raw material liquid and the pores are sealed with a silicone resin. When performing the sealing treatment, for example, after impregnating the alumina sprayed layer of the electrostatic chuck with a silicone resin raw material liquid in which methylsilyltriisocyanate is dissolved in ethyl acetate, the temperature is changed to 70 ° C. in the atmosphere,
When heated for 8 hours, methylsilyltriisocyanate polymerizes and hardens to become a silicone resin. This impregnation and curing are repeated a plurality of times to complete the sealing treatment.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、シリコ
ーン樹脂によって封孔処理を行ったセラミック溶射製の
静電チャックを用いて高真空領域(例えば、100mT
orr)で高周波電力を印加してウエハWのプラズマ処
理を行っていると、図7のに示すように高周波電力の
印加時間が長くなるに連れてプラズマ処理中のウエハ表
面温度が初期の表面温度から経時的に徐々に低下する現
象が認められた。However, a high vacuum region (for example, 100 mT) is used by using an electrostatic chuck made of ceramic sprayed and sealed with a silicone resin.
When high frequency power is applied to the wafer W for plasma processing, as shown in FIG. 7, as the application time of the high frequency power becomes longer, the wafer surface temperature during the plasma processing becomes the initial surface temperature. From the above, a phenomenon was observed that gradually decreased with time.
【0006】本発明は、上記課題を解決するためになさ
れたもので、経時的に被処理体の温度が低下する虞がな
く、常時安定した温度で被処理体を処理することができ
る載置装置及びその製造方法並びにプラズマ処理装置を
提供することを目的としている。The present invention has been made in order to solve the above problems, and there is no fear that the temperature of the object to be processed will decrease over time, and the object to be processed can be always processed at a stable temperature. An object of the present invention is to provide an apparatus, a manufacturing method thereof, and a plasma processing apparatus.
【0007】[0007]
【課題を解決するための手段】本発明者は、処理中に被
処理体の温度が低下する原因について種々検討した結
果、シリコーン樹脂原料液をアルミナ溶射層に含浸させ
た後、重合、硬化させるため、シリコーン樹脂によって
アルミナ粒子表面がコーティングされ、シリコーン樹脂
層が形成されるが、希釈有機溶媒である酢酸エチルがア
ルミナ溶射層内から蒸発した後に図8の(b)で概念的
に示すようにアルミナ粒子間に蒸発痕として気孔2Cが
残る。また、図9の(a)に示すように、静電チャック
2の吸着面にもシリコーン樹脂による膜2Dが形成され
ているが、ウエハWの搬送等により吸着面のシリコーン
樹脂膜2Dの一部2Eが同図の(b)に示すようにウエ
ハWに付着して剥ぎ取られる現象が起こることがあり、
その結果吸着面にセラミック粒子間の気孔が顕在化す
る。この気孔が載置面のシリコーン樹脂の剥がれ、載置
面に凹部ができることによりウエハと吸着面との間の空
隙(熱伝導性ガスが溜まる領域)が増大し、熱伝導率が
向上して経時的に被処理体の表面温度が低下するとの知
見を得た。特に、熱伝導性ガスの供給圧力が低い側でこ
の現象は顕著である。尚、同図ではシリコーン樹脂を模
式的に黒い点で示し、シリコーン樹脂でセラミック粒子
をコーティングした状態を模式的に表している。Means for Solving the Problems As a result of various studies on the cause of the decrease in the temperature of the object to be treated during the treatment, the present inventor has impregnated the alumina resin sprayed layer with the silicone resin raw material liquid, and then polymerizes and cures Therefore, the surface of the alumina particles is coated with the silicone resin to form a silicone resin layer. However, after ethyl acetate, which is the diluting organic solvent, evaporates from the alumina sprayed layer, as shown conceptually in (b) of FIG. Pores 2C remain as evaporation marks between the alumina particles. Further, as shown in FIG. 9A, a film 2D made of silicone resin is also formed on the attracting surface of the electrostatic chuck 2. However, a part of the silicone resin film 2D on the attracting surface due to transportation of the wafer W or the like. 2E may be attached to the wafer W and peeled off as shown in FIG.
As a result, pores between the ceramic particles become visible on the adsorption surface. These pores peel off the silicone resin on the mounting surface and form recesses on the mounting surface, which increases the gap between the wafer and the adsorption surface (the area where the thermally conductive gas accumulates), improving the thermal conductivity and It was found that the surface temperature of the object to be treated is lowered. In particular, this phenomenon is remarkable on the side where the supply pressure of the heat conductive gas is low. In the figure, the silicone resin is schematically shown by black dots, and the state in which ceramic particles are coated with the silicone resin is schematically shown.
【0008】本発明は上記知見に基づいてなされたもの
で、請求項1に記載の載置装置は、被処理体を載置する
載置体と、この載置体上に形成され且つ内部に電極層を
有するセラミック溶射層からなる静電チャック層を備
え、プラズマ処理時に上記静電チャック層で被処理体を
吸着する載置装置であって、上記セラミック溶射層はメ
タクリル樹脂によって封孔処理されてなることを特徴と
するものである。The present invention has been made on the basis of the above findings, and a mounting apparatus according to a first aspect is a mounting body on which a target object is mounted, and a mounting body formed on and inside the mounting body. A mounting apparatus, comprising an electrostatic chuck layer made of a ceramic sprayed layer having an electrode layer, for adsorbing an object to be processed by the electrostatic chuck layer during plasma processing, wherein the ceramic sprayed layer is sealed with a methacrylic resin. It is characterized by
【0009】また、本発明の請求項2に記載の載置装置
は、請求項1に記載の発明において、上記メタクリル樹
脂はメタクリル酸メチルを主成分とする樹脂原料液が硬
化してなることを特徴とするものである。Further, in the mounting apparatus according to the second aspect of the present invention, in the invention according to the first aspect, the methacrylic resin is obtained by curing a resin raw material liquid containing methyl methacrylate as a main component. It is a feature.
【0010】また、本発明の請求項3に記載の載置装置
は、請求項1または請求項2に記載の発明において、上
記セラミック溶射層が酸化アルミニウム、窒化アルミニ
ウム、窒化硅素及び酸化チタンの少なくともいずれか一
つからなることを特徴とするものである。Further, in the mounting apparatus according to claim 3 of the present invention, in the invention according to claim 1 or 2, the ceramic sprayed layer is at least aluminum oxide, aluminum nitride, silicon nitride and titanium oxide. It is characterized by consisting of either one.
【0011】また、本発明の請求項4に記載のプラズマ
処理装置は、請求項1〜請求項3のいずれか1項に記載
の載置装置を備えたことを特徴とするものである。A plasma processing apparatus according to a fourth aspect of the present invention is characterized by including the mounting apparatus according to any one of the first to third aspects.
【0012】また、本発明の請求項5に記載の載置装置
の製造方法は、被処理体を載置する載置体と、この載置
体上に形成され且つ内部に電極層を有するセラミック溶
射層からなる静電チャック層を備え、プラズマ処理時に
上記静電チャック層で被処理体を吸着する載置装置を製
造する方法であって、セラミック材料を溶射して上記載
置体の載置面に上記静電チャック層を形成する工程と、
上記静電チャック層にメタクリル樹脂原料液を含浸させ
る工程と、上記メタクリル樹脂原料液を硬化させる工程
とを備えたことを特徴とするものである。According to a fifth aspect of the present invention, there is provided a method of manufacturing a mounting apparatus, wherein a mounting body on which a target object is mounted and a ceramic having an electrode layer formed inside the mounting body are provided. A method of manufacturing a mounting apparatus, comprising an electrostatic chuck layer made of a sprayed layer, for adsorbing an object to be processed by the electrostatic chuck layer during plasma processing, comprising: spraying a ceramic material to mount the object. A step of forming the electrostatic chuck layer on the surface,
The method is characterized by comprising a step of impregnating the methacrylic resin raw material liquid in the electrostatic chuck layer and a step of curing the methacrylic resin raw material liquid.
【0013】また、本発明の請求項6に記載の載置装置
の製造方法は、請求項5に記載の発明において、上記載
置体を加熱した状態でセラミック溶射層を形成すること
を特徴とするものである。The method of manufacturing a mounting apparatus according to a sixth aspect of the present invention is characterized in that, in the invention according to the fifth aspect, the ceramic sprayed layer is formed while the mounting body is heated. To do.
【0014】また、本発明の請求項7に記載の載置装置
の製造方法は、請求項5または請求項6に記載の発明に
おいて、上記載置体に設けられたガス通路に圧縮空気を
供給した状態でセラミック溶射層を形成することを特徴
とするものである。According to a seventh aspect of the present invention, there is provided a method of manufacturing a mounting apparatus according to the fifth or sixth aspect, wherein compressed air is supplied to a gas passage provided in the mounting body. In this state, the ceramic sprayed layer is formed.
【0015】[0015]
【発明の実施の形態】以下、図1〜図6に示す実施形態
に基づいて本発明を説明する。本実施形態の載置装置1
0は、例えば図1の(a)に示すように、例えばアルミ
ニウムにより上面の外周縁部がその中央部より低く形成
された載置体11と、この載置体11の載置面に例えば
アルミナ溶射によって形成された静電チャック層12
と、この静電チャック層12を囲むように配置されたフ
ォーカスリング13とを備えている。また、載置体11
の外周面はアルミナ溶射によって形成されたアルミナ溶
射層14によって被覆されている。静電チャック層12
のアルミナ溶射層はアルミナ溶射層14と一体になって
いる。そして、これらのアルミナ溶射層には後述のよう
に硬化性樹脂によって封孔処理が施されている。硬化性
樹脂は熱硬化型と光硬化型のいずれであっても良い。本
実施形態ではアルミナを溶射して静電チャック層12及
び載置体11外周面を形成した場合について説明する
が、アルミナ以外に、窒化アルミニウム、窒化硅素及び
酸化チタン等のセラミックの少なくともいずれか一つを
選択して溶射し、あるいはこれらに2種以上のセラミッ
クを適宜混合して溶射することによってセラミック溶射
層を形成しても良い。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below based on the embodiments shown in FIGS. Placement device 1 of the present embodiment
For example, as shown in FIG. 1A, 0 indicates a mounting body 11 whose outer peripheral edge portion is made of aluminum, for example, lower than its central portion, and alumina is mounted on the mounting surface of the mounting body 11. Electrostatic chuck layer 12 formed by thermal spraying
And a focus ring 13 arranged so as to surround the electrostatic chuck layer 12. In addition, the mounting body 11
The outer peripheral surface of is covered with an alumina sprayed layer 14 formed by alumina spraying. Electrostatic chuck layer 12
The alumina sprayed layer of 1 is integrated with the alumina sprayed layer 14. The alumina sprayed layer is then sealed with a curable resin as described later. The curable resin may be either a thermosetting type or a photocuring type. In this embodiment, the case where the electrostatic chuck layer 12 and the outer peripheral surface of the mounting body 11 are formed by spraying alumina will be described. However, in addition to alumina, at least one of ceramics such as aluminum nitride, silicon nitride, and titanium oxide is used. The ceramic sprayed layer may be formed by selecting one of them and spraying it, or by appropriately mixing two or more kinds of ceramics and spraying them.
【0016】上記静電チャック層12は、例えば上述の
アルミナ溶射層12Aと、その内部に例えばタングステ
ンによって形成された電極層12Bとを有し、全体の層
厚は例えば600μmに設定されている。電極層12B
自体はタングステン溶射によって例えば50μmの層厚
に形成されている。アルミナ溶射層12Aは、上述のよ
うに硬化性樹脂によって封孔処理されている。つまり、
例えば液体であるメタクリル酸メチル(メタクリル樹脂
原料液)をアルミナ溶射層12A内の気孔に含浸させ、
このメタクリル樹脂原料液を硬化させることによってア
ルミナ溶射層12A内の気孔にメタクリル樹脂を充填す
る。このメタクリル樹脂は、揮発成分を含まないため、
図1の(b)に概念的に示すようにアルミナ粒子間の気
孔を完全にメタクリル樹脂(斜線部分)12Dで充填す
るこができ、シリコーン樹脂のように有機溶媒が蒸発し
た後に気孔を残すようなことがない。また、静電チャッ
ク層12の表面は研磨処理してRa0.2〜0.3の平
面度で形成されている。The electrostatic chuck layer 12 has, for example, the above-mentioned alumina sprayed layer 12A and an electrode layer 12B formed of, for example, tungsten inside, and the total layer thickness is set to, for example, 600 μm. Electrode layer 12B
The layer itself is formed by tungsten spraying to have a layer thickness of, for example, 50 μm. The alumina sprayed layer 12A is sealed with a curable resin as described above. That is,
For example, liquid methyl methacrylate (methacrylic resin raw material liquid) is impregnated into the pores in the alumina sprayed layer 12A,
The methacrylic resin is filled in the pores in the alumina sprayed layer 12A by curing the methacrylic resin raw material liquid. Since this methacrylic resin does not contain volatile components,
As conceptually shown in FIG. 1 (b), the pores between the alumina particles can be completely filled with the methacrylic resin (hatched portion) 12D so that the pores remain after the organic solvent evaporates like silicone resin. There is nothing. Further, the surface of the electrostatic chuck layer 12 is polished to have a flatness of Ra 0.2 to 0.3.
【0017】また、上記載置体11の内部には従来と同
様に冷媒通路11A及びガス通路11Bが形成され、静
電チャック層12にはガス通路11Bに対応する貫通孔
12Cが形成されている。従って、ウエハWと静電チャ
ック層12間には貫通孔12CからHeガス等の熱伝導
性ガスが供給され、熱伝導性ガスによってこれら両者間
の熱伝導性を高めているため、載置体11によってウエ
ハWを効率良く冷却することができる。また、載置体1
1には従来と同様に整合器15Aを介して高周波電源1
5が接続され、静電チャック層12の電極層12Bには
給電ピン16を介して直流電源17が接続されている。A refrigerant passage 11A and a gas passage 11B are formed inside the mounting body 11 as in the conventional case, and a through hole 12C corresponding to the gas passage 11B is formed in the electrostatic chuck layer 12. . Therefore, a thermally conductive gas such as He gas is supplied from the through hole 12C between the wafer W and the electrostatic chuck layer 12, and the thermally conductive gas enhances the thermal conductivity between the two, so that the mounting body The wafer 11 can be efficiently cooled by the number 11. Also, the mounting body 1
1 has a high frequency power source 1 through a matching unit 15A as in the conventional case.
5 is connected, and a DC power supply 17 is connected to the electrode layer 12B of the electrostatic chuck layer 12 via a power feeding pin 16.
【0018】次に、図2〜図6を参照しながら上記載置
台装置10の製造方法について説明する。まず、冷媒流
路11A及びガス通路11Bが形成された載置体11を
準備する。この載置体11を例えば150℃まで加熱し
た状態で、載置体11上面の低い外周縁部をマスキング
した後、例えばゲージ圧で98KPaの圧縮空気を載置
体11のガス流路11Bへ供給し、その開口から圧縮空
気を噴出させながらアルミナを溶射し、例えば450μ
mのアルミナ溶射層12Aを図2に示すように形成す
る。圧縮空気を供給することにより、アルミナ溶射層1
2Aに貫通孔12Cを形成することができる。その後、
アルミナ溶射層12Aを層厚が例えば300μmになる
まで研磨する。Next, a method of manufacturing the mounting table device 10 will be described with reference to FIGS. First, the mounting body 11 in which the refrigerant passage 11A and the gas passage 11B are formed is prepared. In a state where the mounting body 11 is heated to, for example, 150 ° C., the low outer peripheral edge portion of the upper surface of the mounting body 11 is masked, and then compressed air of 98 KPa is supplied to the gas flow passage 11B of the mounting body 11 with a gauge pressure, for example. Then, spray the compressed air through the opening to spray alumina, for example 450μ
m alumina sprayed layer 12A is formed as shown in FIG. Alumina sprayed layer 1 by supplying compressed air
A through hole 12C can be formed in 2A. afterwards,
The alumina sprayed layer 12A is polished until the layer thickness becomes 300 μm, for example.
【0019】次いで、電極層12Bを形成する。それに
は、アルミナ溶射層12Aの電極層12Bを形成する部
分以外をマスキングした後、常温下で圧縮空気をガス通
路11Bに供給しながらタングステンを溶射し、例えば
50μmの電極層12Bを図3に示すように形成する
と、電極層12Bには貫通孔12Cも同時に形成され
る。その後、60番のブラストを用いて貫通孔12Cの
周辺をブラスト処理して貫通孔12Cに目詰まりのない
ように調整する。Next, the electrode layer 12B is formed. To do this, after masking the part of the alumina sprayed layer 12A other than the part where the electrode layer 12B is formed, tungsten is sprayed while supplying compressed air to the gas passage 11B at room temperature. For example, an electrode layer 12B of 50 μm is shown in FIG. When formed in this manner, the through hole 12C is also formed in the electrode layer 12B at the same time. Then, the periphery of the through hole 12C is blasted by using No. 60 blasting so that the through hole 12C is not clogged.
【0020】引き続き、載置体11を例えば150℃ま
で加熱した状態で圧縮空気をガス通路11Bの開口から
噴出させながらアルミナを溶射し、例えば400μmの
アルミナ溶射層12Aを図4に示すように形成する。こ
の操作によって同図に示すようにアルミナ溶射層12A
内に電極層12Bが介在する静電チャック層12が載置
体11と一体化した状態で形成される。静電チャック層
12にはアルミナ溶射の終了と同時に貫通孔12Cが自
動的に形成される。Subsequently, while the mounting body 11 is heated to, for example, 150 ° C., alumina is sprayed while ejecting compressed air from the opening of the gas passage 11B to form an alumina sprayed layer 12A of 400 μm as shown in FIG. To do. By this operation, as shown in the same figure, the alumina sprayed layer 12A
The electrostatic chuck layer 12 in which the electrode layer 12B is interposed is formed integrally with the mounting body 11. A through hole 12C is automatically formed in the electrostatic chuck layer 12 at the same time when the alumina spraying is completed.
【0021】更に、ローラを用いてメタクリル樹脂原料
液を静電チャック層12に塗布する。これによってメタ
クリル樹脂原料液が静電チャック層12のアルミナ溶射
層12Aの気孔内に浸透し、含浸される。その後、真空
容器内に載置体11を投入し、0.1Torrの真空下
で脱気処理を行う。真空脱気する間にアルミナ溶射層1
2A内ではメタクリル樹脂原料液が重合触媒を介して重
合してメタクリル樹脂が形成され、アルミナ溶射層12
A内の気孔が図1の(b)に示すようにメタクリル樹脂
12Dによって充填される。また、含浸剤であるメタク
リル樹脂原料液を硬化する方法としては、上述した脱気
処理方法に代えて載置台11を60〜70℃の温度で5
〜8時間加熱、焼成する焼成処理方法を用いることもで
きる。尚、本実施形態では電極層12Bを形成した後の
上層側のアルミナ溶射層12Aにのみメタクリル樹脂原
料液を塗布するようにしているが、電極層12Bを形成
する前の下層側のアルミナ溶射層12Aにもメタクリル
樹脂原料液を塗布することによって静電チャック層12
内に気孔が形成されるのを高い確率で防止することがで
きる。Further, the methacrylic resin raw material liquid is applied to the electrostatic chuck layer 12 using a roller. As a result, the methacrylic resin raw material liquid permeates and is impregnated into the pores of the alumina sprayed layer 12A of the electrostatic chuck layer 12. Then, the mounting body 11 is put into the vacuum container, and deaeration is performed under a vacuum of 0.1 Torr. Alumina sprayed layer 1 during vacuum degassing
In 2A, the methacrylic resin raw material liquid is polymerized through a polymerization catalyst to form a methacrylic resin, and the alumina sprayed layer 12
The pores in A are filled with methacrylic resin 12D as shown in FIG. 1 (b). Further, as a method for curing the methacrylic resin raw material liquid which is the impregnating agent, instead of the above-described degassing treatment method, the mounting table 11 is heated at a temperature of 60 to 70 ° C. for 5 hours.
A firing treatment method of heating and firing for up to 8 hours can also be used. In this embodiment, the methacrylic resin raw material liquid is applied only to the upper alumina sprayed layer 12A after the electrode layer 12B is formed, but the lower alumina sprayed layer before the electrode layer 12B is formed. By applying the methacrylic resin raw material liquid to 12A as well, the electrostatic chuck layer 12 is formed.
It is possible to prevent the formation of pores inside with a high probability.
【0022】次いで、静電チャック層12の外周縁部以
外をマスキングすると共に載置体11上面の外周縁部の
マスク材を除去した後、常温下で載置体11の外周面に
アルミナを溶射し、例えば750μmのアルミナ溶射層
14を図5に示すように形成する。この操作によって同
図に示すようにアルミナ溶射層12Aとアルミナ溶射層
14が一体化する。そして、静電チャック12外周面の
アルミナ溶射層14Aには上記メタクリル樹脂原料液を
塗布して含浸させ、他のアルミナ溶射層14Bには例え
ばシリコーン樹脂原料液を塗布して含浸させる。他のア
ルミナ溶射層14Bに上記メタクリル樹脂原料液を含浸
させても良い。Next, after masking the portions other than the outer peripheral edge of the electrostatic chuck layer 12 and removing the mask material on the outer peripheral edge of the upper surface of the mounting body 11, alumina is sprayed onto the outer peripheral surface of the mounting body 11 at room temperature. Then, the alumina sprayed layer 14 of 750 μm, for example, is formed as shown in FIG. By this operation, the alumina sprayed layer 12A and the alumina sprayed layer as shown in FIG.
14 are integrated. Then, the alumina sprayed layer 14A on the outer peripheral surface of the electrostatic chuck 12 is coated with and impregnated with the methacrylic resin raw material liquid, and the other alumina sprayed layer 14B is coated with and impregnated with, for example, a silicone resin raw material liquid. Another alumina sprayed layer 14B may be impregnated with the methacrylic resin raw material liquid.
【0023】その後、静電チャック層12からマスク材
を除去した後、グラインダを用いて静電チャック層12
及びアルミナ溶射層14を研磨処理して載置体11表面
を図6に示すように平滑に仕上げると共に載置体11の
周面も平滑に仕上げる。静電チャック層12表面の平面
度はRa0.2〜0.3に調整する。静電チャック層1
2の電極層12Bの上層側のアルミナ溶射層12Aは、
薄く形成することが好ましく、例えば250μm以下で
あればより好ましい。After removing the mask material from the electrostatic chuck layer 12, the electrostatic chuck layer 12 is grinded.
Further, the alumina sprayed layer 14 is polished to finish the surface of the mounting body 11 as shown in FIG. 6 and the peripheral surface of the mounting body 11 as well. The flatness of the surface of the electrostatic chuck layer 12 is adjusted to Ra 0.2 to 0.3. Electrostatic chuck layer 1
The alumina sprayed layer 12A on the upper side of the second electrode layer 12B is
The thickness is preferably thin, and more preferably 250 μm or less.
【0024】また、静電チャック層12の電極層12B
と直流電源17を接続する給電ピン16は、例えば図7
に示すように、アルミニウム、チタン、ステンレス等の
導電性材料からなるピン本体16Aと、このピン本体1
6Aを被覆するアルミナ溶射層等の絶縁層16Bとから
構成されている。この給電ピン16の先端(電極層12
Bとの接続部)は、同図に示すようにテーパ状に形成さ
れ、アルミナ溶射層の熱膨張によるストレスを緩和し、
この部分に起因するアルミナ溶射層の割れを防止する。
即ち、給電ピン16の先端をテーパ状に形成し、アルミ
ナ溶射層及び絶縁層16Bの厚みを薄くすることにより
アルミナ溶射層の弾性を向上させてアルミニウム基材と
の熱膨張差によるストレスのかかる部位のアルミナ溶射
層の割れを確実に防止することができる。Further, the electrode layer 12B of the electrostatic chuck layer 12
The power supply pin 16 that connects the DC power supply 17 with the
As shown in FIG. 1, the pin body 16A made of a conductive material such as aluminum, titanium, and stainless steel, and the pin body 1
6A, and an insulating layer 16B such as an alumina sprayed layer. The tip of the power supply pin 16 (electrode layer 12
The connection portion with B) is formed in a taper shape as shown in the figure, and relaxes the stress due to the thermal expansion of the alumina sprayed layer,
The cracking of the alumina sprayed layer due to this portion is prevented.
That is, the tip of the power supply pin 16 is formed in a tapered shape, and the thickness of the alumina sprayed layer and the insulating layer 16B is reduced to improve the elasticity of the alumina sprayed layer, and stress is exerted due to the difference in thermal expansion from the aluminum base material. It is possible to reliably prevent the cracking of the alumina sprayed layer.
【0025】例えば、アルミニウム基材の表面に、90
0μm、600μm、300μm、100μmの厚みの
アルミナ溶射層を形成し、アルミニウム基材を加熱して
何℃で溶射層に割れを発生するかを試験した。その結
果、アルミナ溶射層の厚さが900μmの場合には90
℃、600μmの場合には115℃、300μmの場合
には135℃で割れを発生したが、アルミナ照射層の厚
みを100μmの場合には180℃まで割れを発生する
ことがなかった。このようにアルミニウム基材の表面に
形成するアルミナ溶射層を薄くすることにより、アルミ
ナ溶射層の弾性が向上し、アルミニウム基材の熱膨張に
追随してアルミナ溶射層が伸縮し、アルミナ溶射層の割
れを抑制できたものと推定される。For example, on the surface of an aluminum base material, 90
An alumina sprayed layer having a thickness of 0 μm, 600 μm, 300 μm, and 100 μm was formed, and the aluminum base material was heated to test at what temperature the cracking occurred in the sprayed layer. As a result, when the thickness of the alumina sprayed layer is 900 μm, 90
Cracking occurred at 115 ° C. when the temperature was 600 μm, and 135 ° C. when the temperature was 300 μm, but no cracking occurred up to 180 ° C. when the thickness of the alumina irradiation layer was 100 μm. By thinning the alumina sprayed layer formed on the surface of the aluminum base material in this way, the elasticity of the alumina sprayed layer is improved, and the alumina sprayed layer expands and contracts in accordance with the thermal expansion of the aluminum base material. It is highly probable that cracking was suppressed.
【0026】次に、メタクリル樹脂12Dによるアルミ
ナ溶射層12Aの気孔の充填具合を確認するためにレッ
ドチェックを行った。また、従来のシリコーン樹脂につ
いても同様にレッドチェックを行い、メタクリル樹脂と
比較した。レッドチェックは、赤色染料を塗布し、表面
の染料を拭き取った後の赤色染料による着色の有無によ
って気孔の有無を確認する検査方法である。Next, a red check was conducted to confirm the filling condition of the pores of the alumina sprayed layer 12A with the methacrylic resin 12D. Further, the conventional silicone resin was also red-checked similarly and compared with the methacrylic resin. The red check is an inspection method in which a red dye is applied, and after the surface dye is wiped off, the presence or absence of pores is confirmed by the presence or absence of coloring by the red dye.
【0027】本実施形態の静電チャック層12は、上記
メタクリル樹脂原料液を3回含浸させて封孔処理がなさ
れたものである。この静電チャック層12についてレッ
ドチェックを行ったところ、表面に着色が認められなか
った。更に、その表面を75μm、100μm、150
μm、200μm、250μmの5段階で研磨し各段階
でのレッドチェックによる表面の着色の有無を調べた。
この結果、いずれの表面にも着色は認められなかった。
従って、本実施形態の静電チャック層12は少なくとも
250μm深さまでメタクリル樹脂12Dによって確実
に封孔処理されて気孔内がメタクリル樹脂12Dによっ
て充填され、封孔処理が確実に行われていることが確認
できた。The electrostatic chuck layer 12 of the present embodiment is obtained by impregnating the methacrylic resin raw material liquid three times and performing a sealing treatment. When a red check was performed on the electrostatic chuck layer 12, no coloring was recognized on the surface. Furthermore, the surface is 75 μm, 100 μm, 150
Polishing was performed in 5 stages of μm, 200 μm, and 250 μm, and the presence or absence of coloration on the surface was examined by red check at each stage.
As a result, no coloring was observed on any surface.
Therefore, it is confirmed that the electrostatic chuck layer 12 of the present embodiment is surely sealed with the methacrylic resin 12D to a depth of at least 250 μm and the pores are filled with the methacrylic resin 12D, so that the sealing treatment is surely performed. did it.
【0028】また、比較のためにシリコーン樹脂で5
回、10回、15回、20回の封孔処理を行った静電チ
ャック層を準備し、それぞれについてレッドチェックを
行った。この結果、処理回数が多いほど着色は薄くなる
ものの、いずれの静電チャック層も着色が認められた。
更に、封孔処理後の各静電チャック層を切断し、その断
面から赤色染料の浸透具合を調べた結果、表面の着色具
合と同様に含浸処理回数が多いほど断面の着色が薄くな
っていた。従って、シリコーン樹脂で封孔処理を行った
場合には、静電チャック層内に気孔が残っていることが
判った。For comparison, a silicone resin 5 was used.
The electrostatic chuck layer was subjected to the sealing treatment once, ten times, fifteen times, and twenty times, and a red check was performed for each. As a result, as the number of treatments increased, the coloring became lighter, but coloring was recognized in all the electrostatic chuck layers.
Furthermore, the electrostatic chuck layers after the sealing treatment were cut, and the degree of penetration of the red dye was examined from the cross section. As a result, the coloring of the cross section became lighter as the number of impregnation treatments increased, similar to the coloring of the surface. . Therefore, it was found that the pores remained in the electrostatic chuck layer when the sealing treatment was performed with the silicone resin.
【0029】次いで、本実施形態の載置装置10を用い
て所定の条件でウエハWにプラズマ処理を施し、高周波
電力の印加時間とウエハWの表面温度を求めた結果、図
7のに示すように高周波電力の印加時間が長くなって
もウエハWの表面温度が一定で低下しないことが判っ
た。つまり、静電チャック12内の封孔処理としてメタ
クリル樹脂を用いると、従来のようにアルミナ粒子間に
蒸発痕としての気孔を形成することがないため、高真空
領域下でのプラズマ処理において経時的なウエハ温度の
低下を防止することができる。特に、ウエハWの温度を
例えば100℃から120℃に切り替えて制御するプロ
セスでは熱伝導性ガスの供給圧力を例えば10〜40T
orrから5〜10Torrの低圧力に切り替えて設定
する場合であっても低圧の熱伝導性ガスがアルミナ溶射
層12Aのアルミナ粒子間に浸透することがなく、熱伝
導性ガスが無駄なくウエハWの裏面に十分に達するた
め、ウエハWの温度を高精度で制御することができる。Next, the wafer W is subjected to plasma processing under predetermined conditions using the mounting apparatus 10 of this embodiment, and the application time of the high frequency power and the surface temperature of the wafer W are obtained. As a result, as shown in FIG. It has been found that the surface temperature of the wafer W is constant and does not decrease even when the application time of the high frequency power is long. In other words, when methacrylic resin is used for the sealing treatment in the electrostatic chuck 12, pores as evaporation marks are not formed between alumina particles as in the conventional case, so that the plasma treatment in the high vacuum region is performed with time. It is possible to prevent a significant decrease in wafer temperature. Particularly, in the process of controlling the temperature of the wafer W by switching it from 100 ° C. to 120 ° C., for example, the supply pressure of the heat conductive gas is 10 to 40 T.
Even when the pressure is switched from orr to a low pressure of 5 to 10 Torr, the low-pressure thermally conductive gas does not permeate between the alumina particles of the alumina sprayed layer 12A, and the thermally conductive gas is not wasted on the wafer W. Since the back surface is sufficiently reached, the temperature of the wafer W can be controlled with high accuracy.
【0030】以上説明したように本実施形態によれば、
載置体11の載置面に静電チャック層12を形成し、次
いで、静電チャック層12のアルミナ溶射層12Aにメ
タクリル樹脂原料液を塗布して含浸させた後、メタクリ
ル樹脂原料液を硬化させて静電チャック層12のアルミ
ナ溶射層12A内の気孔を封孔処理したため、アルミナ
溶射層12A内の気孔をメタクリル樹脂12Dで充填す
ることができ、高真空領域下でウエハWの処理を長時間
行ってもウエハWの表面温度が低下せず、所定の温度で
安定したプラズマ処理を行うことができる。また、従来
では、アルミニウム基材とセラミック溶射膜との熱膨張
係数の違いにより静電チャックの吸着面の溶射膜が割れ
る虞があったため、載置装置を高温領域で用いる場合に
は制約があったが、本実施形態では載置体11を加熱し
アルミニウム基材を熱膨張させた状態でアルミナを溶射
するようにしているため、アルミニウム基材とセラミッ
ク溶射層12Aとの間の熱応力を緩和することができ、
載置装置10の耐熱温度を高めることができる。As described above, according to this embodiment,
After forming the electrostatic chuck layer 12 on the mounting surface of the mounting body 11, and then coating and impregnating the methacrylic resin raw material liquid on the alumina sprayed layer 12A of the electrostatic chuck layer 12, the methacrylic resin raw material liquid is cured. Since the pores in the alumina sprayed layer 12A of the electrostatic chuck layer 12 are sealed, the pores in the alumina sprayed layer 12A can be filled with the methacrylic resin 12D, and the processing of the wafer W in the high vacuum region is prolonged. The surface temperature of the wafer W does not decrease even after a long time, and stable plasma processing can be performed at a predetermined temperature. Further, in the past, there was a risk that the sprayed film on the adsorption surface of the electrostatic chuck would crack due to the difference in the thermal expansion coefficient between the aluminum base material and the ceramic sprayed film, so there are restrictions when using the mounting device in a high temperature region. However, in the present embodiment, since the mounting body 11 is heated to thermally spray the alumina in a state where the aluminum base material is thermally expanded, the thermal stress between the aluminum base material and the ceramic sprayed layer 12A is relaxed. You can
The heat resistant temperature of the mounting device 10 can be increased.
【0031】尚、本発明は上記実施形態に何等制限され
るものではない。要は希釈液としての有機溶媒を含まな
い硬化性樹脂を用いて静電チャック層内の気孔を封孔処
理した載置装置及びその製造方法並びにプラズマ処理装
置であれば、本発明に包含される。The present invention is not limited to the above embodiment. In short, the present invention includes a mounting device in which pores in the electrostatic chuck layer are sealed using a curable resin that does not contain an organic solvent as a diluting liquid, a manufacturing method thereof, and a plasma processing device. .
【0032】[0032]
【発明の効果】本発明の請求項1に〜請求項7記載の発
明によれば、経時的に被処理体の温度が低下する虞がな
く、常時安定した温度で被処理体を処理することができ
る載置装置及びその製造方法並びにプラズマ処理装置を
提供することができる。According to the first to seventh aspects of the present invention, there is no fear that the temperature of the object to be processed will decrease with time, and the object to be processed is always treated at a stable temperature. It is possible to provide a mounting apparatus capable of performing the above, a manufacturing method thereof, and a plasma processing apparatus.
【図1】本発明の載置装置の一実施形態を示す図で、
(a)はその断面図、(b)は(a)の静電チャック層
を概念的に示す断面図である。FIG. 1 is a view showing an embodiment of a mounting device of the present invention,
(A) is the sectional view, (b) is sectional drawing which shows the electrostatic chuck layer of (a) notionally.
【図2】図1に示す載置装置の製造工程を示す図で、載
置体の載置面に静電チャック層を構成するアルミナ溶射
層を形成した状態を示す断面図である。FIG. 2 is a cross-sectional view showing a manufacturing process of the mounting apparatus shown in FIG. 1, showing a state in which an alumina sprayed layer forming an electrostatic chuck layer is formed on a mounting surface of a mounting body.
【図3】図1に示す載置装置の製造工程を示す図で、静
電チャック層を構成する電極層を形成した状態を示す断
面図である。FIG. 3 is a cross-sectional view showing a manufacturing process of the mounting device shown in FIG. 1, showing a state in which an electrode layer constituting an electrostatic chuck layer is formed.
【図4】図1に示す載置装置の製造工程を示す図で、静
電チャック層を形成した状態を示す断面図である。FIG. 4 is a cross-sectional view showing a manufacturing process of the mounting device shown in FIG. 1, showing a state in which an electrostatic chuck layer is formed.
【図5】図1に示す載置装置の製造工程を示す図で、載
置体の外周面にアルミナ溶射層を形成した状態を示す断
面図である。5 is a view showing a manufacturing process of the mounting apparatus shown in FIG. 1, and a sectional view showing a state in which an alumina sprayed layer is formed on the outer peripheral surface of the mounting body.
【図6】図1に示す載置装置の製造工程を示す図で、ア
ルミナ溶射層を研磨処理した後の状態を示す断面図であ
る。6 is a cross-sectional view showing a manufacturing process of the mounting device shown in FIG. 1, showing a state after the alumina sprayed layer is subjected to a polishing treatment.
【図7】図1に示す載置装置の静電チャックと給電ピン
との接続部を拡大して示す断面図である。FIG. 7 is an enlarged cross-sectional view showing a connection portion between the electrostatic chuck and the power feeding pin of the mounting device shown in FIG.
【図8】図1に示す載置装置と従来の載置装置を用いて
ウエハにプラズマ処理を施した場合の高周波電力の印加
時間とウエハ温度との関係を示すグラフである。FIG. 8 is a graph showing a relationship between a high-frequency power application time and a wafer temperature when plasma processing is performed on a wafer using the mounting apparatus shown in FIG. 1 and a conventional mounting apparatus.
【図9】従来の載置装置の一例を示す図1相当図で、
(a)はその断面図、(b)は(a)の静電チャックの
アルミナ溶射層を概念的に示す断面図である。9 is a view corresponding to FIG. 1 showing an example of a conventional mounting device,
(A) is the sectional view, (b) is sectional drawing which shows notionally the alumina sprayed layer of the electrostatic chuck of (a).
【図10】図9に示す静電チャックのアルミナ溶射層の
一部を概念的に示す断面図で、(a)はその断面図、
(b)は(a)の静電チャックのアルミナ溶射層の表面
の一部が剥ぎ取られる様子を示す断面図である。10 is a sectional view conceptually showing a part of the alumina sprayed layer of the electrostatic chuck shown in FIG. 9, and FIG.
(B) is a sectional view showing a state where a part of the surface of the alumina sprayed layer of the electrostatic chuck of (a) is peeled off.
10 載置装置 11 載置体 12 静電チャック 12A アルミナ溶射層(セラミック溶射層) 12B 電極層 12D メタクリル樹脂 10 Placement device 11 Placement 12 Electrostatic chuck 12A Alumina sprayed layer (ceramic sprayed layer) 12B electrode layer 12D methacrylic resin
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡山 信幸 東京都港区赤坂五丁目3番6号 TBS放 送センター 東京エレクトロン株式会社内 Fターム(参考) 4K030 GA02 KA47 5F031 CA02 HA02 HA03 HA19 HA39 NA01 NA05 PA18 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Nobuyuki Okayama TBS release, 5-3-6 Akasaka, Minato-ku, Tokyo Sending Center Tokyo Electron Limited F-term (reference) 4K030 GA02 KA47 5F031 CA02 HA02 HA03 HA19 HA39 NA01 NA05 PA18
Claims (7)
体上に形成され且つ内部に電極層を有するセラミック溶
射層からなる静電チャック層を備え、プラズマ処理時に
上記静電チャック層で被処理体を吸着する載置装置であ
って、上記セラミック溶射層はメタクリル樹脂によって
封孔処理されてなることを特徴とする載置装置。1. A mounting body on which a target object is mounted, and an electrostatic chuck layer formed of a ceramic sprayed layer formed on the mounting body and having an electrode layer inside, the electrostatic chuck layer being provided during the plasma processing. A placing device for adsorbing a target object by a chuck layer, wherein the ceramic sprayed layer is subjected to sealing treatment with methacrylic resin.
ルを主成分とする樹脂原料液が硬化してなることを特徴
とする請求項1に記載の載置装置。2. The mounting apparatus according to claim 1, wherein the methacrylic resin is formed by curing a resin raw material liquid containing methyl methacrylate as a main component.
ム、窒化アルミニウム、窒化硅素及び酸化チタンの少な
くともいずれか一つからなることを特徴とする請求項1
または請求項2に記載の載置装置。3. The ceramic sprayed layer is made of at least one of aluminum oxide, aluminum nitride, silicon nitride and titanium oxide.
Alternatively, the mounting device according to claim 2.
載の載置装置を備えたことを特徴とするプラズマ処理装
置。4. A plasma processing apparatus comprising the mounting apparatus according to claim 1.
体上に形成され且つ内部に電極層を有するセラミック溶
射層からなる静電チャック層を備え、プラズマ処理時に
上記静電チャック層で被処理体を吸着する載置装置を製
造する方法であって、セラミック材料を溶射して上記載
置体の載置面に上記静電チャック層を形成する工程と、
上記静電チャック層にメタクリル樹脂原料液を含浸させ
る工程と、上記メタクリル樹脂原料液を硬化させる工程
とを備えたことを特徴とする載置装置の製造方法。5. An electrostatic chuck layer formed of a ceramic sprayed layer, which is formed on the mounting body and has an electrode layer inside, is provided on the mounting body on which the object to be processed is mounted. A method of manufacturing a mounting device for adsorbing a target object with a chuck layer, the method comprising spraying a ceramic material to form the electrostatic chuck layer on a mounting surface of the mounting body,
A method for manufacturing a mounting apparatus, comprising: a step of impregnating the methacrylic resin raw material liquid in the electrostatic chuck layer; and a step of curing the methacrylic resin raw material liquid.
溶射層を形成することを特徴とする請求項5に記載の載
置装置の製造方法。6. The method for manufacturing a mounting apparatus according to claim 5, wherein the ceramic sprayed layer is formed while the mounting body is heated.
空気を供給した状態でセラミック溶射層を形成すること
を特徴とする請求項5または請求項6に記載の載置装置
の製造方法。7. The method for manufacturing a mounting apparatus according to claim 5, wherein the ceramic sprayed layer is formed in a state in which compressed air is supplied to the gas passage provided in the mounting body. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002142168A JP2003045952A (en) | 2001-05-25 | 2002-05-16 | Holding apparatus, method of manufacturing same, and plasma processing apparatus |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001156489 | 2001-05-25 | ||
JP2001-156489 | 2001-05-25 | ||
JP2002142168A JP2003045952A (en) | 2001-05-25 | 2002-05-16 | Holding apparatus, method of manufacturing same, and plasma processing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003045952A true JP2003045952A (en) | 2003-02-14 |
JP2003045952A5 JP2003045952A5 (en) | 2005-09-15 |
Family
ID=26615694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002142168A Pending JP2003045952A (en) | 2001-05-25 | 2002-05-16 | Holding apparatus, method of manufacturing same, and plasma processing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003045952A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005057234A (en) * | 2003-07-24 | 2005-03-03 | Kyocera Corp | Electrostatic chuck |
JP2007005740A (en) * | 2005-06-23 | 2007-01-11 | Creative Technology:Kk | Structure of electrostatic chuck potential supply unit and method for manufacturing and regenerating the same |
KR100697557B1 (en) * | 2005-02-24 | 2007-03-21 | 주식회사 에이디피엔지니어링 | Plasma treatment device and temperature control plate manufacturing method |
CN1310285C (en) * | 2003-05-12 | 2007-04-11 | 东京毅力科创株式会社 | Processing device |
JP2007194616A (en) * | 2005-12-22 | 2007-08-02 | Kyocera Corp | Susceptor and wafer processing method using the same |
KR100802670B1 (en) * | 2003-10-31 | 2008-02-12 | 동경 엘렉트론 주식회사 | Electrostatic adsorption apparatus, plasma processing apparatus and plasma processing method |
US7837828B2 (en) | 2003-03-12 | 2010-11-23 | Tokyo Electron Limited | Substrate supporting structure for semiconductor processing, and plasma processing device |
JP2012500498A (en) * | 2008-08-19 | 2012-01-05 | ラム リサーチ コーポレーション | Edge ring for electrostatic chuck |
WO2017010307A1 (en) * | 2015-07-13 | 2017-01-19 | 住友電気工業株式会社 | Wafer holding body |
WO2021049342A1 (en) * | 2019-09-11 | 2021-03-18 | 株式会社クリエイティブテクノロジー | Attachment/detachment device |
KR20220010172A (en) * | 2020-07-17 | 2022-01-25 | 와이엠씨 주식회사 | Sealing method of dielectric of electrostatic chuck |
KR20220093089A (en) * | 2020-12-24 | 2022-07-05 | 도카로 가부시키가이샤 | Electrostatic chucks and processing devices |
JP2022154714A (en) * | 2021-03-30 | 2022-10-13 | 東京エレクトロン株式会社 | Polishing method for substrate placing base and substrate processing device |
CN115295459A (en) * | 2022-08-26 | 2022-11-04 | 苏州众芯联电子材料有限公司 | Electrostatic chuck heating member manufacturing process, electrostatic chuck manufacturing process, and electrostatic chuck |
JP2023105611A (en) * | 2022-01-19 | 2023-07-31 | 日本特殊陶業株式会社 | Retainer and manufacturing method of retainer |
-
2002
- 2002-05-16 JP JP2002142168A patent/JP2003045952A/en active Pending
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7837828B2 (en) | 2003-03-12 | 2010-11-23 | Tokyo Electron Limited | Substrate supporting structure for semiconductor processing, and plasma processing device |
CN1310285C (en) * | 2003-05-12 | 2007-04-11 | 东京毅力科创株式会社 | Processing device |
JP2005057234A (en) * | 2003-07-24 | 2005-03-03 | Kyocera Corp | Electrostatic chuck |
KR100802670B1 (en) * | 2003-10-31 | 2008-02-12 | 동경 엘렉트론 주식회사 | Electrostatic adsorption apparatus, plasma processing apparatus and plasma processing method |
KR100697557B1 (en) * | 2005-02-24 | 2007-03-21 | 주식회사 에이디피엔지니어링 | Plasma treatment device and temperature control plate manufacturing method |
JP2007005740A (en) * | 2005-06-23 | 2007-01-11 | Creative Technology:Kk | Structure of electrostatic chuck potential supply unit and method for manufacturing and regenerating the same |
JP2007194616A (en) * | 2005-12-22 | 2007-08-02 | Kyocera Corp | Susceptor and wafer processing method using the same |
KR101573962B1 (en) * | 2008-08-19 | 2015-12-02 | 램 리써치 코포레이션 | Edge rings for electrostatic chucks |
JP2012500498A (en) * | 2008-08-19 | 2012-01-05 | ラム リサーチ コーポレーション | Edge ring for electrostatic chuck |
WO2017010307A1 (en) * | 2015-07-13 | 2017-01-19 | 住友電気工業株式会社 | Wafer holding body |
JP2017022284A (en) * | 2015-07-13 | 2017-01-26 | 住友電気工業株式会社 | Wafer holder |
US10886157B2 (en) | 2015-07-13 | 2021-01-05 | Sumitomo Electric Industries, Ltd. | Wafer holding unit |
US12033880B2 (en) | 2015-07-13 | 2024-07-09 | Sumitomo Electric Industries, Ltd. | Wafer holding body |
US11911863B2 (en) | 2019-09-11 | 2024-02-27 | Creative Technology Corporation | Attachment and detachment device |
WO2021049342A1 (en) * | 2019-09-11 | 2021-03-18 | 株式会社クリエイティブテクノロジー | Attachment/detachment device |
JPWO2021049342A1 (en) * | 2019-09-11 | 2021-09-27 | 株式会社クリエイティブテクノロジー | Detachable device |
KR20220020366A (en) * | 2019-09-11 | 2022-02-18 | 가부시키가이샤 크리에이티브 테크놀러지 | detachment device |
KR102698029B1 (en) * | 2019-09-11 | 2024-08-22 | 가부시키가이샤 크리에이티브 테크놀러지 | Detachment device |
JP7078826B2 (en) | 2019-09-11 | 2022-06-01 | 株式会社クリエイティブテクノロジー | Detachable device |
KR20220010172A (en) * | 2020-07-17 | 2022-01-25 | 와이엠씨 주식회사 | Sealing method of dielectric of electrostatic chuck |
KR102387231B1 (en) | 2020-07-17 | 2022-04-15 | 와이엠씨 주식회사 | Sealing method of dielectric of electrostatic chuck |
KR102626584B1 (en) | 2020-12-24 | 2024-01-18 | 도카로 가부시키가이샤 | Electrostatic chucks and handling devices |
KR20220093089A (en) * | 2020-12-24 | 2022-07-05 | 도카로 가부시키가이샤 | Electrostatic chucks and processing devices |
JP2022154714A (en) * | 2021-03-30 | 2022-10-13 | 東京エレクトロン株式会社 | Polishing method for substrate placing base and substrate processing device |
JP7619862B2 (en) | 2021-03-30 | 2025-01-22 | 東京エレクトロン株式会社 | Method for polishing substrate placement table and substrate processing apparatus |
JP2023105611A (en) * | 2022-01-19 | 2023-07-31 | 日本特殊陶業株式会社 | Retainer and manufacturing method of retainer |
JP7698590B2 (en) | 2022-01-19 | 2025-06-25 | 日本特殊陶業株式会社 | Holding device and method for manufacturing the same |
CN115295459A (en) * | 2022-08-26 | 2022-11-04 | 苏州众芯联电子材料有限公司 | Electrostatic chuck heating member manufacturing process, electrostatic chuck manufacturing process, and electrostatic chuck |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100743277B1 (en) | Substrate table, manufacturing method thereof and plasma processing apparatus | |
JP2003045952A (en) | Holding apparatus, method of manufacturing same, and plasma processing apparatus | |
JP5633766B2 (en) | Electrostatic chuck | |
CN100375262C (en) | Substrate support plate and method for peeling support plate | |
US8542474B2 (en) | Electrostatic chuck | |
JP5619486B2 (en) | Focus ring, manufacturing method thereof, and plasma processing apparatus | |
US20020014661A1 (en) | Method of manufacturing semiconductor devices by dividing wafer into chips and such semiconductor devices | |
JP2003338492A (en) | Plasma processing system | |
CN111312658B (en) | Wafer processing method | |
JP2023021622A (en) | Electrostatic chuck, substrate fixing device | |
KR102588785B1 (en) | Manufacturing method of semiconductor device | |
JP2020031174A (en) | Manufacturing method of element chip | |
JP7106382B2 (en) | Wafer processing method | |
US11219929B2 (en) | Element chip cleaning method, element chip cleaning apparatus, and element chip manufacturing method | |
KR102182699B1 (en) | Internal member applying plasma treatment apparatus and method for manufacturing the same | |
JP7054813B2 (en) | Method of manufacturing element chips | |
KR102796742B1 (en) | Method of manufacturing an electrostatic chuck | |
CN107579042A (en) | Wafer processing method | |
JP7214309B2 (en) | Wafer processing method | |
JP2020061494A (en) | Wafer processing method | |
JP2024038907A (en) | Wafer processing method | |
WO2025115864A1 (en) | Method for producing corrosion-resistant coating film and method for producing electrostatic chuck device | |
JP2023029071A (en) | Wafer processing method | |
JP2002254267A (en) | Auxiliary plate for vacuum adsorption work | |
JP2006015288A (en) | Coating machine and coating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050329 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050329 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080624 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081028 |