[go: up one dir, main page]

JP7619862B2 - Method for polishing substrate placement table and substrate processing apparatus - Google Patents

Method for polishing substrate placement table and substrate processing apparatus Download PDF

Info

Publication number
JP7619862B2
JP7619862B2 JP2021057884A JP2021057884A JP7619862B2 JP 7619862 B2 JP7619862 B2 JP 7619862B2 JP 2021057884 A JP2021057884 A JP 2021057884A JP 2021057884 A JP2021057884 A JP 2021057884A JP 7619862 B2 JP7619862 B2 JP 7619862B2
Authority
JP
Japan
Prior art keywords
substrate
substrate mounting
sprayed film
impregnation
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021057884A
Other languages
Japanese (ja)
Other versions
JP2022154714A (en
Inventor
雅人 南
芳彦 佐々木
篤 邊見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2021057884A priority Critical patent/JP7619862B2/en
Priority to KR1020220032471A priority patent/KR102751920B1/en
Priority to TW111110284A priority patent/TW202303830A/en
Priority to CN202210293100.2A priority patent/CN115213808B/en
Priority to CN202510115996.9A priority patent/CN120002541A/en
Publication of JP2022154714A publication Critical patent/JP2022154714A/en
Priority to JP2025003586A priority patent/JP2025061168A/en
Application granted granted Critical
Publication of JP7619862B2 publication Critical patent/JP7619862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/34Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/02Equipment for cooling the grinding surfaces, e.g. devices for feeding coolant
    • B24B55/03Equipment for cooling the grinding surfaces, e.g. devices for feeding coolant designed as a complete equipment for feeding or clarifying coolant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/228Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding thin, brittle parts, e.g. semiconductors, wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本開示は、基板載置台の研磨方法及び基板処理装置に関する。 This disclosure relates to a polishing method for a substrate placement table and a substrate processing apparatus.

特許文献1には、絶縁膜によって形成された基板載置面に粗化部とその周囲に設けられた平滑部とを有する基板載置台やその製造方法が開示されている。かかる基板載置台では、基板に傷をつけることなく、エッチング斑の発生を効果的に抑制できる。 Patent Document 1 discloses a substrate mounting table having a roughened portion on the substrate mounting surface formed of an insulating film and a smooth portion provided around the roughened portion, and a method for manufacturing the same. With such a substrate mounting table, the occurrence of etching spots can be effectively suppressed without damaging the substrate.

特開2011-119326号公報JP 2011-119326 A

本開示にかかる技術は、基板載置台の加工時に切削負荷の影響で加工ツールが傾くことで生じる加工ミスマッチに伴う段差の発生を抑え、エッチング斑の発生を抑制する。 The technology disclosed herein reduces the occurrence of steps due to processing mismatches that occur when the processing tool tilts due to the effect of cutting load during processing of the substrate mounting table, thereby suppressing the occurrence of etching spots.

本開示の一態様は、基材と、前記基材上に設けられた下層溶射膜と電極層上に設けられた上層溶射膜と、を備えた基板載置台の上面である基板載置面を研磨する研磨方法であって、前記溶射膜に対し含浸剤による含浸処理を施す工程と、前記基板載置面に対し研削加工による平坦化処理を施す工程と、前記基板載置面の周縁部をマスクし、前記基板載置面の周縁部を除く中央部に対し粗面化処理を施す工程と、を有し、前記含浸処理は、前記溶射膜に対し、第1の含浸剤と、前記第1の含浸剤とは充填率の異なる第2の含浸剤のうち少なくとも一つを選択して行われ、前記第2の含浸剤の充填率は前記第1の含浸剤の充填率より高く、前記平坦化処理は、前記第2の含浸剤による含浸処理が行われた後、前記基板載置面の周縁部のみに形成させた土手溶射膜に対し行われる One aspect of the present disclosure is a polishing method for polishing a substrate mounting surface, which is an upper surface of a substrate mounting table having a base, a lower layer sprayed film provided on the base, and an upper layer sprayed film provided on an electrode layer, the method comprising the steps of: performing an impregnation treatment on the sprayed film with an impregnation agent; performing a planarization treatment on the substrate mounting surface by grinding; and performing a surface roughening treatment on a central portion of the substrate mounting surface excluding the peripheral portion , wherein the impregnation treatment is performed on the sprayed film by selecting at least one of a first impregnation agent and a second impregnation agent having a filling rate different from that of the first impregnation agent, the filling rate of the second impregnation agent being higher than the filling rate of the first impregnation agent, and the planarization treatment is performed on a bank sprayed film formed only on the peripheral portion of the substrate mounting surface after the impregnation treatment with the second impregnation agent has been performed .

本開示によれば、基板載置台の加工時に切削負荷の影響で加工ツールが傾くことで生じる加工ミスマッチに伴う段差の発生を抑え、エッチング斑の発生を抑制することができる。 According to the present disclosure, it is possible to suppress the occurrence of steps due to processing mismatches caused by tilting of the processing tool due to the effect of cutting load during processing of the substrate placement table, thereby suppressing the occurrence of etching spots.

加工ミスマッチに関する説明図である。FIG. 11 is an explanatory diagram regarding processing mismatch. 本実施形態にかかるプラズマ処理装置の構成の概略を示す縦断面図である。1 is a vertical cross-sectional view showing an outline of a configuration of a plasma processing apparatus according to an embodiment of the present invention. 本実施形態にかかるプラズマ処理装置の構成の概略を示す横断面図である。1 is a cross-sectional view showing an outline of the configuration of a plasma processing apparatus according to an embodiment of the present invention. 本実施形態にかかる載置台の研磨方法についての説明図である。5A to 5C are explanatory diagrams of a polishing method for a mounting table according to the present embodiment. 第1の他実施形態にかかる載置台の研磨方法についての説明図である。10A to 10C are explanatory diagrams of a polishing method for a mounting table according to a first alternative embodiment. 第2の他実施形態にかかる載置台の研磨方法についての説明図である。11A to 11C are explanatory diagrams of a polishing method for a mounting table according to a second alternative embodiment.

プラズマパネルディスプレイ(FPD)の製造工程では、被処理体である基板に対してプラズマエッチング処理が行われる。プラズマエッチング処理では、例えば一対の平行平板電極(上部電極及び下部電極)を配置した処理容器内で、下部電極として機能する基板載置台に基板を載置し、電極の少なくとも一方に高周波電力を印加して電極間に高周波電界を形成する。この高周波電界により処理ガスのプラズマを形成し、プラズマによって基板上の材料膜をエッチング処理する。プラズマエッチング処理を繰り返し行うと、エッチング生成物が生じ、これが基板載置台の表面に付着して蓄積する場合がある。その場合、基板載置台表面において、付着物の存在により、基板裏面と基板載置台表面との間に付着物が介在する領域が生じ、付着物が存在しない領域との間で熱伝導性や導電性に差異が生じる。これにより、基板の面内でエッチングレートの高い部分と低い部分とが形成され、エッチング斑と呼ばれるムラが生じる。 In the manufacturing process of plasma panel displays (FPDs), plasma etching is performed on a substrate, which is the object to be processed. In plasma etching, for example, a substrate is placed on a substrate placement table that functions as a lower electrode in a processing vessel in which a pair of parallel plate electrodes (upper electrode and lower electrode) are arranged, and high-frequency power is applied to at least one of the electrodes to form a high-frequency electric field between the electrodes. This high-frequency electric field forms a plasma of the processing gas, and the material film on the substrate is etched by the plasma. When plasma etching is performed repeatedly, etching products are generated, which may adhere to and accumulate on the surface of the substrate placement table. In such a case, due to the presence of the adhesion, a region where the adhesion is present between the back surface of the substrate and the surface of the substrate placement table is generated on the surface of the substrate placement table, and a difference in thermal conductivity and electrical conductivity occurs between the region where the adhesion is not present. As a result, areas with high and low etching rates are formed within the surface of the substrate, resulting in unevenness called etching spots.

近年、FPDの製造装置において、フレキシブル向けのパネル生産が増え、パネルの表示斑に関する顧客要求が厳しくなっている。そのため、基板載置台(下部電極)の表面に溶射された溶射膜(絶縁膜)の表面をより好適な形状(例えばマクロでは平坦且つミクロでは粗面)に加工や研磨する必要がある。特許文献1には、基板載置台の表面に形成された絶縁膜に対し、当該絶縁膜を平滑化処理し、その後、当該絶縁膜の内側部分のみにブラスト処理を施して粗化部を形成し、周囲を平滑部とする構成が開示されている。 In recent years, the production of flexible panels has increased in FPD manufacturing equipment, and customer requirements regarding display unevenness of panels have become stricter. Therefore, it is necessary to process and polish the surface of the sprayed film (insulating film) sprayed on the surface of the substrate mounting table (lower electrode) into a more suitable shape (for example, flat on the macro scale and rough on the micro scale). Patent Document 1 discloses a configuration in which an insulating film formed on the surface of a substrate mounting table is smoothed, and then only the inner part of the insulating film is blasted to form a roughened portion, leaving the surrounding area smooth.

従来技術において、基板載置台表面の溶射膜の加工方法としては、加工ツールを用いたマシニング加工が知られている。マシニング加工では、加工時に切削負荷の影響で加工ツールが傾き、表面に段差が形成されてしまう、いわゆる加工ミスマッチが懸念される。図1は加工ミスマッチに関する説明図である。図1(a)に示すように、加工ツール200による切削時には、切削抵抗によって加工ツールが傾き、それにより基板載置台202の表面に微細な段差203が形成されてしまう。そして、図1(b)に示すように、エッチング生成物204が、基板載置台202の表面に段差203が形成された状態で付着すると、段差に起因する基板の位置に応じた熱伝達の違い(図中の大小の矢印参照)により、温度差(温度ムラ)が発生し、エッチング斑が生じる恐れがある。 In the prior art, machining using a processing tool is known as a method for processing a sprayed film on the surface of a substrate mounting table. In machining, the processing tool tilts due to the effect of cutting load during processing, and a step is formed on the surface, which is called a processing mismatch, is a concern. Figure 1 is an explanatory diagram of processing mismatch. As shown in Figure 1 (a), when cutting with a processing tool 200, the processing tool tilts due to cutting resistance, which causes a fine step 203 to be formed on the surface of the substrate mounting table 202. Then, as shown in Figure 1 (b), if an etching product 204 adheres to the surface of the substrate mounting table 202 with the step 203 formed on it, a temperature difference (temperature unevenness) will occur due to the difference in heat transfer depending on the position of the substrate caused by the step (see the large and small arrows in the figure), and etching spots may occur.

そこで、本開示にかかる技術は、基板載置台の表面研磨において、加工ツールを用いたマシニング加工に伴う加工ミスマッチの発生を抑制させ、エッチング斑の発生を効果的に防止することが可能な基板載置台を実現する。 The technology disclosed herein suppresses the occurrence of processing mismatches that occur during machining using a processing tool when polishing the surface of a substrate mounting table, and realizes a substrate mounting table that can effectively prevent the occurrence of etching spots.

以下、本実施形態にかかる基板載置台を備えたプラズマ処理装置の構成について、図面を参照しながら説明する。なお、本明細書において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 The configuration of a plasma processing apparatus equipped with a substrate mounting table according to this embodiment will be described below with reference to the drawings. Note that in this specification, elements having substantially the same functional configuration will be assigned the same reference numerals to avoid redundant description.

<プラズマ処理装置>
図2及び図3はそれぞれ、本実施形態にかかるプラズマ処理装置の構成の概略を示す縦断面図及び横断面図である。
<Plasma Processing Apparatus>
2 and 3 are a vertical sectional view and a horizontal sectional view, respectively, showing the outline of the configuration of the plasma processing apparatus according to this embodiment.

図2のプラズマ処理装置1は、基板としての、矩形のガラス基板G(以下、「基板G」という)に対し、処理ガスのプラズマを用いた基板処理、即ち、プラズマ処理を行う。プラズマ処理装置1が行うプラズマ処理は、例えばFPD用の成膜処理、エッチング処理、アッシング処理等である。これらの処理により、基板G上に、発光素子や発光素子の駆動回路などの電子デバイスが形成される。 The plasma processing apparatus 1 in FIG. 2 performs substrate processing, i.e., plasma processing, using plasma of a processing gas on a rectangular glass substrate G (hereinafter referred to as "substrate G") as a substrate. The plasma processing performed by the plasma processing apparatus 1 includes, for example, film formation processing for FPDs, etching processing, ashing processing, etc. Through these processes, electronic devices such as light-emitting elements and driving circuits for the light-emitting elements are formed on the substrate G.

プラズマ処理装置1は、有底の角筒形状の容器本体10を備える。容器本体10は、導電性材料、例えばアルミニウムから形成され、電気的に接地されている。プラズマ処理にはしばしば腐食性のガスが用いられるため、容器本体10の内壁面は、耐腐食性を向上させる目的で、陽極酸化処理等の耐腐食コーティング処理が施されている。また、容器本体10の上面には開口が形成されている。この開口は、容器本体10と絶縁されて設けられた矩形状の金属窓20によって気密に塞がれ、具体的には、金属窓20及び後述の金属枠14によって気密に塞がれる。容器本体10及び金属窓20によって囲まれた空間は、プラズマ処理の処理対象の基板Gがプラズマ処理時に位置する処理空間S1となり、金属窓20の上方側の空間は、後述の高周波アンテナ(プラズマアンテナ)90が配置されるアンテナ室S2となる。容器本体10のX方向負側(図2の左側)の側壁には、処理空間S1内に基板Gを搬入出するための搬入出口11及び搬入出口11を開閉するゲートバルブ12が設けられている。 The plasma processing apparatus 1 includes a container body 10 having a bottom and a rectangular cylindrical shape. The container body 10 is made of a conductive material, such as aluminum, and is electrically grounded. Since corrosive gases are often used in plasma processing, the inner wall surface of the container body 10 is subjected to a corrosion-resistant coating treatment such as anodizing treatment in order to improve corrosion resistance. In addition, an opening is formed on the upper surface of the container body 10. This opening is airtightly sealed by a rectangular metal window 20 that is insulated from the container body 10, specifically, by the metal window 20 and a metal frame 14 described later. The space surrounded by the container body 10 and the metal window 20 becomes a processing space S1 in which a substrate G to be processed in plasma processing is located during plasma processing, and the space above the metal window 20 becomes an antenna chamber S2 in which a high-frequency antenna (plasma antenna) 90 described later is arranged. A loading/unloading port 11 for loading/unloading the substrate G into/out of the processing space S1 and a gate valve 12 for opening/closing the loading/unloading port 11 are provided on the side wall of the container body 10 on the negative side in the X direction (the left side in FIG. 2).

容器本体10の底壁10a上には、金属窓20と対向するように、基板Gが載置される基板載置台(以下、単に載置台とも記載)30が設けられている。載置台30は例えば平面視矩形状に形成されている。載置台30は、その上面が基板Gの載置面となる台本体31を有する。台本体31の下部には導電性材料、例えばアルミニウムもしくはアルミニウム合金から形成される基材36が設けられている。基材36は、絶縁材料からなる絶縁部材32上に載置されており、台本体31が基材36及び絶縁部材32を介して容器本体10の底壁10a上に設置されている。 On the bottom wall 10a of the container body 10, a substrate mounting table (hereinafter also simply referred to as the mounting table) 30 on which the substrate G is mounted is provided so as to face the metal window 20. The mounting table 30 is formed, for example, in a rectangular shape in a plan view. The mounting table 30 has a table body 31, the upper surface of which serves as the mounting surface for the substrate G. A base material 36 made of a conductive material, for example aluminum or an aluminum alloy, is provided on the lower part of the table body 31. The base material 36 is placed on an insulating member 32 made of an insulating material, and the table body 31 is installed on the bottom wall 10a of the container body 10 via the base material 36 and the insulating member 32.

基材36の下面には、給電部材44が接続されている。給電部材44は、整合器40を介して、バイアス電源である高周波電源41が接続されている。高周波電源41は、バイアス用の高周波電力、例えば周波数が3.2MHzの高周波電力を台本体31に供給する。これにより、RFバイアスが発生し、処理空間S1内に生成されたプラズマ中のイオンを基板Gに引き込むことができる。このように、載置台30は、RFバイアスを発生させるバイアス電極を形成する。 A power supply member 44 is connected to the underside of the substrate 36. A high frequency power supply 41, which is a bias power supply, is connected to the power supply member 44 via a matching unit 40. The high frequency power supply 41 supplies high frequency power for bias, for example, high frequency power with a frequency of 3.2 MHz, to the table body 31. This generates an RF bias, and ions in the plasma generated in the processing space S1 can be attracted to the substrate G. In this way, the mounting table 30 forms a bias electrode that generates an RF bias.

図2に示すように、台本体31、基材36の外周部と、絶縁部材32の上部により段部が形成され、その段部上には矩形状のフォーカスリング37が形成されている。フォーカスリング37は、アルミナ等のセラミックスから形成される。台本体31の上面に基板Gが載置される状態において、フォーカスリング36の上面の載置台側の端部は、基板Gの外周縁部に覆われる。 As shown in FIG. 2, a step is formed by the table body 31, the outer periphery of the base material 36, and the upper part of the insulating member 32, and a rectangular focus ring 37 is formed on the step. The focus ring 37 is made of ceramics such as alumina. When the substrate G is placed on the upper surface of the table body 31, the end of the upper surface of the focus ring 36 on the side of the table is covered by the outer periphery of the substrate G.

基材36には、平面の全領域をカバーするように蛇行した温調媒体流路47aが設けられている。温調媒体流路47aの両端には、温調媒体流路47aに対して温調媒体が供給される送り配管47bと、温調媒体流路47aを流通して昇温された温調媒体が排出される戻り配管47cとが連通している。図2に示すように、送り配管47bと戻り配管47cにはそれぞれ、送り流路51と戻り流路52が連通しており、送り流路51と戻り流路52はチラー50に連通している。チラー50は、温調媒体の温度や吐出流量を制御する本体部と、温調媒体を圧送するポンプとを有する(いずれも図示せず)。尚、温調媒体としては冷媒が適用され、この冷媒には、ガルデン(登録商標)やフロリナート(登録商標)等が適用される。図示例の温調形態は、基材36に温調媒体を流通させる形態であるが、基材36がヒータ等を内蔵し、ヒータにより温調する形態であってもよいし、温調媒体とヒータの双方により温調する形態であってもよい。また、ヒータの代わりに、高温の温調媒体を流通させることにより加熱を伴う温調を行ってもよい。尚、抵抗体であるヒータは、タングステンやモリブデン、もしくはこれらの金属のいずれか一種とアルミナやチタン等との化合物から形成される。また、図示例は、基材36に温調媒体流路47aが形成されているが、例えば台本体31が温調媒体流路を有していてもよい。 The substrate 36 is provided with a temperature control medium flow path 47a that is serpentine so as to cover the entire area of the plane. At both ends of the temperature control medium flow path 47a, a feed pipe 47b through which the temperature control medium is supplied to the temperature control medium flow path 47a and a return pipe 47c through which the temperature control medium that has been heated by flowing through the temperature control medium flow path 47a is discharged are connected. As shown in FIG. 2, the feed pipe 47b and the return pipe 47c are connected to a feed flow path 51 and a return flow path 52, respectively, and the feed flow path 51 and the return flow path 52 are connected to a chiller 50. The chiller 50 has a main body that controls the temperature and discharge flow rate of the temperature control medium, and a pump that pressure-feeds the temperature control medium (both not shown). In addition, a refrigerant is used as the temperature control medium, and Galden (registered trademark) or Fluorinert (registered trademark) is used as the refrigerant. The illustrated example shows a temperature control form in which a temperature control medium is circulated through the substrate 36, but the substrate 36 may have a built-in heater or the like and the temperature may be controlled by the heater, or the temperature may be controlled by both the temperature control medium and the heater. Also, instead of a heater, temperature control involving heating may be performed by circulating a high-temperature temperature control medium. The heater, which is a resistor, is made of tungsten or molybdenum, or a compound of one of these metals with alumina, titanium, or the like. Also, in the illustrated example, the temperature control medium flow path 47a is formed in the substrate 36, but for example, the table body 31 may have a temperature control medium flow path.

台本体31は、誘電体材料、例えばアルミナ等のセラミックスから形成される下層溶射膜33と、下層溶射膜33の上に設けられた上層溶射膜34とを備えている。上層溶射膜34は、例えばアルミナ等のセラミックスや金属-セラミックス複合体を溶射する溶射法によって形成される。上層溶射膜34の上面は、基板Gを載置する基板載置面35となっている。基板載置面35は、例えば表面粗さRaが1μm以上6μm以下の粗い表面を有する粗化部35aと、粗化部35aの周囲を囲む表面粗さRaが2μm未満の平滑部35bとを有している。即ち、基板載置面35は中央部としての粗化部35a(以下、中央部とも記載)と、周縁部としての平滑部35b(以下、周縁部とも記載)から構成される。 The table body 31 includes a lower sprayed film 33 formed of a dielectric material, for example, a ceramic such as alumina, and an upper sprayed film 34 provided on the lower sprayed film 33. The upper sprayed film 34 is formed by a spraying method in which a ceramic such as alumina or a metal-ceramic composite is sprayed. The upper surface of the upper sprayed film 34 is a substrate mounting surface 35 on which a substrate G is placed. The substrate mounting surface 35 has a roughened portion 35a having a rough surface with a surface roughness Ra of 1 μm or more and 6 μm or less, and a smooth portion 35b surrounding the roughened portion 35a and having a surface roughness Ra of less than 2 μm. That is, the substrate mounting surface 35 is composed of the roughened portion 35a (hereinafter also referred to as the central portion) as a central portion, and the smooth portion 35b (hereinafter also referred to as the peripheral portion) as a peripheral portion.

粗化部35aは微細な凹凸を有しており、その凸部において基板Gと多点で接触することで、基板Gの裏面に傷をつけることなく支持する構成となっている。さらに、粗化部35a上にエッチング生成物が付着する場合においても、表面の凹部内にエッチング生成物をトラップすることができる構成となっている。平滑部35bは、載置台30に基板Gを載置した際に、基板Gの周縁部の裏面が平滑部35bの表面に密着することで、安定して載置台30に基板Gを載置させておくことができる。このような構成により、基板Gと上層溶射膜34の粗化部35aとの間には密閉空間を形成することが可能となり、特に伝熱ガスを基板Gの裏面に供給して温度制御を行う場合に、伝熱ガスを基板Gの裏面側に閉じ込めることができるため、伝熱効率の向上が図られる。 The roughened portion 35a has fine projections and recesses, and the projections contact the substrate G at multiple points, thereby supporting the substrate G without scratching the rear surface. Furthermore, even if etching products adhere to the roughened portion 35a, the etching products can be trapped in the recesses on the surface. When the substrate G is placed on the mounting table 30, the rear surface of the peripheral portion of the substrate G is in close contact with the surface of the smooth portion 35b, so that the substrate G can be stably placed on the mounting table 30. With this configuration, it is possible to form an enclosed space between the substrate G and the roughened portion 35a of the upper sprayed film 34, and in particular when a heat transfer gas is supplied to the rear surface of the substrate G to control the temperature, the heat transfer gas can be confined to the rear surface of the substrate G, improving the heat transfer efficiency.

なお、表面粗さRaは、JIS B0601-1994に規定されている算術平均粗さを意味し、粗さ曲線からその平均線の方向に基準長さを決め、この基準長さ内で平均線から測定された粗さ曲線までの偏差の絶対値を合計し、平均した値をマイクロメートル(μm)で表したものをいう。 The surface roughness Ra refers to the arithmetic mean roughness as defined in JIS B0601-1994, which is calculated by determining a reference length from the roughness curve in the direction of the mean line, adding up the absolute values of the deviations from the mean line to the roughness curve measured within this reference length, and expressing the average value in micrometers (μm).

また、台本体31には、基板Gを吸着保持する静電チャックを構成する電極層31aが設けられている。この電極層31aには、給電線45を介して直流電源46が接続されている。直流電源46から電極層31aに直流電圧が印加されることによりクーロン力が発生し、このクーロン力により、基板Gが台本体31に載置された状態で保持される。 The table body 31 is provided with an electrode layer 31a that constitutes an electrostatic chuck that attracts and holds the substrate G. A DC power supply 46 is connected to the electrode layer 31a via a power supply line 45. A Coulomb force is generated by applying a DC voltage from the DC power supply 46 to the electrode layer 31a, and the substrate G is held in a state in which it is placed on the table body 31 by this Coulomb force.

また、容器本体10の底壁10aには、排気口13が形成されている。排気口13は、平面視矩形状の載置台30の各辺に、当該辺に沿って複数設けられている。排気口13には、図2に示すように、真空ポンプ等を有する排気部60が接続されている。処理空間S1は、この排気部60によって減圧される。排気部60は、複数の排気口13のそれぞれに設けられてもよいし、複数の排気口13に共通に設けられてもよい。 In addition, exhaust ports 13 are formed in the bottom wall 10a of the container body 10. A plurality of exhaust ports 13 are provided along each side of the mounting table 30, which is rectangular in plan view. As shown in FIG. 2, an exhaust unit 60 having a vacuum pump or the like is connected to the exhaust ports 13. The processing space S1 is depressurized by this exhaust unit 60. The exhaust unit 60 may be provided for each of the plurality of exhaust ports 13, or may be provided in common to the plurality of exhaust ports 13.

容器本体10の側壁の上面側には、アルミニウム等の金属材料から形成された矩形状の枠体である金属枠14が設けられている。容器本体10と金属枠14との間には、処理空間S1を気密に保つためのシール部材15が設けられている。また、容器本体10と金属枠14と金属窓20とが、載置台30が内部に設けられた処理容器を構成する。 A metal frame 14, which is a rectangular frame made of a metal material such as aluminum, is provided on the upper surface of the side wall of the container body 10. A seal member 15 is provided between the container body 10 and the metal frame 14 to keep the processing space S1 airtight. The container body 10, the metal frame 14, and the metal window 20 together form a processing container with a mounting table 30 provided inside.

金属窓20は、複数の部分窓21に分割され、これらの部分窓21が金属枠14の内側に配置され、全体として矩形状の金属窓20を構成している。 The metal window 20 is divided into multiple partial windows 21, which are arranged inside the metal frame 14 to form a rectangular metal window 20 as a whole.

部分窓21はそれぞれ、処理空間S1に処理ガスを供給するシャワーヘッドとして機能する。例えば、各部分窓21には、処理ガスを下方に吐出する多数のガス吐出孔21aと、処理ガスを拡散させる拡散室21bが形成されており、ガス吐出孔21aと拡散室21bとが連通している。 Each partial window 21 functions as a shower head that supplies processing gas to the processing space S1. For example, each partial window 21 is formed with a number of gas discharge holes 21a that discharge processing gas downward and a diffusion chamber 21b that diffuses the processing gas, and the gas discharge holes 21a and the diffusion chamber 21b are connected to each other.

各部分窓21の拡散室21bは、ガス供給管70を介して処理ガス供給部71に接続されている。処理ガス供給部71は、流量調整弁(図示せず)や開閉弁(図示せず)等を備え、成膜処理、エッチング処理、アッシング処理等に必要な処理ガスを拡散室21bに供給する。なお、図示の便宜上、図2には、1つの部分窓21に処理ガス供給部71が接続された状態を示しているが、実際には各部分窓21の拡散室21bに処理ガス供給部71が接続される。 The diffusion chamber 21b of each partial window 21 is connected to a process gas supply unit 71 via a gas supply pipe 70. The process gas supply unit 71 is equipped with a flow rate control valve (not shown) and an on-off valve (not shown), and supplies the process gas required for film formation, etching, ashing, and other processes to the diffusion chamber 21b. For convenience of illustration, FIG. 2 shows a state in which the process gas supply unit 71 is connected to one partial window 21, but in reality, the process gas supply unit 71 is connected to the diffusion chamber 21b of each partial window 21.

また、部分窓21は、絶縁部材22によって金属枠14から電気的に絶縁されると共に、隣り合う部分窓21同士も絶縁部材22によって互いに電気的に絶縁されている。
絶縁部材22には、当該絶縁部材22を保護するため、当該絶縁部材22の処理空間S1側の面を覆う絶縁部材カバー23が設けられている。
Furthermore, the partial window 21 is electrically insulated from the metal frame 14 by an insulating member 22 , and adjacent partial windows 21 are also electrically insulated from each other by the insulating member 22 .
In order to protect the insulating member 22, an insulating member cover 23 is provided on the insulating member 22 to cover the surface of the insulating member 22 facing the processing space S1.

さらに、金属窓20の上方側には天板部80が配置されている。天板部80は、金属枠14上に設けられた側壁部81によって支持されている。
なお、金属窓20を構成する部分窓21は、吊り下げ部材(図示せず)を介して天板部80から吊り下げられている。
Furthermore, a top plate portion 80 is disposed above the metal window 20. The top plate portion 80 is supported by a side wall portion 81 provided on the metal frame 14.
The partial window 21 constituting the metal window 20 is suspended from the top plate portion 80 via a suspension member (not shown).

上述の金属窓20、側壁部81及び天板部80にて囲まれた空間はアンテナ室S2を構成し、アンテナ室S2の内部には、部分窓21に面するように高周波アンテナ90が配置されている。 The space surrounded by the metal window 20, the side wall portion 81, and the top plate portion 80 constitutes the antenna chamber S2, and a high-frequency antenna 90 is disposed inside the antenna chamber S2 so as to face the partial window 21.

高周波アンテナ90は、例えば、絶縁材料から形成されるスペーサ(図示せず)を介して部分窓21から離間して配置される。高周波アンテナ90は、各部分窓21に対応する面に沿い、矩形状の金属窓20の周方向に沿って周回するように、例えば渦巻状に、同心状に複数形成され多環状のアンテナを構成する。 The high-frequency antenna 90 is disposed at a distance from the partial window 21 via a spacer (not shown) made of, for example, an insulating material. The high-frequency antenna 90 is formed concentrically, for example in a spiral shape, along the surface corresponding to each partial window 21 and going around the circumferential direction of the rectangular metal window 20, forming a multi-ring antenna.

各高周波アンテナ90には、整合器42を介して高周波電源43が接続されている。各高周波アンテナ90には、高周波電源43から整合器42を介して、例えば13.56MHzの高周波電力が供給される。これにより、プラズマ処理の間、部分窓21それぞれの表面に渦電流が誘起され、この渦電流によって処理空間S1の内部に誘導電界が形成される。ガス吐出孔21aから吐出された処理ガスは、誘導電界によって処理空間S1の内部においてプラズマ化される。 A high-frequency power supply 43 is connected to each high-frequency antenna 90 via a matching device 42. High-frequency power of, for example, 13.56 MHz is supplied to each high-frequency antenna 90 from the high-frequency power supply 43 via the matching device 42. As a result, eddy currents are induced on the surface of each partial window 21 during plasma processing, and these eddy currents form an induced electric field inside the processing space S1. The processing gas discharged from the gas discharge hole 21a is turned into plasma inside the processing space S1 by the induced electric field.

さらに、プラズマ処理装置1には制御部Uが設けられている。制御部Uは、例えばCPUやメモリ等を備えたコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、プラズマ処理装置1における基板Gの処理を制御するプログラムが格納されている。上述のプログラムは、コンピュータに読み取り可能な記憶媒体に記録されていたものであって、当該記憶媒体から制御部Uにインストールされたものであってもよい。プログラムの一部または全ては専用ハードウェア(回路基板)で実現してもよい。また、上記記憶媒体は、一時的なものであっても非一時的なものであってもよい。 The plasma processing apparatus 1 is further provided with a control unit U. The control unit U is, for example, a computer equipped with a CPU, memory, etc., and has a program storage unit (not shown). The program storage unit stores a program for controlling the processing of the substrate G in the plasma processing apparatus 1. The above-mentioned program may be recorded on a computer-readable storage medium and installed from the storage medium into the control unit U. A part or all of the program may be realized by dedicated hardware (circuit board). Furthermore, the above-mentioned storage medium may be temporary or non-temporary.

<基板処理>
次に、プラズマ処理装置1における基板処理について説明する。なお、以下の基板処理は、制御部Uの制御の下、行われる。
まず、ゲートバルブ12が開かれ、基板Gが、搬入出口11を介して処理空間S1内に搬入され、載置台30上に載置される。その後、ゲートバルブ12が閉じられる。
<Substrate processing>
Next, a description will be given of the substrate processing in the plasma processing apparatus 1. The substrate processing described below is performed under the control of the control unit U.
First, the gate valve 12 is opened, and the substrate G is carried into the processing space S1 through the load/unload port 11 and placed on the mounting table 30. Thereafter, the gate valve 12 is closed.

続いて、処理ガス供給部71から、各部分窓21の拡散室21bを介して処理空間S1内に処理ガスが供給される。また、排気部60による処理空間S1の排気が行われ、処理空間S1内が所望の圧力に調節される。 Next, the processing gas is supplied from the processing gas supply unit 71 into the processing space S1 through the diffusion chamber 21b of each partial window 21. The processing space S1 is then evacuated by the exhaust unit 60, and the pressure inside the processing space S1 is adjusted to the desired pressure.

次いで、高周波電源43から高周波アンテナ90に高周波電力が供給され、これにより金属窓20を介して処理空間S1内に均一な誘導電界が生じる。その結果、誘導電界により、処理空間S1内の処理ガスがプラズマ化し、高密度の誘導結合プラズマが生成される。そして、高周波電源41から載置台30の台本体31に供給されたバイアス用の高周波電力により、プラズマ中のイオンが基板Gに引き込まれ、基板Gに対しプラズマ処理が行われる。 Next, high-frequency power is supplied from the high-frequency power source 43 to the high-frequency antenna 90, which generates a uniform induction electric field in the processing space S1 through the metal window 20. As a result, the processing gas in the processing space S1 is converted into plasma by the induction electric field, generating high-density inductively coupled plasma. Then, ions in the plasma are attracted to the substrate G by the bias high-frequency power supplied from the high-frequency power source 41 to the table body 31 of the mounting table 30, and plasma processing is performed on the substrate G.

プラズマ処理の終了後、高周波電源41、43からの電力供給、処理ガス供給部71からの処理ガス供給が停止され、搬入時とは逆の順序で基板Gが搬出される。
これにより一連の基板処理が終了する。
After the plasma processing is completed, the power supply from the high frequency power sources 41 and 43 and the supply of the processing gas from the processing gas supply unit 71 are stopped, and the substrate G is unloaded in the reverse order to that in which it was loaded.
This completes the series of substrate processing steps.

<基板載置台の研磨方法>
次に、載置台30の研磨方法について図面を参照して説明する。図4は本実施形態にかかる載置台(基板載置面)の研磨方法についての説明図である。先ず、図4(a)に示すように、下層溶射膜33と電極層31aとその上面に上層として溶射により形成された上層溶射膜34からなる構造体A1が用意される。そして、下層溶射膜33、電極層31a、上層溶射膜34に対し次工程での研削液の染み込みを防止するために、含浸剤による含浸処理が行われる。ここで含浸剤としては、例えばフッ素樹脂、シリコーン、シリケート等の低充填率である第1の含浸剤を用いても良く、あるいは、アクリル、エポキシ、ウレタン等の高充填率である第2の含浸剤を用いても良い。
<Method of polishing substrate table>
Next, a method for polishing the mounting table 30 will be described with reference to the drawings. FIG. 4 is an explanatory diagram of a method for polishing the mounting table (substrate mounting surface) according to this embodiment. First, as shown in FIG. 4(a), a structure A1 is prepared, which is composed of a lower layer sprayed film 33, an electrode layer 31a, and an upper layer sprayed film 34 formed as an upper layer on the upper surface of the lower layer sprayed film 33 by spraying. Then, in order to prevent the lower layer sprayed film 33, the electrode layer 31a, and the upper layer sprayed film 34 from being soaked with a grinding fluid in the next process, an impregnation process is performed with an impregnation agent. As the impregnation agent, a first impregnation agent having a low filling rate such as fluororesin, silicone, silicate, etc. may be used, or a second impregnation agent having a high filling rate such as acrylic, epoxy, urethane, etc. may be used.

そして、図4(b)に示すように、例えば平面研削盤100を有する研削装置(図示せず)を用いて、基板載置面35全面に対し平坦化処理としての研削加工が行われる。これにより基板載置面35の全面が均一に平滑化され、上層溶射膜34の上面の表面粗さRaが2μm未満とされる。 Then, as shown in FIG. 4(b), a grinding machine (not shown) having, for example, a surface grinder 100 is used to perform grinding as a flattening process on the entire substrate mounting surface 35. This makes the entire substrate mounting surface 35 uniformly smooth, and the surface roughness Ra of the upper surface of the upper sprayed film 34 is less than 2 μm.

次いで、図4(c)に示すように、基板載置面35の周縁部35bがマスク103によって保護された状態で、中央部35aに対し粗面化処理が行われる。粗面化処理は例えばブラスト装置105によるブラスト加工として行われる。このブラスト加工においては、中央部35aにおける上層溶射膜34を掘り込む処理が行われても良い。この掘り込み処理による上層溶射膜の掘り込み量は、例えば30~50μmである。この粗面化処理により、基板載置面35における中央部35aのみが表面粗さRaが1μm以上6μm以下とされる。ブラスト加工において用いられるブラスト材としては、アルミナ、シリコンカーバイト、ジルコニアが挙げられる。 Next, as shown in FIG. 4(c), while the peripheral portion 35b of the substrate mounting surface 35 is protected by the mask 103, a roughening process is performed on the central portion 35a. The roughening process is performed, for example, as a blasting process using a blasting device 105. In this blasting process, a process of digging into the upper sprayed film 34 in the central portion 35a may be performed. The amount of digging into the upper sprayed film by this digging process is, for example, 30 to 50 μm. This roughening process makes the surface roughness Ra of only the central portion 35a of the substrate mounting surface 35 1 μm or more and 6 μm or less. Examples of blasting materials used in the blasting process include alumina, silicon carbide, and zirconia.

以上の工程により、基板載置面35の中央部35aが所定の表面粗さを有する粗化部35aとして構成され、マスク103によって保護されていた周縁部35bが粗化部35aに比べ平坦な平滑部35bとして構成される。 Through the above process, the central portion 35a of the substrate mounting surface 35 is configured as a roughened portion 35a having a predetermined surface roughness, and the peripheral portion 35b protected by the mask 103 is configured as a smooth portion 35b that is flatter than the roughened portion 35a.

<本開示技術の作用効果>
本実施形態に係る研磨方法によれば、基板載置面35には所定の表面粗さを有する粗化部35aと、その周縁に平滑部35bが構成される。研磨時に加工ツールを用いたマシニング加工を用いていないため、加工時に切削負荷の影響で加工ツールが傾き、表面に段差が形成されてしまう、いわゆる加工ミスマッチが起こる心配がない。即ち、加工ミスマッチに伴うエッチング斑の発生を抑えることが可能となる。
<Effects of the disclosed technology>
According to the polishing method of this embodiment, the substrate mounting surface 35 has a roughened portion 35a having a predetermined surface roughness and a smooth portion 35b at its periphery. Since no machining using a processing tool is used during polishing, there is no risk of the processing tool tilting due to the cutting load during processing, resulting in the formation of steps on the surface, i.e., so-called processing mismatch. In other words, it is possible to suppress the occurrence of etching spots due to processing mismatch.

また、基板載置面35に基板Gを載置した際に、平滑部35bに基板Gが密着し、且つ、粗化部35aに凸部が形成されていることで、基板Gと上層溶射膜34の粗化部35aとの間に密閉空間が形成される。これにより、伝熱ガスを基板Gの裏面に供給して温度制御を行う場合に、伝熱ガスを基板Gの裏面側に閉じ込めることができるため、伝熱効率の向上が図られる。 In addition, when the substrate G is placed on the substrate placement surface 35, the substrate G is in close contact with the smooth portion 35b, and a convex portion is formed on the roughened portion 35a, so that an enclosed space is formed between the substrate G and the roughened portion 35a of the upper sprayed film 34. As a result, when a heat transfer gas is supplied to the back surface of the substrate G to control the temperature, the heat transfer gas can be confined to the back surface of the substrate G, improving the heat transfer efficiency.

今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。以下、本開示の他実施形態について図面等を参照して説明する。なお、以下の他実施形態において、上記実施形態と同じ機能構成を有する構成要素については同一の符号を付して図示し、その説明は省略する。 The embodiments disclosed herein should be considered to be illustrative and not restrictive in all respects. The above-described embodiments may be omitted, substituted, or modified in various ways without departing from the scope and spirit of the appended claims. Other embodiments of the present disclosure will be described below with reference to the drawings. In the following other embodiments, components having the same functional configuration as the above-described embodiment are illustrated with the same reference numerals, and their description will be omitted.

<本開示の第1の他実施形態>
次に、図5を参照して本開示の第1の他実施形態について説明する。図5は第1の他実施形態にかかる載置台(基板載置面)の研磨方法についての説明図である。先ず、図5(a)に示すように、下層溶射膜33と電極層31aとその上面に上層として溶射により形成された上層溶射膜34からなる構造体A2が用意される。そして、下層溶射膜33、電極層31a、上層溶射膜34に対し、次工程での研削液の染み込みを防止するため、また、後述する土手溶射膜120との界面密着性向上のため、含浸剤による含浸処理が行われる。ここで用いられる含浸剤はフッ素樹脂、シリコーン、シリケート等の低充填率である第1の含浸剤である。
<First Alternative Embodiment of the Present Disclosure>
Next, a first alternative embodiment of the present disclosure will be described with reference to FIG. 5. FIG. 5 is an explanatory diagram of a method for polishing a mounting table (substrate mounting surface) according to the first alternative embodiment. First, as shown in FIG. 5(a), a structure A2 is prepared, which is composed of a lower layer sprayed film 33, an electrode layer 31a, and an upper layer sprayed film 34 formed as an upper layer on the upper surface of the lower layer sprayed film 33 by spraying. Then, the lower layer sprayed film 33, the electrode layer 31a, and the upper layer sprayed film 34 are impregnated with an impregnating agent in order to prevent the penetration of the grinding fluid in the next process and to improve the interface adhesion with the bank sprayed film 120 described later. The impregnating agent used here is a first impregnating agent with a low filling rate, such as fluororesin, silicone, silicate, etc.

そして、図5(b)に示すように、例えば平面研削盤100を有する研削装置(図示せず)を用いて、基板載置面35全面に対し平坦化処理としての研削加工が行われる。続いて、図5(c)に示すように、中央部35aがマスク110によって保護された状態で、周縁部35bに対しアルミナ等のセラミックスや金属-セラミックス複合体を溶射することで、土手溶射膜120が形成される。この土手溶射膜120を含めた全面に対して、次工程での研削液の染み込みを防止するため、また、土手溶射膜120の剥離を防止するため、含浸剤による含浸処理が行われる。ここで用いられる含浸剤は、アクリル、エポキシ、ウレタン等の高充填率である第2の含浸剤である。 As shown in FIG. 5(b), the entire substrate mounting surface 35 is ground as a flattening process using a grinding device (not shown) having a surface grinder 100. Next, as shown in FIG. 5(c), while the central portion 35a is protected by a mask 110, ceramics such as alumina or a metal-ceramic composite is sprayed onto the peripheral portion 35b to form a bank sprayed film 120. The entire surface including the bank sprayed film 120 is impregnated with an impregnating agent to prevent the grinding fluid from seeping in during the next process and to prevent the bank sprayed film 120 from peeling off. The impregnating agent used here is a second impregnating agent with a high filling rate, such as acrylic, epoxy, or urethane.

そして、図5(d)に示すように、平面研削盤100を有する研削装置(図示せず)を用いて、土手溶射膜120の表面に対し平坦化処理としての研削加工が行われる。続いて、図5(e)に示すように、平坦化された土手溶射膜120がマスク125によって保護された状態で、中央部35aに対し粗面化処理が行われる。粗面化処理は例えば溶射装置130を用い、面内粗し溶射と呼ばれる溶射方式で行われる。粗面化処理後には、形成された気孔を封孔し耐食性及び耐電圧性能を確保するために含浸剤による含浸処理が行われる。ここで用いられる含浸剤は、アクリル、エポキシ、ウレタン等の高充填率である第2の含浸剤である。 As shown in FIG. 5(d), a grinding device (not shown) having a surface grinder 100 is used to grind the surface of the bank sprayed film 120 as a flattening process. Next, as shown in FIG. 5(e), the flattened bank sprayed film 120 is protected by a mask 125 and the central portion 35a is roughened. The roughening process is performed, for example, by a thermal spraying device 130 using a thermal spraying method called in-plane roughening thermal spraying. After the roughening process, an impregnation process is performed with an impregnation agent to seal the formed pores and ensure corrosion resistance and voltage resistance. The impregnation agent used here is a second impregnation agent with a high filling rate, such as acrylic, epoxy, or urethane.

以上の工程により、基板載置面35の中央部35aが所定の表面粗さを有する粗化部35aとして構成され、平坦化処理後にマスク125によって保護されていた周縁部35bが粗化部35aに比べ平坦な平滑部35bとして構成される。 By the above process, the central portion 35a of the substrate mounting surface 35 is configured as a roughened portion 35a having a predetermined surface roughness, and the peripheral portion 35b protected by the mask 125 after the planarization process is configured as a smooth portion 35b that is flatter than the roughened portion 35a.

第1の他実施形態にかかる研磨方法によれば、図5(a)、(b)に示す研磨の前段工程では、上層溶射膜34と土手溶射膜120の界面密着性向上のためフッ素樹脂、シリコーン、シリケート等の低充填率である第1の含浸剤を用いた含浸処理を行っている。また、図5(c)~(e)に示す研磨の後段工程では、基板載置台30の耐食性や耐電圧性能向上のためアクリル、エポキシ、ウレタン等の高充填率である第2の含浸剤を用いた含浸処理を行っている。これにより、上記実施の形態で説明した作用効果に加え、より耐食性や耐電圧性能に優れた基板載置面を備えた載置台30が実現される。 According to the polishing method of the first alternative embodiment, in the early polishing steps shown in Figures 5(a) and (b), an impregnation process is performed using a first impregnation agent with a low filling rate, such as fluororesin, silicone, or silicate, to improve the interfacial adhesion between the upper sprayed film 34 and the bank sprayed film 120. In addition, in the later polishing steps shown in Figures 5(c) to (e), an impregnation process is performed using a second impregnation agent with a high filling rate, such as acrylic, epoxy, or urethane, to improve the corrosion resistance and voltage resistance of the substrate mounting table 30. This realizes a mounting table 30 with a substrate mounting surface that has superior corrosion resistance and voltage resistance in addition to the effects described in the above embodiment.

<本開示の第2の他実施形態>
次に、図6を参照して本開示の第2の他実施形態について説明する。図6は第2の他実施形態にかかる載置台(基板載置面)の研磨方法についての説明図である。先ず、図6(a)に示すように、下層溶射膜33と電極層31aとその上面に上層として溶射により形成された上層溶射膜34からなる構造体A3が用意される。そして、下層溶射膜33、電極層31a、上層溶射膜34に対し、次工程での研削液の染み込みを防止するため、含浸剤による含浸処理が行われる。ここで用いられる含浸剤は、アクリル、エポキシ、ウレタン等の高充填率である第2の含浸剤である。
Second Alternative Embodiment of the Present Disclosure
Next, a second embodiment of the present disclosure will be described with reference to FIG. 6. FIG. 6 is an explanatory diagram of a method for polishing a mounting table (substrate mounting surface) according to the second embodiment. First, as shown in FIG. 6(a), a structure A3 is prepared, which is composed of a lower layer sprayed film 33, an electrode layer 31a, and an upper layer sprayed film 34 formed as an upper layer on the upper surface of the structure by spraying. Then, the lower layer sprayed film 33, the electrode layer 31a, and the upper layer sprayed film 34 are impregnated with an impregnating agent to prevent the penetration of the grinding fluid in the next process. The impregnating agent used here is a second impregnating agent having a high filling rate, such as acrylic, epoxy, or urethane.

そして、図6(b)に示すように、例えば平面研削盤100を有する研削装置(図示せず)を用いて、基板載置面35全面に対し平坦化処理としての研削加工が行われる。続いて、図6(c)に示すように、基板載置面35の中央部35aに対しブラスト装置105を用いたブラスト加工により、中央部35aにおいて上層溶射膜34を掘り込む処理(プール掘り込み加工)が行われる。 As shown in FIG. 6(b), a grinding machine (not shown) having a surface grinder 100 is used to grind the entire substrate mounting surface 35 as a flattening process. Then, as shown in FIG. 6(c), a blasting machine 105 is used to blast the central portion 35a of the substrate mounting surface 35, thereby digging out the upper sprayed film 34 at the central portion 35a (pool digging process).

そして、図6(d)に示すように、周縁部35bがマスク135によって保護された状態で、中央部35aに対し粗面化処理が行われる。粗面化処理は例えば溶射装置130を用い、面内粗し溶射と呼ばれる溶射方式で行われる。粗面化処理後には、形成された気孔を封孔し耐食性及び耐電圧性能を確保するために含浸剤による含浸処理が行われる。ここで用いられる含浸剤は、アクリル、エポキシ、ウレタン等の高充填率である第2の含浸剤である。 Then, as shown in FIG. 6(d), while the peripheral portion 35b is protected by the mask 135, the central portion 35a is roughened. The roughening is performed, for example, by a thermal spraying method called in-plane roughening thermal spraying using a thermal spraying device 130. After the roughening, an impregnation process is performed with an impregnation agent to seal the pores that have formed and ensure corrosion resistance and voltage resistance. The impregnation agent used here is a second impregnation agent with a high filling rate, such as acrylic, epoxy, or urethane.

以上の工程により、基板載置面35の中央部35aが所定の表面粗さを有する粗化部35aとして構成され、周縁部35bが粗化部35aに比べ平坦な平滑部35bとして構成される。 By the above process, the central portion 35a of the substrate mounting surface 35 is configured as a roughened portion 35a having a predetermined surface roughness, and the peripheral portion 35b is configured as a smooth portion 35b that is flatter than the roughened portion 35a.

第2の他実施形態にかかる研磨方法によれば、上記実施の形態で説明した作用効果に加え、より耐食性や耐電圧性能に優れた基板載置面を備えた載置台30が実現される。 The polishing method according to the second alternative embodiment achieves the effects described in the above embodiment, as well as a mounting table 30 equipped with a substrate mounting surface that is more corrosion-resistant and has better voltage resistance.

1 プラズマ処理装置
30 基板載置台
31a 電極層
33 下層溶射膜
34 上層溶射膜
35 基板載置面
35a 中央部(粗化部)
35b 周縁部(平滑部)
36 基材
103 マスク
G 基板
Reference Signs List 1 Plasma processing apparatus 30 Substrate mounting table 31a Electrode layer 33 Lower thermal sprayed film 34 Upper thermal sprayed film 35 Substrate mounting surface 35a Central portion (roughened portion)
35b peripheral portion (smooth portion)
36 Base material 103 Mask G Substrate

Claims (4)

基材と、前記基材上に設けられた下層溶射膜と電極層上に設けられた上層溶射膜と、を備えた基板載置台の上面である基板載置面を研磨する研磨方法であって、
前記溶射膜に対し含浸剤による含浸処理を施す工程と、
前記基板載置面に対し研削加工による平坦化処理を施す工程と、
前記基板載置面の周縁部をマスクし、前記基板載置面の周縁部を除く中央部に対し粗面化処理を施す工程と、を有し、
前記含浸処理は、前記溶射膜に対し、第1の含浸剤と、前記第1の含浸剤とは充填率の異なる第2の含浸剤のうち少なくとも一つを選択して行われ、
前記第2の含浸剤の充填率は前記第1の含浸剤の充填率より高く、
前記平坦化処理は、前記第2の含浸剤による含浸処理が行われた後、前記基板載置面の周縁部のみに形成させた土手溶射膜に対し行われる、基板載置台の研磨方法。
A polishing method for polishing a substrate mounting surface, which is an upper surface of a substrate mounting table including a substrate, a lower layer sprayed film provided on the substrate, and an upper layer sprayed film provided on an electrode layer, comprising the steps of:
impregnating the thermal sprayed film with an impregnation agent;
a step of performing a planarization process on the substrate mounting surface by grinding;
a step of masking a peripheral portion of the substrate mounting surface and roughening a central portion of the substrate mounting surface excluding the peripheral portion ,
the impregnation treatment is performed on the thermal sprayed coating by selecting at least one of a first impregnation agent and a second impregnation agent having a filling rate different from that of the first impregnation agent;
the loading rate of the second impregnating agent is higher than the loading rate of the first impregnating agent;
The method for polishing a substrate mounting table , wherein the planarization treatment is performed on a bank sprayed film formed only on the peripheral portion of the substrate mounting surface after the impregnation treatment with the second impregnation agent has been performed .
前記土手溶射膜に対する平坦化処理の後、当該土手溶射膜を含めた全面に対し前記第2の含浸剤による含浸処理が更に行われる、請求項1に記載の基板載置台の研磨方法。2. The method for polishing a substrate supporting table according to claim 1, further comprising the step of: after planarizing the bank sprayed film, impregnating the entire surface including the bank sprayed film with the second impregnating agent. 前記粗面化処理は、溶射によって行われる、請求項1に記載の基板載置台の研磨方法。2. The method for polishing a substrate supporting member according to claim 1, wherein the surface roughening treatment is performed by thermal spraying. 基板載置台を備えた基板処理装置であって、A substrate processing apparatus including a substrate mounting table,
前記基板載置台は、基材と、前記基材上に設けられた下層溶射膜と電極層上に設けられた上層溶射膜と、を有し、その上面が基板載置面として構成され、the substrate mounting table has a base material, a lower layer sprayed film provided on the base material, and an upper layer sprayed film provided on an electrode layer, and an upper surface of the substrate mounting table is configured as a substrate mounting surface;
前記溶射膜に対し含浸剤による含浸処理を施す工程と、impregnating the thermal sprayed film with an impregnation agent;
前記基板載置面に対し研削加工による平坦化処理を施す工程と、a step of performing a planarization process on the substrate mounting surface by grinding;
前記基板載置面の周縁部をマスクし、前記基板載置面の周縁部を除く中央部に対し粗面化処理を施す工程と、により前記基板載置面が研磨され、a step of masking a peripheral portion of the substrate mounting surface and performing a surface roughening treatment on a central portion of the substrate mounting surface excluding the peripheral portion, thereby polishing the substrate mounting surface;
前記含浸処理は、前記溶射膜に対し、第1の含浸剤と、前記第1の含浸剤とは充填率の異なる第2の含浸剤のうち少なくとも一つを選択して行われ、the impregnation treatment is performed on the thermal sprayed coating by selecting at least one of a first impregnation agent and a second impregnation agent having a filling rate different from that of the first impregnation agent;
前記第2の含浸剤の充填率は前記第1の含浸剤の充填率より高く、the loading rate of the second impregnating agent is higher than the loading rate of the first impregnating agent;
前記平坦化処理は、前記第2の含浸剤による含浸処理が行われた後、前記基板載置面の周縁部のみに形成させた土手溶射膜に対し行われる、基板処理装置。The substrate processing apparatus, wherein the planarization treatment is performed on a bank sprayed film formed only on the peripheral portion of the substrate mounting surface after the impregnation treatment with the second impregnation agent has been performed.
JP2021057884A 2021-03-30 2021-03-30 Method for polishing substrate placement table and substrate processing apparatus Active JP7619862B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021057884A JP7619862B2 (en) 2021-03-30 2021-03-30 Method for polishing substrate placement table and substrate processing apparatus
KR1020220032471A KR102751920B1 (en) 2021-03-30 2022-03-16 Substrate mounting table polishing method and substrate processing apparatus
TW111110284A TW202303830A (en) 2021-03-30 2022-03-21 Method for polishing substrate substrate and substrate processing apparatus
CN202210293100.2A CN115213808B (en) 2021-03-30 2022-03-23 Polishing method of substrate mounting table and substrate processing device
CN202510115996.9A CN120002541A (en) 2021-03-30 2022-03-23 Polishing method for substrate stage and substrate stage
JP2025003586A JP2025061168A (en) 2021-03-30 2025-01-09 Method for polishing substrate placement table and substrate placement table

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021057884A JP7619862B2 (en) 2021-03-30 2021-03-30 Method for polishing substrate placement table and substrate processing apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2025003586A Division JP2025061168A (en) 2021-03-30 2025-01-09 Method for polishing substrate placement table and substrate placement table

Publications (2)

Publication Number Publication Date
JP2022154714A JP2022154714A (en) 2022-10-13
JP7619862B2 true JP7619862B2 (en) 2025-01-22

Family

ID=83557871

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021057884A Active JP7619862B2 (en) 2021-03-30 2021-03-30 Method for polishing substrate placement table and substrate processing apparatus
JP2025003586A Pending JP2025061168A (en) 2021-03-30 2025-01-09 Method for polishing substrate placement table and substrate placement table

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2025003586A Pending JP2025061168A (en) 2021-03-30 2025-01-09 Method for polishing substrate placement table and substrate placement table

Country Status (4)

Country Link
JP (2) JP7619862B2 (en)
KR (1) KR102751920B1 (en)
CN (2) CN120002541A (en)
TW (1) TW202303830A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045952A (en) 2001-05-25 2003-02-14 Tokyo Electron Ltd Holding apparatus, method of manufacturing same, and plasma processing apparatus
JP2004349557A (en) 2003-05-23 2004-12-09 Canon Inc Device for adsorbing large-sized glass substrate for display
JP2011119326A (en) 2009-12-01 2011-06-16 Tokyo Electron Ltd Substrate mounting base, method for manufacturing the same, and substrate processing apparatus
JP2020092151A (en) 2018-12-04 2020-06-11 東京エレクトロン株式会社 Substrate mounting table, substrate processing apparatus, and substrate mounting table manufacturing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5059450B2 (en) * 2007-03-06 2012-10-24 東京エレクトロン株式会社 Substrate mounting table and substrate processing apparatus
WO2009113638A1 (en) * 2008-03-13 2009-09-17 旭硝子株式会社 Roll for glass conveyance, process for producing the same, and process for producing flat glass using the same
JP5566117B2 (en) * 2009-05-27 2014-08-06 東京エレクトロン株式会社 Electrostatic attracting electrode, manufacturing method thereof, and substrate processing apparatus
JP5390657B2 (en) * 2012-05-02 2014-01-15 東京エレクトロン株式会社 Substrate mounting table and substrate processing apparatus
JP6321579B2 (en) * 2015-06-01 2018-05-09 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing system, substrate processing apparatus, and program
JP6540430B2 (en) * 2015-09-28 2019-07-10 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus
JP2017147278A (en) * 2016-02-15 2017-08-24 東京エレクトロン株式会社 Substrate mounting table and substrate processing apparatus
CN207882618U (en) * 2018-03-14 2018-09-18 江西夺胜电子科技有限公司 A kind of transparence display LCD based on monolayer polarizing piece
CN208152449U (en) * 2018-04-17 2018-11-27 江西瓷将军陶瓷有限公司 A kind of sand face sound insulation enviroment protective ceramic brick
CN208256693U (en) * 2018-06-27 2018-12-18 九州方园新能源股份有限公司 Improve the photovoltaic module of sealing performance
DE102018214337A1 (en) * 2018-08-24 2020-02-27 Disco Corporation Process for processing a substrate
JP7401266B2 (en) * 2018-12-27 2023-12-19 東京エレクトロン株式会社 Substrate mounting table and substrate processing equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045952A (en) 2001-05-25 2003-02-14 Tokyo Electron Ltd Holding apparatus, method of manufacturing same, and plasma processing apparatus
JP2004349557A (en) 2003-05-23 2004-12-09 Canon Inc Device for adsorbing large-sized glass substrate for display
JP2011119326A (en) 2009-12-01 2011-06-16 Tokyo Electron Ltd Substrate mounting base, method for manufacturing the same, and substrate processing apparatus
JP2020092151A (en) 2018-12-04 2020-06-11 東京エレクトロン株式会社 Substrate mounting table, substrate processing apparatus, and substrate mounting table manufacturing method

Also Published As

Publication number Publication date
CN120002541A (en) 2025-05-16
TW202303830A (en) 2023-01-16
JP2022154714A (en) 2022-10-13
JP2025061168A (en) 2025-04-10
CN115213808A (en) 2022-10-21
CN115213808B (en) 2025-02-18
KR102751920B1 (en) 2025-01-09
KR20220136123A (en) 2022-10-07

Similar Documents

Publication Publication Date Title
JP5612300B2 (en) Substrate mounting table, manufacturing method thereof, and substrate processing apparatus
US11380526B2 (en) Stage and plasma processing apparatus
US8372205B2 (en) Reducing electrostatic charge by roughening the susceptor
JP5578762B2 (en) Plasma reactor substrate incorporating surface texturing
KR102353796B1 (en) Electrostatic chuck, placing table, plasma processing apparatus, and method of manufacturing electrostatic chuck
KR20190095075A (en) Plasma processing apparatus
TWI533396B (en) Plasma processing apparatus
CN119480757A (en) Substrate mounting table and substrate processing device
TWI585816B (en) A plasma processing apparatus, and a plasma processing apparatus
CN111276426B (en) Substrate mounting table, substrate processing device, and method of manufacturing substrate mounting table
JP2020017700A (en) Substrate processing apparatus and substrate processing control method
JP7097758B2 (en) Shower head and plasma processing equipment
TWI517294B (en) A method of forming a resin bump on a substrate mounting surface, and a resin protruding layer transfer member
JP7619862B2 (en) Method for polishing substrate placement table and substrate processing apparatus
JP2014053482A (en) Plasma etching device
WO2021250981A1 (en) Plasma processing apparatus and plasma processing method
JP2011515854A (en) Susceptor having a roll forming surface and method of forming the same
TWI604560B (en) Method for forming an electrostatic chuck using film printing technology
JP2022024265A (en) Substrate detachment method and plasma processing equipment
JP4495687B2 (en) Electrostatic chuck
JP2021197548A (en) Edge ring and plasma processing device
JP2020004534A (en) Plasma processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20241001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20250109

R150 Certificate of patent or registration of utility model

Ref document number: 7619862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150