[go: up one dir, main page]

JP2002319412A - Solid polymer electrolyte fuel cell and solid polymer electrolyte membrane - Google Patents

Solid polymer electrolyte fuel cell and solid polymer electrolyte membrane

Info

Publication number
JP2002319412A
JP2002319412A JP2000216187A JP2000216187A JP2002319412A JP 2002319412 A JP2002319412 A JP 2002319412A JP 2000216187 A JP2000216187 A JP 2000216187A JP 2000216187 A JP2000216187 A JP 2000216187A JP 2002319412 A JP2002319412 A JP 2002319412A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
solid polymer
electrophoresis
fuel cell
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000216187A
Other languages
Japanese (ja)
Other versions
JP3508100B2 (en
Inventor
Choichi Furuya
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000216187A priority Critical patent/JP3508100B2/en
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to EP01934519A priority patent/EP1295968B1/en
Priority to DE60133819T priority patent/DE60133819T2/en
Priority to AT01934519T priority patent/ATE393843T1/en
Priority to PCT/JP2001/004693 priority patent/WO2001094668A1/en
Priority to US10/297,329 priority patent/US20030134177A1/en
Priority to AU2001260702A priority patent/AU2001260702A1/en
Publication of JP2002319412A publication Critical patent/JP2002319412A/en
Application granted granted Critical
Publication of JP3508100B2 publication Critical patent/JP3508100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid polymer electrolyte fuel cell that is superior in mass-producibility and can be manufactured at low cost by a simple device, and has a high performance and a long life, and a solid polymer electrolyte membrane to be used for its material. SOLUTION: In the fuel cell, all or either of the solid polymer electrolyte membrane, the reaction layer, and the gas supply layer, which form the solid polymer electrolyte fuel cell, are formed by electrophoresis on the porous body built on the cathode or in the vicinity of the cathode in the solid polymer electrolyte solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、固体高分子電解
質型燃料電池、及び該燃料電池の基本構成材である固体
高分子電解質膜、特に、特定の製法で調製された固体高
分子電解質型燃料電池、及び固体高分子電解質膜に関
し、さらに詳しくは、短時間にかつ簡便な手段で調製可
能な固体高分子電解質型燃料電池、及び固体高分子電解
質膜に関するものであって、電池製造技術に属するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell and a solid polymer electrolyte membrane which is a basic component of the fuel cell, and more particularly to a solid polymer electrolyte fuel prepared by a specific method. The present invention relates to a battery and a solid polymer electrolyte membrane, and more particularly to a solid polymer electrolyte fuel cell and a solid polymer electrolyte membrane which can be prepared in a short time and by a simple means, and belongs to a battery manufacturing technique. Things.

【0002】[0002]

【従来の技術】固体高分子電解質型燃料電池の構成は、
酸素を供給する酸素極(カソード)と、固体高分子電解
質、及び燃料が供給される燃料極(アノード)の三つの
要素から成り立っている。換言すれば、イオン交換膜
(固体高分子電解質膜)の両面に、ガス拡散電極が配置
された構造を有している。
2. Description of the Related Art The structure of a solid polymer electrolyte fuel cell is as follows.
It is composed of three elements: an oxygen electrode (cathode) for supplying oxygen, a solid polymer electrolyte, and a fuel electrode (anode) to which fuel is supplied. In other words, it has a structure in which gas diffusion electrodes are arranged on both sides of an ion exchange membrane (solid polymer electrolyte membrane).

【0003】このガス拡散電極は、通常の状態では、固
定表面である電極上において、電解質と気体の反応ガス
が供給されて三相界面が形成され、その三相界面におい
て電気化学的反応が進行し、発電を行うもので、触媒、
カーボンブラック、フッ素樹脂及び集電体で構成され、
通常その厚みは0. 6mm程度で、この内の0. 5mm
程度がガス供袷層、0. 1mm程度が反応層という構造
を有している。
In this gas diffusion electrode, in a normal state, a three-phase interface is formed by supplying a reaction gas of an electrolyte and a gas on an electrode which is a fixed surface, and an electrochemical reaction proceeds at the three-phase interface. And generate electricity, catalyst,
It is composed of carbon black, fluororesin and current collector,
Usually the thickness is about 0.6mm, of which 0.5mm
The structure has a structure in which a layer is a gas supply layer and about 0.1 mm is a reaction layer.

【0004】この固体高分子型燃料電池の性能は、前記
した三相(帯)界面をどのように形成するかで決定され
るのであり、三相帯界面の形成方法については、種々の
提案がなされている。
The performance of this polymer electrolyte fuel cell is determined by how to form the above-described three-phase (band) interface. Various proposals have been made for a method of forming the three-phase band interface. It has been done.

【0005】三相帯界面形成の基本的な方法としては、
触媒を担持させたカーボンブラックの分散液に、固体高
分子電解質(フッ素系イオン交換樹脂;デュポン社製液
体ナフィオンなど)溶液を添加混合したのち、凝集剤を
添加し、フッ素樹脂で絡め取られた触媒担持カーボンブ
ラックと、フッ素樹脂が混合された液を得たのち、これ
を反応層形成用の液とし、テフロン(登録商標)膜など
に塗布乾燥して反応層膜を形成し、得た反応層膜と固体
高分子電解質膜(フッ素系イオン交換樹脂;デュポン社
製ナフィオンなど)を加熱圧着することで反応層―固体
高分子電解質接合体を得る方法であり、この方法に関し
ては、多くの改良提案がなされており、その一部を示す
と、以下のとおりである。
The basic method of forming the three-phase zone interface is as follows.
A solid polymer electrolyte (fluorine-based ion exchange resin; liquid Nafion manufactured by DuPont) solution was added to and mixed with the carbon black dispersion carrying the catalyst, and then a flocculant was added and entangled with the fluorocarbon resin. After obtaining a liquid in which the catalyst-supporting carbon black and the fluororesin are mixed, the liquid is used as a liquid for forming a reaction layer, and is coated and dried on a Teflon (registered trademark) film to form a reaction layer film. This is a method of obtaining a reaction layer-solid polymer electrolyte assembly by thermocompression bonding of a layer membrane and a solid polymer electrolyte membrane (fluorine-based ion exchange resin; Nafion manufactured by DuPont, etc.). Proposals have been made, some of which are as follows.

【0006】貴金属触媒を担持した炭素粉末の有機溶媒
分散液と、固体高分子電解質のアルコール溶液とを混合
して固体高分子電解質をコロイド状とし炭素粉末に吸着
させたものを塗布する方法(特開平10−302805
号公報)、触媒と固体高分子電解質の分散物を塗布した
のち、酸性溶液で処理する方法(特開平11−4573
0号公報)、触媒を含有するインク状あるいはペースト
状の触媒混合物を、電解質膜表面に塗布後ガス拡散層を
加熱圧接する方法(特開2000−90944号公
報)、精製した固体高分子電解質膨潤膜に、高分子電解
質溶液を塗布したのち、極性基を有する有機溶媒に浸漬
して得た三次元連通性の孔を有する多孔質電解質を用い
る方法(特開2000−106200号公報)などがあ
る。
A method in which a dispersion of an organic solvent of a carbon powder carrying a noble metal catalyst and an alcohol solution of a solid polymer electrolyte are mixed to form a solid polymer electrolyte in the form of a colloid and adsorbed on the carbon powder is applied. Kaihei 10-302805
JP-A-11-4573), a method of applying a dispersion of a catalyst and a solid polymer electrolyte, followed by treatment with an acidic solution.
No. 0), a method in which an ink-like or paste-like catalyst mixture containing a catalyst is applied to the surface of an electrolyte membrane, and a gas diffusion layer is heated and pressure-welded (Japanese Patent Laid-Open No. 2000-90944). A method using a porous electrolyte having three-dimensionally communicating pores obtained by applying a polymer electrolyte solution to a membrane and then immersing the membrane in an organic solvent having a polar group (Japanese Patent Laid-Open No. 2000-106200). .

【0007】[0007]

【発明が解決しようとする課題】しかしながら、これら
の方法はいずれも、凝集、塗布、乾燥など複雑な工程を
必要とし、製造コストの未だ高いものであり、製造コス
トを低下させることと、性能の向上が強く求められてい
るのが現状である。
However, all of these methods require complicated steps such as agglomeration, coating and drying, and the production cost is still high. Therefore, the production cost is reduced and the performance is not improved. At present, there is a strong demand for improvement.

【0008】本発明者は、従来の技術の問題点について
鋭意検討を重ね、従来の技術の工程の解析を行うととも
に、この解析結果に基づいて鋭意研究を行い、より簡単
な手段で、固体高分子電解質型燃料電池、及び固体高分
子電解質型燃料電池の基本要素である固体高分子電解質
膜、及びガス拡散電極を製造する手段を研究したのであ
る。
The present inventor has conducted intensive studies on the problems of the conventional technology, analyzed the processes of the conventional technology, and performed intensive research on the basis of the analysis results. They studied a means for producing a polymer electrolyte fuel cell, a solid polymer electrolyte membrane which is a basic element of a solid polymer electrolyte fuel cell, and a gas diffusion electrode.

【0009】その結果、本発明者は、前記溶液状の固体
高分子電解質(フッ素系イオン交換樹脂;デュポン社製
ナフィオン溶液など)は、 イ.固体高分子電解質を高温下にアルコールに溶解した
もので、液中ではゼータ電位がマイナスであるため、電
場をかけると陽極側に電気泳動して電着すること、 ロ.水中に分散されたフッ素樹脂微粒子なども、通常、
負イオンを帯びているため、電気泳動によりー方の電極
に付着し、簡単に分散媒と分離されること、 ハ.カーボンブラックなどはエタノール中ではゼータ電
位は示さず、電気泳動を起こさないものも、固体高分子
電解質溶液やフッ素樹脂微粒子を含む分散液の電気泳動
時に、これら固体高分子電解質やフッ素樹脂微粒子とと
もに共斥することを見出し、この知見を応用することに
より、前記課題を解決し得ることを見出した。
As a result, the present inventor has reported that the solid polymer electrolyte in solution (fluorine-based ion exchange resin; Nafion solution manufactured by DuPont, etc.) A solid polymer electrolyte dissolved in alcohol at a high temperature. Since the zeta potential is negative in the liquid, electrophoresis is performed by electrophoresis on the anode side when an electric field is applied. Fluororesin fine particles dispersed in water are also usually
B. Since it has negative ions, it adheres to the other electrode by electrophoresis and is easily separated from the dispersion medium. C. Carbon black and the like that do not exhibit zeta potential in ethanol and do not cause electrophoresis, and coexist with these solid polymer electrolyte and fluororesin microparticles during electrophoresis of a solid polymer electrolyte solution or a dispersion containing fluoropolymer fine particles. They have found that rejection can be achieved and that this problem can be solved by applying this finding.

【0010】この発明の目的は、量産性に優れ、簡単な
装置によって安価に製造でき、しかも高性能で長寿命の
固体高分子電解質型燃料電池と、その原材料となる固体
高分子電解質膜を提供することである。
An object of the present invention is to provide a solid polymer electrolyte fuel cell which is excellent in mass productivity, can be manufactured at a low cost with a simple apparatus, and has a high performance and a long life, and a solid polymer electrolyte membrane as a raw material thereof. It is to be.

【0011】[0011]

【課題を解決するための手段】前記の目的を達成するた
め、この発明の請求項1に記載の発明は、電池を形成す
る固体高分子電解質膜、反応層及びガス供給層の全て、
もしくはいずれかが電気泳動により形成されたものであ
ることを特徴とする固体高分子電解質型燃料電池であ
る。
In order to achieve the above object, the invention according to claim 1 of the present invention provides a solid polymer electrolyte membrane, a reaction layer and a gas supply layer which form a battery.
Alternatively, a solid polymer electrolyte fuel cell is characterized in that one of them is formed by electrophoresis.

【0012】この発明の請求項10に記載の発明は、固
体高分子電解質溶液中の陽極上又は陽極近傍に設置した
多孔体上に、電気泳動により固体高分子電解質が電着
し、製膜したものであることを特徴とする固体高分子電
解質膜である。
According to a tenth aspect of the present invention, a solid polymer electrolyte is electrodeposited by electrophoresis on a porous body provided on or near an anode in a solid polymer electrolyte solution to form a film. A solid polymer electrolyte membrane characterized in that:

【0013】[0013]

【発明の実施の形態】この発明において、固体高分子電
解質型燃料電池を構成する固体高分子電解質膜とガス拡
散電極を構成する反応層及びガス供給層の全て、もしく
はいずれかは電気泳動により形成されたものであること
を特徴とするものである。以下、電気泳動による固体高
分子電解質膜、反応層及びガス供給層の調製方法につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, all or any of a solid polymer electrolyte membrane constituting a solid polymer electrolyte fuel cell and a reaction layer and a gas supply layer constituting a gas diffusion electrode are formed by electrophoresis. It is characterized by having been done. Hereinafter, a method for preparing a solid polymer electrolyte membrane, a reaction layer, and a gas supply layer by electrophoresis will be described.

【0014】固体高分子電解質膜の電気泳動での調製
は、ナフィオン(デュポン社製)などの固体高分子電解
質の溶液(以下、溶液という。)からなる電気泳動液
に、陰極と陽極とを浸し、電流を流すことで固体高分子
電解質を陽極側に電気泳動させ、陽極上又は陽極近傍に
設置した基体、具体的には多孔体上に電着させ、製膜さ
せるという方法で行われる。
The solid polymer electrolyte membrane is prepared by electrophoresis by immersing the cathode and the anode in an electrophoresis solution comprising a solution of a solid polymer electrolyte such as Nafion (manufactured by DuPont) (hereinafter referred to as a solution). In this method, a solid polymer electrolyte is electrophoresed on the anode side by passing an electric current, and is electrodeposited on a substrate, specifically a porous body, provided on or near the anode to form a film.

【0015】一方、ガス拡散電極を構成する反応層及び
ガス供給層の電気泳動での調製も、基本的には前記溶液
を使用して調製するものであるが、水中に固体高分子電
解質又はフッ素樹脂微粒子を分散させた分散液(以下、
分散液という。)、もしくは前記溶液と分散液との混合
液も電気泳動液として使用することができ、反応層を形
成するには、電気泳動液に、疎水性カーボンブラック、
親水性カーボンブラック、触媒、金属微粒子又は金属酸
化物微粒子を、ガス供給層の場合は、電気泳動液に、疎
水性カーボンブラックなどの微粒子を分散させ、電気泳
動することにより調製される。
On the other hand, the preparation of the reaction layer and the gas supply layer constituting the gas diffusion electrode by electrophoresis is basically carried out using the above-mentioned solution. However, the solid polymer electrolyte or fluorine is prepared in water. A dispersion in which resin fine particles are dispersed (hereinafter referred to as
It is called a dispersion. ) Or a mixture of the above solution and a dispersion can also be used as an electrophoresis liquid. To form a reaction layer, the electrophoresis liquid contains hydrophobic carbon black,
It is prepared by dispersing hydrophilic carbon black, a catalyst, metal fine particles or metal oxide fine particles, and, in the case of a gas supply layer, fine particles such as hydrophobic carbon black in an electrophoretic liquid and performing electrophoresis.

【0016】電気泳動液に用いられるフッ素樹脂として
は、四フッ化エチレン樹脂、四フッ化エチレン・六フッ
化プロピレン共重合体、三フッ化塩化エチレン樹脂、パ
ーフロロアルコキシ樹脂などが挙げられる。
Examples of the fluororesin used in the electrophoresis liquid include ethylene tetrafluoride resin, ethylene tetrafluoride / propylene hexafluoride copolymer, ethylene trifluoride chloride resin, and perfluoroalkoxy resin.

【0017】電気泳動液に分散させるカーボンブラック
などの微粒子は、1ミクロン以下の粒径に調整しておく
のが好ましく、また、要求される特性に応じた粒径とさ
れ、疎水性カーボンブラックなどのように、水への分散
性が悪いものについては、界面活性剤を併用し、ジェッ
トミルなどを用いて、1ミクロン以下の粒径にして水に
分散させる。
The fine particles of carbon black or the like dispersed in the electrophoresis liquid are preferably adjusted to a particle size of 1 micron or less, and have a particle size according to the required characteristics. For those having poor dispersibility in water as described above, a surfactant is used in combination, and the particles are dispersed in water to a particle size of 1 micron or less using a jet mill or the like.

【0018】電気泳動は、基本的に、平行に向かい合わ
せに設置された陽極及び陰極を有する電気泳動槽と、直
流安定化電源を必須の構成要素とするものであり、陽極
はステンレス、アルミ、銀、鉄、白金、カーボンなどの
導電性の基体であれば使用でき、陰極は金属であれば何
でもいいが、水素が発生するのでニッケル、白金、パラ
ジウムなどが好適である。
The electrophoresis basically includes an electrophoresis tank having an anode and a cathode installed in parallel and facing each other, and a DC stabilized power supply as essential components. The anode is made of stainless steel, aluminum, Any conductive substrate such as silver, iron, platinum, or carbon can be used, and any metal can be used for the cathode. Nickel, platinum, palladium, and the like are preferable because hydrogen is generated.

【0019】陽極及び陰極とする金属の形状は、網状が
よいが、板状でもよい。網状の場合には網目が0. 5〜
2mm位のものがよい。極間は5〜100mmが好適で
ある。あまり近いと短絡の心配があり、広いと高電圧電
源が必要である。また、陽極と陰極の間にフィルターを
設置することも可能である。
The shape of the metal used as the anode and the cathode is preferably a net shape, but may be a plate shape. In the case of a mesh, the mesh is 0.5 to
The one of about 2 mm is good. The distance between the electrodes is preferably 5 to 100 mm. If it is too close, there is a risk of short circuit, and if it is wide, a high voltage power supply is required. It is also possible to install a filter between the anode and the cathode.

【0020】電気泳動に際しては、理論上、陽極と陰極
は、水平でも又垂直に配置されたいずれの状態でも行う
ことができるが、疎水性カーボンブラックや、親水性カ
ーボンブラックなどの微粒子が分散された分散液を用い
る場合は、重力によりそれら微粒子が沈降し易いので、
陽極と陰極は水平に配置し、かつ電気泳動によりフッ素
樹脂微粒子などが移動する方向と、重力による沈降方向
が同じになるように、陽極が下方にあるように配置する
ことが好ましく、そのように配置することにより、移動
時間を短くすることでき、能率的であるだけではなく、
陽極に均一に電着させることができ、しかもその組成が
等しくなるようにすることができる。
In the electrophoresis, the anode and the cathode can be theoretically performed in any state in which the anode and the cathode are horizontally or vertically arranged. However, fine particles such as hydrophobic carbon black and hydrophilic carbon black are dispersed therein. In the case of using a dispersed liquid, the fine particles tend to settle due to gravity,
The anode and the cathode are preferably arranged horizontally, and the direction in which the fluororesin particles move by electrophoresis and the direction of sedimentation due to gravity are the same. By arranging, you can shorten the travel time, not only efficient, but also
Electrodeposition can be performed uniformly on the anode, and the composition can be made equal.

【0021】電気泳動において、陽極を固定させておく
必要はなく、連続的に移動させるようにすれば、陽極に
付着した多孔質膜を連続的に製造することができる。特
に、多孔質膜の基体となる金網をアノードとして使用
し、それを連続的に移動させることにより、基体により
支持された固体高分子電解質膜、反応層及びガス供給層
などを連続的に製造することができる。
In the electrophoresis, it is not necessary to fix the anode, and if the anode is continuously moved, a porous film attached to the anode can be manufactured continuously. In particular, a metal mesh serving as a base of a porous membrane is used as an anode and is continuously moved to continuously manufacture a solid polymer electrolyte membrane, a reaction layer, a gas supply layer, and the like supported by the base. be able to.

【0022】電気泳動に使用される電圧は5〜100V
/cmであり、泳動量は電圧に比例するので、電圧を変
動させることにより電着速度を制御できる。
The voltage used for electrophoresis is 5 to 100 V
/ Cm, and the electrophoresis amount is proportional to the voltage, so that the electrodeposition speed can be controlled by changing the voltage.

【0023】電気泳動に使用される溶液や分散液の電気
電導度は1mS以下が望ましいが、電気電導度の大きい
ものは、それだけ大きな電圧を必要とするので、溶液や
分散液中のイオンをイオン交換樹脂などで除去し、電気
泳動液の電気電導度を0. 05mS以下にしておくのが
好ましく、電気泳動液のpHも電気電導度に影響を及ぼ
すので、適切な値に調整するのが好ましい。
It is desirable that the electric conductivity of the solution or dispersion used for electrophoresis is 1 mS or less. However, those having high electric conductivity require a correspondingly high voltage. It is preferable to remove the resin with an exchange resin or the like and keep the electric conductivity of the electrophoretic solution at 0.05 mS or less. The pH of the electrophoretic solution also affects the electric conductivity. .

【0024】この発明において、固体高分子電解質型燃
料電池を構成する固体高分子電解質膜と、ガス拡散電極
を構成する反応層及びガス供給層の全て、もしくはいず
れかが電気泳動により形成されたものであることを特徴
とするので、全てが電気泳動により形成されたものが好
ましいが、一部を既存のもので、残部が電気泳動により
形成されたものでもよい。以下、それらの製法の概略を
説明する。
In the present invention, the solid polymer electrolyte membrane constituting the solid polymer electrolyte fuel cell and the reaction layer and / or the gas supply layer constituting the gas diffusion electrode are formed by electrophoresis. Therefore, it is preferable that the whole is formed by electrophoresis, but a part of the existing one may be used and the remaining part may be formed by electrophoresis. Hereinafter, the outline of the production methods will be described.

【0025】1)ステンレス箔などを陽極とし、箔上に
順次 ガス供給層(疎水性カーボンブラック微粒子の分散され
たフッ素樹脂微粒子を含む分散液による電気泳動)、反
応層(疎水性カーボンブラック、親水性カーボンブラッ
ク、触媒、金属微粒子又は金属酸化物微粒子などの分散
されたフッ素樹脂の分散液又は溶液による電気泳動)及
び、固体高分子電解質膜(溶液による電気泳動)を電気
泳動で電着形成し、得られたガス供給層、反応層及び固
体高分子電解質膜の積層されたステンレス箔2枚を、生
乾きの時点で、積層体を中側にして加熱圧接し接合した
後、外側のステンレス箔を剥離して用いる。 2)前記1)と同様にして、ステンレス箔上に、反応層
と固体高分子電解質膜を電気泳動で電着形成して得られ
た反応層と固体高分子電解質膜の積層体と撥水化したカ
ーボンペーパーなどをガス供給層層として用いる。 3)前記1)と同様にして、ステンレス箔上に、反応層
とガス供給層を順次電気泳動で電着形成して得られた反
応層とガス供給層の積層されたステンレス箔の2枚を、
生乾きの時点で、固体高分子電解質膜を挟んで加熱圧接
し、接合したのち、外側のステンレス箔を剥離する。そ
の際、反応層の電気泳動による調製において、電気泳動
液に固体高分子電解質の溶液を併用するのが好ましく、
それにより反応層と固体高分子電解質膜との密着性を向
上させることができる。 4) 電気泳動槽内で、陽極と陰極との間に固体高分子
電解質膜を設け、電気泳動により移動する微粒子などを
固体高分子電解質膜に付着させて、膜上に反応層、ガス
供給層を形成させる。 5)前記1)と同様にして、ステンレス箔上に反応層、
固体高分子電解質膜、反応層を順次電気泳動で電着形成
して得られた反応層/固体高分子電解質膜/反応層の積
層体と、撥水化したカーボンペーパーなどをガス供給層
として用いる。 6)前記1)と同様にして、ステンレス箔上に、ガス供
給層、反応層、固体高分子電解質膜、反応層、ガス供給
層を順次電気泳動で電着形成し、ガス供給層/反応層/
固体高分子電解質膜/反応層/ガス供給層の積層体とし
使用する。
1) A stainless steel foil or the like is used as an anode, and a gas supply layer (electrophoresis using a dispersion containing fluorocarbon fine particles in which hydrophobic carbon black fine particles are dispersed) and a reaction layer (hydrophobic carbon black, hydrophilic Electrophoresis using a dispersion or solution of a fluorocarbon resin in which conductive carbon black, a catalyst, metal fine particles or metal oxide fine particles are dispersed) and a solid polymer electrolyte membrane (electrophoresis using a solution). Then, at the time of fresh drying, the two stainless steel foils on which the obtained gas supply layer, reaction layer and solid polymer electrolyte membrane were laminated were heated and pressed together with the laminated body in the middle, and then the outer stainless steel foil was bonded. Used after peeling. 2) A laminate of a reaction layer and a solid polymer electrolyte membrane obtained by electrophoretically forming a reaction layer and a solid polymer electrolyte membrane on a stainless steel foil in the same manner as in 1) above, and water repellency. Carbon paper or the like is used as a gas supply layer. 3) In the same manner as in 1) above, a stainless steel foil having a reaction layer and a gas supply layer obtained by electrodepositing a reaction layer and a gas supply layer sequentially on a stainless steel foil by electrophoresis was used. ,
At the time of fresh drying, the solid polymer electrolyte membrane is heated and pressure-contacted and joined, and then the outer stainless steel foil is peeled off. In that case, in the preparation of the reaction layer by electrophoresis, it is preferable to use a solution of a solid polymer electrolyte in combination with the electrophoresis solution,
Thereby, the adhesion between the reaction layer and the solid polymer electrolyte membrane can be improved. 4) In the electrophoresis tank, a solid polymer electrolyte membrane is provided between the anode and the cathode, and fine particles moving by electrophoresis are adhered to the solid polymer electrolyte membrane, and a reaction layer and a gas supply layer are formed on the membrane. Is formed. 5) A reaction layer on a stainless steel foil in the same manner as in 1) above,
A reaction layer / solid polymer electrolyte membrane / reaction layer laminate obtained by sequentially electrodepositing a solid polymer electrolyte membrane and a reaction layer by electrophoresis, and water-repellent carbon paper are used as a gas supply layer. . 6) In the same manner as in 1), a gas supply layer, a reaction layer, a solid polymer electrolyte membrane, a reaction layer, and a gas supply layer are sequentially electrodeposited on a stainless steel foil by electrophoresis. /
Used as a laminate of solid polymer electrolyte membrane / reaction layer / gas supply layer.

【0026】以上のような方法により、この発明の固体
高分子電解質型燃料電池は調製されるのであるが、調製
方法は前記方法に限定されるものではなく、電気泳動に
より形成された反応層及び/又はガス供給層を乾燥し、
ソルベントナフサなどを加えロール掛けしてシート化
し、反応層及び/又はガス供給層シートとしてから利用
することもできる。
The solid polymer electrolyte fuel cell of the present invention is prepared by the above method, but the preparation method is not limited to the above method, and the reaction layer and the reaction layer formed by electrophoresis are prepared. And / or drying the gas supply layer,
Solvent naphtha or the like can be added and rolled to form a sheet, which can be used as a reaction layer and / or gas supply layer sheet.

【0027】また、形成された反応層、ガス供給層を、
生乾きの時点で加熱圧接する際、プレス板などに多孔体
を用いることにより、乾燥及び接合をより効率的に行う
こともできる。
Further, the formed reaction layer and gas supply layer are
When heating and pressing at the time of raw drying, drying and joining can be performed more efficiently by using a porous body for a press plate or the like.

【0028】さらに、固体高分子電解質型燃料電池に長
期安定性を付与するために、ガス供給層の表面に、フッ
素樹脂の撥水層を全面に径1mm程度の点状で、あるい
は部分的に帯状に設けることもできる。
Further, in order to impart long-term stability to the solid polymer electrolyte fuel cell, a fluororesin water-repellent layer is formed on the entire surface of the gas supply layer in the form of dots having a diameter of about 1 mm or partially. It can also be provided in a belt shape.

【0029】[0029]

【作用】この発明の固体高分子電解質型燃料電池及び固
体高分子電解質膜は、溶液及び/又は分散液からな電気
泳動液中において電気泳動により形成するもので、固体
高分子電解質(フッ素系イオン交換樹脂;デュポン社製
ナフィオン溶液など)を高温下にアルコールに溶解させ
てなる電気泳動液の場合、電気泳動液中ではゼータ電位
がマイナスで、電場をかけると陽極側に電気泳動して電
着し、電気泳動液中にフッ素樹脂微粒子などが含まれる
分散液の場合も、フッ素樹脂微粒子は水中に分散されて
負イオンを通常帯びているため、電気泳動によりー方の
電極に付着し、簡単に分散媒と分離することができる。
エタノール中ではゼータ電位は示さず、電気泳動を起こ
さないカーボンブラックなども、固体高分子電解質やフ
ッ素樹脂微粒子とともに分散されていると共斥し、電気
泳動により、該微粒子をアノードに付着させることが可
能である。
The solid polymer electrolyte fuel cell and the solid polymer electrolyte membrane of the present invention are formed by electrophoresis in an electrophoresis solution formed of a solution and / or a dispersion, and the solid polymer electrolyte (fluorine ion (Exchange resin; Nafion solution manufactured by DuPont) dissolved in alcohol at high temperature, the zeta potential is negative in the electrophoresis solution. However, also in the case of a dispersion liquid containing fluororesin microparticles and the like in the electrophoresis liquid, since the fluororesin microparticles are dispersed in water and usually have negative ions, they adhere to the negative electrode by electrophoresis, It can be easily separated from the dispersion medium.
In ethanol, the zeta potential is not shown, and carbon black, which does not cause electrophoresis, is also repelled when dispersed together with the solid polymer electrolyte or the fine particles of the fluororesin, and the fine particles can adhere to the anode by electrophoresis. It is possible.

【0030】したがって、溶液及び/又は分散液中に、
疎水性カーボンブラック、親水性カーボンブラック、触
媒、金属微粒子又は金属酸化物微粒子などを分散させた
電気泳動液中に、導電性物質体を浸して一方の電極と
し、前記電気泳動液中に浸した他方の電極との間に電流
を流し、電気泳動によって前記導電性物質体表面に、固
体高分子電解質膜、フッ素樹脂含有膜、さらには前記各
種添加物を含有したフッ素樹脂含有膜を形成させること
が可能であり、それらをガス拡散電極のガス供給層、又
は反応層の基材とすることを可能とし、延いては固体高
分子電解質型燃料電池の製造を可能とするのである。
Therefore, in the solution and / or dispersion,
A conductive substance was immersed in an electrophoretic liquid in which hydrophobic carbon black, hydrophilic carbon black, a catalyst, metal fine particles or metal oxide fine particles were dispersed, and the electrode was immersed in the electrophoretic liquid. Passing a current between the other electrode and forming a solid polymer electrolyte membrane, a fluororesin-containing film, and a fluororesin-containing film containing the various additives on the surface of the conductive substance body by electrophoresis; It is possible to use them as a gas supply layer of a gas diffusion electrode or a base material of a reaction layer, and thus to manufacture a solid polymer electrolyte fuel cell.

【0031】[0031]

【実施例】以下、この発明の固体高分子電解質型燃料電
池、及び固体高分子電解質膜を好適な実施例を用いてさ
らに具体的に説明する。実施例1 固体高分子電解質膜の調製 6cm角、深さ2cmのアクリル製の容器の底に絶縁リ
ード線付き6cm角ステンレス箔を敷き、その上部1c
mの位置に平行に対極である厚さ2mm、孔径50pp
iの発泡ニッケル陰極を設置した。固体高分子電解質の
溶液(アルドリッチ社製、ナフィオン5wt%溶液)を
容器に配置した発泡ニッケル陰極が浸るまで満たし、5
0Vの電圧を30秒間加えると、ステンレス箔上に60
ミクロンの固体高分子電解質(ナフィオン)膜が形成さ
れた。
EXAMPLES Hereinafter, the solid polymer electrolyte fuel cell and the solid polymer electrolyte membrane of the present invention will be described more specifically with reference to preferred embodiments. Example 1 Preparation of Solid Polymer Electrolyte Membrane A 6 cm square stainless foil with an insulating lead wire was laid on the bottom of a 6 cm square, 2 cm deep acrylic container, and its upper part 1 c
The thickness is 2 mm and the hole diameter is 50 pp, which is the counter electrode parallel to the position of m.
A foamed nickel cathode of i was installed. Fill a solution of solid polymer electrolyte (Aldrich, Nafion 5 wt% solution) until the foamed nickel cathode placed in the container is immersed.
When a voltage of 0 V is applied for 30 seconds, 60
A micron solid polymer electrolyte (Nafion) membrane was formed.

【0032】実施例2 固体高分子電解質型燃料電池の調製 6cm角、深さ2cmのアクリル製の容器の底に絶縁リ
ード線付き6cm角ステンレス箔を敷き、その上部1c
mの位置に平行に対極である厚さ2mm、孔径50pp
iの発泡ニッケル陰極を設置した。この容器に、30w
t%白金担持親水性カーボンブラック(AB−12;電
気化学工業(株)製)2. 5g、低分子PTFE(ルブ
ロン;ダイキン工業(株)製)1gをエタノール100
mlに加えて超音波分散させた分散液と、固体高分子電
解質の溶液(アルドリッチ社製;ナフィオン5wt%溶
液)25mlを混合した反応層形成用の電気泳動液を満
たした。30Vの電圧を15秒間加え、反応層をステン
レス箔上に形成させた後、該電気泳動液を素早く取り除
き、容器に固体高分子電解質からなる溶液(アルドリッ
チ社製;ナフィオン5wt%溶液)を発泡ニッケル陰極
が浸かるまで満たし、30Vの電圧を30秒間加える
と、ステンレス箔上に40ミクロンの固体高分子電解質
(ナフィオン)膜が形成された。この反応層と固体高分
子電解質(ナフィオン)膜が電着したステンレス箔を2
枚形成し、生乾きの時点で100kg/cm2 、温度1
35℃、1分間の条件で2枚を加熱圧接したのち、ステ
ンレス箔を剥離して反応層/電解質膜接合体を作製し
た。ガス拡散層として5cm角に裁断した撥水化したカ
ーボンペーパーを両側に配置し、ガス供給路が形成され
た金属製のエンドプレートで挟持し、この発明に係る固
体高分子電解質型燃料電池を作製した。
Example 2 Preparation of Solid Polymer Electrolyte Fuel Cell A 6 cm square stainless steel foil with an insulating lead wire was laid on the bottom of an acrylic container of 6 cm square and 2 cm deep, and its upper part 1 c
The thickness is 2 mm and the hole diameter is 50 pp, which is the counter electrode in parallel with the position of m.
A foamed nickel cathode of i was installed. 30w in this container
2.5 g of t% platinum-supported hydrophilic carbon black (AB-12; manufactured by Denki Kagaku Kogyo Co., Ltd.) and 1 g of low molecular weight PTFE (Rubron; manufactured by Daikin Industries, Ltd.) were added to ethanol 100.
The mixture was filled with an electrophoretic solution for forming a reaction layer, in which 25 ml of a dispersion obtained by ultrasonic dispersion in addition to 25 ml of a solid polymer electrolyte solution (manufactured by Aldrich; Nafion, 5 wt% solution) was mixed. After applying a voltage of 30 V for 15 seconds to form a reaction layer on a stainless steel foil, the electrophoresis liquid was quickly removed, and a solution containing a solid polymer electrolyte (Aldrich; Nafion, 5 wt% solution) was foamed with nickel foam. When the cathode was filled until it was immersed and a voltage of 30 V was applied for 30 seconds, a 40-micron solid polymer electrolyte (Nafion) membrane was formed on the stainless steel foil. This reaction layer and a solid polymer electrolyte (Nafion) membrane electrodeposited
100 kg / cm 2 at the time of fresh drying, temperature 1
After the two pieces were heated and pressed under the condition of 35 ° C. for 1 minute, the stainless steel foil was peeled off to produce a reaction layer / electrolyte membrane assembly. Water-repellent carbon paper cut to 5 cm square as a gas diffusion layer is arranged on both sides, and is sandwiched between metal end plates provided with gas supply passages, to produce a solid polymer electrolyte fuel cell according to the present invention. did.

【0033】比較例1 固体高分子電解質型燃料電池の調製 固体高分子電解質(デュポン社製ナフィオン115)膜
に、反応層形成用の分散液を塗布乾燥し、反応層/電解
質膜接合体を作製した。この反応層の白金触媒の含有量
は0. 3mg/cm2 であった。同様にガス拡散層とし
て5cm角に裁断した撥水性を有するカーボンペーパー
を両側に配置し、100kg/cm2 、温度135℃、
2分間の条件で加熱圧接することにより得られた接合体
を、ガス供給路が形成された金属製のエンドプレートで
挟持して固体高分子電解質型燃料電池を作製した。
Comparative Example 1 Preparation of Solid Polymer Electrolyte Fuel Cell A dispersion for forming a reaction layer was applied to a solid polymer electrolyte (Nafion 115 manufactured by DuPont) and dried to prepare a reaction layer / electrolyte membrane assembly. did. The content of the platinum catalyst in this reaction layer was 0.3 mg / cm 2 . Similarly, a water-repellent carbon paper cut into 5 cm squares as a gas diffusion layer was placed on both sides, and 100 kg / cm 2 at a temperature of 135 ° C.
The joined body obtained by heating and pressure-contacting under the condition of 2 minutes was sandwiched between metal end plates provided with gas supply passages to produce a solid polymer electrolyte fuel cell.

【0034】固体高分子電解質型燃料電池の評価 作製された前記固体高分子電解質型燃料電池を、それぞ
れつぎの条件で作動させて、それぞれの電流―電圧特性
を測定した。純水素と純酸素を、それぞれ温度83℃に
設定した加湿器(ガラスバブラー)で加湿した後、それ
ぞれ大気圧で電池に供給した。その結果、この発明の燃
料電池では、0.3A/cm2 の電流密度で0.73V
の出力が得られた。一方、比較例の燃料電池では、0.
3A/cm2 の電流密度で0.67Vの出力が得られた
のみであった。
Evaluation of Solid Polymer Electrolyte Fuel Cell Each of the fabricated solid polymer electrolyte fuel cells was operated under the following conditions, and the current-voltage characteristics were measured. Pure hydrogen and pure oxygen were humidified by a humidifier (glass bubbler) set at a temperature of 83 ° C., and then supplied to the battery at atmospheric pressure. As a result, in the fuel cell of the present invention, at a current density of 0.3 A / cm 2 , 0.73 V
Was obtained. On the other hand, in the fuel cell of the comparative example, the 0.1.
Only an output of 0.67 V was obtained at a current density of 3 A / cm 2 .

【0035】実施例3 固体高分子電解質型燃料電池の調製 図1に示される10cm角、1.5cm厚のアクリル板
2,3に6cm角、深さ5mmのくぼみを掘り、くぼみ
の底に絶縁リード線付き6cm角の白金網4、5を設け
た。エタノールで膨潤させた固体高分子電解質膜(デュ
ポン社製ナフィオン115)6を挟み込み、四隅をねじ
で固定し、電着液7が漏れないようにしてアクリルセル
1とした。固体高分子電解質溶液(アルドリッチ社製;
ナフィオン5wt%溶液)80ml、エタノール200
ml、30wt%白金担持親水性カーボンブラック(A
B−12;電気化学工業(株)製)3.6g、低分子P
TFE(ルブロン;ダイキン工業(株)製)2.7gを
加えて、超音波分散させて電着液を調製した。この電着
液をアクリルセル1に満たし、20Vの電圧を30秒間
加え、反応層を固体高分子電解質膜の片側(陰極室側)
に形成させた。形成した反応層が生乾きの状態にあるう
ちに、100kg/cm2 、温度135℃、1分間の条
件で加熱圧接することにより、固体高分子電解質膜と反
応層が強固に結合した。反応層の膜厚はほぼ0.1mm
であった。反応層が強固に結合した固体高分子電解質膜
を、反応層付着側を陽極室側として、前記と同様にアク
リルセル1を作成し電着することにより、両面に反応層
が形成された固体高分子電解質膜を得た。再度、生乾き
の状態で、100kg/cm2 、温度135℃、1分間
の条件で加熱圧接し、固体高分子電解質膜と反応層を強
固に結合させた。得られた、両面に反応層が形成された
固体高分子電解質膜を撥水化したカーボンペーパーを介
して、ガス供給路が形成された金属製のエンドプレート
で挟持することにより、この発明に係わる固体高分子電
解質型燃料電池を作製した。このときの白金担持量は
0.4〜0.6mg/cm2 であった。作製された前記
固体高分子電解質型燃料電池を、前記と同様にして温度
80℃作動させたところ、電流密度0.3A/cm2
おいて、電池電圧は0.72Vであった。
Example 3 Preparation of Solid Polymer Electrolyte Fuel Cell A 10 cm square, 1.5 cm thick acrylic plate 2, 3 shown in FIG. 1 was dug into a 6 cm square, 5 mm deep recess, and an insulation was placed on the bottom of the recess. Platinum nets 4 and 5 of 6 cm square with a lead wire were provided. An acrylic cell 1 was formed by sandwiching a solid polymer electrolyte membrane (Nafion 115 manufactured by DuPont) 6 swelled with ethanol, fixing the four corners with screws, and preventing the electrodeposition liquid 7 from leaking. Solid polymer electrolyte solution (manufactured by Aldrich;
Nafion 5 wt% solution) 80 ml, ethanol 200
ml, 30 wt% platinum-supported hydrophilic carbon black (A
B-12; manufactured by Denki Kagaku Kogyo Co., Ltd.) 3.6 g, low molecular weight P
2.7 g of TFE (Rubron; manufactured by Daikin Industries, Ltd.) was added, and the mixture was ultrasonically dispersed to prepare an electrodeposition solution. This electrodeposition liquid was filled in the acrylic cell 1, a voltage of 20 V was applied for 30 seconds, and the reaction layer was formed on one side (the cathode chamber side) of the solid polymer electrolyte membrane.
Formed. While the formed reaction layer was in a dry state, it was heated and pressed at 100 kg / cm 2 at a temperature of 135 ° C. for 1 minute, whereby the solid polymer electrolyte membrane and the reaction layer were firmly bonded. The thickness of the reaction layer is approximately 0.1 mm
Met. Acrylic cell 1 is prepared and electrodeposited in the same manner as described above, with a solid polymer electrolyte membrane having a reaction layer firmly bonded to the anode chamber side on the side where the reaction layer is attached. A molecular electrolyte membrane was obtained. Again, in a dry state, it was heated and pressed under the conditions of 100 kg / cm 2 , 135 ° C. for 1 minute, and the solid polymer electrolyte membrane and the reaction layer were firmly bonded. According to the present invention, the obtained solid polymer electrolyte membrane having a reaction layer formed on both surfaces thereof is sandwiched by a metal end plate provided with a gas supply passage through water-repellent carbon paper. A solid polymer electrolyte fuel cell was fabricated. At this time, the amount of supported platinum was 0.4 to 0.6 mg / cm 2 . When the manufactured solid polymer electrolyte fuel cell was operated at a temperature of 80 ° C. in the same manner as described above, the cell voltage was 0.72 V at a current density of 0.3 A / cm 2 .

【0036】[0036]

【発明の効果】この発明の固体高分子電解質型燃料電池
は、電気泳動を用いるので薄いイオン交換膜が容易に製
造でき、高分子電解質分子が触媒担持カーボンブラック
の周りに分散した反応層も容易に製造できるので、反応
層と固体高分子電解質層は、プロトンパスの連続性が取
れるので性能が良い電池が得られる。
According to the solid polymer electrolyte fuel cell of the present invention, a thin ion exchange membrane can be easily manufactured by using electrophoresis, and a reaction layer in which polymer electrolyte molecules are dispersed around a catalyst-supporting carbon black can be easily formed. Since the reaction layer and the solid polymer electrolyte layer can maintain the continuity of the proton path, a battery with good performance can be obtained.

【0037】また、この発明の固体高分子電解質型燃料
電池及び固体高分子電解質膜は、電気泳動によって得る
ことができるため、製造装置を簡単にでき、かつ設備費
に要する費用を安価にすることができる。
Further, since the solid polymer electrolyte fuel cell and the solid polymer electrolyte membrane of the present invention can be obtained by electrophoresis, the manufacturing apparatus can be simplified and the cost required for equipment cost can be reduced. Can be.

【0038】また、電気泳動によるため、両電極間には
ほとんど電流が流れないので、消費電力も少なく、両電
極間には平等電界が形成されるので、短時間で、厚さむ
らのない固体高分子電解質膜、反応層又はガス供給層を
形成することができ、電気の力、いわゆるクーロン力
で、ガス拡散電極材料の微粒子が電極表面へ付着するの
で、付着力も大きく、効率よくガス供給層及び/又は反
応層を形成することができるなどの効果があり、さら
に、連続的に集電体の金属網表面に微粒子を付着させて
ガス供給層及び/又は反応層を形成することができるの
で、量産性に優れているなどの効果を奏する。
Also, because of the electrophoresis, almost no current flows between the two electrodes, so that the power consumption is small and a uniform electric field is formed between the two electrodes. A polymer electrolyte membrane, a reaction layer or a gas supply layer can be formed, and the fine particles of the gas diffusion electrode material adhere to the electrode surface with the power of electricity, so-called Coulomb force. It has the effect that a layer and / or a reaction layer can be formed, and further, it is possible to form a gas supply layer and / or a reaction layer by continuously attaching fine particles to the metal net surface of the current collector. Therefore, it has effects such as excellent mass productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例3において用いたアクリルセ
ルの概略説明図である。
FIG. 1 is a schematic explanatory view of an acrylic cell used in Embodiment 3 of the present invention.

【符号の説明】[Explanation of symbols]

1 アクリルセル 2 ,3 アクリル板 4,5 白金網 6 固体高分子電解質膜 7 電着液 1 Acrylic cell 2, 3 Acrylic plate 4, 5 Platinum net 6 Solid polymer electrolyte membrane 7 Electrodeposition liquid

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H018 AA06 AS02 AS03 BB00 BB01 BB03 EE03 EE05 EE18 5H026 AA06 BB00 BB01 BB02 BB04 BB08 CX05 EE02 EE05 EE18 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H018 AA06 AS02 AS03 BB00 BB01 BB03 EE03 EE05 EE18 5H026 AA06 BB00 BB01 BB02 BB04 BB08 CX05 EE02 EE05 EE18

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 電池を形成する固体高分子電解質膜、反
応層及びガス供給層の全て、もしくはいずれかが電気泳
動により形成されたものであることを特徴とする固体高
分子電解質型燃料電池。
1. A solid polymer electrolyte fuel cell, wherein all or any of the solid polymer electrolyte membrane, the reaction layer and the gas supply layer forming the battery is formed by electrophoresis.
【請求項2】 前記固体高分子電解質膜が、固体高分子
電解質溶液中の陽極上又は陽極近傍に設置した多孔体上
に、電気泳動により固体高分子電解質が電着製膜したも
のであることを特徴とする請求項1に記載の固体高分子
電解質型燃料電池。
2. The solid polymer electrolyte membrane, wherein the solid polymer electrolyte is formed by electrodeposition by electrophoresis on an anode in a solid polymer electrolyte solution or on a porous body provided near the anode. The polymer electrolyte fuel cell according to claim 1, wherein:
【請求項3】 前記反応層が、固体高分子電解質膜上に
電気泳動により形成されたものであることを特徴とする
請求項1に記載の固体高分子電解質型燃料電池。
3. The solid polymer electrolyte fuel cell according to claim 1, wherein the reaction layer is formed by electrophoresis on a solid polymer electrolyte membrane.
【請求項4】 前記固体高分子電解質膜が、固体高分子
電解質溶液中の陽極上又は陽極近傍に設置した多孔体上
に、電気泳動により固体高分子電解質が電着製膜したも
のであることを特徴とする請求項3に記載の固体高分子
電解質型燃料電池。
4. The solid polymer electrolyte membrane, wherein the solid polymer electrolyte is formed by electrodeposition by electrophoresis on an anode in a solid polymer electrolyte solution or on a porous body placed near the anode. The polymer electrolyte fuel cell according to claim 3, wherein:
【請求項5】 前記電気泳動により形成された反応層
が、固体高分子電解質膜上に熱圧着されたものであるこ
とを特徴とする請求項1に記載の固体高分子電解質型燃
料電池。
5. The solid polymer electrolyte fuel cell according to claim 1, wherein the reaction layer formed by the electrophoresis is formed by thermocompression bonding on a solid polymer electrolyte membrane.
【請求項6】 前記反応層とガス供給層が、固体高分子
電解質膜上に電気泳動により形成されたものであること
を特徴とする請求項1に記載の固体高分子電解質型燃料
電池。
6. The solid polymer electrolyte fuel cell according to claim 1, wherein the reaction layer and the gas supply layer are formed by electrophoresis on a solid polymer electrolyte membrane.
【請求項7】 前記固体高分子電解質膜が、固体高分子
電解質溶液中の陽極上又は陽極近傍に設置した多孔体上
に、電気泳動により固体高分子電解質が電着製膜したも
のであることを特徴とする請求項6に記載の固体高分子
電解質型燃料電池。
7. The solid polymer electrolyte membrane in which the solid polymer electrolyte is formed by electrophoresis on a porous body provided on or near the anode in the solid polymer electrolyte solution by electrophoresis. The solid polymer electrolyte fuel cell according to claim 6, wherein:
【請求項8】 前記反応層とガス供給層が、固体高分子
電解質膜の両面に電気泳動により形成されたものである
ことを特徴とする請求項1に記載の固体高分子電解質型
燃料電池。
8. The solid polymer electrolyte fuel cell according to claim 1, wherein the reaction layer and the gas supply layer are formed by electrophoresis on both surfaces of a solid polymer electrolyte membrane.
【請求項9】 前記固体高分子電解質膜が、固体高分子
電解質溶液中の陽極上又は陽極近傍に設置した多孔体上
に、電気泳動により固体高分子電解質が電着製膜したも
のであることを特徴とする請求項8に記載の固体高分子
電解質型燃料電池。
9. The solid polymer electrolyte membrane, wherein the solid polymer electrolyte is formed by electrodeposition by electrophoresis on a porous body provided on or near an anode in the solid polymer electrolyte solution. The solid polymer electrolyte fuel cell according to claim 8, wherein:
【請求項10】 固体高分子電解質溶液中の陽極上又は
陽極近傍に設置した多孔体上に、電気泳動により固体高
分子電解質が電着し、製膜したものであることを特徴と
する固体高分子電解質膜。
10. A solid polymer electrolyte, wherein a solid polymer electrolyte is electrodeposited by electrophoresis on an anode in a solid polymer electrolyte solution or on a porous body placed near the anode to form a film. Molecular electrolyte membrane.
【請求項11】 前記固体高分子電解質溶液が、液中に
微粒子が分散しており、得られる固体高分子電解質膜が
微粒子を含んだものであることを特徴とする請求項10
に記載の固体高分子電解質膜。
11. The solid polymer electrolyte solution in which fine particles are dispersed in the liquid, and the obtained solid polymer electrolyte membrane contains fine particles.
3. The solid polymer electrolyte membrane according to item 1.
JP2000216187A 2000-06-06 2000-07-17 Solid polymer electrolyte fuel cell and method of manufacturing the same Expired - Fee Related JP3508100B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000216187A JP3508100B2 (en) 2000-07-17 2000-07-17 Solid polymer electrolyte fuel cell and method of manufacturing the same
DE60133819T DE60133819T2 (en) 2000-06-06 2001-06-04 GAS DIFFUSION ELECTRODE, METHOD OF MANUFACTURING THEREFOR AND THIS USING FUEL CELL
AT01934519T ATE393843T1 (en) 2000-06-06 2001-06-04 GAS DIFFUSION ELECTRODE, PRODUCTION METHOD THEREOF AND FUEL CELL USING SAME
PCT/JP2001/004693 WO2001094668A1 (en) 2000-06-06 2001-06-04 Gas diffusion electrode, method for manufacturing the same and fuel cell using it
EP01934519A EP1295968B1 (en) 2000-06-06 2001-06-04 Gas diffusion electrode, method for manufacturing the same and fuel cell using it
US10/297,329 US20030134177A1 (en) 2000-06-06 2001-06-04 Gas diffusion electrode, method for manufacturing the same and fuel cell using it
AU2001260702A AU2001260702A1 (en) 2000-06-06 2001-06-04 Gas diffusion electrode, method for manufacturing the same and fuel cell using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000216187A JP3508100B2 (en) 2000-07-17 2000-07-17 Solid polymer electrolyte fuel cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2002319412A true JP2002319412A (en) 2002-10-31
JP3508100B2 JP3508100B2 (en) 2004-03-22

Family

ID=18711488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000216187A Expired - Fee Related JP3508100B2 (en) 2000-06-06 2000-07-17 Solid polymer electrolyte fuel cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3508100B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006277984A (en) * 2005-03-28 2006-10-12 Asahi Glass Co Ltd Manufacturing method of membrane electrode assembly
JP2007021409A (en) * 2005-07-19 2007-02-01 Chokoon Zairyo Kenkyusho:Kk Method for manufacturing diesel particulate filter
JP2007287376A (en) * 2006-04-13 2007-11-01 Nok Corp Membrane-electrode assembly manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006277984A (en) * 2005-03-28 2006-10-12 Asahi Glass Co Ltd Manufacturing method of membrane electrode assembly
JP2007021409A (en) * 2005-07-19 2007-02-01 Chokoon Zairyo Kenkyusho:Kk Method for manufacturing diesel particulate filter
JP2007287376A (en) * 2006-04-13 2007-11-01 Nok Corp Membrane-electrode assembly manufacturing method

Also Published As

Publication number Publication date
JP3508100B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
JP4550798B2 (en) Solid polymer electrolyte fuel cell and method for producing the same
JP5759687B2 (en) Water electrolysis cell
KR20130016228A (en) Process for production of cathode catalyst layer for fuel cell, cathode catalyst layer, and membrane electrode assembly for solid polymer fuel cell
US8614028B2 (en) Membrane and electrode assembly and method of producing the same, and polymer electrolyte membrane fuel cell
WO2007148765A1 (en) Method for manufacturing electrode catalyst for fuel cell, electrode catalyst for fuel cell, and solid polymer electrolyte fuel cell comprising the same
CN101317292A (en) Conductive porous body for fuel cell, fuel cell having same, and manufacturing method thereof
EP1295968B1 (en) Gas diffusion electrode, method for manufacturing the same and fuel cell using it
JP2000299119A (en) Manufacture of catalyst layer
JP2007501496A (en) Hybrid membrane / electrode assembly with reduced interfacial resistance and method for producing the same
JP2005235706A (en) Electrode for solid polymer fuel cell
JP2007213988A (en) Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
JP3508100B2 (en) Solid polymer electrolyte fuel cell and method of manufacturing the same
US20050147868A1 (en) Fuel cell
JP2015146287A (en) Inspection method of fuel cell
JP2003059507A (en) Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell
JP2005032569A (en) Complex of fluororesin and carbon particulate, gas diffusion electrode, and fuel cell
JP3740677B2 (en) Gas diffusion electrode and manufacturing method thereof
JP2000208151A (en) Gas diffusion electrode and its production
JP3383948B2 (en) Fluororesin-containing porous body for gas diffusion electrode, gas diffusion electrode and method for producing the same
JP2000235859A (en) Gas diffusing electrode and fuel cell provided with the same
JP2010170895A (en) Method and device for manufacturing membrane electrode assembly
JP2006066309A (en) Method of manufacturing catalyst for solid polymer type fuel cell
JP3456270B2 (en) Paste for forming electrode catalyst layer
JP2003123786A (en) Membrane / electrode assembly for direct methanol fuel cell
JP5454050B2 (en) POLYMER ELECTROLYTE FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY CONTAINING THE POLYMER ELECTROLYTE, AND METHOD FOR PRODUCING THE SAME

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031212

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees