JP3508100B2 - Solid polymer electrolyte fuel cell and method of manufacturing the same - Google Patents
Solid polymer electrolyte fuel cell and method of manufacturing the sameInfo
- Publication number
- JP3508100B2 JP3508100B2 JP2000216187A JP2000216187A JP3508100B2 JP 3508100 B2 JP3508100 B2 JP 3508100B2 JP 2000216187 A JP2000216187 A JP 2000216187A JP 2000216187 A JP2000216187 A JP 2000216187A JP 3508100 B2 JP3508100 B2 JP 3508100B2
- Authority
- JP
- Japan
- Prior art keywords
- solid polymer
- polymer electrolyte
- fuel cell
- reaction layer
- electrophoresis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000007787 solid Substances 0.000 title claims description 134
- 239000005518 polymer electrolyte Substances 0.000 title claims description 129
- 239000000446 fuel Substances 0.000 title claims description 55
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 76
- 239000012528 membrane Substances 0.000 claims description 70
- 238000001962 electrophoresis Methods 0.000 claims description 53
- 238000000034 method Methods 0.000 claims description 17
- 239000003792 electrolyte Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000003825 pressing Methods 0.000 claims description 7
- 229920000642 polymer Polymers 0.000 claims description 4
- 238000005868 electrolysis reaction Methods 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 50
- 239000000243 solution Substances 0.000 description 37
- 239000006229 carbon black Substances 0.000 description 20
- 239000010419 fine particle Substances 0.000 description 20
- 239000007788 liquid Substances 0.000 description 18
- 239000006185 dispersion Substances 0.000 description 17
- 239000011888 foil Substances 0.000 description 17
- 229920000557 Nafion® Polymers 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 13
- 238000009792 diffusion process Methods 0.000 description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- 229910001220 stainless steel Inorganic materials 0.000 description 12
- 239000010935 stainless steel Substances 0.000 description 12
- 239000003054 catalyst Substances 0.000 description 10
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 9
- 238000004070 electrodeposition Methods 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 229910052697 platinum Inorganic materials 0.000 description 6
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 239000003456 ion exchange resin Substances 0.000 description 5
- 229920003303 ion-exchange polymer Polymers 0.000 description 5
- 239000005871 repellent Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 230000005684 electric field Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 230000002940 repellent Effects 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001652 electrophoretic deposition Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000003014 ion exchange membrane Substances 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920000867 polyelectrolyte Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229920001774 Perfluoroether Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Description
【0001】[0001]
【発明の属する技術分野】この発明は、固体高分子電解
質型燃料電池、及び該燃料電池の製造方法、特に、特定
の製法で調製された固体高分子電解質型燃料電池、及び
その製法に関し、さらに詳しくは、短時間にかつ簡便な
手段で調製可能な固体高分子電解質型燃料電池、及びそ
の製造方法に関するもので、電池製造技術に属するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell, a method for producing the fuel cell, and more particularly, a solid polymer electrolyte fuel cell prepared by a specific production method , and
Respect to its preparation, more specifically, a short time and can be prepared by simple means a solid polymer electrolyte fuel cell, and its
And a battery manufacturing technology.
【0002】[0002]
【従来の技術】固体高分子電解質型燃料電池の構成は、
酸素を供給する酸素極(カソード)と、固体高分子電解
質、及び燃料が供給される燃料極(アノード)の三つの
要素から成り立っている。換言すれば、イオン交換膜
(固体高分子電解質膜)の両面に、ガス拡散電極が配置
された構造を有している。2. Description of the Related Art The constitution of a solid polymer electrolyte fuel cell is
It is composed of three elements: an oxygen electrode (cathode) for supplying oxygen, a solid polymer electrolyte, and a fuel electrode (anode) for supplying fuel. In other words, it has a structure in which the gas diffusion electrodes are arranged on both sides of the ion exchange membrane (solid polymer electrolyte membrane).
【0003】このガス拡散電極は、通常の状態では、固
定表面である電極上において、電解質と気体の反応ガス
が供給されて三相界面が形成され、その三相界面におい
て電気化学的反応が進行し、発電を行うもので、触媒、
カーボンブラック、フッ素樹脂及び集電体で構成され、
通常その厚みは0.6mm程度で、この内の0.5mm
程度がガス供袷層、0.1mm程度が反応層という構造
を有している。In this gas diffusion electrode, in a normal state, a reaction gas of an electrolyte and a gas is supplied on the electrode which is a fixed surface to form a three-phase interface, and an electrochemical reaction proceeds at the three-phase interface. To generate electricity, a catalyst,
Composed of carbon black, fluororesin and current collector,
Normally, its thickness is about 0.6 mm, of which 0.5 mm
The structure has a gas feeding layer and a reaction layer of about 0.1 mm.
【0004】この固体高分子型燃料電池の性能は、前記
した三相(帯)界面をどのように形成するかで決定され
るものであり、三相帯界面の形成方法については、種々
の提案がなされている。The performance of this polymer electrolyte fuel cell is determined by how the above-mentioned three-phase (zone) interface is formed, and various proposals have been made regarding the method of forming the three-phase zone interface. Has been done.
【0005】三相帯界面形成の基本的な方法としては、
触媒を担持させたカーボンブラックの分散液に、固体高
分子電解質(フッ素系イオン交換樹脂:デュポン社製液
体ナフィオンなど)溶液を添加混合したのち、凝集剤を
添加し、フッ素樹脂で絡め取られた触媒担持カーボンブ
ラックと、フッ素樹脂が混合された液を得たのち、これ
を反応層形成用の液として、テフロン膜などに塗布乾燥
して反応層膜を形成し、得た反応層膜と固体高分子電解
質膜(フッ素系イオン交換樹脂:デュポン社製ナフィオ
ンなど)を加熱圧着することで反応層―固体高分子電解
質接合体を得る方法であり、この方法に関しては多くの
改良提案がなされており、その一部を示すと、以下のと
おりである。The basic method for forming the three-phase band interface is as follows:
A solid polymer electrolyte (fluorine-based ion exchange resin: liquid Nafion manufactured by DuPont, etc.) solution was added to and mixed with the dispersion of carbon black supporting a catalyst, and then a flocculant was added and entwined with the fluororesin. After obtaining a liquid in which a catalyst-supporting carbon black and a fluororesin are mixed, this is used as a liquid for forming a reaction layer, which is applied to a Teflon film or the like and dried to form a reaction layer film. This is a method for obtaining a reaction layer-solid polymer electrolyte assembly by heating and pressing a polymer electrolyte membrane (fluorine-based ion exchange resin: Nafion manufactured by DuPont, etc.), and many proposals for improvement have been made regarding this method. The following are some of them.
【0006】貴金属触媒を担持した炭素粉末の有機溶媒
分散液と、固体高分子電解質のアルコール溶液とを混合
して固体高分子電解質をコロイド状とし炭素粉末に吸着
させたものを塗布する方法(特開平10−302805
号公報)、触媒と固体高分子電解質の分散物を塗布した
のち、酸性溶液で処理する方法(特開平11−4573
0号公報)、触媒を含有するインク状あるいはペースト
状の触媒混合物を、電解質膜表面に塗布後ガス拡散層を
加熱圧接する方法(特開2000−90944号公
報)、精製した固体高分子電解質膨潤膜に、高分子電解
質溶液を塗布したのち、極性基を有する有機溶媒に浸漬
して得た三次元連通性の孔を有する多孔質電解質を用い
る方法(特開2000−106200号公報)などがあ
る。A method in which an organic solvent dispersion of carbon powder carrying a noble metal catalyst and an alcohol solution of a solid polymer electrolyte are mixed to form a solid polymer electrolyte in a colloidal form and adsorbed on the carbon powder is applied. Kaihei 10-302805
JP-A-11-4573), a method of applying a dispersion of a catalyst and a solid polymer electrolyte and then treating with an acidic solution (JP-A-11-4573).
No. 0), an ink-like or paste-like catalyst mixture containing a catalyst is applied to the surface of the electrolyte membrane and then the gas diffusion layer is heated and pressed (JP-A 2000-90944), and a purified solid polymer electrolyte swelling is performed. There is a method of using a porous electrolyte having three-dimensionally interconnected pores obtained by applying a polymer electrolyte solution to a membrane and then immersing it in an organic solvent having a polar group (JP 2000-106200 A). .
【0007】[0007]
【発明が解決しようとする課題】しかしながら、これら
の方法はいずれも、凝集、塗布、乾燥など複雑な工程を
必要とし、製造コストの未だ高いものであり、製造コス
トを低下させることと、性能の向上が強く求められてい
るのが現状である。However, all of these methods require complicated steps such as agglomeration, coating, and drying, and the production cost is still high. Therefore, the production cost is lowered and the performance is lowered. At present, there is a strong demand for improvement.
【0008】本発明者は、従来の技術の問題点について
鋭意検討を重ね、従来の技術の工程の解析を行うととも
に、この解析結果に基づいて鋭意研究を行い、より簡単
な手段で、固体高分子電解質型燃料電池、及び固体高分
子電解質型燃料電池の基本要素である固体高分子電解質
膜、及びガス拡散電極を製造する手段を研究したのであ
る。The inventor of the present invention has earnestly studied the problems of the conventional technique, analyzed the process of the conventional technique, and conducted the earnest research on the basis of the analysis result. He studied the means for producing a molecular electrolyte fuel cell, a solid polymer electrolyte membrane, which is a basic element of a solid polymer electrolyte fuel cell, and a gas diffusion electrode.
【0009】その結果、本発明者は、前記溶液状の固体
高分子電解質(フッ素系イオン交換樹脂:デュポン社製
ナフィオン溶液など)は、イ.固体高分子電解質を高温
下にアルコールに溶解したもので、液中では、ゼータ電
位がマイナスであるため、電場をかけると陽極側に電気
泳動して電着すること、ロ.水中に分散されたフッ素樹
脂微粒子なども、通常、負イオンを帯びているため、電
気泳動によりー方の電極に付着し、簡単に分散媒と分離
されること、ハ.カーボンブラックなどはエタノール中
ではゼータ電位は示さず、電気泳動を起こさないもの
も、固体高分子電解質溶液やフッ素樹脂微粒子を含む分
散液の電気泳動時に、これら固体高分子電解質やフッ素
樹脂微粒子とともに共斥することを見出し、この知見を
応用することにより、前記課題を解決し得ることを見出
した。As a result, the present inventors have found that the solution-state solid polymer electrolyte (fluorine-based ion exchange resin: Nafion solution manufactured by DuPont, etc.) A solid polyelectrolyte dissolved in alcohol at high temperature. Since the zeta potential is negative in the liquid, when an electric field is applied, electrophoresis is performed on the anode side for electrodeposition. Fluororesin fine particles dispersed in water usually have negative ions, so that they adhere to one electrode by electrophoresis and are easily separated from the dispersion medium. Carbon black, which does not show a zeta potential in ethanol and does not cause electrophoresis, does not co-exist with solid polymer electrolyte and fluororesin fine particles during electrophoresis of the solid polyelectrolyte solution and dispersion liquid containing fluororesin fine particles. It was found that the above problems can be solved by applying this knowledge.
【0010】この発明の目的は、量産性に優れ、簡単な
装置によって安価に製造でき、しかも高性能で長寿命の
固体高分子電解質型燃料電池と、その製造方法を提供す
ることである。An object of the present invention is to provide a solid polymer electrolyte fuel cell which is excellent in mass productivity, can be manufactured inexpensively by a simple apparatus, has high performance, and has a long life, and a manufacturing method thereof.
【0011】[0011]
【課題を解決するための手段】前記の目的を達成するた
め、この発明の請求項1に記載の発明は、固体高分子電
解質膜、反応層及びガス供給層からなる固体高分子電解
質型燃料電池において、 前記反応層が、固体高分子電解
質膜上に電気泳動により形成されたものであることを特
徴とする固体高分子電解質型燃料電池である。In order to achieve the above object, the invention according to claim 1 of the present invention is a solid polymer electrolyte.
Solid polymer electrolysis consisting of electrolyte membrane, reaction layer and gas supply layer
In a solid fuel cell, the reaction layer is a solid polymer electrolyte
A solid polymer electrolyte fuel cell, characterized in that it is formed on a porous membrane by electrophoresis.
【0012】この発明の請求項4に記載の発明は、 固体
高分子電解質膜、反応層及びガス供給層からなる固体高
分子電解質型燃料電池において、 前記ガス供給層が電気
泳動により形成されたものであることを特徴とする固体
高分子電解質型燃料電池である。 The invention according to claim 4 of the present invention is a solid
Solid high consisting of polymer electrolyte membrane, reaction layer and gas supply layer
In the molecular electrolyte fuel cell, the gas supply layer is electrically
Solids characterized by being formed by electrophoresis
It is a polymer electrolyte fuel cell.
【0013】この発明の請求項6に記載の発明は、 固体
高分子電解質膜、反応層及びガス供給層からなる固体高
分子電解質型燃料 電池において、 前記反応層及びガス供
給層が、固体高分子電解質膜上に電気泳動により形成さ
れたものであることを特徴とする固体高分子電解質型燃
料電池である。 The invention according to claim 6 of the present invention is a solid
Solid high consisting of polymer electrolyte membrane, reaction layer and gas supply layer
In the molecular electrolyte fuel cell, the reaction layer and gas supply
The feed layer is formed by electrophoresis on the solid polymer electrolyte membrane.
Solid polymer electrolyte type fuel characterized by being
It is a charge battery.
【0014】この発明の請求項9に記載の発明は、固体
高分子電解質膜の両面に電気泳動により反応層を形成さ
せることにより調製された、固体高分子電解質膜と反応
層の接合体を、カーボンペーパーを介して2枚の金属板
で挟持することを特徴とする固体高分子電解質型燃料電
池の製造方法である。 The invention according to claim 9 of the present invention provides a joined body of a solid polymer electrolyte membrane and a reaction layer, which is prepared by forming a reaction layer on both surfaces of the solid polymer electrolyte membrane by electrophoresis. A solid polymer electrolyte fuel cell characterized by being sandwiched between two metal plates via carbon paper
It is a method of manufacturing a pond.
【0015】この発明の請求項11に記載の発明は、電
気泳動により得られた固体高分子電解質膜及び反応層か
らなる積層体を2枚加熱圧接することにより調製され
た、固体高分子電解質膜及び反応層の接合体を、カーボ
ンペーパーを介して2枚の金属板で挟持することを特徴
とする固体高分子電解質型燃料電池の製造方法である。[0015] The invention according to claim 11 of the present invention, electrostatic
Solid polymer electrolyte membrane and reaction layer obtained by electrophoresis
It was prepared by heating and pressing two laminated bodies
In addition, the solid polymer electrolyte membrane and reaction layer bonded body was
It is characterized by being sandwiched between two metal plates via a paper
And a method for producing a solid polymer electrolyte fuel cell .
【0016】[0016]
【発明の実施の形態】この発明においては、固体高分子
電解質型燃料電池を構成する固体高分子電解質膜と、ガ
ス拡散電極を構成する反応層及びガス供給層のうち、反
応層が固体高分子電解質膜上に電気泳動により形成され
たものであることを特徴とするものである。また、この
発明においては、固体高分子電解質型燃料電池を構成す
る固体高分子電解質膜とガス拡散電極を構成する反応層
及びガス供給層のうち、ガス供給層が電気泳動により形
成されたものであることを特徴とするものである。以
下、電気泳動による固体高分子電解質膜、反応層及びガ
ス供給層の調製方法について説明する。In DETAILED DESCRIPTION OF THE INVENTION The present invention, a solid polymer electrolyte membrane constituting a solid polymer electrolyte fuel cell, of the reaction layer and gas supply layer constituting the gas diffusion electrode, the reaction layer is a polymer It is characterized in that it is formed on the electrolyte membrane by electrophoresis. Also this
In the invention, a solid polymer electrolyte fuel cell is constructed.
Reaction layer that constitutes a solid polymer electrolyte membrane and gas diffusion electrode
And the gas supply layer of the gas supply layer is formed by electrophoresis.
It is characterized by being made. Hereinafter, a method for preparing the solid polymer electrolyte membrane, the reaction layer and the gas supply layer by electrophoresis will be described.
【0017】固体高分子電解質膜の電気泳動での調製
は、ナフィオン(デュポン社製)などの固体高分子電解
質の溶液(以下、溶液という。)からなる電気泳動液
に、陰極と陽極とを浸し、電流を流すことで固体高分子
電解質を陽極側に電気泳動させ、陽極上又は陽極近傍に
設置した基体、具体的には多孔体上に電着させ、製膜さ
せるという方法で行われる。The solid polymer electrolyte membrane is prepared by electrophoresis by immersing the cathode and the anode in an electrophoretic solution composed of a solution (hereinafter referred to as a solution) of a solid polymer electrolyte such as Nafion (manufactured by DuPont). A method is performed in which a solid polymer electrolyte is electrophoresed on the anode side by passing an electric current, and is electrodeposited on a substrate installed on or near the anode, specifically, a porous body to form a film.
【0018】一方、ガス拡散電極を構成する反応層及び
ガス供給層の電気泳動での調製も、基本的には前記溶液
を使用して調製するものであるが、水中に固体高分子電
解質又はフッ素樹脂微粒子を分散させた分散液(以下、
分散液という。)、もしくは前記溶液と分散液との混合
液も電気泳動液として使用することができ、反応層を形
成するには、電気泳動液に、疎水性カーボンブラック、
親水性カーボンブラック、触媒、金属微粒子又は金属酸
化物微粒子を、ガス供給層の場合は、電気泳動液に、疎
水性カーボンブラックなどの微粒子を分散させ、電気泳
動することにより調製される。On the other hand, the preparation of the reaction layer and the gas supply layer constituting the gas diffusion electrode by electrophoresis is also basically prepared by using the above solution. However, the solid polymer electrolyte or fluorine in water is used. A dispersion liquid in which resin fine particles are dispersed (hereinafter,
It is called a dispersion. ), Or a mixed liquid of the solution and the dispersion liquid can be used as the electrophoretic liquid, and in order to form the reaction layer, the electrophoretic liquid contains hydrophobic carbon black,
In the case of the gas supply layer, hydrophilic carbon black, catalyst, metal fine particles or metal oxide fine particles are prepared by dispersing fine particles such as hydrophobic carbon black in an electrophoretic solution and performing electrophoresis.
【0019】電気泳動液に用いられるフッ素樹脂として
は、四フッ化エチレン樹脂、四フッ化エチレン・六フッ
化プロピレン共重合体、三フッ化塩化エチレン樹脂、パ
ーフロロアルコキシ樹脂などが挙げられる。Examples of the fluororesin used in the electrophoretic solution include tetrafluoroethylene resin, tetrafluoroethylene / hexafluoropropylene copolymer, trifluorochloroethylene resin and perfluoroalkoxy resin.
【0020】電気泳動液に分散させるカーボンブラック
などの微粒子は、1ミクロン以下の粒径に調整しておく
のが好ましく、また、要求される特性に応じた粒径とさ
れ、疎水性カーボンブラックなどのように、水への分散
性が悪いものについては、界面活性剤を併用し、ジェッ
トミルなどを用いて、1ミクロン以下の粒径にして水に
分散させる。The fine particles of carbon black or the like to be dispersed in the electrophoretic liquid are preferably adjusted to have a particle size of 1 micron or less. Further, the particle size is set according to the required characteristics, and hydrophobic carbon black or the like is used. As described above, when the dispersibility in water is poor, a particle size of 1 micron or less is dispersed by using a surfactant together with a jet mill.
【0021】電気泳動は、基本的に、平行に向かい合わ
せに設置された陽極及び陰極を有する電気泳動槽と、直
流安定化電源を必須の構成要素とするものであり、陽極
はステンレス、アルミ、銀、鉄、白金、カーボンなどの
導電性の基体であれば使用でき、陰極は金属であれば何
でもいいが、水素が発生するのでニッケル、白金、パラ
ジウムなどが好適である。Electrophoresis basically comprises an electrophoresis tank having an anode and a cathode arranged in parallel and facing each other, and a direct current stabilizing power source as essential components. The anode is stainless steel, aluminum, Any conductive substrate such as silver, iron, platinum, or carbon may be used, and the cathode may be any metal, but nickel, platinum, palladium, etc. are preferable because hydrogen is generated.
【0022】陽極及び陰極とする金属の形状は、網状が
よいが、板状でもよい。網状の場合には網目が0.5〜
2mm位のものがよい。極間は5〜100mmが好適であ
る。あまり近いと短絡の心配があり、広いと高電圧電源
が必要である。また、陽極と陰極の間にフィルターを設
置することも可能である。The metal used as the anode and the cathode is preferably net-like, but may be plate-like. If the mesh is 0.5-0.5
2mm is preferable. The gap between the electrodes is preferably 5 to 100 mm. If it is too close, there is a risk of short circuit, and if it is wide, a high voltage power supply is required. It is also possible to install a filter between the anode and the cathode.
【0023】電気泳動に際しては、理論上、陽極と陰極
は水平でもまだ垂直に配置されたいずれの状態でも行う
ことができるが、疎水性カーボンブラックや、親水性カ
ーボンブラックなどの微粒子が分散された分散液を用い
る場合は、重力によりそれら微粒子が沈降し易いので、
陽極と陰極は水平に配置し、かつ電気泳動によりフッ素
樹脂微粒子などが移動する方向と、重力による沈降方向
が同じになるように、陽極が下方にあるように配置する
ことが好ましく、そのように配置することにより、移動
時間を短くすることでき、能率的であるだけではなく、
陽極に均一に電着させることができ、しかもその組成が
等しくなるようにすることができる。In theory, the electrophoresis can be carried out either horizontally or vertically with the anode and cathode arranged, but fine particles such as hydrophobic carbon black or hydrophilic carbon black are dispersed. When using a dispersion liquid, since these fine particles tend to settle due to gravity,
It is preferable to arrange the anode and the cathode horizontally, and to arrange the anode so that the direction in which the fluororesin fine particles and the like move by electrophoresis is the same as the settling direction due to gravity, and the anode is below. By arranging it, it is possible to shorten the traveling time and not only is it efficient,
The anode can be uniformly electrodeposited, and the composition can be made equal.
【0024】電気泳動において、陽極を固定させておく
必要はなく、連続的に移動させるようにすれば、陽極に
付着した多孔質膜を連続的に製造することができる。特
に、多孔質膜の基体となる金網をアノードとして使用
し、それを連続的に移動させることにより、基体により
支持された固体高分子電解質膜、反応層及びガス供給層
などを連続的に製造することができる。In electrophoresis, it is not necessary to fix the anode, but if it is moved continuously, the porous membrane attached to the anode can be continuously manufactured. In particular, a wire mesh, which is a base material of a porous membrane, is used as an anode, and by continuously moving it, a solid polymer electrolyte membrane, a reaction layer, a gas supply layer, etc. supported by the base material are continuously produced. be able to.
【0025】電気泳動に使用される電圧は5〜100V
/cmで、泳動量は、電圧に比例するので電圧を変動さ
せることにより電着速度を制御できる。The voltage used for electrophoresis is 5 to 100 V
/ Cm, the migration amount is proportional to the voltage, and therefore the electrodeposition rate can be controlled by varying the voltage.
【0026】電気泳動に使用される溶液や、分散液の電
気電導度は、1mS以下が望ましいが、電気電導度の大
きいものは、それだけ大きな電圧を必要とするので、溶
液や分散液中のイオンをイオン交換樹脂などで除去し、
電気泳動液の電気電導度を0.05mS以下にしておく
のが好ましく、電気泳動液のpHも電気電導度に影響を
及ぼすので、適切な値に調整するのが好ましい。The electric conductivity of the solution or dispersion used for electrophoresis is preferably 1 mS or less. However, a material having a high electric conductivity requires a correspondingly high voltage, so that the ions in the solution or dispersion are required. With an ion exchange resin,
The electroconductivity of the electrophoretic solution is preferably 0.05 mS or less, and the pH of the electrophoretic solution also affects the electroconductivity, so it is preferable to adjust it to an appropriate value.
【0027】この発明において、固体高分子電解質型燃
料電池を構成する固体高分子電解質膜と、ガス拡散電極
を構成する反応層及びガス供給層のうち、反応層が固体
高分子電解質膜上に電気泳動により、及び/又はガス供
給層が電気泳動により形成されたものであることを特徴
とするものである、全てが電気泳動により形成されたも
のが好ましいが、一部を既存のもので、残部が電気泳動
により形成されたものでも良い。以下、それらの製法の
概略を説明する。In the present invention, of the solid polymer electrolyte membrane which constitutes the solid polymer electrolyte fuel cell, and the reaction layer and the gas supply layer which constitute the gas diffusion electrode , the reaction layer is an electric layer on the solid polymer electrolyte membrane. By electrophoresis and / or gas supply
The feed layer is characterized in that it is formed by electrophoresis. It is preferable that all are formed by electrophoresis, but a part is existing and the rest is formed by electrophoresis. Anything is fine. The outline of those manufacturing methods will be described below.
【0028】1) ステンレス箔などを陽極とし、箔上
に順次
ガス供給層(疎水性カーボンブラック微粒子の分散され
たフッ素樹脂微粒子を含む分散液の電気泳動)、反応層
(疎水性カーボンブラック、親水性カーボンブラック、
触媒、金属微粒子又は金属酸化物微粒子などの分散され
たフッ素樹脂の分散液又は溶液による電気泳動)及び、
固体高分子電解質膜(溶液による電気泳動)を電気泳動
で電着形成し、得られたガス供給層、反応層及び固体高
分子電解質膜の積層されたステンレス箔2枚を、生乾き
の時点で、積層体を中側にして加熱圧接し接合した後、
外側のステンレス箔を剥離して用いる。
2)前記1)と同様にして、ステンレス箔上に、反応層
と固体高分子電解質膜を電気泳動で電着形成して得られ
た反応層と固体高分子電解質膜の積層体と撥水化したカ
ーボンペーパーなどをガス供給層層として用いる。
3)前記1)と同様にして、ステンレス箔上に、反応層
とガス供給層を順次電気泳動で電着形成して得られた反
応層とガス供給層の積層されたステンレス箔の2枚を、
生乾きの時点で、固体高分子電解質膜を挟んで加熱圧接
し、接合したのち、外側のステンレス箔を剥離する。そ
の際、反応層の電気泳動による調製において、電気泳動
液に固体高分子電解質の溶液を併用するのが好ましく、
それにより反応層と固体高分子電解質膜との密着性を向
上することができる。
4)電気泳動槽内で、陽極と陰極との間に固体高分子電
解質膜を設け、電気泳動により移動する微粒子などを固
体高分子電解質膜に付着させて、膜上に反応層、ガス供
給層を形成させる。
5)前記1)と同様にして、ステンレス箔上に反応層、
固体高分子電解質膜、反応層を、順次電気泳動で電着形
成して得られた反応層/固体高分子電解質膜/反応層の
積層体と撥水化したカーボンペーパーなどをガス供給層
として用いる。
6)前記1)と同様にして、ステンレス箔上に、ガス供
給層、反応層、固体高分子電解質膜、反応層、ガス供給
層を、順次電気泳動で電着形成し、ガス供給層/反応層
/固体高分子電解質膜/反応層/ガス供給層の積層体と
し使用する。1) A stainless steel foil or the like is used as an anode, and a gas supply layer (electrophoresis of a dispersion liquid containing fluororesin fine particles in which hydrophobic carbon black fine particles are dispersed) and a reaction layer (hydrophobic carbon black, hydrophilic) are sequentially formed on the foil. Carbon black,
Electrophoresis with a dispersion or solution of a fluororesin in which a catalyst, metal fine particles or metal oxide fine particles are dispersed), and
A solid polymer electrolyte membrane (electrophoresis with a solution) is formed by electrodeposition by electrophoresis, and two stainless foils obtained by laminating the gas supply layer, the reaction layer, and the solid polymer electrolyte membrane are dried, After joining the laminated body by heating and pressure contact with the inside,
The outer stainless foil is peeled off and used. 2) In the same manner as in 1) above, a reaction layer and a solid polymer electrolyte membrane obtained by electrodeposition by electrophoretic deposition of a reaction layer and a solid polymer electrolyte membrane on a stainless steel foil, and a water repellent layer. The carbon paper or the like is used as the gas supply layer. 3) In the same manner as in 1) above, two stainless steel foils in which a reaction layer and a gas supply layer were sequentially electrodeposited by electrophoretic deposition on a stainless steel foil, and the reaction layer and the gas supply layer were laminated ,
At the time of dry-drying, the solid polymer electrolyte membrane is sandwiched and heat-pressed to bond them, and then the outer stainless steel foil is peeled off. At that time, in the preparation of the reaction layer by electrophoresis, it is preferable to use a solution of the solid polymer electrolyte together with the electrophoresis solution,
Thereby, the adhesion between the reaction layer and the solid polymer electrolyte membrane can be improved. 4) In the electrophoresis tank, a solid polymer electrolyte membrane is provided between an anode and a cathode, and particles moving by electrophoresis are attached to the solid polymer electrolyte membrane, and a reaction layer and a gas supply layer are formed on the membrane. To form. 5) In the same manner as in 1) above, a reaction layer on the stainless steel foil,
Use of a reaction layer / solid polymer electrolyte membrane / reaction layer laminate obtained by electrodeposition of a solid polymer electrolyte membrane and a reaction layer in sequence by electrophoresis, and carbon paper that is water repellent as a gas supply layer . 6) In the same manner as in 1) above, the gas supply layer, the reaction layer, the solid polymer electrolyte membrane, the reaction layer, and the gas supply layer were sequentially electrodeposited by electrophoresis on the stainless steel foil, and the gas supply layer / reaction was performed. Used as a laminated body of layer / solid polymer electrolyte membrane / reaction layer / gas supply layer.
【0029】以上のような方法により、この発明の固体
高分子電解質型燃料電池は調製されるのであるが、調製
方法は前記方法に限定されるものではなく、電気泳動に
より形成された反応層及び/又はガス供給層を乾燥し、
ソルベントナフサなどを加えロール掛けしてシート化
し、反応層及び/又はガス供給層シートとしてから利用
することもできる。The solid polymer electrolyte fuel cell of the present invention is prepared by the above method, but the preparation method is not limited to the above method, and the reaction layer formed by electrophoresis and the reaction layer And / or drying the gas supply layer,
It can be used as a reaction layer and / or a gas supply layer sheet by adding solvent naphtha or the like and rolling it into a sheet.
【0030】また、形成された反応層、ガス供給層を、
生乾きの時点で加熱圧接する際、プレス板などに多孔体
を用いることにより、乾燥及び接合をより効率的に行う
こともできる。Further, the formed reaction layer and gas supply layer are
It is also possible to more efficiently perform drying and bonding by using a porous body for a press plate or the like when heating and pressing at the time of dry-drying.
【0031】さらに、固体高分子電解質型燃料電池に長
期安定性を付与するために、ガス供給層の表面に、フッ
素樹脂の撥水層を全面に径1mm程度の点状で、あるい
は部分的に帯状に設けることもできる。Further, in order to impart long-term stability to the solid polymer electrolyte fuel cell, a water repellent layer of fluororesin is formed on the entire surface of the gas supply layer in the form of dots having a diameter of about 1 mm or partially. It can also be provided in a strip shape.
【0032】[0032]
【作用】この発明の固体高分子電解質型燃料電池及びそ
の製造方法は、溶液及び/又は分散液からなる電気泳動
液中において電気泳動により形成することを特徴とする
もので、固体高分子電解質(フッ素系イオン交換樹脂:
デュポン社製ナフィオン溶液など)を高温下にアルコー
ルに溶解させてなる電気泳動液の場合、電気泳動液中で
はゼータ電位がマイナスで、電場をかけると陽極側に電
気泳動して電着し、電気泳動液中にフッ素樹脂微粒子な
どが含まれる分散液の場合も、フッ素樹脂微粒子は水中
に分散されて負イオンを通常帯びているため、電気泳動
によりー方の電極に付着し、簡単に分散媒と分離するこ
とができる。エタノール中ではゼータ電位は示さず、電
気泳動を起こさないカーボンブラックなども、固体高分
子電解質やフッ素樹脂微粒子とともに分散されていると
共斥し、 電気泳動により、該微粒子をアノードに付着
させることが可能である。[Action] solid polymer electrolyte fuel cell and its of the invention
The method of producing a solid polymer electrolyte (fluorine-based ion exchange resin: characterized in that it is formed by electrophoresis in an electrophoretic solution consisting of a solution and / or a dispersion).
In the case of an electrophoretic solution obtained by dissolving a DuPont Nafion solution, etc.) in alcohol at high temperature, the zeta potential is negative in the electrophoretic solution, and when an electric field is applied, it electrophoreses on the anode side and is electro-deposited. Even in the case of a dispersion liquid containing fluororesin particles in the running solution, since the fluororesin particles are dispersed in water and normally carry negative ions, they are easily dispersed by attaching to one electrode by electrophoresis. It can be separated from the medium. Carbon black, which does not show zeta potential in ethanol and does not cause electrophoresis, is also considered to be dispersed together with the solid polymer electrolyte and fluororesin fine particles, and the particles can be attached to the anode by electrophoresis. It is possible.
【0033】したがって、溶液及び/又は分散液中に、
疎水性カーボンブラック、親水性カーボンブラック、触
媒、金属微粒子又は金属酸化物微粒子などを分散させた
電気泳動液中に、導電性物質体を浸して一方の電極と
し、前記電気泳動液中に浸した他方の電極との間に電流
を流し、電気泳動によって前記導電性物質体表面に、固
体高分子電解質膜、フッ素樹脂含有膜、さらには前記各
種添加物を含有したフッ素樹脂含有膜を形成させること
が可能であり、それらをガス拡散電極のガス供給層、又
は反応層の基材とすることを可能とし、延いては固体高
分子電解質型燃料電池の製造を可能とするのである。Therefore, in the solution and / or dispersion,
A conductive substance was immersed in an electrophoretic solution in which hydrophobic carbon black, hydrophilic carbon black, a catalyst, metal fine particles or metal oxide fine particles were dispersed to form one electrode, which was then immersed in the electrophoretic solution. Applying an electric current between the other electrode and forming a solid polymer electrolyte membrane, a fluororesin-containing film, and a fluororesin-containing film containing the various additives on the surface of the conductive substance body by electrophoresis. It is possible to use them as the gas supply layer of the gas diffusion electrode or the base material of the reaction layer, and thus to manufacture the solid polymer electrolyte fuel cell.
【0034】[0034]
【実施例】以下、この発明の固体高分子電解質型燃料電
池、及びその製造方法を好適な実施例を用いてさらに具
体的に説明する。参考例1
<固体高分子電解質膜の調製>
6cm角、深さ2cmのアクリル製の容器の底に、絶縁
リード線付き6cm角ステンレス箔を敷き、その上部1
cmの位置に平行に対極である厚さ2mm、孔径50p
piの発泡ニッケル陰極を設置した。固体高分子電解質
の溶液(アルドリッチ社製、ナフィオン5wt%溶液)
を容器に配置した発泡ニッケル陰極が浸るまで満たし、
50Vの電圧を30秒間加えると、ステンレス箔上に6
0ミクロンの固体高分子電解質(ナフィオン)膜が形成
された。EXAMPLES The solid polymer electrolyte fuel cell of the present invention and the method for producing the same will be described in more detail with reference to the preferred examples. Reference Example 1 <Preparation of Solid Polymer Electrolyte Membrane> A 6 cm square stainless foil with an insulating lead wire is laid on the bottom of a 6 cm square, 2 cm deep acrylic container, and the upper part 1
2mm in thickness and 50p in diameter, which is a counter electrode parallel to the position of cm
A pi foamed nickel cathode was installed. Solid polymer electrolyte solution (Aldrich, Nafion 5 wt% solution)
Fill until the nickel foam cathode placed in the container is immersed,
When a voltage of 50V is applied for 30 seconds, 6 is applied on the stainless steel foil.
A 0 micron solid polymer electrolyte (Nafion) membrane was formed.
【0035】実施例1
<固体高分子電解質型燃料電池の調製>
6cm角、深さ2cmのアクリル製の容器の底に、絶縁
リード線付き6cm角ステンレス箔を敷き、その上部1
cmの位置に平行に対極である厚さ2mm、孔径50p
piの発泡ニッケル陰極を設置した。この容器に、30
wt%白金担持親水性カーボンブラック(AB−12;
電気化学工業(株)製)2.5g、低分子PTFE[ル
ブロン;ダイキン工業(株)製]1gをエタノール10
0mlに加えて超音波分散させた分散液と、固体高分子
電解質の溶液(アルドリッチ社製、ナフィオン5wt%
溶液)25mlを混合した反応層形成用の電気泳動液を
満たした。30Vの電圧を15秒間加え、反応層をステ
ンレス箔上に形成させた後、該電気泳動液を素早く取り
除き、容器に固体高分子電解質からなる溶液(アルドリ
ッチ社製、ナフィオン5wt%溶液)を発泡ニッケル陰
極が浸かるまで満たし、30Vの電圧を30秒間加える
と、ステンレス箔上に40ミクロンの固体高分子電解質
(ナフィオン)膜が形成された。この反応層と固体高分
子電解質(ナフィオン)膜が電着したステンレス箔を2
枚形成し、生乾きの時点で100kg/cm2、温度1
35℃、1分間の条件で2枚を加熱圧接したのち、ステ
ンレス箔を剥離して反応層/電解質膜接合体を作製し
た。ガス拡散層として、5cm角に裁断した撥水化した
カーボンペーパーを両側に配置し、ガス供給路が形成さ
れた金属製のエンドプレートで挟持し、この発明に係る
固体高分子電解質型燃料電池を作製した。 Example 1 <Preparation of Solid Polymer Electrolyte Fuel Cell> A 6 cm square stainless foil with an insulating lead wire is laid on the bottom of an acrylic container 6 cm square and 2 cm deep, and the upper part 1
2mm in thickness and 50p in diameter, which is a counter electrode parallel to the position of cm
A pi foamed nickel cathode was installed. 30 in this container
wt% platinum-supported hydrophilic carbon black (AB-12;
2.5 g of Denki Kagaku Kogyo Co., Ltd., 1 g of low molecular weight PTFE [LUBRON; manufactured by Daikin Industries, Ltd.] and 10 g of ethanol.
A dispersion liquid obtained by ultrasonically dispersing in addition to 0 ml and a solution of a solid polymer electrolyte (manufactured by Aldrich, Nafion 5 wt%
The solution) was mixed with 25 ml of the electrophoretic solution for forming a reaction layer. A voltage of 30 V is applied for 15 seconds to form a reaction layer on the stainless steel foil, the electrophoretic solution is quickly removed, and a solution of solid polymer electrolyte (Nafion 5 wt% solution, manufactured by Aldrich Co.) is foamed in the container. When the cathode was filled until it was immersed and a voltage of 30 V was applied for 30 seconds, a 40-micron solid polymer electrolyte (Nafion) membrane was formed on the stainless steel foil. This reaction layer and the solid polymer electrolyte (Nafion) membrane are electrodeposited on the stainless steel foil 2
When 100 sheets are formed and dried, 100 kg / cm 2 , temperature 1
After heating and pressing the two sheets under the condition of 35 ° C. for 1 minute, the stainless foil was peeled off to prepare a reaction layer / electrolyte membrane assembly. As a gas diffusion layer, water-repellent carbon paper cut into 5 cm squares is arranged on both sides, and sandwiched by metal end plates having a gas supply path formed therein, and a solid polymer electrolyte fuel cell according to the present invention is obtained. It was made.
【0036】比較例1
<固体高分子電解質型燃料電池の調製>
固体高分子電解質(デュポン社製ナフィオン115)膜
に、反応層形成用の分散液を塗布乾燥し、反応層/電解
質膜接合体を作製した。この反応層の白金触媒の含有量
は0.3mg/cm2であった。同様にガス拡散層とし
て5cm角に裁断した撥水性を有するカーボンペーパー
を両側に配置し、100kg/cm2、温度135℃、
2分間の条件で加熱圧接することにより得られた接合体
を、ガス供給路が形成された金属製のエンドプレートで
挟持して固体高分子電解質型燃料電池を作製した。 Comparative Example 1 <Preparation of Solid Polymer Electrolyte Fuel Cell> A solid polymer electrolyte (Dafon Nafion 115) membrane was coated with a dispersion for forming a reaction layer and dried to form a reaction layer / electrolyte membrane assembly. Was produced. The platinum catalyst content of this reaction layer was 0.3 mg / cm 2 . Similarly, carbon paper having water repellency cut into 5 cm square was placed on both sides as a gas diffusion layer, 100 kg / cm 2 , temperature 135 ° C.,
The joined body obtained by heating and pressing under the condition of 2 minutes was sandwiched between metal end plates in which a gas supply path was formed, to produce a solid polymer electrolyte fuel cell.
【0037】<固体高分子電解質型燃料電池の評価>
作製された前記固体高分子電解質型燃料電池を、それぞ
れつぎの条件で作動させて、それぞれの電流―電圧特性
を測定した。純水素と純酸素を、それぞれ温度83℃に
設定した加湿器(ガラスバブラー)で加湿した後、それ
ぞれ大気圧で電池に供給した。その結果、この発明の燃
料電池では、0.3A/cm2の電流密度で0.73V
の出力が得られた。一方、比較例の燃料電池では、0.
3A/cm2の電流密度で0.67Vの出力が得られた
のみであった。<Evaluation of Solid Polymer Electrolyte Fuel Cell> Each of the produced solid polymer electrolyte fuel cells was operated under the following conditions, and the current-voltage characteristics of each were measured. Pure hydrogen and pure oxygen were each humidified by a humidifier (glass bubbler) set to a temperature of 83 ° C. and then supplied to the battery at atmospheric pressure. As a result, in the fuel cell of the present invention, 0.73 V was obtained at a current density of 0.3 A / cm 2.
Output was obtained. On the other hand, in the fuel cell of the comparative example, 0.
Only an output of 0.67 V was obtained at a current density of 3 A / cm 2 .
【0038】実施例2
<固体高分子電解質型燃料電池の調製>
図1に示される10cm角、1.5cm厚のアクリル板
2、3に6cm角、深さ5mmのくぼみを掘り、くぼみ
の底に絶縁リード線付き6cm角の白金網4、5を設け
た。エタノールで膨潤させた固体高分子電解質膜(デュ
ポン社製ナフィオン115)6を挟み込み、四隅をねじ
で固定し、電着液7が漏れないようにしてアクリルセル
1とした。固体高分子電解質溶液(アルドリッチ社製、
ナフィオン5wt%溶液)80ml、エタノール200
ml、30wt%白金担持親水性カーボンブラック(A
B−12;電気化学工業(株)製)3.6g、低分子P
TFE(ルブロン;ダイキン工業(株)製)2.7gを
加えて、超音波分散させて電着液を調製した。この電着
液をアクリルセル1に満たし、20Vの電圧を30秒間
加え、反応層を固体高分子電解質膜の片側(陰極室側)
に形成させた。形成した反応層が生乾きの状態にあるう
ちに、100kg/cm2、温度135℃、1分間の条
件で加熱圧接することにより、固体高分子電解質膜と反
応層が強固に結合した。反応層の膜厚はほぼ0.1mm
であった。反応層が強固に結合した固体高分子電解質膜
を、反応層付着側を陽極室側として、上記と同様にアク
リルセル1を作成し電着することにより、両面に反応層
が形成された固体高分子電解質膜を得た。再度、生乾き
の状態で、100kg/cm2、温度135℃、1分間
の条件で加熱圧接し、固体高分子電解質膜と反応層を強
固に結合させた。得られた、両面に反応層が形成された
固体高分子電解質膜を撥水化したカーボンペーパーを介
して、ガス供給路が形成された金属製のエンドプレート
で挟持することにより、この発明に係わる固体高分子電
解質型燃料電池を作製した。このときの白金担持量は
0.4〜0.6mg/cm2であった。作製された前記
固体高分子電解質型燃料電池を、前記と同様にして温度
80℃作動させたところ、電流密度0.3A/cm2に
おいて電池電圧は0.72Vであった。 Example 2 <Preparation of Solid Polymer Electrolyte Fuel Cell> A 10 cm square, 1.5 cm thick acrylic plate 2, 3 shown in FIG. 1 was dug into a 6 cm square, 5 mm deep depression to form the bottom of the depression. 6 cm square platinum meshes 4 and 5 with insulating lead wires were provided on the. A solid polymer electrolyte membrane (Nafion 115 manufactured by DuPont) swollen with ethanol was sandwiched, and four corners were fixed with screws to prevent the electrodeposition liquid 7 from leaking to obtain an acrylic cell 1. Solid polymer electrolyte solution (Aldrich,
Nafion 5 wt% solution) 80 ml, ethanol 200
ml, 30 wt% platinum-supported hydrophilic carbon black (A
B-12; manufactured by Denki Kagaku Kogyo Co., Ltd.) 3.6 g, low molecular weight P
2.7 g of TFE (Lubron; manufactured by Daikin Industries, Ltd.) was added and ultrasonically dispersed to prepare an electrodeposition liquid. Acrylic cell 1 was filled with this electrodeposition solution, a voltage of 20 V was applied for 30 seconds, and a reaction layer was formed on one side of the solid polymer electrolyte membrane (cathode chamber side).
Formed. While the formed reaction layer was in a dry state, the solid polymer electrolyte membrane and the reaction layer were firmly bonded by heating and pressure contact under the conditions of 100 kg / cm 2 , temperature 135 ° C., and 1 minute. The thickness of the reaction layer is approximately 0.1 mm
Met. The solid polymer electrolyte membrane having the reaction layers firmly bonded is prepared by electrodepositing the acrylic cell 1 with the reaction layer-adhering side as the anode chamber side in the same manner as described above, and electrodepositing the solid polymer electrolyte membrane on both sides to form a solid polymer electrolyte membrane. A molecular electrolyte membrane was obtained. Again, in a freshly dried state, the solid polymer electrolyte membrane and the reaction layer were firmly bonded by heating and pressing under the conditions of 100 kg / cm 2 and a temperature of 135 ° C. for 1 minute. According to the present invention, the obtained solid polymer electrolyte membrane having a reaction layer formed on both sides is sandwiched by water-repellent carbon paper and a metal end plate having a gas supply path. A solid polymer electrolyte fuel cell was produced. The amount of platinum supported at this time was 0.4 to 0.6 mg / cm 2 . When the produced solid polymer electrolyte fuel cell was operated at a temperature of 80 ° C. in the same manner as above, the cell voltage was 0.72 V at a current density of 0.3 A / cm 2 .
【0039】[0039]
【発明の効果】この発明の固体高分子電解質型燃料電池
は、電気泳動を用いるので薄いイオン交換膜が容易に製
造でき、高分子電解質分子が触媒担持カーボンブラック
の周りに分散した反応層も容易に製造できるので、反応
層と固体高分子電解質層は、プロトンパスの連続性が取
れるので性能が良い電池が得られる。Since the solid polymer electrolyte fuel cell of the present invention uses electrophoresis, a thin ion exchange membrane can be easily manufactured, and a reaction layer in which polymer electrolyte molecules are dispersed around a catalyst-supporting carbon black is also easy. Since the reaction layer and the solid polymer electrolyte layer have continuous proton paths, a battery with good performance can be obtained.
【0040】また、この発明の固体高分子電解質型燃料
電池は、電気泳動によって得ることができるため、製造
装置を簡単にでき、かつ設備費に要する費用を安価にす
ることができる。Further, the solid polymer electrolyte fuel <br/> batteries of the present invention, it is possible to obtain by electrophoresis, can manufacturing equipment easily and be made inexpensive cost of equipment costs it can.
【0041】また、電気泳動によるため、両電極間には
ほとんど電流が流れないので、消費電力も少なく、両電
極間には平等電界が形成されるので、短時間で、厚さむ
らのない固体高分子電解質膜、反応層又はガス供給層を
形成することができ、電気の力、いわゆるクーロン力
で、ガス拡散電極材料の微粒子が電極表面へ付着するの
で、付着力も大きく、効率よくガス供給層及び/又は反
応層を形成することができるなどの効果があり、さら
に、連続的に集電体の金属網表面に微粒子を付着させて
ガス供給層及び/又は反応層を形成することができるの
で、量産性に優れているなどの効果を奏する。Further, because of the electrophoresis, almost no current flows between the two electrodes, so that the power consumption is small and a uniform electric field is formed between the two electrodes. A polymer electrolyte membrane, a reaction layer or a gas supply layer can be formed, and since the fine particles of the gas diffusion electrode material adhere to the electrode surface by the electric force, so-called Coulomb force, the adhesive force is large and the gas supply is efficient. It is possible to form a layer and / or a reaction layer, and further it is possible to form a gas supply layer and / or a reaction layer by continuously adhering fine particles to the metal mesh surface of the current collector. Therefore, it is effective in mass productivity.
【図1】この発明の実施例2において用いたアクリルセ
ルの概略説明図である。FIG. 1 is a schematic explanatory diagram of an acrylic cell used in Example 2 of the present invention.
1 アクリルセル 2,3 アクリル板 4,5 白金網 6 固体高分子電解質膜 7 電着液 1 Acrylic cell 2,3 acrylic plate 4,5 platinum mesh 6 Solid polymer electrolyte membrane 7 electrodeposition liquid
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 8/00 - 8/24 H01M 4/86 - 4/98 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01M 8/00-8/24 H01M 4/86-4/98
Claims (11)
層からなる固体高分子電解質型燃料電池において、 前記反応層が、固体高分子電解質膜上に電気泳動により
形成されたものであることを特徴とする固体高分子電解
質型燃料電池。 1. A solid polymer electrolyte membrane, a reaction layer and a gas supply.
In a solid polymer electrolyte fuel cell composed of layers, the reaction layer is electrophoresed on the solid polymer electrolyte membrane.
Solid polymer electrolysis characterized by being formed
Quality fuel cell.
とを特徴とする請求項1に記載の固体高分子電解質型燃
料電池。 2. The reaction layer formed by the electrophoresis is thermocompression bonded onto a solid polymer electrolyte membrane.
The solid polymer electrolyte type fuel according to claim 1, wherein
Charge battery.
請求項1又は2に記載の固体高分子電解質型燃料電池。 3. The gas supply layer is made of carbon paper.
The solid polymer electrolyte fuel cell according to claim 1.
層からなる固体高分子電解質型燃料電池において、 前記ガス供給層が、電気泳動により形成されたものであ
ることを特徴とする固体高分子電解質型燃料電池。 4. Solid polymer electrolyte membrane, reaction layer and gas supply
In a solid polymer electrolyte fuel cell comprising layers, the gas supply layer is formed by electrophoresis.
A solid polymer electrolyte fuel cell characterized by the following.
に形成された反応層の上に電気泳動により形成されたも
のであることを特徴とする請求項4に記載の固体高分子
電解質型燃料電池。5. The gas supply layer is a solid polymer electrolyte membrane surface
The solid polymer electrolyte fuel cell according to claim 4, wherein the solid polymer electrolyte fuel cell is formed by electrophoresis on the reaction layer formed in 1.
層からなる固体高分子電解質型燃料電池において、 前記反応層及びガス供給層が、固体高分子電解質膜上に
電気泳動により形成されたものであることを特徴とする
固体高分子電解質型燃料電池。 6. A solid polymer electrolyte membrane, a reaction layer and a gas supply
In a solid polymer electrolyte fuel cell comprising layers , the reaction layer and the gas supply layer are formed on the solid polymer electrolyte membrane.
Characterized by being formed by electrophoresis
Solid polymer electrolyte fuel cell.
ものであることを特徴とする請求項6に記載の固体高分
子電解質型燃料電池。 7. The reaction layer and the gas supply layer are formed on both sides of a solid polymer electrolyte membrane by electrophoresis.
The solid high content according to claim 6, characterized in that
Child electrolyte fuel cell.
た多孔体上に、電気泳動により固体高分子電解質が電着
製膜したものであることを特徴とする請求項1〜7のい
ずれかに記載の固体高分子電解質型燃料電池。 8. The solid polymer electrolyte membrane is placed on or near an anode in a solid polymer electrolyte solution.
Electrophoresis of solid polymer electrolyte on the porous body
A film-formed product, according to any one of claims 1 to 7.
A solid polymer electrolyte fuel cell according to any one of the above.
り反応層を形成させることにより調製された、固体高分
子電解質膜と反応層の接合体を、カーボンペーパーを介
して2枚の金属板で挟持することを特徴とする固体高分
子電解質型燃料電池の製造方法。 9. Both sides of the solid polymer electrolyte membrane are electrophoresed.
Solid high content prepared by forming a reaction layer
Place the bonded body of the secondary electrolyte membrane and reaction layer through carbon paper.
The solid high component characterized by being sandwiched between two metal plates
Method for manufacturing child electrolyte fuel cell.
た多孔体上に、電気泳動により固体高分子電解質が電着
製膜したものであることを特徴とする請求項9に記載の
固体高分子電解質型燃料電池の製造方法。 10. The solid polymer electrolyte membrane is placed on or near an anode in a solid polymer electrolyte solution.
Electrophoresis of solid polymer electrolyte on the porous body
The film according to claim 9, wherein the film is formed.
Method for manufacturing solid polymer electrolyte fuel cell.
質膜及び反応層からなる積層体を2枚加熱圧接すること
により調製された、固体高分子電解質膜及び反応層の接
合体を、カーボンペーパーを介して2枚の金属板で挟持
することを特徴とする固体高分子電解質型燃料電池の製
造方法。 11. Solid polymer electrolysis obtained by electrophoresis
Heating and pressing two laminates consisting of a porous membrane and a reaction layer
Of the solid polymer electrolyte membrane and reaction layer prepared by
The combined body is sandwiched between two metal plates via carbon paper
Of a solid polymer electrolyte fuel cell characterized by
Build method.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000216187A JP3508100B2 (en) | 2000-07-17 | 2000-07-17 | Solid polymer electrolyte fuel cell and method of manufacturing the same |
DE60133819T DE60133819T2 (en) | 2000-06-06 | 2001-06-04 | GAS DIFFUSION ELECTRODE, METHOD OF MANUFACTURING THEREFOR AND THIS USING FUEL CELL |
AT01934519T ATE393843T1 (en) | 2000-06-06 | 2001-06-04 | GAS DIFFUSION ELECTRODE, PRODUCTION METHOD THEREOF AND FUEL CELL USING SAME |
PCT/JP2001/004693 WO2001094668A1 (en) | 2000-06-06 | 2001-06-04 | Gas diffusion electrode, method for manufacturing the same and fuel cell using it |
EP01934519A EP1295968B1 (en) | 2000-06-06 | 2001-06-04 | Gas diffusion electrode, method for manufacturing the same and fuel cell using it |
US10/297,329 US20030134177A1 (en) | 2000-06-06 | 2001-06-04 | Gas diffusion electrode, method for manufacturing the same and fuel cell using it |
AU2001260702A AU2001260702A1 (en) | 2000-06-06 | 2001-06-04 | Gas diffusion electrode, method for manufacturing the same and fuel cell using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000216187A JP3508100B2 (en) | 2000-07-17 | 2000-07-17 | Solid polymer electrolyte fuel cell and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002319412A JP2002319412A (en) | 2002-10-31 |
JP3508100B2 true JP3508100B2 (en) | 2004-03-22 |
Family
ID=18711488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000216187A Expired - Fee Related JP3508100B2 (en) | 2000-06-06 | 2000-07-17 | Solid polymer electrolyte fuel cell and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3508100B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006277984A (en) * | 2005-03-28 | 2006-10-12 | Asahi Glass Co Ltd | Manufacturing method of membrane electrode assembly |
JP2007021409A (en) * | 2005-07-19 | 2007-02-01 | Chokoon Zairyo Kenkyusho:Kk | Method for manufacturing diesel particulate filter |
JP2007287376A (en) * | 2006-04-13 | 2007-11-01 | Nok Corp | Membrane-electrode assembly manufacturing method |
-
2000
- 2000-07-17 JP JP2000216187A patent/JP3508100B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002319412A (en) | 2002-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7947411B1 (en) | Membrane and electrode assembly and method of producing the same, and polymer electrolyte membrane fuel cell | |
JP5759687B2 (en) | Water electrolysis cell | |
US6391487B1 (en) | Gas diffusion electrode, method for manufacturing the same, and fuel cell with such electrode | |
JPWO2004075322A1 (en) | ELECTRODE FOR FUEL CELL, FUEL CELL, AND METHOD FOR PRODUCING THEM | |
WO2002003489A1 (en) | Polyelectrolyte fuel cell | |
US8614028B2 (en) | Membrane and electrode assembly and method of producing the same, and polymer electrolyte membrane fuel cell | |
CN101317292A (en) | Conductive porous body for fuel cell, fuel cell having same, and manufacturing method thereof | |
EP1295968B1 (en) | Gas diffusion electrode, method for manufacturing the same and fuel cell using it | |
JP3504021B2 (en) | Electrode for electrochemical device and method for producing the same | |
JP2000299119A (en) | Manufacture of catalyst layer | |
JP2007501496A (en) | Hybrid membrane / electrode assembly with reduced interfacial resistance and method for producing the same | |
JP3508100B2 (en) | Solid polymer electrolyte fuel cell and method of manufacturing the same | |
US20050147868A1 (en) | Fuel cell | |
JP2003059507A (en) | Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell | |
JP2005032569A (en) | Complex of fluororesin and carbon particulate, gas diffusion electrode, and fuel cell | |
RU2370859C2 (en) | Gas-diffusion electrodes, membrane-electrode assemblies and method of their manufacturing | |
JP3740677B2 (en) | Gas diffusion electrode and manufacturing method thereof | |
JP3965666B2 (en) | Gas diffusion electrode and manufacturing method thereof | |
JP2000235859A (en) | Gas diffusing electrode and fuel cell provided with the same | |
JP3383948B2 (en) | Fluororesin-containing porous body for gas diffusion electrode, gas diffusion electrode and method for producing the same | |
JP2006066309A (en) | Method of manufacturing catalyst for solid polymer type fuel cell | |
JP5454050B2 (en) | POLYMER ELECTROLYTE FOR SOLID POLYMER FUEL CELL AND METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY CONTAINING THE POLYMER ELECTROLYTE, AND METHOD FOR PRODUCING THE SAME | |
JP3456270B2 (en) | Paste for forming electrode catalyst layer | |
JPH04233164A (en) | Method of junctioning electrode and solid electrolyte | |
JP2003123786A (en) | Membrane / electrode assembly for direct methanol fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20031212 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090109 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100109 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110109 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110109 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |