[go: up one dir, main page]

JP2000208151A - Gas diffusion electrode and its production - Google Patents

Gas diffusion electrode and its production

Info

Publication number
JP2000208151A
JP2000208151A JP11006528A JP652899A JP2000208151A JP 2000208151 A JP2000208151 A JP 2000208151A JP 11006528 A JP11006528 A JP 11006528A JP 652899 A JP652899 A JP 652899A JP 2000208151 A JP2000208151 A JP 2000208151A
Authority
JP
Japan
Prior art keywords
catalyst
electrolyte
gas diffusion
pores
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11006528A
Other languages
Japanese (ja)
Other versions
JP3965666B2 (en
Inventor
Kazuhide Totsuka
戸塚  和秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP00652899A priority Critical patent/JP3965666B2/en
Priority to DE10001170A priority patent/DE10001170A1/en
Priority to US09/482,107 priority patent/US6391487B1/en
Publication of JP2000208151A publication Critical patent/JP2000208151A/en
Application granted granted Critical
Publication of JP3965666B2 publication Critical patent/JP3965666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the output by providing a catalytic layer having the structure containing a fine porous assembly consisting of a catalyst and an electrolyte B in the pores of a porous electrolyte having three-dimensionally communicating pores. SOLUTION: A fine porous assembly 3 consisting of a catalyst and an electrolyte B is included in pores of a porous electrode A2 having three-dimensionally communicating pores. A first gas diffusion layer 4 is bonded to a first catalyst layer 1 to form a first gas diffusion electrode 5. The catalyst consists of a so-called platinum support carbon catalyst having platinum supported as catalyst on a carbon carrier. As the catalyst, fine powder of a platinum group metal or alloy thereof, for example, platinum black powder is also usable. The electrolyte B covering the catalyst has the function of an adhesive, and forms a so- called three-phase interface where electrochemical reaction progresses. Since the film of the electrolyte B forms the route for proton movement to the reaction site, it desirably has high proton conductivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子電解質
型燃料電池のガス拡散電極の触媒層およびその製造方法
に関するものである。
The present invention relates to a catalyst layer for a gas diffusion electrode of a solid polymer electrolyte fuel cell and a method for producing the same.

【0002】[0002]

【従来の技術】固体高分子電解質型燃料電池は、アノー
ドに燃料として例えば水素およびカソードに酸化剤とし
て例えば酸素とを供給して電気化学的に反応させて、電
力を得る電気化学装置である。アノードおよびカソード
はガス拡散電極であり、電解質膜の一方の面にアノード
を、もう一方の面にカソードを接合してガス拡散電極−
電解質膜接合体を構成する。ガス拡散電極はガス拡散層
と触媒層とからなり、アノードおよびカソードの触媒層
は白金族金属の金属粒子あるいはこれらの粒子を担持し
たカーボン粒子などを触媒として備えており、ガス拡散
層は撥水性を有する多孔質なカーボンペーパーなどが用
いられる。このガス拡散電極−電解質膜接合体をガス供
給流路が形成されたガス不透過性の一対のセパレータで
挟持して基本単位となる単電池を構成する。この単電池
を複数個積層して固体高分子電解質型燃料電池を構成す
る。固体高分子電解質型燃料電池を作動させると、次の
ような電気化学反応が進行する。 アノード:2H2 → 4H+ + 4e- カソード:O2 + 4H+ + 4e- → 2H2O 固体高分子電解質膜を備える固体高分子電解質型燃料電
池のカソードおよびアノードの電気化学反応は、カソー
ドやアノードに含まれる触媒と電解質との界面で進行す
る。したがって、これらの燃料電池の高出力にするため
には、触媒と固体高分子電解質膜との界面の接触面積を
増大することが要求される。そのために、電解質膜の表
面に凹凸を設けて触媒を含む電極とくにその触媒層との
接触面積を増大する方法が考案された。そのひとつは、
固体高分子電解質膜の表面積を増大して電極との接触界
面を増大させる方法である。例えば、特開平3―158
486号では凹凸を有するロールを用いる方法、特開平
4―169069号ではスパッタリングを用いる方法、
特開平4―220957号ではプラズマエッチングを用
いる方法や、特開平6―279600号では布を埋め込
んだ後に引き剥がす方法によって固体高分子電解質膜の
表面に凹凸を設けることが提案されている。あるいは、
固体高分子電解質膜の表面に孔を設けて電解質膜と触媒
層との接触面積を増大する方法がある。例えば、特開昭
58―7432号では、電解質を溶解する分散媒体を小
滴に結晶化させた後これを取り除く方法、特開昭62―
146926号では粒子を埋め込んだ後にこれを取り除
く方法あるいは、特開平5―194764号には低分子
有機材料を混合した後これを取り除く方法が提案されて
いる。もうひとつのは、電解質膜の表面に白金族金属を
胆持して電解質と触媒との接触界面を増大させる方法で
ある。例えば、特公昭59−42078号や特公平2−
43830号では電解質の表面に無電解メッキを施す方
法が提案されている。さらに、触媒層に電解質を添加し
て触媒と電解質との接触界面を増大させる方法がある。
例えば、特公平2―7398号では触媒と電解質の溶液
とPTFEなどのフッ素樹脂の混合物から電極を作製す
る方法や、特公平2―7399では電解質で被覆した触
媒とPTFEなどのフッ素樹脂から電極作製する方法が
提案されている。また,USP5211984号では,
媒体と電解質の溶液との混合物から電極を作製する方法
が提案されている。
2. Description of the Related Art A solid polymer electrolyte fuel cell is an electrochemical device that supplies electric power, for example, hydrogen as an anode, and oxygen, for example, as an oxidant to an anode and electrochemically reacts them to produce electric power. The anode and the cathode are gas diffusion electrodes, and the anode is joined to one surface of the electrolyte membrane and the cathode is joined to the other surface to form a gas diffusion electrode.
Construct an electrolyte membrane assembly. The gas diffusion electrode is composed of a gas diffusion layer and a catalyst layer, and the catalyst layers of the anode and the cathode are provided with metal particles of platinum group metals or carbon particles carrying these particles as a catalyst, and the gas diffusion layer is water repellent. For example, a porous carbon paper having the following is used. This gas diffusion electrode-electrolyte membrane assembly is sandwiched between a pair of gas-impermeable separators in which gas supply channels are formed to form a unit cell as a basic unit. A plurality of such unit cells are stacked to form a solid polymer electrolyte fuel cell. When the solid polymer electrolyte fuel cell is operated, the following electrochemical reaction proceeds. Anode: 2H 2 → 4H + + 4e Cathode: O 2 + 4H + + 4e → 2H 2 O The electrochemical reaction of the cathode and anode of a solid polymer electrolyte fuel cell having a solid polymer electrolyte membrane is based on the cathode and the anode. It proceeds at the interface between the catalyst contained in the anode and the electrolyte. Therefore, in order to increase the output of these fuel cells, it is required to increase the contact area at the interface between the catalyst and the solid polymer electrolyte membrane. For this purpose, a method has been devised in which irregularities are provided on the surface of the electrolyte membrane to increase the contact area with the electrode containing the catalyst, particularly the catalyst layer. One of them is
This is a method of increasing the surface area of the solid polymer electrolyte membrane to increase the contact interface with the electrode. For example, Japanese Patent Application Laid-Open No. 3-158
No. 486, a method using a roll having irregularities, Japanese Patent Laid-Open No. 4-169069, a method using sputtering,
Japanese Patent Application Laid-Open No. 4-220957 proposes a method using plasma etching, and Japanese Patent Application Laid-Open No. 6-279600 proposes providing a surface of a solid polymer electrolyte membrane with irregularities by a method in which a cloth is embedded and then peeled off. Or,
There is a method in which holes are provided in the surface of the solid polymer electrolyte membrane to increase the contact area between the electrolyte membrane and the catalyst layer. For example, Japanese Patent Application Laid-Open No. Sho 58-7432 discloses a method in which a dispersion medium dissolving an electrolyte is crystallized into small droplets and then removed.
No. 146926 proposes a method of removing particles after embedding them, or Japanese Patent Application Laid-Open No. 5-194664 discloses a method of mixing and removing low molecular weight organic materials. Another method is to increase the contact interface between the electrolyte and the catalyst by adhering a platinum group metal to the surface of the electrolyte membrane. For example, Japanese Patent Publication No. 59-42078 and Japanese Patent Publication No.
No. 43830 proposes a method of performing electroless plating on the surface of an electrolyte. Further, there is a method of increasing the contact interface between the catalyst and the electrolyte by adding an electrolyte to the catalyst layer.
For example, Japanese Patent Publication No. 2-7398 describes a method for preparing an electrode from a mixture of a catalyst and an electrolyte solution and a fluororesin such as PTFE, and Japanese Patent Publication No. 2-7399 describes a method for preparing an electrode from a catalyst coated with an electrolyte and a fluororesin such as PTFE. A way to do that has been proposed. Also, in USP 5211984,
A method for producing an electrode from a mixture of a medium and a solution of an electrolyte has been proposed.

【0003】[0003]

【発明が解決しようとする課題】上記のような、ロール
を用いる方法、スパッタリングを用いる方法、プラズマ
エッチングを用いる方法あるいは布を用いる方法では、
凹凸を設ける処理工程が煩雑であり生産性に劣ること
や、形成された凹凸が粗くて電極との界面の接触面積を
増大させるには不十分であるという問題がある。結晶化
した分散媒体、埋め込んだ粒子あるいは混合した低分子
有機材料を取り除くことにより孔を形成する方法では、
分散媒体、粒子あるいは低分子有機材料を完全に取り除
くことは困難であり、これらの残留物は電解質膜と電極
との接触の妨げとなり電極活性の低下の原因となる。あ
るいは、これらの残留物は電解質膜と電極との間のイオ
ン伝導の妨げとなる。また、これらを取り除く工程にお
いて施される加熱や溶媒処理により電解質の劣化がおこ
り、イオン伝導性が低下する。上記の理由によりこの電
解質膜を用いた燃料電池の性能が低下するという問題が
ある。無電解メッキなどの方法で電解質膜の表面に形成
される白金族金属は、表面積が小さく触媒としての活性
は低く、この方法による触媒活性の向上は、不十分であ
る。一般に酸素と水素とを反応させる燃料電池におい
て、酸素の還元反応の活性化過電圧が大きいことが高い
電流密度での電圧の低下の原因のひとつである。このた
めに、カソードに白金族金属などの触媒を付与して活性
化過電圧の低減がはかられる。触媒層への触媒の増加に
より触媒の表面積を増大することは、活性化過電圧の低
減に効果があるが、しかし、触媒の増加は、触媒層の厚
みの増大をまねく。この場合、とくに高い電流密度にお
いて、その触媒層のプロトン伝導度の影響が大きくな
る。例えばJ.Electrochem.Soc.,V
ol.140,3513(1993)は、触媒と電解質
との混合物から作製した触媒層のプロトン伝導度が小さ
いために、触媒層のプロトン移動の抵抗が大きく、高い
電流密度では電池電圧の低下が増大すること、そして触
媒層においてプロトン移動の抵抗に起因する電圧の低下
の影響が小さい部分は、電解質膜の近傍にあることを示
している。そこで、本発明は、上記の課題を解決するも
のであり、その目的とするところは、触媒層のプロトン
伝導性を向上することおよびプロトンの移動の抵抗に起
因する電圧の降下が小さい触媒層を増大することであ
り、これらの改良によって高出力な燃料電池を提供する
ことにある。
As described above, in the method using a roll, the method using sputtering, the method using plasma etching, or the method using cloth,
There are problems in that the process of providing the unevenness is complicated and the productivity is poor, and that the formed unevenness is rough and insufficient to increase the contact area at the interface with the electrode. The method of forming pores by removing the crystallized dispersion medium, embedded particles or mixed low molecular organic materials,
It is difficult to completely remove the dispersion medium, particles or low molecular organic materials, and these residues hinder the contact between the electrolyte membrane and the electrode and cause a decrease in electrode activity. Alternatively, these residues hinder ionic conduction between the electrolyte membrane and the electrode. In addition, the electrolyte is deteriorated by the heating or solvent treatment performed in the step of removing them, and the ionic conductivity is reduced. For the above reasons, there is a problem that the performance of a fuel cell using this electrolyte membrane is reduced. The platinum group metal formed on the surface of the electrolyte membrane by a method such as electroless plating has a small surface area and a low activity as a catalyst, and the improvement of the catalyst activity by this method is insufficient. In general, in a fuel cell in which oxygen reacts with hydrogen, a large activation overvoltage of the oxygen reduction reaction is one of the causes of a decrease in voltage at a high current density. Therefore, a catalyst such as a platinum group metal is applied to the cathode to reduce the activation overvoltage. Increasing the surface area of the catalyst by increasing the catalyst in the catalyst layer is effective in reducing the activation overvoltage, but increasing the catalyst leads to an increase in the thickness of the catalyst layer. In this case, especially at a high current density, the effect of the proton conductivity of the catalyst layer becomes large. For example, Electrochem. Soc. , V
ol. 140 , 3513 (1993) states that since the proton conductivity of a catalyst layer made of a mixture of a catalyst and an electrolyte is low, the proton transfer resistance of the catalyst layer is large, and the battery voltage decreases at a high current density. The portion of the catalyst layer where the effect of the voltage drop due to the proton transfer resistance is small indicates that the portion is near the electrolyte membrane. Therefore, the present invention has been made to solve the above-described problems, and an object of the present invention is to improve the proton conductivity of the catalyst layer and to provide a catalyst layer having a small voltage drop due to resistance of proton transfer. An object of the present invention is to provide a high-output fuel cell by these improvements.

【0004】[0004]

【課題を解決するための手段】本発明になる燃料電池用
ガス拡散電極は、触媒層とガス拡散層とを備え、前記触
媒層は、まずプロトン伝導性が高くて表面積が大きい三
次元連通性の孔を有する多孔質電解質Aを形成し、次に
この多孔質電解質Aの孔中に触媒と電解質Bからなる微
多孔性集合体を含ませる。この三次元連通性の孔を有す
る多孔質電解質Aは、不純物の混入や劣化によるイオン
導電性の低下がない方法で作製される。第一の発明は、
触媒層とガス拡散層とを備えたガス拡散電極において、
触媒層の構造が、三次元連通性の孔を有する多孔質電解
質Aの孔中に触媒と電解質Bからなる微多孔性集合体を
備えた構造であることを特徴とする。第二の発明は、
三次元連通性の孔を有する多孔質電解質Aの孔中に触媒
と電解質Bからなる微多孔性集合体を含ませるガス拡散
電極の作製方法である。第三の発明は、 前記ガス拡散
電極を備えた固体高分子電解質型燃料電池である。
The gas diffusion electrode for a fuel cell according to the present invention includes a catalyst layer and a gas diffusion layer, and the catalyst layer has three-dimensional communication having high proton conductivity and a large surface area. Then, a porous electrolyte A having pores is formed, and then the pores of the porous electrolyte A contain a microporous aggregate composed of the catalyst and the electrolyte B. The porous electrolyte A having pores with three-dimensional communication is manufactured by a method in which ionic conductivity does not decrease due to contamination or deterioration of impurities. The first invention is
In a gas diffusion electrode including a catalyst layer and a gas diffusion layer,
The structure of the catalyst layer is characterized in that the porous electrolyte A having three-dimensionally communicating pores is provided with a microporous aggregate composed of a catalyst and an electrolyte B in the pores. The second invention is
This is a method for producing a gas diffusion electrode in which a microporous aggregate composed of a catalyst and an electrolyte B is contained in pores of a porous electrolyte A having pores having three-dimensional communication. A third invention is a solid polymer electrolyte fuel cell including the gas diffusion electrode.

【0005】[0005]

【発明の実施の形態】本発明のガス拡散電極の製造工程
の一例を図2に示す。この製造工程は、5つに段階に分
けることができる。第一工程では、三次元連通性の孔を
有する多孔質電解質Aを形成する。第二工程では、白金
担持カーボン触媒などの触媒を電解質Bを含む溶液に分
散させた触媒分散物を調製する。第三工程では、三次元
連通性の孔を有する多孔質電解質Aの孔中に触媒分散物
を含ませる。第四工程では、圧迫を加えるなどの方法に
よりその触媒分散物を三次元連通性の孔を有する多孔質
電解質Aの孔の内部に充填して、その孔中に触媒と電解
質Bからなる微多孔性集合体を備えた触媒層を形成す
る。第五工程では、ガス拡散層として撥水性を付与した
カーボンペーパーを触媒層に接合してガス拡散電極を作
製する。本発明の触媒層において、三次元連通性の孔を
有する多孔質電解質Aはプロトン伝導性を向上する機能
を有し、その孔中に含まれた触媒と電解質Bからなる微
多孔性集合体の電解質Bはいわゆる三相界面を形成する
機能を有する。本発明の触媒層では、プロトン伝導性の
高い三次元連通性の孔を有する多孔質電解質Aとその孔
中に含まれた触媒と電解質Bからなる微多孔性集合体と
を備えた部分との接触が多く形成される。前述の三次元
連通性の孔を有する多孔質電解質Aには、プロトン伝導
性を示す電解質の厚み方向および面方向に三次元的に連
通した孔が形成されており、電解質の部分は三次元網目
状の骨格構造を形成して厚み方向および面方向に三次元
的に連通している。この三次元連通性の孔を有する多孔
質電解質Aは、三次元的に微細孔が形成されるために、
その表面積は極めて大きい。本発明の触媒層において、
三次元連通性の孔を有する多孔質電解質Aの孔中に備え
られた触媒と電解質Bからなる微多孔性集合体は、たと
えばPTFEなどの撥水性粒子やカーボンあるいは金属
などの導電性粒子を含んでもよく、要は、その孔中に少
なくとも触媒と電解質Bからなる微多孔性集合体とが備
わっていればよい。触媒は、白金族金属やその合金ある
いはその酸化物の粒子やカーボンなど導電性を有する担
体に白金族金属やその合金あるいはその酸化物の粒子を
担持したものを用いることができる。つぎに、本発明の
触媒層の作製方法について具体的に説明する。第一工程
において、三次元連通性の孔を有する多孔質電解質A
は、アルコール類を含有する溶媒に溶解した電解質の溶
液を電解質膜の少なくとも一方に塗布したのち、アルコ
ール性水酸基以外の極性基を有する有機溶媒に浸漬して
作製される。このとき使用するアルコールを含有する溶
媒に電解質を溶解した溶液は、パーフロロスルホン酸樹
脂を水とアルコールの混合溶媒に溶解したものである。
たとえば市販のパーフロロスルホン酸樹脂の溶液である
5wt%ナフィオン溶液(米国、アルドリッチ社)を用
いることができる。この電解質の溶液は希釈あるいは濃
縮などの方法により任意の濃度に調製することができ
る。すなわちアルコールあるいは水もしくはこれらを混
合物を電解質の溶液に添加して希釈する方法や加熱など
の方法により電解質の溶液の溶媒の一部を除いて濃縮す
る方法がある。この場合、アルコールとしては炭素数が
4以下のメタノール、エタノール、1−プロパノール、
2−プロパノール、1−ブタノールあるいは2−ブタノ
ールを用いることができる。アルコール性水酸基以外の
極性基を有する有機溶媒は、分子内にアルコキシカルボ
ニル基を有する炭素鎖の炭素数が1〜7の有機溶媒、た
とえば、ぎ酸プロピル、ぎ酸ブチル、ぎ酸イソブチル、
酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ア
リル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢
酸イソペンチル、プロピオン酸メチル、プロピオン酸エ
チル、プロピオン酸プロピル、アクリル酸メチル、アク
リル酸ブチル、アクリル酸イソブチル、酪酸メチル、イ
ソ酪酸メチル、酪酸エチル、イソ酪酸エチル、メタクリ
ル酸メチル、酪酸プロピル、イソ酪酸イソプロピル、酢
酸2−エトキシエチル、酢酸2−(2エトキシエトキ
シ)エチル等の単独若しくは混合物、又は分子内にエー
テル結合を有する炭素鎖の炭素数が3〜5の有機溶媒、
たとえば、ジプロピルエーテル、ジブチルエーテル、エ
チレングリコールジメチルエーテル、エチレングリコー
ルジエチルエーテル、トリプロピレングリコールモノメ
チルエーテル、テトラヒドロフラン等の単独若しくは混
合物、又は分子内にカルボニル基を有する炭素鎖の炭素
数が4〜8の有機溶媒、たとえば、メチルブチルケト
ン、メチルイソブチルケトン、メチルヘキシルケトン、
ジプロピルケトン等の単独若しくは混合物、又は分子内
にアミノ基を有する炭素鎖の炭素数が1〜5の有機溶
媒、たとえば、イソプロピルアミン、イソブチルアミ
ン、ターシャルブチルアミン、イソペンチルアミン、ジ
エチルアミン等の単独若しくは混合物、又は分子内にカ
ルボキシル基を有する炭素鎖の炭素数が1〜6の有機溶
媒、たとえば、プロピオン酸、吉草酸、カプロン酸、ヘ
プタン酸等の単独若しくは混合物、又はこれらの組み合
わせから得られるものを用いることができる。ただし、
三次元連通性の孔を有する多孔質電解質Aを形成するた
めに用いるアルコール性水酸基以外の極性基を有する有
機溶媒は、アルコキシカルボニル基を有するものが好ま
しい。第二工程において、触媒分散物は、触媒を分散媒
に分散し、これに電解質の溶液を加えて十分に混合して
調製する。触媒として白金族金属を担持したカーボン、
白金族金属やその酸化物あるいはこれらの混合物を用い
ることができる。分散媒としては、炭素数が4以下のメ
タノール、エタノール、1−プロパノール、2−プロパ
ノール、1−ブタノールあるいは2−ブタノールなどの
4以下のアルコールや水あるいはこれらの混合物を用い
ることができる。電解質の溶液は、パーフロロスルホン
酸樹脂を水とアルコールの混合溶媒に溶解したもの、た
とえば市販のパーフロロスルホン酸樹脂の溶液である5
wt%ナフィオン溶液(米国、アルドリッチ社)を用い
ることができる。第三工程において、三次元連通性の孔
を有する多孔質電解質Aに第二工程で調製した触媒分散
物を、三次元連通性の孔を有する多孔質電解質Aの孔の
部分に含ませる。この工程は、たとえばスプレー、ドク
ターブレード法、スクリーン印刷法などの塗布する方
法、沈殿法や含浸法など従来公知の方法などを用いるこ
とができる。第四工程において、この触媒分散物が付与
された三次元連通性の孔を有する多孔質電解質Aに圧迫
を加えるなどの方法により、触媒分散物を三次元連通性
の孔を有する多孔質電解質Aの孔の部分に充填して、触
媒と電解質Bからなる微多孔性集合体とを備える触媒層
を形成する。圧迫は、たとえば平間プレスあるいはロー
ルプレスなど方法により、加えることができる。第五工
程において、触媒層にガス拡散層を加熱圧接により接合
して本発明のガス拡散電極を作製する。ガス拡散層とし
てたとえば撥水性を付与したカーボンペーパーやカーボ
ン粉末を撥水性を有するPTFEなどのフッ素系樹脂を
結着剤として形成したシート状のものを用いることがで
きる。本発明の一例として、電解質膜の一方の面に本発
明のガス拡散電極を備えたガス拡散電極電解質膜接合体
の断面の模式図を図1に示す。図1において、1は第1
の触媒層、2は三次元連通性の孔を有する多孔質電解質
A、3は触媒と電解質Bからなる微多孔性集合体であ
る。触媒と電解質Bからなる微多孔性集合体3は三次元
連通性の孔を有する多孔質電解質Aの孔中に含まれてい
る。4は第1のガス拡散層、5は第1のガス拡散電極で
ある。第1のガス拡散電極5は、第1の触媒層1に第1
のガス拡散層4が接合された本発明のガス拡散電極5で
ある。6は燃料電池の電解質膜Cであり、片面に本発明
の第1のガス拡散電極5、他面に第2のガス拡散電極9
を備える。第2のガス拡散電極9は、第2の触媒層7に
第2のガス拡散層8を接合したものである。第2の触媒
層7は、たとえば触媒と電解質からなる触媒分散物から
構成され、第2のガス拡散層8は、たとえば第1のガス
拡散層4と同じ材質で構成される。燃料電池の電解質膜
Cの両面に第1のガス拡散電極5あるいは第2のガス拡
散電極9を備えたもの、または電解質膜の片面に第1の
ガス拡散電極5を、他面に第2のガス拡散電極9を備え
たものがガス拡散電極電解質膜接合体10である。燃料
電池の電解質膜Cとしてはプロトン導電性を有する膜が
使用され、たとえば市販のパーフロロスルホン酸樹脂膜
であるナフィオン115膜(米国、デュポン社製)を用
いることができる。なお、ナフィオンはデュポン社の登
録商標である。三次元連通性の孔を有する多孔質電解質
Aの孔中に含まれた触媒と電解質Bからなる微多孔性集
合体を拡大した模式図を図3に示す。図3において、1
1はカーボン担体、12は触媒、13は触媒を被覆する
電解質である。カーボン担体11は例えばカーボンブラ
ックなどが用いられ、触媒12は例えば白金などの白金
族金属の単体もしくはそれらの合金などの粒子である。
カーボン担体に白金が触媒として担持された触媒は、い
わゆる白金担持カーボン触媒である。触媒には、白金族
金属もしくはそれらの合金の微細粉末、たとえば白金黒
粉末などを用いることもできる。触媒を被覆する電解質
13は、触媒の表面およびその近傍に被膜状に形成され
ており、結着剤のはたらきを有し、また、電気化学反応
が進行するいわいる三相界面を形成する。触媒を被覆す
る電解質13の被膜は、反応サイトへのプロトン移動の
経路を形成するので、高いプロトン伝導性を有すること
が好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 shows an example of a manufacturing process of a gas diffusion electrode according to the present invention. This manufacturing process can be divided into five stages. In the first step, a porous electrolyte A having three-dimensionally communicating pores is formed. In the second step, a catalyst dispersion in which a catalyst such as a platinum-supported carbon catalyst is dispersed in a solution containing the electrolyte B is prepared. In the third step, the catalyst dispersion is contained in the pores of the porous electrolyte A having three-dimensionally communicating pores. In the fourth step, the catalyst dispersion is filled into the pores of the porous electrolyte A having three-dimensionally communicating pores by a method such as applying pressure, and the catalyst and the electrolyte B are filled in the pores. A catalyst layer provided with the sexual aggregate is formed. In the fifth step, a gas diffusion electrode is produced by bonding carbon paper having water repellency as a gas diffusion layer to the catalyst layer. In the catalyst layer of the present invention, the porous electrolyte A having pores having three-dimensional communication has a function of improving proton conductivity, and the microporous aggregate composed of the catalyst and the electrolyte B contained in the pores is used. The electrolyte B has a function of forming a so-called three-phase interface. In the catalyst layer of the present invention, a porous electrolyte A having three-dimensionally communicating pores having high proton conductivity and a portion provided with a catalyst contained in the pores and a microporous aggregate composed of the electrolyte B are included. Many contacts are formed. In the porous electrolyte A having the above-mentioned three-dimensionally communicating pores, pores which are three-dimensionally communicated in the thickness direction and the plane direction of the electrolyte exhibiting proton conductivity are formed. A skeletal structure is formed and communicates three-dimensionally in the thickness direction and the plane direction. Since the porous electrolyte A having the three-dimensionally connected pores has three-dimensionally formed fine pores,
Its surface area is extremely large. In the catalyst layer of the present invention,
The microporous aggregate comprising the catalyst and the electrolyte B provided in the pores of the porous electrolyte A having three-dimensionally communicating pores contains, for example, water-repellent particles such as PTFE and conductive particles such as carbon or metal. What is essential is that at least the catalyst and the microporous aggregate composed of the electrolyte B are provided in the pores. As the catalyst, platinum group metals, alloys or oxides thereof, or particles of platinum group metals, alloys or oxides thereof supported on conductive carriers such as carbon can be used. Next, a method for producing the catalyst layer of the present invention will be specifically described. In the first step, a porous electrolyte A having three-dimensionally communicating pores
Is prepared by applying a solution of an electrolyte dissolved in a solvent containing alcohols to at least one of the electrolyte membranes and then immersing the solution in an organic solvent having a polar group other than an alcoholic hydroxyl group. The solution obtained by dissolving the electrolyte in a solvent containing alcohol used at this time is a solution obtained by dissolving a perfluorosulfonic acid resin in a mixed solvent of water and alcohol.
For example, a 5 wt% Nafion solution (Aldrich, USA) which is a commercially available solution of perfluorosulfonic acid resin can be used. The electrolyte solution can be adjusted to an arbitrary concentration by a method such as dilution or concentration. That is, there are a method of adding alcohol or water or a mixture thereof to an electrolyte solution to dilute the solution, and a method of heating and removing a part of the solvent of the electrolyte solution to concentrate the solution. In this case, as the alcohol, methanol having 4 or less carbon atoms, ethanol, 1-propanol,
2-propanol, 1-butanol or 2-butanol can be used. Organic solvents having a polar group other than an alcoholic hydroxyl group include organic solvents having 1 to 7 carbon atoms in the carbon chain having an alkoxycarbonyl group in the molecule, for example, propyl formate, butyl formate, isobutyl formate,
Ethyl acetate, propyl acetate, isopropyl acetate, allyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, isopentyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl acrylate, butyl acrylate, isobutyl acrylate, methyl butyrate , Methyl isobutyrate, ethyl butyrate, ethyl isobutyrate, methyl methacrylate, propyl butyrate, isopropyl isobutyrate, 2-ethoxyethyl acetate, 2- (2ethoxyethoxy) ethyl acetate, etc., alone or in a mixture, or an ether bond in the molecule An organic solvent having 3 to 5 carbon atoms in the carbon chain having
For example, dipropyl ether, dibutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, tripropylene glycol monomethyl ether, tetrahydrofuran, etc. alone or in a mixture, or an organic compound having a carbon chain having a carbonyl group in the molecule having 4 to 8 carbon atoms. Solvents, for example, methyl butyl ketone, methyl isobutyl ketone, methyl hexyl ketone,
Dipropyl ketone or the like alone or as a mixture, or an organic solvent having 1 to 5 carbon atoms in the carbon chain having an amino group in the molecule, for example, isopropylamine, isobutylamine, tert-butylamine, isopentylamine, diethylamine, etc. Or a mixture, or an organic solvent having 1 to 6 carbon atoms in the carbon chain having a carboxyl group in the molecule, such as propionic acid, valeric acid, caproic acid, heptanoic acid, etc., alone or in combination, or a combination thereof. Can be used. However,
The organic solvent having a polar group other than the alcoholic hydroxyl group used for forming the porous electrolyte A having three-dimensionally connected pores is preferably an organic solvent having an alkoxycarbonyl group. In the second step, the catalyst dispersion is prepared by dispersing the catalyst in a dispersion medium, adding an electrolyte solution thereto, and mixing well. Carbon supporting a platinum group metal as a catalyst,
Platinum group metals, their oxides, or mixtures thereof can be used. As the dispersion medium, alcohols having 4 or less such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol or 2-butanol having 4 or less carbon atoms, water or a mixture thereof can be used. The electrolyte solution is obtained by dissolving a perfluorosulfonic acid resin in a mixed solvent of water and alcohol, for example, a commercially available solution of perfluorosulfonic acid resin.
A wt% Nafion solution (Aldrich, USA) can be used. In the third step, the catalyst dispersion prepared in the second step is contained in the porous electrolyte A having the three-dimensionally communicating pores in the porous electrolyte A having the three-dimensionally communicating pores. In this step, for example, a coating method such as spraying, a doctor blade method, a screen printing method, or a conventionally known method such as a precipitation method or an impregnation method can be used. In the fourth step, the catalyst dispersion is applied to the porous electrolyte A having three-dimensionally communicating pores by, for example, pressing the porous electrolyte A having three-dimensionally communicating pores provided with the catalyst dispersion. To form a catalyst layer comprising a catalyst and a microporous aggregate made of electrolyte B. The compression can be applied, for example, by a method such as a flat press or a roll press. In the fifth step, the gas diffusion layer is joined to the catalyst layer by heating and pressure welding to produce the gas diffusion electrode of the present invention. As the gas diffusion layer, for example, a sheet-like material in which water-repellent carbon paper or carbon powder is formed using a water-repellent fluorine-based resin such as PTFE as a binder can be used. As an example of the present invention, FIG. 1 shows a schematic diagram of a cross section of a gas diffusion electrode electrolyte membrane assembly having the gas diffusion electrode of the present invention on one surface of an electrolyte membrane. In FIG. 1, 1 is the first
The catalyst layer 2 is a porous electrolyte A having three-dimensionally communicating pores, and the microporous assembly 3 is composed of a catalyst and an electrolyte B. The microporous aggregate 3 composed of the catalyst and the electrolyte B is contained in the pores of the porous electrolyte A having three-dimensionally communicating pores. Reference numeral 4 denotes a first gas diffusion layer, and reference numeral 5 denotes a first gas diffusion electrode. The first gas diffusion electrode 5 has the first catalyst layer 1
This is the gas diffusion electrode 5 of the present invention to which the gas diffusion layer 4 is joined. Reference numeral 6 denotes an electrolyte membrane C of the fuel cell, the first gas diffusion electrode 5 of the present invention on one side, and the second gas diffusion electrode 9 on the other side.
Is provided. The second gas diffusion electrode 9 is formed by joining the second gas diffusion layer 8 to the second catalyst layer 7. The second catalyst layer 7 is made of, for example, a catalyst dispersion composed of a catalyst and an electrolyte, and the second gas diffusion layer 8 is made of, for example, the same material as the first gas diffusion layer 4. A fuel cell having a first gas diffusion electrode 5 or a second gas diffusion electrode 9 on both sides of an electrolyte membrane C, or a first gas diffusion electrode 5 on one side of the electrolyte membrane and a second gas diffusion electrode 5 on the other side. The one provided with the gas diffusion electrode 9 is the gas diffusion electrode electrolyte membrane assembly 10. As the electrolyte membrane C of the fuel cell, a membrane having proton conductivity is used. For example, a Nafion 115 membrane (manufactured by DuPont, USA) which is a commercially available perfluorosulfonic acid resin membrane can be used. Nafion is a registered trademark of DuPont. FIG. 3 is an enlarged schematic diagram of a microporous aggregate including the catalyst and the electrolyte B contained in the pores of the porous electrolyte A having three-dimensionally communicating pores. In FIG. 3, 1
1 is a carbon carrier, 12 is a catalyst, and 13 is an electrolyte covering the catalyst. For example, carbon black or the like is used for the carbon carrier 11, and the catalyst 12 is a particle such as a simple substance of a platinum group metal such as platinum or an alloy thereof.
A catalyst in which platinum is supported on a carbon carrier as a catalyst is a so-called platinum-supported carbon catalyst. As the catalyst, fine powder of a platinum group metal or an alloy thereof, for example, platinum black powder or the like can be used. The electrolyte 13 covering the catalyst is formed in a film form on the surface of the catalyst and in the vicinity thereof, has a function of a binder, and forms a so-called three-phase interface in which an electrochemical reaction proceeds. The coating of the electrolyte 13 covering the catalyst preferably has high proton conductivity because it forms a path for proton transfer to the reaction site.

【実施例1】本発明になるガス拡散電極の製造方法の一
例を具体的に説明する。製造方法は、例えば図1に示す
ように5つの工程に分けることができる。 第一工程:電解質膜の片面に三次元連通性の孔を有する
多孔質電解質Aを形成する方法。 まず、市販の5wt%ナフィオン溶液をサンプル瓶に取
り、攪拌しながら60度に加熱して溶液を16wt%ま
で濃縮した。つぎに、市販のナフィオン115膜を精製
水で3回洗浄した後、脱脂処理として3%過酸化水素水
で1時間煮沸してから精製水で数回洗浄し、さらに、プ
ロトン化処理として0.5Mの硫酸で1時間煮沸し、精
製水で数回洗浄したあと精製水中に保管した。つづい
て、このナフィオン115をエタノールに10分間浸漬
して十分に膨潤させるエタノール処理を施した。プロト
ン化処理およびエタノール処理を施したナフィオン11
5膜をエタノール中から取り出し、ろ紙を用いて膨潤状
態のナフィオン115膜の表面に存在する余剰のエタノ
ールを拭き取った後、ナフィオン115膜が乾燥するま
えに、16wt%ナフィオン溶液をスプレーしてナフィ
オン115膜の一方の面にナフィオン溶液の塗布層を形
成した。このナフィオン溶液の塗布量は、一方の面で約
3mg/cm2とした。このナフィオン溶液の塗布層を
形成したナフィオン115膜を酢酸ブチルに10分間浸
漬したのち、取り出して室温で酢酸ブチルを乾燥して、
ナフィオン115膜の表面に三次元連通性の孔を有する
多孔質電解質Aを形成した。この三次元連通性の孔を有
する多孔質電解質A部分は直径3.5cmで厚みは約6
μmであった。 第二工程:触媒分散物の調製方法。 白金を30wt%担持したカーボン触媒1.5gに、5
wt%ナフィオン溶液(米国、アルドリッチ社製)13
mlを攪拌しながら徐々に加えて、さらに30分間攪拌
した。さらに攪拌しながら60℃に加熱し、分散媒に対
してナフィオンの固形分の重量が15wt%になるまで
濃縮して触媒分散物を調製した。 第三工程:三次元連通性の孔を有する多孔質電解質Aの
孔中に触媒分散物を付与する方法。 第一工程で作製した表面に三次元連通性の孔を有する多
孔質電解質Aを形成したナフィオン115膜を、ガラス
などの平板上に、三次元連通性の孔を有する多孔質電解
質Aの形成面が上面になるように配置した。隙間を15
μmに調整したドクターブレードを用いて、第二工程で
作製した触媒分散物を三次元連通性の孔を有する多孔質
電解質Aに塗布した。つぎに、三次元連通性の孔を有す
る多孔質電解質Aに塗布した触媒分散物を直径3cmの
円形状に残し、それ以外の不要の触媒分散物を除去し
て、電解質膜触媒分散物塗布体を形成した。一方、つぎ
に示す方法で離型紙に触媒層を形成した離型紙触媒分散
物塗布体を作製した。すなわち、白金を30wt%担持
したカーボン触媒1.5gに、5wt%ナフィオン溶液
(米国、アルドリッチ社製)13mlを攪拌しながら徐
々に加えて、さらに30分間攪拌した。さらに攪拌しな
がら60℃に加熱し、分散媒に対してナフィオンの固形
分の重量が18wt%になるまで濃縮して触媒分散物を
調製した。スクリーン塗布によりこの触媒分散物を離型
紙としてのテトラフロロエチレン−ヘキサフロロプロピ
レン共重合体シートに塗布して離型紙触媒分散物塗布体
を作製し、直径3cmの円形状に裁断した。 第四工程:触媒分散物を孔の内部に充填して、三次元連
通性の孔を有する多孔質電解質Aの孔中に触媒と電解質
Bからなる微多孔性集合体とを備える触媒層を作製する
方法。 第三工程で作製した電解質膜触媒分散物塗布体および離
型紙触媒分散物塗布体を積層してプレス機に配置した。
このとき離型紙触媒分散物塗布体は、その塗布面が電解
質膜と向かい合う向きに、かつそれぞれに塗布面が電解
質膜を介して一致するように積層した。この状態で、2
50kg/cm2、135℃、5分間、加熱圧接して圧
迫を加えた。すると離型紙触媒層分散物塗布体を積層し
た面では、その触媒層が離型紙から電解質膜に転写され
た。電解質膜触媒分散物塗布体の面では、加熱圧迫によ
り三次元連通性の孔を有する多孔質電解質Aの孔中に塗
布した触媒分散物が充填されて、その孔の内部に触媒と
電解質Bからなる微多孔性集合体とを備える触媒層が形
成される。このようにしてナフィオン115膜の片面
に、本発明の三次元連通性の孔を有する多孔質電解質A
とその孔に触媒と電解質Bからなる微多孔性集合体とを
備える触媒層、およびナフィオン115膜の他面に触媒
分散物からなる触媒層を備えた触媒層電解質膜接合体を
形成した。この触媒層電解質膜接合体を本発明の触媒層
電解質膜接合体Xとした。 第五工程:ガス拡散層の接合。 ガス拡散層として直径3cmに裁断した撥水性を有する
カーボンペーパーを触媒層電解質膜接合体Xの両側に配
置して、加熱圧接(120kg/cm2、135℃、5
分間)により一体に接合してガス拡散電極電解質膜接合
体Xを作製した。カーボンペーパーは0.2mm厚のも
のを用いた。このカーボンペーパーはポリテトラフロロ
エチレンの分散液を含浸して乾燥したのち、400℃で
焼成して撥水性を付与した。このガス拡散電極電解質膜
接合体Xを、ガス供給路が形成された金属製のセパレー
タで挟持し、カソード側が本発明の触媒層になるように
配して固体高分子電解質型燃料電池Xを構成した。
Embodiment 1 An example of a method for manufacturing a gas diffusion electrode according to the present invention will be specifically described. The manufacturing method can be divided into, for example, five steps as shown in FIG. First step: A method of forming a porous electrolyte A having three-dimensionally connected pores on one surface of an electrolyte membrane. First, a commercially available 5 wt% Nafion solution was placed in a sample bottle and heated to 60 ° C. while stirring to concentrate the solution to 16 wt%. Next, the commercially available Nafion 115 membrane is washed three times with purified water, then boiled with 3% hydrogen peroxide solution for 1 hour as a degreasing treatment, washed several times with purified water, and further subjected to 0.1% as a protonation treatment. The mixture was boiled with 5 M sulfuric acid for 1 hour, washed several times with purified water, and stored in purified water. Subsequently, the Nafion 115 was subjected to an ethanol treatment for immersing it in ethanol for 10 minutes to swell sufficiently. Nafion 11 treated with proton and ethanol
After removing the five membranes from the ethanol and wiping off excess ethanol present on the surface of the swollen Nafion 115 membrane using a filter paper, spray the Nafion 115 solution by spraying a 16 wt% Nafion solution before the Nafion 115 membrane is dried. A coating layer of a Nafion solution was formed on one surface of the film. The coating amount of this Nafion solution was about 3 mg / cm 2 on one side. The Nafion 115 film on which the Nafion solution coating layer was formed was immersed in butyl acetate for 10 minutes, then taken out, and the butyl acetate was dried at room temperature.
A porous electrolyte A having three-dimensionally connected pores was formed on the surface of the Nafion 115 membrane. The porous electrolyte A portion having the three-dimensionally connected pores has a diameter of 3.5 cm and a thickness of about 6 cm.
μm. Second step: A method for preparing a catalyst dispersion. To 1.5 g of a carbon catalyst supporting 30 wt% of platinum, 5 g
wt% Nafion solution (Aldrich, USA) 13
ml was gradually added with stirring, and the mixture was further stirred for 30 minutes. The mixture was further heated to 60 ° C. with stirring, and concentrated until the solid content of Nafion became 15 wt% with respect to the dispersion medium to prepare a catalyst dispersion. Third step: a method of providing a catalyst dispersion in the pores of the porous electrolyte A having three-dimensionally communicating pores. The Nafion 115 membrane formed with the porous electrolyte A having three-dimensionally connected pores on the surface prepared in the first step is formed on a flat plate made of glass or the like, and the surface on which the porous electrolyte A having three-dimensionally connected holes is formed. Was arranged on the upper surface. 15 gaps
Using a doctor blade adjusted to μm, the catalyst dispersion prepared in the second step was applied to the porous electrolyte A having three-dimensionally communicating pores. Next, the catalyst dispersion applied to the porous electrolyte A having three-dimensionally communicating pores is left in a circular shape having a diameter of 3 cm, and other unnecessary catalyst dispersions are removed. Was formed. On the other hand, a release-paper-catalyst-dispersed-coated body having a catalyst layer formed on release paper was prepared by the following method. That is, 13 ml of a 5 wt% Nafion solution (manufactured by Aldrich, USA) was gradually added to 1.5 g of a carbon catalyst carrying 30 wt% of platinum while stirring, and the mixture was further stirred for 30 minutes. Further, the mixture was heated to 60 ° C. with stirring, and concentrated until the weight of the solid content of Nafion with respect to the dispersion medium became 18% by weight to prepare a catalyst dispersion. The catalyst dispersion was applied to a tetrafluoroethylene-hexafluoropropylene copolymer sheet as release paper by screen coating to prepare a release paper catalyst dispersion coated body, which was cut into a circular shape having a diameter of 3 cm. Fourth step: filling the inside of the pores with the catalyst dispersion to prepare a catalyst layer having a catalyst and a microporous aggregate composed of the electrolyte B in the pores of the porous electrolyte A having three-dimensionally communicating pores how to. The electrolyte membrane catalyst dispersion applied product and the release paper catalyst dispersion applied product produced in the third step were laminated and placed in a press.
At this time, the release-paper-catalyst dispersion-applied body was laminated such that the application surface faced the electrolyte membrane and the application surface was in agreement with the electrolyte membrane via the electrolyte membrane. In this state, 2
Pressure was applied by heating and pressing at 50 kg / cm 2 at 135 ° C. for 5 minutes. Then, the catalyst layer was transferred from the release paper to the electrolyte membrane on the surface on which the release-catalyst layer dispersion applied body was laminated. On the surface of the electrolyte membrane catalyst dispersion coated body, the catalyst dispersion applied to the pores of the porous electrolyte A having three-dimensionally communicating pores is filled by heating and pressing, and the inside of the pores is filled with the catalyst and the electrolyte B. And a catalyst layer comprising the microporous aggregate. Thus, on one surface of the Nafion 115 membrane, the porous electrolyte A having the three-dimensionally connected pores of the present invention is provided.
And a catalyst layer comprising a catalyst and a microporous aggregate comprising electrolyte B in the pores thereof, and a catalyst layer / electrolyte membrane assembly comprising a catalyst layer comprising a catalyst dispersion on the other surface of the Nafion 115 membrane. This catalyst layer electrolyte membrane assembly was designated as catalyst layer electrolyte membrane assembly X of the present invention. Fifth step: joining of gas diffusion layers. A water-repellent carbon paper cut to a diameter of 3 cm as a gas diffusion layer is arranged on both sides of the catalyst layer / electrolyte membrane assembly X, and heated and pressed (120 kg / cm 2 , 135 ° C., 5 ° C.).
Minutes) to form a gas diffusion electrode / electrolyte membrane assembly X. Carbon paper having a thickness of 0.2 mm was used. This carbon paper was impregnated with a dispersion of polytetrafluoroethylene, dried, and then fired at 400 ° C. to impart water repellency. The gas diffusion electrode / electrolyte membrane assembly X is sandwiched between metal separators having gas supply passages formed thereon, and the cathode side is arranged so as to be the catalyst layer of the present invention, whereby a solid polymer electrolyte fuel cell X is formed. did.

【実施例2】実施例1の第一工程と同様にして脱脂処理
およびプロトン化処理を施したナフィオン115膜の両
面に、実施例の第三工程で作製した離型紙触媒分散物塗
布体を直径3cmに裁断したものを触媒層の塗布面が向
かい合うように積層し、250kg/cm2、135
℃、5分間、加熱圧接して離型紙触媒層分散物塗布体に
形成された触媒層をナフィオン115膜に転写し、ナフ
ィオン115膜の両面に触媒分散物からなる触媒層を備
えた触媒層電解質膜接合体Yを形成した。ガス拡散層と
して実施例1の第五工程で作製した撥水性を有するカー
ボンペーパーを直径3cmに裁断して用いた。触媒層電
解質膜接合体Yの両側にこのカーボンペーパーを配置し
て、加熱圧接(120kg/cm2、135℃、5分
間)により一体に接合してガス拡散電極電解質膜接合体
Yを作製した。このガス拡散電極電解質膜接合体Yを、
ガス供給路が形成された金属製のセパレータで挟持し、
比較用の固体高分子電解質型燃料電池Yを構成した。ア
ノードに純水素をカソードに空気をそれぞれ2kg/c
2Gに加圧して供給し、電池の温度が65℃での固体
高分子電解質型燃料電池Xおよび固体高分子電解質型燃
料電池Yの電流−電圧特性を測定した。このとき空気と
水素は、60℃に設定したバブラー式の加湿器を用いて
加湿した。固体高分子電解質型燃料電池Xおよび固体高
分子電解質型燃料電池Yの電流−電圧特性を図4に示
す.図4において、Xは本発明の固体高分子電解質型燃
料電池Xの、またYは比較用の固体高分子電解質型燃料
電池Yの、それぞれ電流−電圧特性を示す曲線である。
本発明の三次元連通性の孔を有する多孔質電解質Aとそ
の孔中に触媒と電解質Bからなる微多孔性集合体とを備
える触媒層にガス拡散層を接合して構成されたガス拡散
電極をカソードに配した固体高分子電解質型燃料電池X
は、固体高分子電解質型燃料電池Yよりも高い電流密度
おける電池電圧の低下が小さく高出力であった。このこ
とは、本発明の三次元連通性の孔を有する多孔質電解質
Aとその孔中に触媒と電解質Bからなる微多孔性集合体
とを備える触媒層をカソードで使用することは、固体高
分子電解質型燃料電池の高出力化に有効であることを示
す。その理由を、図1を用いて説明する。固体高分子電
解質型燃料電池Yのカソードの触媒層は、図1の第2の
触媒層7と同様の構造である。この第2の触媒層7のプ
ロトン伝導性は低いために、ガス拡散層の近傍の反応に
関与するプロトンはその移動抵抗に起因する電圧の降下
が大きい。これに対して、固体高分子電解質型燃料電池
Xの触媒層は、図1の第1の触媒層1に示すような構造
である。この触媒層は、その中にプロトン伝導性の高い
移動経路が三次元網目状に形成されるので、プロトン伝
導性の低い触媒と電解質からなる部分におけるプロトン
移動の距離が短くなり、とくに電流密度においてプロト
ンの移動抵抗に起因する電圧の降下が低減する。言い換
えると本発明の電解質は、プロトンの移動抵抗に起因す
る電圧の降下が小さい部位が多く形成された触媒層であ
ると考えられる。
EXAMPLE 2 The release paper catalyst dispersion coated body prepared in the third step of the example was coated on both sides of the Nafion 115 membrane subjected to the degreasing treatment and the protonation treatment in the same manner as in the first step of the example 1. The pieces cut to 3 cm were laminated so that the coated surfaces of the catalyst layers faced each other, and were weighed at 250 kg / cm 2 and 135 kg.
The catalyst layer formed on the release paper catalyst layer dispersion coated body was transferred to a Nafion 115 membrane by heating and pressure contacting at 5 ° C. for 5 minutes, and a catalyst layer electrolyte comprising a catalyst layer composed of a catalyst dispersion on both sides of the Nafion 115 membrane A membrane assembly Y was formed. The water-repellent carbon paper produced in the fifth step of Example 1 was cut to a diameter of 3 cm and used as a gas diffusion layer. The carbon paper was disposed on both sides of the catalyst layer electrolyte membrane assembly Y, and was integrally joined by heating and pressure welding (120 kg / cm 2 , 135 ° C., 5 minutes) to produce a gas diffusion electrode electrolyte membrane assembly Y. This gas diffusion electrode electrolyte membrane assembly Y
Sandwiched by a metal separator with a gas supply path formed,
A solid polymer electrolyte fuel cell Y for comparison was constructed. Pure hydrogen on the anode and air on the cathode each 2kg / c
The current-voltage characteristics of the solid polymer electrolyte fuel cell X and the solid polymer electrolyte fuel cell Y at a battery temperature of 65 ° C. were measured by supplying the battery under pressure of m 2 G. At this time, the air and hydrogen were humidified using a bubbler humidifier set at 60 ° C. FIG. 4 shows current-voltage characteristics of the solid polymer electrolyte fuel cell X and the solid polymer electrolyte fuel cell Y. In FIG. 4, X is a curve showing the current-voltage characteristics of the solid polymer electrolyte fuel cell X of the present invention, and Y is a curve showing the current-voltage characteristics of the solid polymer electrolyte fuel cell Y for comparison.
Gas diffusion electrode formed by joining a gas diffusion layer to a catalyst layer comprising a porous electrolyte A having three-dimensionally communicating pores according to the present invention and a microporous aggregate comprising a catalyst and an electrolyte B in the pores Solid polymer electrolyte fuel cell X having a cathode disposed on the cathode
Showed a small output of the battery voltage at a higher current density than that of the solid polymer electrolyte fuel cell Y and a high output. This means that the use of a catalyst layer comprising a porous electrolyte A having three-dimensionally communicating pores of the present invention and a microporous aggregate comprising a catalyst and an electrolyte B in the pores at the cathode is a high solids material. This shows that it is effective for increasing the output of a molecular electrolyte fuel cell. The reason will be described with reference to FIG. The catalyst layer of the cathode of the solid polymer electrolyte fuel cell Y has the same structure as the second catalyst layer 7 of FIG. Since the proton conductivity of the second catalyst layer 7 is low, protons involved in the reaction near the gas diffusion layer have a large voltage drop due to their migration resistance. On the other hand, the catalyst layer of the solid polymer electrolyte fuel cell X has a structure as shown in the first catalyst layer 1 of FIG. In this catalyst layer, a movement path having high proton conductivity is formed in a three-dimensional network in the catalyst layer, so that the distance of proton transfer in a portion composed of the catalyst having low proton conductivity and the electrolyte is shortened, and particularly in the current density. Voltage drop due to proton transfer resistance is reduced. In other words, it is considered that the electrolyte of the present invention is a catalyst layer in which many portions where the voltage drop due to proton transfer resistance is small are formed.

【0006】[0006]

【発明の効果】本発明の三次元連通性の孔を有する多孔
質電解質Aとその孔中に触媒と電解質Bからなる微多孔
性集合体とを備える触媒層は、その触媒層中にプロトン
が伝導性の高い経路が形成されるので、電流密度が大き
い場合でもプロトン伝導性の低い孔に含まれた触媒と電
解質でのプロトン移動の距離が短くなり、プロトン伝導
性の不足に起因する電圧の低下が抑制される。また、本
発明の触媒層は厚くてもそのプロトン伝導性の不足に起
因する抵抗過電圧は小さいために、厚み方向にも触媒を
増量して活性化過電圧を低減できるので、出力密度が高
い固体高分子電解質型燃料電池を提供することができ
る。
According to the present invention, the catalyst layer comprising the porous electrolyte A having three-dimensionally communicating pores and the microporous aggregate comprising the catalyst and the electrolyte B in the pores has protons in the catalyst layer. Since a path with high conductivity is formed, even when the current density is high, the distance of proton transfer between the catalyst and the electrolyte contained in the pores with low proton conductivity becomes shorter, and the voltage of the Reduction is suppressed. Further, even though the catalyst layer of the present invention is thick, since the resistance overvoltage due to the lack of proton conductivity is small, the activation overvoltage can be reduced by increasing the amount of catalyst in the thickness direction, so that the solid density with a high power density is high. A molecular electrolyte fuel cell can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明になるガス拡散電極電解質膜接合体の断
面の模式図。
FIG. 1 is a schematic view of a cross section of a gas diffusion electrode / electrolyte membrane assembly according to the present invention.

【図2】本発明になるガス拡散電極の製造工程を示すフ
ロート図。
FIG. 2 is a float view showing a manufacturing process of the gas diffusion electrode according to the present invention.

【図3】三次元連通性の孔を有する多孔質電解質Aの孔
中に含まれた触媒と電解質Bからなる微多孔性集合体の
拡大模式図
FIG. 3 is an enlarged schematic view of a microporous aggregate comprising a catalyst and an electrolyte B contained in pores of a porous electrolyte A having pores having three-dimensional communication.

【図4】本発明になるガス拡散電極をカソードに配した
固体高分子電解質型燃料電池Xおよび比較用の固体高分
子電解質型燃料電池Yの電流−電圧特性示す図。
FIG. 4 is a diagram showing current-voltage characteristics of a solid polymer electrolyte fuel cell X in which a gas diffusion electrode according to the present invention is arranged on a cathode and a solid polymer electrolyte fuel cell Y for comparison.

【符号の説明】[Explanation of symbols]

1 第1の触媒層 2 三次元連通性の孔を有する多孔質電解質A。 3 触媒と電解質Bからなる微多孔性集合体 4 第1のガス拡散層 5 第1のガス拡散電極 6 燃料電池の電解質膜C 7 第2の触媒層 8 第2のガス拡散層 9 第2のガス拡散電極 10 ガス拡散電極電解質膜接合体 11 カーボン担体 12 触媒 13 触媒を被覆する電解質 1 First catalyst layer 2 Porous electrolyte A having three-dimensionally communicating pores. Reference Signs List 3 Microporous aggregate composed of catalyst and electrolyte B 4 First gas diffusion layer 5 First gas diffusion electrode 6 Electrolyte membrane C for fuel cell 7 Second catalyst layer 8 Second gas diffusion layer 9 Second Gas diffusion electrode 10 Gas diffusion electrode electrolyte membrane assembly 11 Carbon carrier 12 Catalyst 13 Electrolyte covering catalyst

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】触媒層とガス拡散層とを備えたガス拡散電
極において、上記触媒層の構造が、三次元連通性の孔を
有する多孔質電解質Aの孔中に触媒と電解質Bからなる
微多孔性集合体を備えた構造であることを特徴とするガ
ス拡散電極。
In a gas diffusion electrode provided with a catalyst layer and a gas diffusion layer, the structure of the catalyst layer is such that a catalyst and an electrolyte B are formed in pores of a porous electrolyte A having three-dimensionally communicating pores. A gas diffusion electrode having a structure including a porous assembly.
【請求項2】三次元連通性の孔を有する多孔質電解質A
の孔中に触媒と電解質Bからなる微多孔性集合体を含ま
せることを特徴とする、請求項1記載のガス拡散電極の
製造方法。
2. A porous electrolyte A having three-dimensionally communicating pores.
The method for producing a gas diffusion electrode according to claim 1, wherein a microporous aggregate comprising a catalyst and an electrolyte B is contained in the pores.
【請求項3】請求項1記載のガス拡散電極を備えること
を特徴とする固体高分子電解質型燃料電池。
3. A solid polymer electrolyte fuel cell comprising the gas diffusion electrode according to claim 1.
JP00652899A 1999-01-13 1999-01-13 Gas diffusion electrode and manufacturing method thereof Expired - Fee Related JP3965666B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP00652899A JP3965666B2 (en) 1999-01-13 1999-01-13 Gas diffusion electrode and manufacturing method thereof
DE10001170A DE10001170A1 (en) 1999-01-13 2000-01-13 Gas diffusion electrode comprises a gas diffusion layer and a catalyst layer a porous electrolyte and microporous catalyst-electrolyte aggregate
US09/482,107 US6391487B1 (en) 1999-01-13 2000-01-13 Gas diffusion electrode, method for manufacturing the same, and fuel cell with such electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00652899A JP3965666B2 (en) 1999-01-13 1999-01-13 Gas diffusion electrode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000208151A true JP2000208151A (en) 2000-07-28
JP3965666B2 JP3965666B2 (en) 2007-08-29

Family

ID=11640871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00652899A Expired - Fee Related JP3965666B2 (en) 1999-01-13 1999-01-13 Gas diffusion electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3965666B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208406A (en) * 2001-01-12 2002-07-26 Asahi Glass Co Ltd Solid polymer fuel cell
JP2005085544A (en) * 2003-09-05 2005-03-31 Toyota Central Res & Dev Lab Inc Polymer electrolyte membrane and membrane electrode assembly
JP2006278323A (en) * 2005-03-02 2006-10-12 Canon Inc Membrane electrode assembly, method for manufacturing the same, and solid polymer type fuel cell
JP2011187436A (en) * 2010-03-10 2011-09-22 Samsung Sdi Co Ltd Membrane-electrode assembly for fuel cell, method of manufacturing the same, fuel cell system, and stack for fuel cell
JP2014086322A (en) * 2012-10-24 2014-05-12 Toyota Motor Corp Catalyst layer for fuel cell
EP2811563A1 (en) * 2012-02-02 2014-12-10 Kyushu University, National University Corporation Catalyst layer constituting body and method for preparing catalyst layer constituting body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208406A (en) * 2001-01-12 2002-07-26 Asahi Glass Co Ltd Solid polymer fuel cell
JP4719979B2 (en) * 2001-01-12 2011-07-06 旭硝子株式会社 Polymer electrolyte fuel cell
JP2005085544A (en) * 2003-09-05 2005-03-31 Toyota Central Res & Dev Lab Inc Polymer electrolyte membrane and membrane electrode assembly
JP4576813B2 (en) * 2003-09-05 2010-11-10 株式会社豊田中央研究所 Polymer electrolyte membrane and membrane electrode assembly
JP2006278323A (en) * 2005-03-02 2006-10-12 Canon Inc Membrane electrode assembly, method for manufacturing the same, and solid polymer type fuel cell
JP2011187436A (en) * 2010-03-10 2011-09-22 Samsung Sdi Co Ltd Membrane-electrode assembly for fuel cell, method of manufacturing the same, fuel cell system, and stack for fuel cell
EP2365569A3 (en) * 2010-03-10 2013-08-21 Samsung SDI Co., Ltd. A membrane-electrode assembly for a fuel cell
US8735017B2 (en) 2010-03-10 2014-05-27 Samsung Sdi Co., Ltd Membrane-electrode assembly for fuel cell, method of manufacturing membrane-electrode assembly for fuel cell, and fuel cell system
EP2811563A1 (en) * 2012-02-02 2014-12-10 Kyushu University, National University Corporation Catalyst layer constituting body and method for preparing catalyst layer constituting body
EP2811563A4 (en) * 2012-02-02 2015-11-11 Univ Kyushu Nat Univ Corp CATALYST LAYER COMPONENT BODY AND PROCESS FOR PREPARING A CATALYST LAYER COMPONENT BODY
JP2014086322A (en) * 2012-10-24 2014-05-12 Toyota Motor Corp Catalyst layer for fuel cell

Also Published As

Publication number Publication date
JP3965666B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
US6391487B1 (en) Gas diffusion electrode, method for manufacturing the same, and fuel cell with such electrode
KR100779820B1 (en) Direct oxidation fuel cell and manufacturing method therefor
CN1913206A (en) Membrane-electrode assembly, method for preparing the same, and fuel cell system comprising the same
KR20110043908A (en) Method for manufacturing membrane electrode assembly for polymer electrolyte fuel cell
US7931935B2 (en) Process for producing membrane electrode assembly, and fuel cell using the membrane electrode assembly produced by the process
JP2004214045A (en) Fuel cell and its manufacturing method
JP2000299119A (en) Manufacture of catalyst layer
JP2009037902A (en) Catalyst support for forming electrode for fuel cell, method for producing the same and polymer electrolyte fuel cell
JP3965666B2 (en) Gas diffusion electrode and manufacturing method thereof
JP2005135787A (en) Electrode for fuel cell
JP3978757B2 (en) Gas diffusion electrode-electrolyte membrane assembly for fuel cell and method for producing the same
JP4117430B2 (en) Gas diffusion electrode and fuel cell having the same
JP2005294175A (en) Electrode catalyst layer and its manufacturing method
JP2003059507A (en) Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell
JP2001160398A (en) Gas diffusion electrode for fuel cell and fuel cell using the same
JP4403634B2 (en) Composite catalyst for solid polymer electrolyte fuel cell.
JP2001300324A (en) Composite catalyst and manufacturing method and method of manufacturing electrode for fuel cell using the same
US20190267636A1 (en) Enhancing catalyst activity of a pem fuel cell electrode with an ionic liquid additive
JP4045661B2 (en) ELECTROLYTE MEMBRANE, PROCESS FOR PRODUCING THE SAME, AND SOLID POLYMER ELECTROLYTE FUEL CELL USING THE SAME
JP5605048B2 (en) Method for producing composite catalyst and method for producing electrode for fuel cell using the composite catalyst
JP2009181949A (en) Catalyst layer and method for producing the same, membrane electrode structure and method for producing the same
JP2006253042A (en) Manufacturing method of catalyst for polymer electrolyte fuel cell
JP4529345B2 (en) Method for producing polymer electrolyte fuel cell
JP2001283864A (en) Manufacturing method of gas diffusion electrode
JP2003297373A (en) Coating for catalyst bed and manufacturing method of electrolyte membrane electrode junction body using it

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees