JP2002310960A - Pre-processing apparatus and method for non- electroconductive sample - Google Patents
Pre-processing apparatus and method for non- electroconductive sampleInfo
- Publication number
- JP2002310960A JP2002310960A JP2001119966A JP2001119966A JP2002310960A JP 2002310960 A JP2002310960 A JP 2002310960A JP 2001119966 A JP2001119966 A JP 2001119966A JP 2001119966 A JP2001119966 A JP 2001119966A JP 2002310960 A JP2002310960 A JP 2002310960A
- Authority
- JP
- Japan
- Prior art keywords
- evaporation source
- sample
- conductive
- palladium
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 20
- 238000007781 pre-processing Methods 0.000 title abstract description 7
- 238000001704 evaporation Methods 0.000 claims abstract description 77
- 230000008020 evaporation Effects 0.000 claims abstract description 74
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 69
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 32
- 239000010409 thin film Substances 0.000 claims abstract description 15
- 238000010894 electron beam technology Methods 0.000 claims abstract description 12
- 230000008018 melting Effects 0.000 claims abstract description 8
- 238000002844 melting Methods 0.000 claims abstract description 8
- 238000004452 microanalysis Methods 0.000 claims abstract description 7
- 238000000151 deposition Methods 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 18
- 239000010408 film Substances 0.000 claims description 14
- 238000002203 pretreatment Methods 0.000 claims description 5
- 239000010453 quartz Substances 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 239000012811 non-conductive material Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 239000000523 sample Substances 0.000 description 66
- 230000008021 deposition Effects 0.000 description 15
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 6
- 239000010937 tungsten Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000008022 sublimation Effects 0.000 description 4
- 238000000859 sublimation Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 101100293260 Homo sapiens NAA15 gene Proteins 0.000 description 1
- 102100026781 N-alpha-acetyltransferase 15, NatA auxiliary subunit Human genes 0.000 description 1
- 238000002083 X-ray spectrum Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000000538 analytical sample Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 229910000487 osmium oxide Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- JIWAALDUIFCBLV-UHFFFAOYSA-N oxoosmium Chemical compound [Os]=O JIWAALDUIFCBLV-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は走査型電子顕微鏡観
察用もしくは電子線マイクロ分析用非導電性試料の、観
察中もしくは分析中の試料表面の帯電現象を防止するた
めに使用される前処理装置および前処理方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pretreatment apparatus used for preventing a charging phenomenon on a sample surface during observation or analysis of a nonconductive sample for scanning electron microscope observation or electron beam microanalysis. And a pretreatment method.
【0002】[0002]
【従来の技術】試料表面に細く絞った電子線を走査して
照射し、二次電子を検出して表面の凹凸を調べる走査型
電子顕微鏡は、非常に広範囲の対象に対して、表面の微
細な構造を精密に調べることができるため、新規材料の
開発や材料の新規応用形態を開発するにあたって、非常
に有効な評価手段となっている。また、これと同様に、
試料表面に細く絞った電子線を走査して照射し、試料か
ら励起されるX線を分光して試料の組成を調べる電子線
マイクロ分析法では、微小領域の組成を測定することが
できるため、これもまた、新規材料や新規デバイスを開
発するにあたって、非常に有効な評価手段となってい
る。2. Description of the Related Art A scanning electron microscope that scans and irradiates a sample surface with a finely focused electron beam, detects secondary electrons, and examines surface irregularities is used for a very wide range of objects. Because it is possible to precisely investigate a simple structure, it has become a very effective evaluation tool in the development of new materials and new application forms of materials. Also, like this,
The electron beam microanalytical method, which scans and irradiates a sample surface with a narrowly focused electron beam and disperses X-rays excited from the sample to examine the composition of the sample, can measure the composition of minute regions. This is also a very effective evaluation tool when developing new materials and new devices.
【0003】走査型電子顕微鏡や電子線マイクロ分析装
置で絶縁性の試料を分析する際には、電子線照射によっ
て試料表面が帯電するのを防止するために、試料表面に
蓄積された電荷を逃がすような方策をとる必要がある。
その1つとして、試料表面に導電性薄膜を形成する方法
がある。この導電性薄膜は分析の目的を妨げること、す
なはち、試料にダメージを与えたり、試料表面の形状を
変化させたり、X線スペクトルの注目部分に影響を及ぼ
すなどのことがあってはならない。When analyzing an insulating sample with a scanning electron microscope or an electron beam microanalyzer, the charge accumulated on the sample surface is released in order to prevent the sample surface from being charged by electron beam irradiation. It is necessary to take such measures.
As one of the methods, there is a method of forming a conductive thin film on a sample surface. This conductive thin film must not interfere with the purpose of the analysis, that is, damage the sample, change the shape of the sample surface, or affect the portion of interest in the X-ray spectrum. .
【0004】また、導電性薄膜を形成してから時間の経
過と共に、その性質(電気伝導度など)が変化すること
は好ましくない。通常は金,白金などの貴金属またはカ
ーボンを蒸着することにより形成した数nmの厚さの膜
が使用される。このように試料にダメージを与えること
なく分析に適した薄膜を迅速に形成する方法としては、
例えば、特公昭55−42148号公報には真空蒸着法で金を
蒸着する方法が開示されている。特開平6−103953号公
報には液体金属イオン源によって金属薄膜を形成する方
法が,また、特開平6−331516号公報には酸化オスミウ
ムの昇華ガスの用いてオスミウム薄膜を堆積させる方法
が開示されている。It is not preferable that the properties (such as electrical conductivity) change over time after the formation of the conductive thin film. Usually, a film with a thickness of several nm formed by depositing a noble metal such as gold or platinum or carbon is used. As a method for quickly forming a thin film suitable for analysis without damaging the sample,
For example, Japanese Patent Publication No. 55-42148 discloses a method of depositing gold by a vacuum deposition method. Japanese Patent Application Laid-Open No. Hei 6-103953 discloses a method of forming a metal thin film by using a liquid metal ion source, and Japanese Patent Application Laid-Open No. Hei 6-331516 discloses a method of depositing an osmium thin film using a sublimation gas of osmium oxide. ing.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記の
ような試料前処理方法を実施するための装置では、蒸着
速度や堆積膜厚の制御が困難であり、実際の蒸着の操作
が複雑なため、日常的に分析試料の前処理に使用するの
には問題があった。また、装置の管理維持のためにも多
くの手間がかかるという問題があった。However, in the apparatus for performing the above-described sample pretreatment method, it is difficult to control the deposition rate and the deposited film thickness, and the actual deposition operation is complicated. There is a problem in using it for pretreatment of an analytical sample on a daily basis. In addition, there is a problem that it takes a lot of time to maintain and maintain the apparatus.
【0006】本発明は、これらの問題点を解消し、簡単
な操作で分析に適した導電性薄膜を制御性良く形成する
ことを可能とする非導電性試料の前処理装置および前処
理方法を提供することを目的とする。The present invention solves these problems and provides a non-conductive sample pre-processing apparatus and a pre-processing method capable of forming a conductive thin film suitable for analysis with a simple operation with good controllability. The purpose is to provide.
【0007】[0007]
【課題を解決するための手段】本発明の上記目的は、次
の非導電性試料の前処理装置および前処理方法によって
達成される。 (1)走査型電子顕微鏡観察用もしくは電子線マイクロ
分析用非導電性試料に導電性を付与するための試料前処
理装置であって、真空槽と、この真空槽中に設けられた
非導電性試料の保持手段と、それと対向して該真空槽中
に設けられた蒸発源のパラジウムをその融点以下の温度
で加熱して蒸発(昇華)させるための手段とを有するこ
とを特徴とする非導電性試料の前処理装置。 (2)前記蒸発源の温度を制御するための手段と,前記
蒸発源からの蒸発速度を測定するための手段とを更に有
することを特徴とする上記(1)に記載の非導電性試料
の前処理装置。 (3)前記蒸発源を加熱するための手段が、通電して加
熱し得るボートであることを特徴とする上記(1)また
は(2)に記載の非導電性試料の前処理装置。 (4)前記蒸発源を加熱するための手段が、前記蒸発源
に通電して直接加熱するための手段であることを特徴と
する上記(1)または(2)に記載の非導電性の試料前
処理装置。 (5)前記蒸発源からの蒸発速度を測定するための手段
が、水晶振動子膜厚計を備えたものであることを特徴と
するに上記(2)に記載の非導電性試料の前処理装置。 (6)前記蒸発源の温度を制御するための手段が、前記
蒸発源それ自体もしくは前記たボートに流す電流を制御
するためのものであることを特徴とする上記(2)に記
載の非導電性試料の前処理装置。 (7)真空中で蒸発源のパラジウムをその融点以下の温
度で加熱して蒸発(昇華)させ、走査型電子顕微鏡観察
用もしくは電子線マイクロ分析用非導電性試料上に蒸着
させて導電性のパラジウム薄膜を形成することを特徴と
する非導電性試料の前処理方法。The above object of the present invention is achieved by the following non-conductive sample pre-processing apparatus and pre-processing method. (1) A sample pretreatment apparatus for imparting conductivity to a non-conductive sample for scanning electron microscope observation or electron beam micro-analysis, comprising a vacuum tank and a non-conductive A non-conductive material comprising: a sample holding means; and a means for heating and evaporating (sublimating) palladium, which is an evaporation source provided in the vacuum chamber in opposition thereto, at a temperature equal to or lower than its melting point. Pretreatment device for sex samples. (2) The non-conductive sample according to (1), further comprising: means for controlling a temperature of the evaporation source; and means for measuring an evaporation rate from the evaporation source. Pretreatment device. (3) The pretreatment device for a non-conductive sample according to the above (1) or (2), wherein the means for heating the evaporation source is a boat that can be heated by energization. (4) The non-conductive sample according to the above (1) or (2), wherein the means for heating the evaporation source is a means for applying a current to the evaporation source to directly heat the evaporation source. Pretreatment device. (5) The pretreatment of the non-conductive sample according to the above (2), wherein the means for measuring the evaporation rate from the evaporation source comprises a quartz crystal film thickness meter. apparatus. (6) The non-conductive material according to (2), wherein the means for controlling the temperature of the evaporation source is for controlling the current flowing through the evaporation source itself or the boat. Pretreatment device for sex samples. (7) Palladium as an evaporation source is heated at a temperature lower than its melting point in a vacuum to evaporate (sublimate) it, and is deposited on a non-conductive sample for scanning electron microscope observation or electron beam micro analysis to obtain a conductive material. A pretreatment method for a non-conductive sample, comprising forming a palladium thin film.
【0008】(8)前記蒸発源の加熱温度が1400−
1540℃の温度であることを特徴とする上記(7)に
記載の非導電性試料の前処理方法(8) The heating temperature of the evaporation source is 1400-
The method for pretreating a non-conductive sample according to the above (7), wherein the temperature is 1540 ° C.
【0009】[0009]
【発明の実施の形態】以下に、本発明を図面を参照して
説明する。図1は本発明の基本構成を説明するための模
式図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram for explaining a basic configuration of the present invention.
【0010】1は導電性を付与すべき非導電性試料,2
は試料ホルダー,3は蒸発源であるパラジウム,4は蒸
発源を加熱するための手段,5はシャッター,6は蒸発
源からの蒸発速度を測定するためのセンサー,7は蒸発
速度を測定するためのセンサーの制御装置,8は蒸発源
の温度を制御するために4の蒸発源を加熱するための手
段へ流す電流を制御する機能を有する加熱手段用電源で
ある。また、9は真空槽であって、図示されていない排
気装置により10-4Pa以下の真空度を保つことができる
ようになっている。1 is a non-conductive sample to be provided with conductivity, 2
Is a sample holder, 3 is palladium as an evaporation source, 4 is means for heating the evaporation source, 5 is a shutter, 6 is a sensor for measuring the evaporation rate from the evaporation source, and 7 is a sensor for measuring the evaporation rate. A sensor controller 8 is a heating means power supply having a function of controlling a current flowing to a means for heating the evaporation source 4 in order to control the temperature of the evaporation source. Reference numeral 9 denotes a vacuum chamber, which can maintain a degree of vacuum of 10 −4 Pa or less by an exhaust device (not shown).
【0011】非導電性試料1は分析装置に対応する試料
台に接着されている。試料ホルダー2はこの試料台を保
持するものであるが、均一な蒸着が行われるように試料
を回転する機構を備えることもできる。The non-conductive sample 1 is adhered to a sample stage corresponding to the analyzer. The sample holder 2 holds the sample stage, but may have a mechanism for rotating the sample so that uniform deposition is performed.
【0012】蒸発源3はパラジウムである。パラジウム
を選択した理由は以下のとおりである。すなわち、第一
にパラジウムの融点は1550℃であるが、それよりも
90℃低い1460℃において飽和蒸気圧が10-2Torr
ある(薄膜ハンドブック,オーム社)。飽和蒸気圧が1
0-2Torrということは、真空中で表面から毎秒104原
子層程度が蒸発することになる。このことから、パラジ
ウムは融点よりも低い温度で、つまり固体の状態で、蒸
着に使うのに十分な蒸発速度を有していることが分か
る。固体からの蒸発(昇華)の場合、蒸発源の形状が大
きく変化しないので、蒸発速度の制御が容易である。第
二に、パラジウムは貴金属であり、常温では空気中で酸
化が進むことはない。第三に、抵抗が小さく、また、第
四に、薄膜中の粒子径を小さくすることができる。The evaporation source 3 is palladium. The reasons for choosing palladium are as follows. That is, first, the melting point of palladium is 1550 ° C., but at 1460 ° C., which is 90 ° C. lower, the saturated vapor pressure is 10 −2 Torr
Yes (Thin Film Handbook, Ohmsha). Saturated vapor pressure is 1
At 0 -2 Torr, about 10 4 atomic layers per second evaporate from the surface in a vacuum. This indicates that palladium has a sufficient evaporation rate at a temperature lower than the melting point, that is, in a solid state, to be used for vapor deposition. In the case of evaporation (sublimation) from a solid, since the shape of the evaporation source does not change significantly, the control of the evaporation rate is easy. Second, palladium is a noble metal, and oxidation does not proceed in air at room temperature. Third, the resistance is small, and fourth, the particle diameter in the thin film can be reduced.
【0013】パラジウムの形状は、球状もしくは角状の
粒子、円筒状、角柱状、板状、線状など如何なる形状で
もよい。The shape of palladium may be any shape such as spherical or angular particles, cylindrical, prismatic, plate-like, or linear.
【0014】蒸発源の加熱温度は、蒸発(昇華)速度、
蒸発源と試料との間の距離、パラジウム膜の堆積速度な
どを考慮して決定されるが、1400−1540℃の範
囲から選ぶのが好ましい。The heating temperature of the evaporation source is determined by the evaporation (sublimation) speed,
It is determined in consideration of the distance between the evaporation source and the sample, the deposition rate of the palladium film, and the like, and is preferably selected from the range of 1400 to 1540 ° C.
【0015】固体からの蒸発(昇華)速度が十分大きい
金属は他にもある。カドミウム,クロム,鉄,マンガン
などである。しかしながらこれらの元素は、空気中で短
時間のうちに酸化してしまうため、導電性付与の目的で
使用するのは適当ではない。Other metals have a sufficiently high rate of evaporation (sublimation) from solids. Cadmium, chromium, iron, manganese, etc. However, these elements are oxidized in air in a short time, and are not suitable for use for the purpose of imparting conductivity.
【0016】蒸発源を加熱するためには、通電して加熱
することのできるボート上に蒸発源を載せて間接的に加
熱する方法、もしくは蒸発源としての線状のパラジウム
に直接通電して加熱する方法が好ましく利用できる。通
電の際の電流値を制御することにより蒸発源の温度を制
御することができる。何らかの方法で蒸発速度を測定
し、その測定値と電流値との関係を知り、電流値を調整
することにより蒸発速度を制御することができる。In order to heat the evaporation source, a method in which the evaporation source is placed on a boat which can be heated by being energized and heated indirectly, or a method in which linear palladium as the evaporation source is directly energized and heated Is preferably used. The temperature of the evaporation source can be controlled by controlling the current value at the time of energization. The evaporation rate can be controlled by measuring the evaporation rate by any method, knowing the relationship between the measured value and the current value, and adjusting the current value.
【0017】パラジウム薄膜の堆積速度(堆積レート)
は、蒸発源と試料の間の距離の二乗に反比例する。蒸発
源と試料との間の距離を大きくすると、堆積レートが小
さくなり、堆積膜厚の制御は容易になるが、蒸着に時間
がかかり、それだけ蒸発源の消耗が大きくなる。蒸発源
と試料との間の距離を小さくすると、大きな試料におい
て表面上で膜厚分布が出てくることや加熱された蒸発源
からの輻射で試料温度が上昇してしまうといった問題が
出てくる。このような要因を考慮すると、蒸発源と試料
間の距離は、10mm程度の大きさの試料に対して50mmから
300mmの範囲が好ましい。Deposition rate of palladium thin film (deposition rate)
Is inversely proportional to the square of the distance between the evaporation source and the sample. When the distance between the evaporation source and the sample is increased, the deposition rate is reduced, and the control of the deposited film thickness is facilitated. However, the evaporation takes a long time, and the consumption of the evaporation source increases accordingly. When the distance between the evaporation source and the sample is reduced, there is a problem that the film thickness distribution appears on the surface of a large sample, and the temperature of the sample increases due to radiation from the heated evaporation source. . Considering such factors, the distance between the evaporation source and the sample should be 50 mm for a sample of about 10 mm in size.
A range of 300 mm is preferred.
【0018】図1では、試料が上,蒸発源が下に置かれ
ているが、上下逆転してもよい。つまり試料は下,蒸発
源は上でもよい。In FIG. 1, the sample is placed on the upper side and the evaporation source is placed on the lower side. That is, the sample may be below and the evaporation source may be above.
【0019】[0019]
【実施例】以下に、実施例を挙げて本発明を具体的に説
明するが、本発明はこれらの実施例にのみ限定されるも
のではなく、本発明の目的が達成される範囲内での各要
素の置換や設計変更がなされたものをも包含することは
言うまでもない。 実施例1 図1を参照して第1の実施例の試料前処理装置を説明す
る。1は走査型電子顕微鏡で観察する予定の、導電性を
付与すべ非導電性試料であり、ガラスを主成分とする絶
縁体である。この試料はアルミニウム製の試料台にカー
ボンペーストによって接着されている。試料を載せた試
料台は試料ホルダー2にビスで固定されるようになって
いる。試料ホルダー2には回転機構が備えられており、
蒸着中に試料を一つの軸の周りに回転させることができ
る。蒸発源3は、ほぼ球形をしたパラジウム粒子で大き
さは直径約2mmである。4は蒸発源を加熱するための手
段であるタングステンボートで通電するため電極に挟ま
れた間のタングステンボートの大きさは、長さ80mm、幅
6mm、厚さ0.1mmである。5はシャッター,6は蒸発速
度を測定するためのセンサーである水晶振動子膜厚計の
センサー,7はこのセンサーの制御装置である。このセ
ンサー6はシャッター5の開閉にかかわらず、常に蒸発
源3を見込める位置に設置されている。蒸発源と試料間
の距離は100mmとした。8は加熱手段用電源である直流
電源であり、スライダック(電圧調整機)によって出力
が調整できるようになっている。9は符号1~5で表さ
れる部分を包含する真空槽であり、油拡散ポンプとロー
タリーポンプの排気系(図示しない)を有しており、到
達真空度は10―5Paで、10-4Pa以下の真空度を保つ
ことができるようになっている。EXAMPLES Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples, and the present invention is not limited thereto. Needless to say, it also includes the case where each element is replaced or the design is changed. Embodiment 1 A sample pretreatment apparatus according to a first embodiment will be described with reference to FIG. Reference numeral 1 denotes a non-conductive sample to be provided with conductivity, which is to be observed with a scanning electron microscope, and is an insulator mainly composed of glass. This sample is bonded to a sample base made of aluminum with a carbon paste. The sample table on which the sample is placed is fixed to the sample holder 2 with screws. The sample holder 2 is provided with a rotation mechanism,
The sample can be rotated around one axis during the deposition. The evaporation source 3 is a substantially spherical palladium particle having a diameter of about 2 mm. 4 is a tungsten boat which is a means for heating the evaporation source. Since the tungsten boat is energized, the size of the tungsten boat between the electrodes is 80 mm in length and width.
It is 6 mm thick and 0.1 mm thick. Reference numeral 5 denotes a shutter, 6 denotes a sensor of a quartz oscillator film thickness meter which is a sensor for measuring the evaporation rate, and 7 denotes a control device of this sensor. The sensor 6 is installed at a position where the evaporation source 3 can always be seen regardless of whether the shutter 5 is opened or closed. The distance between the evaporation source and the sample was 100 mm. Reference numeral 8 denotes a DC power supply serving as a power supply for the heating means, the output of which can be adjusted by a slidac (voltage regulator). 9 is a vacuum chamber comprising a portion represented by reference numeral 1-5, has an oil diffusion pump and exhaust system of a rotary pump (not shown), the ultimate vacuum in 10- 5 Pa, 10 - It is designed to maintain a vacuum of 4 Pa or less.
【0020】次に、上記装置を用いて非導電性試料にパ
ラジウム膜を蒸着する手順を説明する。 真空槽9内を大気圧にして開放し、試料ホルダー2に
非導電性試料1を取り付ける。 チャンバー内の排気を行って10-4Pa台に達したとこ
ろでタングステンボート4に通電を始める。このときシ
ャッター5は閉めた状態である。 タングステンボート4が発光し、続いてパラジウム3
が赤熱してきたら、水晶振動子膜厚計のセンサーでパラ
ジウム膜の堆積レートをモニターする。 堆積レートがパラジウム金属として、0.1nm/秒
程度で安定するようにボートに流す電流値を調整する
(このときの電流値は45A〜50Aとなった。一度電
流値を決めると続く蒸着では電流値は大きく変化しなか
った。蒸着を繰り返してパラジウムの表面積が減少する
につれて高温が必要になり、電流値は徐々に上昇し
た。)。 堆積レートが安定したらシャッター5を開けて非導電
性試料1にパラジウムを堆積させる。数秒から数十秒堆
積し、所望の堆積膜厚に達したところでシャッター5を
閉鎖する。 ボートに流す電流を徐々に下げて最後にオフ(OFF)
にする ボートが冷えたらチャンバー内を大気圧にして開放
し、試料を取り出す。Next, a procedure for depositing a palladium film on a non-conductive sample using the above apparatus will be described. The vacuum chamber 9 is opened to atmospheric pressure and the non-conductive sample 1 is mounted on the sample holder 2. When the chamber is evacuated and reaches 10 -4 Pa level, the tungsten boat 4 is energized. At this time, the shutter 5 is in a closed state. The tungsten boat 4 emits light, followed by palladium 3
When red heats up, monitor the deposition rate of the palladium film with a sensor on the quartz crystal film thickness meter. The current value flowing through the boat is adjusted so that the deposition rate is stabilized at about 0.1 nm / sec as a palladium metal (the current value is 45 A to 50 A. Once the current value is determined, the current is determined in the subsequent deposition. The value did not change significantly, as the deposition was repeated and the surface area of palladium was reduced, higher temperatures were required and the current value gradually increased.) When the deposition rate is stabilized, the shutter 5 is opened to deposit palladium on the non-conductive sample 1. The deposition is performed for several seconds to several tens of seconds, and the shutter 5 is closed when a desired deposition film thickness is reached. Gradually lower the current flowing to the boat and finally turn off (OFF)
When the boat cools down, open the chamber to atmospheric pressure and open it to take out the sample.
【0021】上記の手順によりガラスを主成分とする絶
縁体である非導電性試料に、パラジウム温度1460℃
で、20秒間の蒸着を行って厚さ2nmのパラジウム薄
膜を堆積させた。この試料を走査型電子顕微鏡で観察し
たところ、帯電せずに良好な像がえられた。 実施例2 図2は本発明の第2の実施例の装置を示す図である。図
2において図1と同じ部分には図1におけると同じ符号
が付してある。According to the above procedure, a non-conductive sample, which is an insulator containing glass as a main component, is applied with a palladium temperature of 1460 ° C.
Then, a palladium thin film having a thickness of 2 nm was deposited by performing evaporation for 20 seconds. When this sample was observed with a scanning electron microscope, a good image was obtained without being charged. Embodiment 2 FIG. 2 is a diagram showing an apparatus according to a second embodiment of the present invention. 2, the same parts as those in FIG. 1 are denoted by the same reference numerals as in FIG.
【0022】本実施例では、蒸発源3はパラジウム線
(直径0.5mm,長さ20mm)であることと、このパラジウ
ム線に直接通電することによって加熱したこと以外は実
施例1と同様である。蒸発源としてのパラジウム線の両
端は電流供給端子10に接続されているが、これは2枚
のパラジウム板でパラジウム線を挟んで固定する構造と
なっている。通電を行うとパラジウム線の部分は発熱し
て蒸発(昇華)が始まるが、その他の部材はほとんど温
度上昇しなかった。The present embodiment is the same as the first embodiment except that the evaporation source 3 is a palladium wire (diameter 0.5 mm, length 20 mm) and that the palladium wire is heated by directly energizing it. Both ends of the palladium wire as the evaporation source are connected to the current supply terminal 10, which has a structure in which the palladium wire is fixed between two palladium plates. When electricity was supplied, the portion of the palladium wire generated heat and began to evaporate (sublimate), but the other members hardly increased in temperature.
【0023】本実施例では、ボートを使用しないのでパ
ラジウムとボート材料との反応に伴う損失がなく、ま
た、蒸着膜に不純物が混入し難いという特長がある。 実施例3 図3は本発明の第3の実施例の装置を示す図である。図
3において図1および図2と同じ部分には図1および図
2におけると同じ符号が付してある。In this embodiment, since no boat is used, there is no loss associated with the reaction between palladium and the boat material, and there is a feature that impurities are hardly mixed into the deposited film. Third Embodiment FIG. 3 is a diagram showing an apparatus according to a third embodiment of the present invention. 3, the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals as in FIGS. 1 and 2.
【0024】本実施例はでは蒸発源3が上方に、非導電
性試料1及び水晶振動子膜厚計のセンサー6が下方にあ
る。つまり、実施例1とは位置関係が上下反転してい
る。その他の構成は実施例1と同様である。本実施例で
は、蒸発源のパラジウムは直径1mm,長さ10mmの円筒形
で、タングステンボート4に真空中で加熱して固着させ
て用いた。蒸着の際、パラジウムの融点以下の温度でパ
ラジウムを蒸発(昇華)させるので、パラジウムが融解
しないので、落下することはなかった。In the present embodiment, the evaporation source 3 is located above, and the non-conductive sample 1 and the sensor 6 of the quartz crystal film thickness meter are located below. That is, the positional relationship with the first embodiment is upside down. Other configurations are the same as in the first embodiment. In the present embodiment, palladium as the evaporation source was used in the form of a cylinder having a diameter of 1 mm and a length of 10 mm, which was fixed to the tungsten boat 4 by heating in vacuum. At the time of vapor deposition, palladium was evaporated (sublimated) at a temperature equal to or lower than the melting point of palladium, so that palladium did not melt and did not fall.
【0025】本実施例では、試料を試料ホルダー2の上
に置くだけでよいので、作業性が高い。In this embodiment, the workability is high because the sample only needs to be placed on the sample holder 2.
【0026】[0026]
【発明の効果】本発明によれば、簡単な操作で、走査型
電子顕微鏡観察用もしくは電子線マイクロ分析用非導電
性試料に、目的にかなった導電性薄膜を、制御性良く、
かつ迅速に形成することが可能となった。According to the present invention, a nonconductive sample for scanning electron microscope observation or electron beam microanalysis can be coated with a suitable conductive thin film with good controllability by a simple operation.
And it became possible to form quickly.
【図1】本発明の基本構成と実施例1の装置とを示す模
式図である。FIG. 1 is a schematic diagram illustrating a basic configuration of the present invention and an apparatus according to a first embodiment.
【図2】本発明の実施例2の装置を示す模式図である。FIG. 2 is a schematic diagram illustrating an apparatus according to a second embodiment of the present invention.
【図3】本発明の実施例3の装置を示す模式図である。FIG. 3 is a schematic view illustrating an apparatus according to a third embodiment of the present invention.
1:導伝性を付与すべき非導電性試料 2:試料ホルダー 3:蒸発源 4:蒸発源を加熱するための手段 5:シャッター 6:蒸発速度を測定するためのセンサー 7:蒸発速度を測定するためのセンサーの制御装置 8:加熱手段用電源 9:真空槽 10:電流供給端子 1: Non-conductive sample to be given conductivity 2: Sample holder 3: Evaporation source 4: Means for heating the evaporation source 5: Shutter 6: Sensor for measuring evaporation rate 7: Measuring evaporation rate 8: Power supply for heating means 9: Vacuum tank 10: Current supply terminal
フロントページの続き Fターム(参考) 2G001 AA03 BA07 GA06 KA20 LA06 RA08 RA20 2G052 AA15 AD12 AD32 AD52 DA33 FD06 GA19 GA35 JA04 4K029 AA09 BA02 BC03 CA01 DB03 DB09 DB10 DB18 EA02 JA05 5C001 AA01 BB07 CC04 Continued on the front page F term (reference) 2G001 AA03 BA07 GA06 KA20 LA06 RA08 RA20 2G052 AA15 AD12 AD32 AD52 DA33 FD06 GA19 GA35 JA04 4K029 AA09 BA02 BC03 CA01 DB03 DB09 DB10 DB18 EA02 JA05 5C001 AA01 BB07 CC04
Claims (8)
マイクロ分析用非導電性試料に導電性を付与するための
試料前処理装置であって、真空槽と、この真空槽中に設
けられた非導電性試料の保持手段と、それと対向して該
真空槽中に設けられた蒸発源のパラジウムをその融点以
下の温度で加熱して蒸発させるための手段とを有するこ
とを特徴とする非導電性試料の前処理装置。1. A sample pretreatment device for imparting conductivity to a non-conductive sample for scanning electron microscope observation or electron beam micro-analysis, comprising: a vacuum tank; and a non-conductive sample provided in the vacuum tank. Non-conductive material, comprising: means for holding a conductive sample; and means for heating and evaporating palladium of an evaporation source provided in the vacuum chamber opposite thereto at a temperature equal to or lower than its melting point. Sample pretreatment device.
と,前記蒸発源からの蒸発速度を測定するための手段と
を更に有することを特徴とする請求項1に記載の非導電
性試料の前処理装置。2. The non-conductive sample according to claim 1, further comprising: means for controlling a temperature of the evaporation source; and means for measuring an evaporation rate from the evaporation source. Pretreatment equipment.
電して加熱し得るボートであることを特徴とする請求項
1または2に記載の非導電性試料の前処理装置。3. The pretreatment device for a non-conductive sample according to claim 1, wherein the means for heating the evaporation source is a boat that can be heated by energization.
記蒸発源に通電して直接加熱するための手段であること
を特徴とする請求項1または2に記載の非導電性の試料
前処理装置。4. The non-conductive sample front according to claim 1, wherein the means for heating the evaporation source is a means for applying a current to the evaporation source to directly heat the evaporation source. Processing equipment.
めの手段が、水晶振動子膜厚計を備えたものであること
を特徴とする請求項2に記載の非導電性試料の前処理装
置。5. The pre-treatment of a non-conductive sample according to claim 2, wherein the means for measuring the evaporation rate from the evaporation source comprises a quartz oscillator film thickness meter. apparatus.
が、前記蒸発源それ自体もしくは前記たボートに流す電
流を制御するためのものであることを特徴とする請求項
2に記載の非導電性試料の前処理装置。6. The method according to claim 2, wherein the means for controlling the temperature of the evaporation source is for controlling the current flowing through the evaporation source itself or the boat. Pretreatment device for conductive samples.
以下の温度で加熱して蒸発させ、走査型電子顕微鏡観察
用もしくは電子線マイクロ分析用非導電性試料上に蒸着
させて導電性のパラジウム薄膜を形成することを特徴と
する非導電性試料の前処理方法。7. A method for heating and evaporating palladium as an evaporation source at a temperature lower than its melting point in a vacuum, and depositing the conductive palladium on a non-conductive sample for scanning electron microscope observation or electron beam microanalysis. A pretreatment method for a non-conductive sample, comprising forming a thin film.
40℃の温度であることを特徴とする請求項7に記載の
非導電性試料の前処理方法。8. A heating temperature of the evaporation source is 1400-15.
The method for pretreating a non-conductive sample according to claim 7, wherein the temperature is 40 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001119966A JP2002310960A (en) | 2001-04-18 | 2001-04-18 | Pre-processing apparatus and method for non- electroconductive sample |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001119966A JP2002310960A (en) | 2001-04-18 | 2001-04-18 | Pre-processing apparatus and method for non- electroconductive sample |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002310960A true JP2002310960A (en) | 2002-10-23 |
Family
ID=18970090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001119966A Pending JP2002310960A (en) | 2001-04-18 | 2001-04-18 | Pre-processing apparatus and method for non- electroconductive sample |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002310960A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009216425A (en) * | 2008-03-07 | 2009-09-24 | Mitsui Chemical Analysis & Consulting Service Inc | Foreign matter analytical sample, and foreign matter analytical method |
JP2011522118A (en) * | 2008-05-30 | 2011-07-28 | アプライド マテリアルズ インコーポレイテッド | Equipment for coating substrates |
JP2013257148A (en) * | 2012-06-11 | 2013-12-26 | Hitachi High-Technologies Corp | Coating device and preprocessing device of coating device |
JP6286609B1 (en) * | 2016-10-20 | 2018-02-28 | エフ イー アイ カンパニFei Company | Low temperature sample processing in a charged particle microscope |
CN115094389A (en) * | 2022-07-11 | 2022-09-23 | 威科赛乐微电子股份有限公司 | Method for electron beam evaporation plating of palladium |
-
2001
- 2001-04-18 JP JP2001119966A patent/JP2002310960A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009216425A (en) * | 2008-03-07 | 2009-09-24 | Mitsui Chemical Analysis & Consulting Service Inc | Foreign matter analytical sample, and foreign matter analytical method |
JP2011522118A (en) * | 2008-05-30 | 2011-07-28 | アプライド マテリアルズ インコーポレイテッド | Equipment for coating substrates |
JP2013257148A (en) * | 2012-06-11 | 2013-12-26 | Hitachi High-Technologies Corp | Coating device and preprocessing device of coating device |
JP6286609B1 (en) * | 2016-10-20 | 2018-02-28 | エフ イー アイ カンパニFei Company | Low temperature sample processing in a charged particle microscope |
CN115094389A (en) * | 2022-07-11 | 2022-09-23 | 威科赛乐微电子股份有限公司 | Method for electron beam evaporation plating of palladium |
CN115094389B (en) * | 2022-07-11 | 2023-12-29 | 威科赛乐微电子股份有限公司 | Method for evaporating palladium by electron beam |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Electron beam evaporation deposition | |
US4170662A (en) | Plasma plating | |
CN105209899A (en) | MALDI sample preparation method and sample preparation device | |
JP3715956B2 (en) | Information acquisition device, sample evaluation device, and sample evaluation method | |
CN101177777A (en) | Electron beam heating evaporation method and device and application thereof | |
Suda et al. | Properties of palladium doped tin oxide thin films for gas sensors grown by PLD method combined with sputtering process | |
JP2002310960A (en) | Pre-processing apparatus and method for non- electroconductive sample | |
Heiler et al. | Work function performance of a C12A7 electride surface exposed to low pressure low temperature hydrogen plasmas | |
CN103907004A (en) | Observation specimen for use in electron microscopy, electron microscopy, electron microscope, and device for producing observation specimen | |
Sugai | An application of a new type deposition method to nuclear target preparation | |
WO2012008089A1 (en) | Apparatus and method for analyzing minute sample | |
Panahi et al. | Fabrication, characterization and hydrogen gas sensing performance of nanostructured V2O5 thin films prepared by plasma focus method | |
JP5224347B2 (en) | Method for forming metal thin film on spectroscopic sample for scanning electron microscope | |
Joseph et al. | Preparation of thin film of CaZrO3 by pulsed laser deposition | |
JP3189042B2 (en) | Material supply device for vacuum film formation | |
JP2771310B2 (en) | Ultra-high vacuum measurement method and apparatus | |
JP5191842B2 (en) | Carbon deposition equipment | |
Ohkochi et al. | Multilateral surface analysis of the CeB6 electron-gun cathode used at SACLA XFEL | |
US2979631A (en) | Process for the production of ion-emitting surfaces, particularly for halogen leak detectors | |
JP2000026953A (en) | Plasma treating method and plasma treating device | |
JP3580101B2 (en) | Method and apparatus for producing negative electrode material for lithium ion battery | |
JP2010052980A (en) | Oxygen atom generating apparatus | |
Brice et al. | An electron-bombardment evaporation source for nickel-iron alloys | |
EP2757572B1 (en) | Sample heating method using sample heating holder for electron beam microscopes or analyzers | |
JP4796154B2 (en) | Electron gun vapor deposition apparatus and film forming method using electron gun vapor deposition apparatus |