JP2002270872A - Method for manufacturing photovoltaic apparatus - Google Patents
Method for manufacturing photovoltaic apparatusInfo
- Publication number
- JP2002270872A JP2002270872A JP2001069593A JP2001069593A JP2002270872A JP 2002270872 A JP2002270872 A JP 2002270872A JP 2001069593 A JP2001069593 A JP 2001069593A JP 2001069593 A JP2001069593 A JP 2001069593A JP 2002270872 A JP2002270872 A JP 2002270872A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- hydrogen
- power generation
- film
- generation layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 131
- 239000001257 hydrogen Substances 0.000 claims abstract description 129
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 121
- 239000010408 film Substances 0.000 claims abstract description 72
- 239000004065 semiconductor Substances 0.000 claims abstract description 26
- 238000006243 chemical reaction Methods 0.000 claims abstract description 13
- 239000010409 thin film Substances 0.000 claims abstract description 5
- 238000010248 power generation Methods 0.000 claims description 87
- 230000015572 biosynthetic process Effects 0.000 claims description 13
- 238000009832 plasma treatment Methods 0.000 claims description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 238000010790 dilution Methods 0.000 claims description 3
- 239000012895 dilution Substances 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- 230000002401 inhibitory effect Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 25
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 15
- 229910021417 amorphous silicon Inorganic materials 0.000 description 14
- 230000008859 change Effects 0.000 description 12
- 208000028659 discharge Diseases 0.000 description 12
- 150000002431 hydrogen Chemical class 0.000 description 9
- 230000006866 deterioration Effects 0.000 description 7
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000001782 photodegradation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光起電力装置の製
造方法に関し、特に、非晶質薄膜半導体を光発電層に用
いた光起電力装置の製造方法に関する。The present invention relates to a method for manufacturing a photovoltaic device, and more particularly to a method for manufacturing a photovoltaic device using an amorphous thin film semiconductor for a photovoltaic layer.
【0002】[0002]
【従来の技術】従来、原料ガスのグロー放電分解等によ
り形成される非晶質シリコン(以下、a−Siとい
う。)を主材料にした光起電力装置は、薄膜、大面積化
が容易という特長を持ち、低コスト光起電力装置として
期待されている。2. Description of the Related Art Conventionally, a photovoltaic device using amorphous silicon (hereinafter referred to as a-Si) as a main material formed by glow discharge decomposition of a source gas or the like is easy to make a thin film and a large area. It has features and is expected as a low-cost photovoltaic device.
【0003】この種の光起電力装置としては、pin接
合からなる光電変換層を有するpin型a−Si光起電
力装置が知られている。図15はこのような光起電力装
置の構造を示し、ガラス基板1上に、酸化錫(Sn
O2)などの透明電極2、p型a−SiC層3、i型a
−Si層4、n型微結晶シリコン(以下、μc−Siと
いう。)層5、裏面金属電極7を順次積層することによ
り作成される。この光起電力装置は、ガラス基板1を通
して入射する光により、光起電力が発生する。なお、図
15に示すものは、裏面金属電極7とμc−Si層5と
の間に合金化等を抑制するために、ZnOやITOなど
の透明導電層6を設けている。As this type of photovoltaic device, a pin-type a-Si photovoltaic device having a photoelectric conversion layer formed of a pin junction is known. FIG. 15 shows the structure of such a photovoltaic device, in which tin oxide (Sn
O 2 ) transparent electrode 2, p-type a-SiC layer 3, i-type a
-Si layer 4, n-type microcrystalline silicon (hereinafter referred to as μc-Si) layer 5, and back metal electrode 7 are sequentially laminated. This photovoltaic device generates photovoltaic power by light incident through the glass substrate 1. In FIG. 15, a transparent conductive layer 6 such as ZnO or ITO is provided between the back metal electrode 7 and the μc-Si layer 5 in order to suppress alloying or the like.
【0004】ところで、上記したガラス基板から光を入
射する非晶質シリコン(a−Si:H)を用いたpin
型光起電力装置においては、一般的に光入射側に位置し
光誘起キャリア密度が高い発電層(i層)のp層側の膜
特性が太陽電池特性を大きく左右することが知られてい
る。[0004] By the way, a pin using amorphous silicon (a-Si: H), which receives light from the above-mentioned glass substrate, is used.
In the photovoltaic device of the type, it is generally known that the film characteristics on the p-layer side of the power generation layer (i-layer) having a high photo-induced carrier density and located on the light incident side largely influence the solar cell characteristics. .
【0005】[0005]
【発明が解決しようとする課題】しかしながら、一般的
に半導体層の形成に用いられているプラズマCVD技術
においては、放電の初期にバルクに比べて相対的に膜中
水素量が高く、SiH2/SiH結合比が大きく膜特性
が劣るa−Si:H膜が形成され、初期のみならず光劣
化後においても太陽電池特性の劣化の原因となってい
る。However, in the plasma CVD technique which is generally used for forming a semiconductor layer, the amount of hydrogen in the film is relatively high as compared with the bulk in the early stage of discharge, and SiH 2 / An a-Si: H film having a large SiH bond ratio and inferior film characteristics is formed, which causes deterioration of solar cell characteristics not only in the initial stage but also after light degradation.
【0006】更に、昨今の低コスト化の要求に対して発
電層の高速成膜技術の開発が精力的に行われているが、
高速成膜条件では更に初期放電での発電層の膜中水素量
増加、膜質の低下が顕著となる。[0006] Further, in response to recent demands for cost reduction, development of a high-speed film formation technique for a power generation layer has been energetically performed.
Under the conditions of high-speed film formation, an increase in the amount of hydrogen in the film of the power generation layer and a decrease in film quality in the initial discharge become more remarkable.
【0007】本発明は、これらの問題点を解決して、光
起電力装置の発電層の下地層との界面領域での高水素量
含有発電層の発生を抑制し、高効率光起電力装置を得る
ことを目的とする。The present invention solves these problems and suppresses the generation of a high hydrogen content power generation layer in the interface region between the power generation layer and the underlayer of the photovoltaic device, thereby providing a high efficiency photovoltaic device. The purpose is to obtain.
【0008】[0008]
【課題を解決するための手段】この発明は、内部に半導
体接合を有する薄膜半導体からなる光電変換層を化学的
気相成長法により形成する光起電力装置の製造方法にお
いて、前記光電変換層の発電層が形成される下地半導体
層の前記発電層との界面側に位置する表面近傍の膜中水
素の濃度を下地半導体層のバルクの膜中水素濃度に比べ
て相対的に少なくなるように形成した後、発電層を形成
することを特徴とする。According to the present invention, there is provided a method for manufacturing a photovoltaic device in which a photoelectric conversion layer made of a thin film semiconductor having a semiconductor junction therein is formed by a chemical vapor deposition method. The underlying semiconductor layer on which the power generation layer is formed is formed such that the concentration of hydrogen in the film near the surface located on the interface side with the power generation layer is relatively lower than the hydrogen concentration in the bulk film of the underlying semiconductor layer. After that, a power generation layer is formed.
【0009】上記した構成によれば、発電層を形成する
下地層の表面近傍の膜中水素量を下地層のバルクの膜中
水素量に比べて相対的に少なくすることにより、プラズ
マCVDの初期放電に起因した光起電力装置の発電層の
下地層との界面領域での高水素量含有発電層の水素が低
水素量下地層に拡散することにより、一定量の水素濃度
プロファイルを形成することができる。According to the above-described structure, the amount of hydrogen in the film near the surface of the underlayer forming the power generation layer is made relatively smaller than the amount of hydrogen in the bulk film of the underlayer. Forming a constant hydrogen concentration profile by diffusing the hydrogen of the high hydrogen content power generation layer into the low hydrogen content base layer in the interface region between the power generation layer of the photovoltaic device and the base layer caused by the discharge Can be.
【0010】また、この発明は、前記光電変換層はpi
n接合を有し、p型半導体層側から光を入射する光起電
力装置に適用すると良い。Further, according to the present invention, the photoelectric conversion layer is formed of pi
It is preferable to apply the present invention to a photovoltaic device having an n-junction and receiving light from the p-type semiconductor layer side.
【0011】pin型光起電力装置において発電層を形
成する下地層の表面近傍の膜中水素量を下地層のバルク
の膜中水素量に比べて相対的に少なくすることにより、
プラズマCVDの初期放電に起因した光起電力装置の発
電層の下地層との界面領域での高水素量含有発電層の水
素が低水素量下地層に拡散することにより高水素量含有
発電層の発生を抑制し、高効率非晶質光起電力装置を得
ることができる。In the pin type photovoltaic device, the amount of hydrogen in the film near the surface of the underlayer forming the power generation layer is made relatively smaller than the amount of hydrogen in the bulk film of the underlayer.
The hydrogen of the high hydrogen content power generation layer in the interface region between the power generation layer of the photovoltaic device and the underlayer caused by the initial discharge of the plasma CVD diffuses into the low hydrogen content underlayer, and the high hydrogen content power generation layer Generation can be suppressed and a highly efficient amorphous photovoltaic device can be obtained.
【0012】また、この発明は、前記下地半導体層の希
釈水素ガスを変化させ、表面近傍の膜中水素の濃度を下
地半導体層のバルクの膜中水素濃度に比べて相対的に少
なくするように構成できる。Further, the present invention changes the diluted hydrogen gas in the underlying semiconductor layer so that the concentration of hydrogen in the film near the surface is relatively lower than the concentration of hydrogen in the bulk film of the underlying semiconductor layer. Can be configured.
【0013】また、この発明は、前記下地半導体層を形
成した後、前記下地半導体層表面にアルゴンまたは水素
ガスによるプラズマ処理を施し、表面近傍の膜中水素の
濃度を下地半導体層のバルクの膜中水素濃度に比べて相
対的に少なくするように構成できる。Further, according to the present invention, after the formation of the base semiconductor layer, the surface of the base semiconductor layer is subjected to a plasma treatment with argon or hydrogen gas so as to reduce the concentration of hydrogen in the film near the surface to the bulk film of the base semiconductor layer. It can be configured to be relatively lower than the medium hydrogen concentration.
【0014】[0014]
【発明の実施の形態】以下、この発明の実施の形態につ
き図面を参照して説明する。まず、この発明者は、上記
したプラズマCVD法により形成される発電層となるi
型a−Si:H膜の膜中水素濃度につき鋭意検討した。
この検討のために、下記のように光起電力装置を作成し
た。Embodiments of the present invention will be described below with reference to the drawings. First, the inventor of the present invention has proposed an i-type power generation layer formed by the plasma CVD method.
The hydrogen concentration in the type a-Si: H film was intensively studied.
For this study, a photovoltaic device was created as follows.
【0015】ガラス基板上に透明導電膜としてSnO2
を形成した基板上に、公知のRFプラズマCVD(1
3.56MHz)を用いて、p層、発電層となるi層、
n層を形成した。発電層となるi型a−Si:Hの形成
温度は100〜300℃、反応圧力は5〜100Pa、
RFパワーは1〜500mW/cm2である。As a transparent conductive film on a glass substrate, SnO 2
A known RF plasma CVD (1
3.56 MHz), a p-layer, an i-layer serving as a power generation layer,
An n layer was formed. The formation temperature of i-type a-Si: H to be a power generation layer is 100 to 300 ° C., the reaction pressure is 5 to 100 Pa,
RF power is 1-500 mW / cm 2 .
【0016】この発電層の光学ギャップEoptは1.
60eV、膜厚1000〜3000Åのシングル接合構
造である。The optical gap Eopt of this power generation layer is 1.
It has a single junction structure of 60 eV and a thickness of 1000 to 3000 °.
【0017】上記p層、n層も公知のRFプラズマCV
Dを用いて形成し、ドーピング量(p層ではボロン原子
/シリコン原子、n層ではリン原子/シリコン原子)1
%、p層の膜厚〜200Å一定、n層の膜厚100Åと
した。The p-layer and the n-layer are also made of a well-known RF plasma CV.
D and a doping amount (boron atoms / silicon atoms for the p-layer, phosphorus atoms / silicon atoms for the n-layer) 1
%, The thickness of the p-layer was set constant to 200 °, and the thickness of the n-layer was 100 °.
【0018】図1、図2は、基板温度120℃、圧力1
00Pa、モノシラン(SiH4)流量:50scc
m、水素(H2)流量:200sccmにて、発電層
(i層)を成膜した時の下地p層と発電層近傍の2次イ
オン質量分析法(SIMS)により評価した水素濃度の
深さ方向分布を示す特性図である。図1は、RFパワー
を50mW/cm2にて、膜厚1500Åの発電層(i
層)を形成した場合、図2はRFパワーを150mW/
cm2にて、膜厚1500Åの発電層(i層)を形成し
た場合を示している。FIGS. 1 and 2 show a substrate temperature of 120.degree.
00Pa, monosilane (SiH 4 ) flow rate: 50 scc
m, hydrogen (H 2 ) flow rate: 200 sccm, depth of hydrogen concentration evaluated by secondary ion mass spectroscopy (SIMS) near the underlying p-layer and the power generation layer when the power generation layer (i-layer) was formed at 200 sccm It is a characteristic view which shows a direction distribution. 1, the RF power at 50 mW / cm 2, the power generation layer having a thickness of 1500 Å (i
FIG. 2 shows that the RF power is 150 mW /
This shows a case where a power generation layer (i-layer) having a thickness of 1500 ° is formed in cm 2 .
【0019】尚、特に断りのない限り、本明細書におい
て、水素プロファイルを確認する場合は、表面が平坦な
単結晶シリコン(c−Si)基板上に下地層とi層を形
成して行った。これは、水素のプロファイルの深さ方向
の測定精度を向上させるためである。Unless otherwise specified, in this specification, when confirming a hydrogen profile, an underlayer and an i-layer were formed on a single-crystal silicon (c-Si) substrate having a flat surface. . This is to improve the measurement accuracy of the hydrogen profile in the depth direction.
【0020】また、下地層/i層の膜厚および界面特定
には断面TEM(透過電子顕微鏡)写真を用いた。Further, a cross-sectional TEM (transmission electron microscope) photograph was used to specify the film thickness and the interface of the underlayer / i-layer.
【0021】図1、図2より下地p層と発電層の界面近
傍にバルク発電層の水素量より相対的に水素含有量の多
い高水素量含有発電層が存在し、図1と図2からRFパ
ワーが高い場合には水素濃度ピークの増加、高水素量含
有発電層膜厚の増加が確認された。これは、初期放電に
起因したプラズマ中の高次ラジカル(SiH2ラジカ
ル)の生成によると考えられる。As shown in FIGS. 1 and 2, a high hydrogen content power generation layer having a higher hydrogen content than the bulk power generation layer exists near the interface between the underlying p-layer and the power generation layer. When the RF power was high, an increase in the hydrogen concentration peak and an increase in the thickness of the power generation layer containing a high hydrogen content were confirmed. This is considered to be due to the generation of higher-order radicals (SiH 2 radicals) in the plasma due to the initial discharge.
【0022】また、断面TEM写真により特定したp/
i界面のp層側にも高水素領域が存在しているのは、i
層成膜時の水素打ち込み、発電層の形成中の水素拡散に
よると考えられる。Further, p /
The high hydrogen region also exists on the p layer side of the i interface because i
This is considered to be due to hydrogen implantation during layer formation and hydrogen diffusion during formation of the power generation layer.
【0023】更に、初期放電対策として一般的によく用
いられる初期放電の低パワー化を使用したプラズマCV
D装置において安定放電が可能な最低パワー密度25m
W/cm2にて初期の50Åを形成し、その後50mW
/cm2にて残り1450Åのi層からなる発電層を形
成した場合のSIMSによる水素濃度評価結果を図3に
示す。Further, as a countermeasure for the initial discharge, a plasma CV using a low power of the initial discharge, which is generally often used, is used.
Minimum power density 25m for stable discharge in D device
An initial 50 ° is formed at W / cm 2 and then 50 mW
FIG. 3 shows the results of evaluating hydrogen concentration by SIMS when a power generation layer consisting of an i-layer with 1450 ° remaining at 1 / cm 2 was formed.
【0024】図3により、i層の初期50Åを低パワー
化することにより、下地p層と発電層の界面近傍の高水
素量含有発電層の水素濃度ピークの低下、高水素量含有
発電層膜厚の減少が確認されたが、完全な解消に至って
いない。As shown in FIG. 3, by lowering the power of the initial 50 ° of the i-layer, the peak of the hydrogen concentration in the high hydrogen content power generation layer near the interface between the underlying p-layer and the power generation layer is reduced, and the high hydrogen content power generation layer film is reduced. A decrease in thickness was confirmed, but not completely resolved.
【0025】また、図3では25mW/cm2から50
mW/cm2にRFパワーを連続して増加させた際に、
バルクより水素濃度の高い高水素量含有発電層の形成が
観察された。In FIG. 3, 25 mW / cm 2 to 50 mW / cm 2
When the RF power was continuously increased to mW / cm 2 ,
The formation of a high hydrogen content power generation layer having a higher hydrogen concentration than the bulk was observed.
【0026】表1は、発電成膜時のRFパワーを50m
W/cm2および150mW/cm2一定にて形成した場
合の太陽電池特性をi層の初期50Åを低パワー化した
条件の太陽電池特性にて規格化した規格化I―Vおよび
規格化劣化後効率(500mW/cm2、25℃、16
0min)を示す。RFパワーを一定にした条件で作成
したものはいずれもIsc、F.F.の低下が見られ、p
/i界面近傍でのキャリアの再結合増加によると考えら
れる。Table 1 shows that the RF power at the time of power generation film formation was 50 m.
The solar cell characteristics when formed at a constant W / cm 2 and 150 mW / cm 2 are normalized IV, which is standardized by the solar cell characteristics under the condition where the initial 50 ° of the i-layer is reduced in power, and after the standardization deterioration. Efficiency (500 mW / cm 2 , 25 ° C, 16
0 min). Any of the samples prepared under the condition where the RF power is kept constant are I sc , F.C. F. Decrease, p
This is probably due to an increase in carrier recombination near the / i interface.
【0027】また、50mW/cm2から150mW/
cm2の場合にはIsc、F.F.の低下が見られ、更に
光劣化率にも有意差が確認された。膜特性から両者のバ
ルクの膜質(導電率、光感度、欠陥密度)には有意差が
ないことが確認されており、下地p層と発電層の界面近
傍の高水素量含有発電層の水素濃度ピークの増加、高水
素量含有発電層膜厚の増加と関係があると考えられる。Also, from 50 mW / cm 2 to 150 mW / cm 2
cm 2 , I sc , F.C. F. , And a significant difference was also confirmed in the photodegradation rate. It has been confirmed from the film characteristics that there is no significant difference in the film quality (conductivity, photosensitivity, defect density) of both bulks, and the hydrogen concentration of the high hydrogen content power generation layer near the interface between the underlying p layer and the power generation layer This is considered to be related to the increase in the peak and the increase in the thickness of the power generation layer containing a high hydrogen content.
【0028】[0028]
【表1】 [Table 1]
【0029】次に、本発明の実施形態である下地層の表
面近傍の膜中水素量を下地層のバルクの膜中水素量に比
べて相対的に少なくした場合の効果を検討した。ここ
で、下地層の表面近傍とは、最表面から深さ50Å以下
の領域をいう。Next, the effect of the embodiment of the present invention in the case where the amount of hydrogen in the film near the surface of the underlayer is relatively smaller than the amount of hydrogen in the bulk film of the underlayer was examined. Here, the vicinity of the surface of the underlayer refers to a region having a depth of 50 ° or less from the outermost surface.
【0030】図4は、基板温度120℃、RFパワー1
50mW/cm2、圧力100Pa、SiH4流量:50
sccmに固定して、H2流量を0〜5000sccm
まで変化させて水素希釈率(H2/SiH4)を変化させ
た際のa−Si:Hp層の膜中水素量の変化を示す。図
1から図3までに用いたp層はH2/SiH4=25にて
形成した。これに対して、図4に示すものは、初期の1
70ÅをH2/SiH4=25、すなわち水素量21a
t.%の条件、残りの30ÅをH2/SiH4=60、す
なわち水素量16at.%の条件にて形成し、発電層を
形成する下地層として用いた。このようにして形成され
た下地層は、表面近傍の水素膜中濃度が他のバルクの水
素膜中濃度より相対的に少なくなる。FIG. 4 shows a substrate temperature of 120.degree.
50 mW / cm 2 , pressure 100 Pa, SiH 4 flow rate: 50
sccm, and the H 2 flow rate was set to 0 to 5000 sccm.
Until a-Si when varied changing the hydrogen dilution rate (H 2 / SiH 4): shows the change in the film hydrogen content of Hp layer. The p-layer used in FIGS. 1 to 3 was formed at H 2 / SiH 4 = 25. On the other hand, the one shown in FIG.
70 ° is H 2 / SiH 4 = 25, that is, the hydrogen amount 21a
t. % For the remaining 30Å H 2 / SiH 4 = 60 , i.e. the amount of hydrogen 16 atomic. %, And used as a base layer for forming a power generation layer. In the underlayer formed in this manner, the concentration in the hydrogen film near the surface is relatively lower than the concentration in the other bulk hydrogen films.
【0031】次に、発電層を先ほどの基板温度12℃、
150mW/cm2、圧力100Pa、SiH4流量:5
0sccm、H2流量:200sccmにて膜厚150
Åおよび1500Å形成し膜中水素量の膜厚方向の変化
をSIMSにより評価した。その結果を図5、図6に夫
々示す。図5は、発電層として膜厚150Åを形成した
もの、図6は、発電層として膜厚1500Åを形成した
ものである。Next, the power generation layer was heated at a substrate temperature of 12 ° C.
150 mW / cm 2 , pressure 100 Pa, SiH 4 flow rate: 5
0 sccm, H 2 flow rate: 200 sccm, film thickness 150
{1500} and the change in the amount of hydrogen in the film in the thickness direction were evaluated by SIMS. The results are shown in FIGS. 5 and 6, respectively. FIG. 5 shows a case where the power generation layer has a thickness of 150 °, and FIG. 6 shows a case where the power generation layer has a thickness of 1500 °.
【0032】図5より、下地p層の発電層側の表面に低
水素領域、発電層側のバルク発電層の水素量より相対的
に水素含有量の多い高水素量含有発電層が存在している
ことが確認され、目的通りの構造が発電層の初期形成時
に確認された。As shown in FIG. 5, a low hydrogen region exists on the surface of the underlying p-layer on the power generation layer side, and a high hydrogen content power generation layer having a higher hydrogen content than the bulk hydrogen generation layer on the power generation layer side exists. It was confirmed that the intended structure was obtained during the initial formation of the power generation layer.
【0033】更に、図6の如く発電層膜厚が厚く形成さ
れる過程で熱による水素拡散が進行し、水素濃度の分布
が大幅に改善されていることが明らかになった。すなわ
ち、プラズマCVDの初期放電に起因した光起電力装置
の発電層の下地層との界面領域での高水素量含有発電層
の水素が低水素量下地層に拡散することにより高水素量
含有発電層の発生を抑制できた。Further, as shown in FIG. 6, it was found that hydrogen diffusion by heat progressed in the process of forming the power generation layer with a large thickness, and the distribution of hydrogen concentration was greatly improved. That is, the hydrogen of the high hydrogen content power generation layer in the interface region between the power generation layer of the photovoltaic device and the underlayer caused by the initial discharge of the plasma CVD diffuses into the low hydrogen content underlayer, thereby generating the high hydrogen content power. The formation of layers could be suppressed.
【0034】次に、光起電力装置を形成し、図2で水素
プロファイルを評価した構造すなわち均質p層上にRF
パワー150mW/cm2にて発電層を形成した場合の
特性により規格化を行った結果を表2に示す。表2よ
り、狙い通り初期のF.F.、変換効率が大幅に改善さ
れ、更に光劣化率の低減により光劣化後効率では約15
%の改善が実現できた。Next, a photovoltaic device was formed, and the RF profile was evaluated on the structure shown in FIG.
Table 2 shows the results of normalization based on the characteristics when the power generation layer was formed at a power of 150 mW / cm 2 . Table 2 shows that the initial F. F. The conversion efficiency is greatly improved, and the efficiency after light deterioration is about 15
% Improvement was realized.
【0035】[0035]
【表2】 [Table 2]
【0036】次に、基板温度120℃、RFパワー15
0mW/cm2、圧力10Pa、SiH4流量:50scc
mに固定して、H2流量:1260sccmにて100
Åのp層に対して、その表面をRFパワー300mW/
cm2、圧力100Pa、Ar流量:1000sccmに
てArプラズマ処理を行った際のArプラズマ処理時間
と表面から50Åの領域の膜中水素量の関係を図7に示
す。Next, at a substrate temperature of 120 ° C. and an RF power of 15
0 mW / cm 2 , pressure 10 Pa, SiH 4 flow rate: 50 scc
m, and H 2 flow rate: 100 at 1260 sccm
With respect to the p layer of Å, the surface was RF power 300 mW /
FIG. 7 shows the relationship between the Ar plasma treatment time and the amount of hydrogen in the film in a region 50 ° from the surface when Ar plasma treatment was performed at cm 2 , a pressure of 100 Pa, and an Ar flow rate of 1000 sccm.
【0037】図7よりArプラズマ処理時間の増加に伴
い表面近傍領域の水素量が低下することが分かる。この
知見を利用して、Arプラズマ処理時間2分の条件を適
用し、先ほど同様に発電層を基板温度120℃、150
mW/cm2、圧力100Pa、SiH4流量:50scc
m、H2流量:200sccmにて膜厚1500Å形成
し、膜中水素量の膜厚方向の変化をSIMSにより評価
した。その結果を図8に示す。FIG. 7 shows that the hydrogen amount in the region near the surface decreases as the Ar plasma processing time increases. Utilizing this finding, the Ar plasma treatment time of 2 minutes was applied, and the power generation layer was similarly heated to a substrate temperature of 120 ° C. and 150 ° C.
mW / cm 2 , pressure 100 Pa, SiH 4 flow rate: 50 scc
m, H 2 flow rate: 200 sccm, a film thickness of 1500 ° was formed, and a change in the amount of hydrogen in the film in the film thickness direction was evaluated by SIMS. FIG. 8 shows the results.
【0038】図8より、図2に示した従来例に比べて光
起電力装置の発電層の下地層との界面領域での高水素量
含有発電層の発生を抑制できた。As shown in FIG. 8, the generation of a high hydrogen content power generation layer in the interface region between the power generation layer of the photovoltaic device and the underlayer can be suppressed as compared with the conventional example shown in FIG.
【0039】更に、光起電力装置を形成し、図2で水素
プロファイルを評価した構造すなわち均質p層上にRF
パワー150mW/cm2にて発電層を形成した場合の特
性により規格化を行った結果を表3に示す。Further, a photovoltaic device was formed and the RF profile was evaluated in FIG.
Table 3 shows the results of normalization based on the characteristics when the power generation layer was formed at a power of 150 mW / cm 2 .
【0040】[0040]
【表3】 [Table 3]
【0041】表3より、狙い通り初期のF.F.、変換
効率が大幅に改善され、更に光劣化率の低減により光劣
化後効率では約14%の改善が実現できた。尚、同様の
効果が、Ar以外の希ガスプラズマ処理でも得られるこ
とも確認した。As shown in Table 3, the initial F.V. F. The conversion efficiency was greatly improved, and the efficiency after light deterioration was improved by about 14% by further reducing the light deterioration rate. In addition, it was also confirmed that the same effect can be obtained by a rare gas plasma treatment other than Ar.
【0042】次に、基板温度120℃、RFパワー15
0mW/cm2、圧力100Pa、SiH4流量:50s
ccmに固定してH2流量:1250sccmにて20
0Åのp層に対して、その表面をRFパワー300mW
/cm2、圧力100Pa、H2流量:1000sccm
にてH2プラズマ処理を行った際のH2プラズマ処理時間
と表面から50Åの領域の膜中水素量、および50から
200Åのバルクp層の膜中水素量の関係を図9に示
す。Next, at a substrate temperature of 120 ° C. and an RF power of 15
0 mW / cm 2 , pressure 100 Pa, SiH 4 flow rate: 50 s
fixed to the ccm and H 2 flow rate: 20 at 1250sccm
RF power of 300 mW for 0 ° p-layer
/ Cm 2 , pressure 100 Pa, H 2 flow rate: 1000 sccm
FIG. 9 shows the relationship between the H 2 plasma processing time, the amount of hydrogen in the film in the region of 50 ° from the surface, and the amount of hydrogen in the film of the bulk p layer from 50 ° to 200 ° when the H 2 plasma treatment was performed.
【0043】図9よりH2プラズマ処理時間の増加に伴
いバルクの膜中水素量は増加するが、表面近傍領域の水
素量は低下することが分かる。これは、バルクの水素量
増加は水素打ち込み効果により、表面近傍では水素プラ
ズマによる表面へのエネルギー付与と水素濃度の増加に
よりa−Si:Hの構造緩和に伴った水素脱離反応が促
進されているためであると考えられる。FIG. 9 shows that the amount of hydrogen in the bulk film increases with an increase in the H 2 plasma treatment time, but the amount of hydrogen in the region near the surface decreases. This is because the increase in the amount of hydrogen in the bulk is due to the hydrogen implantation effect, the energy is applied to the surface by hydrogen plasma near the surface and the hydrogen concentration is increased, and the hydrogen desorption reaction accompanying the structural relaxation of a-Si: H is promoted. It is thought that it is.
【0044】この知見を利用して、H2プラズマ処理時
間3分の条件を適用し、先ほど同様に発電層を基板温度
120℃、150mW/cm2、圧力100Pa、Si
H4流量:50sccm、H2流量:200sccmにて
膜厚1500Å形成し、膜中水素量の膜厚方向の変化を
SIMSにより評価した。その結果を図10に示す。図
10より、図2に示した従来例に比べて光起電力装置の
発電層の下地層との界面領域での高水素量含有発電層の
発生を抑制できた。Utilizing this finding, the conditions of the H 2 plasma treatment time of 3 minutes were applied, and the power generation layer was similarly heated to a substrate temperature of 120 ° C., 150 mW / cm 2 , a pressure of 100 Pa,
A film having a thickness of 1500 ° was formed at an H 4 flow rate of 50 sccm and an H 2 flow rate of 200 sccm, and the change in the amount of hydrogen in the film in the thickness direction was evaluated by SIMS. The result is shown in FIG. 10, the generation of a high hydrogen content power generation layer in the interface region between the power generation layer of the photovoltaic device and the underlayer can be suppressed as compared with the conventional example shown in FIG.
【0045】更に、光起電力装置を形成し、図2で水素
プロファイルを評価した構造すなわち均質p層上にRF
パワー150mW/cm2にて発電層を形成した場合の
特性により規格化を行った結果を表4に示す。Further, a photovoltaic device was formed, and the hydrogen profile was evaluated in FIG.
Table 4 shows the results of normalization based on the characteristics when the power generation layer was formed at a power of 150 mW / cm 2 .
【0046】[0046]
【表4】 [Table 4]
【0047】表4より、狙い通り初期のF.F.、変換
効率が大幅に改善され、更に光劣化率の低減により光劣
化後効率では約16%の改善が実現できた。表2、3の
実施形態に比べてIscの増加が大きいのはp層のバル
クヘの水素打ち込みによるワイドギャップ化に起因した
光吸収ロス低減によると考えられる。As shown in Table 4, the initial F.V. F. As a result, the conversion efficiency was greatly improved, and the efficiency after light deterioration was improved by about 16% by further reducing the light deterioration rate. It is considered that the increase in Isc is larger than that in the embodiments shown in Tables 2 and 3 due to a reduction in light absorption loss caused by widening the gap by implanting hydrogen into the bulk of the p-layer.
【0048】ここで、表2〜3で評価した光起電力装置
と図2で評価した光起電力装置の光起電力装置基板上で
の水素濃度プロファイルを比較した結果を図11、図1
2に示す。図11は図2にて評価した従来の条件、図1
2は図8で評価した本発明の実施形態の条件における光
起電力装置構造でのSIMSにより評価した水素プロフ
ァイルである。太陽竜池では凹凸基板を使用している為
に水素プロファイルの深さ方向の精度は劣ると考えられ
るが、従来例に比べて本発明の実施形態を用いた場合
は、p/i界面近傍のi側での高水素量含有発電層の抑
制効果は一目瞭然であった。Here, the results of comparing the hydrogen concentration profiles on the photovoltaic device substrate between the photovoltaic devices evaluated in Tables 2 and 3 and the photovoltaic device evaluated in FIG. 2 are shown in FIGS.
It is shown in FIG. FIG. 11 shows the conventional conditions evaluated in FIG.
2 is a hydrogen profile evaluated by SIMS in the photovoltaic device structure under the conditions of the embodiment of the present invention evaluated in FIG. It is considered that the accuracy of the hydrogen profile in the depth direction is inferior due to the use of the uneven substrate in the solar dragon pond, but in the case of using the embodiment of the present invention as compared with the conventional example, the vicinity of the p / i interface is reduced. The effect of suppressing the high hydrogen content power generation layer on the i-side was obvious.
【0049】次に、基板温度120℃、450mW/c
m2、圧力300Pa、SiH4流量:50sccm、H
2流量:20000sccm、2%ボロンドープにて形
成した微結晶p層上に、基板温度120℃、450mW
/cm2、圧力300Pa、SiH4流量:50scc
m、H2流量:20000sccmにて形成した微結晶
i層を1500Å形成し膜中水素量の膜厚方向の変化を
SIMSにより評価した結果を図13に示す。微結晶の
場合にも成膜初期に高水素領域が存在し、断面TEM写
真よりa―Si:Hであることが確認された。Next, a substrate temperature of 120 ° C. and 450 mW / c
m 2 , pressure 300 Pa, SiH 4 flow rate: 50 sccm, H
(2) Flow rate: 20000 sccm, a substrate temperature of 120 ° C. and 450 mW on a microcrystalline p-layer formed by 2% boron doping.
/ Cm 2 , pressure 300Pa, SiH 4 flow rate: 50scc
FIG. 13 shows a result obtained by forming a microcrystalline i layer formed at a flow rate of m and H 2 of 20,000 sccm at 1500 ° and evaluating a change in the amount of hydrogen in the film in the thickness direction by SIMS. In the case of microcrystals as well, a high hydrogen region was present at the beginning of film formation, and it was confirmed from the cross-sectional TEM photograph that a-Si: H was present.
【0050】更に、本発明の実施形態であるRFパワー
300mW/cm2、圧力100Pa、H2流量:100
0sccmにてH2プラズマ処理を行った後に前記条件
にて微結晶発電層を形成した際のSIMSによる膜中水
素量の評価結果を図14に示す。[0050] Furthermore, RF power 300 mW / cm 2 which is an embodiment of the present invention, pressure 100 Pa, H 2 flow rate: 100
FIG. 14 shows the results of evaluating the amount of hydrogen in the film by SIMS when the microcrystalline power generation layer was formed under the above conditions after performing the H 2 plasma treatment at 0 sccm.
【0051】図14より、図13にみられた高水素量含
有発電層の発生が抑制されていることが明らかとなっ
た。FIG. 14 reveals that the generation of the high hydrogen content power generation layer shown in FIG. 13 is suppressed.
【0052】更に、光起電力装置を作成して特性を比較
した結果を表5に示す。表5は、本発明の実施形態の太
陽電池特性を従来例の太陽電池特性にて規格化した値で
ある。表5より、a―Si:H発電層の場合同様、微結
晶Si発電層においても、本発明が有効であることが確
認された。Table 5 shows the results of comparison of characteristics of the photovoltaic devices. Table 5 shows values obtained by standardizing the solar cell characteristics of the embodiment of the present invention with the solar cell characteristics of the conventional example. From Table 5, it was confirmed that the present invention is effective also in the microcrystalline Si power generation layer as in the case of the a-Si: H power generation layer.
【0053】[0053]
【表5】 [Table 5]
【0054】以上から明らかなように、本発明によると
ころのpin型光起電力装置において発電層を形成する
下地層の表面近傍の膜中水素量を下地層のバルクの膜中
水素量に比べて相対的に少なくすることにより、プラズ
マCVDの初期放電に起因した光起電力装置の発電層の
下地層との界面領域での高水素量含有発電層の水素が低
水素量下地層に拡散することにより高水素量含有発電層
の発生を抑制でき、光劣化前後において高効率非晶質光
起電力装置を得ることが可能であることが明らかとなつ
た。As is apparent from the above, in the pin type photovoltaic device according to the present invention, the amount of hydrogen in the film near the surface of the underlayer forming the power generation layer is compared with the amount of hydrogen in the bulk film of the underlayer. By making it relatively small, hydrogen of the high hydrogen content power generation layer in the interface region between the power generation layer of the photovoltaic device and the underlayer caused by the initial discharge of plasma CVD diffuses into the low hydrogen content underlayer. Thus, it was found that generation of a high hydrogen content power generation layer can be suppressed, and a highly efficient amorphous photovoltaic device can be obtained before and after photodegradation.
【0055】上記した実施形態においては、p層上にi
層を直接形成する際に、下地になるp層の表面近傍の水
素量をバルクに比べて少なくした場合につき説明した。
同様に、p層上にバッファ層を形成し、このバッファ層
上にi層を形成する場合にも下地となるバッファ層のi
層との界面の表面近傍の水素量をバルクに比べて少なく
することで、同様の効果が得られることは勿論のことで
ある。In the above embodiment, i
The case where the amount of hydrogen in the vicinity of the surface of the p-layer serving as the base when the layer is directly formed is made smaller than that in the bulk is described.
Similarly, when a buffer layer is formed on a p-layer and an i-layer is formed on this buffer layer, i
Of course, the same effect can be obtained by reducing the amount of hydrogen near the surface at the interface with the layer as compared with the bulk.
【0056】さらに、上記した実施形態においては、p
inのシングル構造の光起電力装置にこの発明を適用し
た場合につき説明した。同様に、pin構造の半導体層
を数段階積層した所謂タンデム構造の光起電力装置にこ
の発明は適用できる。即ち、i層の下地になる層の表面
近傍の水素量をバルクに比べて少なくするとよい。Further, in the above embodiment, p
The case where the present invention is applied to a photovoltaic device having a single structure of "in" has been described. Similarly, the present invention is applicable to a so-called tandem structure photovoltaic device in which semiconductor layers having a pin structure are stacked in several stages. That is, the amount of hydrogen in the vicinity of the surface of the layer serving as the underlayer of the i-layer is preferably smaller than that in the bulk.
【0057】また、上記した実施形態においては、pi
n構造の光起電力装置の場合につき説明したが、nip
型構造の光起電力装置にもこの発明は適用できる。この
nip構造の場合には、下地となるn層の表面近傍の水
素量をバルクに比べて少なくすればよい。このように、
下地となるn層表面近傍の水素量をバルクに比べて少な
くすることで、発電層の水素含有プロファイルが平坦化
し、長波長側の感度を上げることができる。In the above-described embodiment, pi
The case of the photovoltaic device having the n-type structure has been described.
The present invention can be applied to a photovoltaic device having a mold structure. In the case of this nip structure, the amount of hydrogen near the surface of the underlying n-layer may be smaller than that of the bulk. in this way,
By reducing the amount of hydrogen near the surface of the underlying n-layer as compared to the bulk, the hydrogen-containing profile of the power generation layer is flattened, and the sensitivity on the long wavelength side can be increased.
【0058】[0058]
【発明の効果】以上から明らかなように、本発明によれ
ば、発電層を形成する下地層の表面近傍の膜中水素量を
下地層のバルクの膜中水素量に比べて相対的に少なくす
ることにより、プラズマCVDの初期放電に起因した光
起電力装置の発電層の下地層との界面領域での高水素量
含有発電層の水素が低水素量下地層に拡散することによ
り高水素量含有発電層の発生を抑制し、高効率非晶質光
起電力装置を得ることできる。As is apparent from the above, according to the present invention, the amount of hydrogen in the film near the surface of the underlayer forming the power generation layer is relatively smaller than the amount of hydrogen in the bulk film of the underlayer. By doing so, the hydrogen of the high hydrogen content power generation layer in the interface region between the power generation layer of the photovoltaic device and the underlayer caused by the initial discharge of the plasma CVD diffuses into the low hydrogen content underlayer, thereby increasing the high hydrogen content. Generation of a contained power generation layer can be suppressed, and a highly efficient amorphous photovoltaic device can be obtained.
【図1】基板温度120℃、圧力100Pa、SiH4
流量:50sccm、H2流量:200sccmにて発
電層成膜時のRFパワーを50mW/cm2にて膜厚1
500Åの発電層を形成した際の、下地p層と発電層近
傍の2次イオン質量分析法(SIMS)により評価した
水素濃度の深さ方向分布を示す特性図である。FIG. 1 shows a substrate temperature of 120 ° C., a pressure of 100 Pa, and SiH 4.
The flow rate: 50 sccm, the H 2 flow rate: 200 sccm, the RF power at the time of forming the power generation layer was 50 mW / cm 2, and the film thickness was 1
FIG. 7 is a characteristic diagram showing a depth direction distribution of hydrogen concentration evaluated by secondary ion mass spectrometry (SIMS) near a power generation layer and an underlying p layer when a power generation layer of 500 ° is formed.
【図2】基板温度120℃、圧力100Pa、SiH4
流量:50sccm、H2流量:200sccmにて発
電層成膜時のRFパワーを150mW/cm2にて膜厚
1500Åの発電層を形成した際の、下地p層と発電層
近傍の2次イオン質量分析法(SIMS)により評価し
た水素濃度の深さ方向分布を示す特性図である。FIG. 2 shows a substrate temperature of 120 ° C., a pressure of 100 Pa, and SiH 4.
When the power generation layer is formed at a flow rate of 50 sccm, H 2 flow rate: 200 sccm, RF power during film formation of the power generation layer at 150 mW / cm 2, and a film thickness of 1500 °, the secondary ion mass near the base p layer and the power generation layer FIG. 4 is a characteristic diagram illustrating a depth direction distribution of a hydrogen concentration evaluated by an analysis method (SIMS).
【図3】p層上にパワー密度25mW/cm2にて初期
の50Åを形成し、その後50mW/cm2にて残り1
450Åの発電層を形成した場合のSIMSによる水素
濃度評価結果を示す特性図である。[3] The initial 50Å was formed by the power density 25 mW / cm 2 on the p-layer, the remaining 1 at subsequent 50 mW / cm 2
It is a characteristic view which shows the hydrogen concentration evaluation result by SIMS at the time of forming a 450-degree power generation layer.
【図4】基板温度120℃、RFパワー150mW/c
m2、圧力100Pa、SiH4流量:50sccmに固
定してH2流量を0〜5000sccmまで変化させて
水素希釈率(H2/SiH4)を変化させた際のp層の膜
中水素量の変化を示す特性図である。FIG. 4 shows a substrate temperature of 120 ° C. and RF power of 150 mW / c.
m 2 , pressure 100 Pa, SiH 4 flow rate: fixed at 50 sccm, and H 2 flow rate was changed from 0 to 5000 sccm to change the hydrogen dilution rate (H 2 / SiH 4 ). It is a characteristic view showing a change.
【図5】図4に示す下地層上に、発電層を基板温度12
0℃、150mW/cm2、圧力100Pa、8iH4流
量:50sccm、H2流量:200sccmにて膜厚
150Å形成し、膜中水素量の膜厚方向の変化をSIM
Sにより評価した結果を示す特性図である。FIG. 5 shows a power generation layer having a substrate temperature of 12 on the underlayer shown in FIG.
A film thickness of 150 ° was formed at 0 ° C., 150 mW / cm 2 , pressure 100 Pa, 8 iH 4 flow rate: 50 sccm, H 2 flow rate: 200 sccm, and the change of hydrogen amount in the film in the thickness direction was SIM.
It is a characteristic view showing the result evaluated by S.
【図6】図4に示す下地層上に、発電層を基板温度12
0℃、150mW/cm2、圧力100Pa、SiH4流
量:50sccm、H2流量:200sccmにて膜厚
1500Å形成し膜中水素量の膜厚方向の変化をSIM
Sにより評価した結果を示す特性図である。FIG. 6 shows a case where a power generation layer is formed at a substrate temperature of 12 on the underlayer shown in FIG.
A film thickness of 1500 ° was formed at 0 ° C., 150 mW / cm 2 , pressure 100 Pa, SiH 4 flow rate: 50 sccm, H 2 flow rate: 200 sccm, and the change of hydrogen amount in the film in the thickness direction was SIM.
It is a characteristic view showing the result evaluated by S.
【図7】下地層を形成後、その表面をRFパワー300
mW/cm2、圧力100Pa、Ar流量:1000s
ccmにてArプラズマ処理を行った際のArプラズマ
処理時間と表面から50Åの領域の膜中水素量の関係を
示す特性図である。FIG. 7: After forming an underlayer, the surface is RF power 300
mW / cm 2 , pressure 100 Pa, Ar flow rate: 1000 s
FIG. 9 is a characteristic diagram showing a relationship between an Ar plasma processing time when Ar plasma processing is performed at ccm and the amount of hydrogen in a film in a region 50 ° from the surface.
【図8】図7に示す下地層上、発電層を基板温度120
℃、150mW/cm2、圧力100Pa、SiH4流
量:50sccm、H2流量:200sccmにて膜厚
1500Å形成し膜中水素量の膜厚方向の変化をSIM
Sにより評価した結果を示す特性図である。FIG. 8 shows a case where the power generation layer is heated to a substrate temperature of 120 on the underlayer shown in FIG.
C., 150 mW / cm 2 , pressure 100 Pa, SiH 4 flow rate: 50 sccm, H 2 flow rate: 200 sccm, a film thickness of 1500 ° was formed, and the change of hydrogen amount in the film in the film thickness direction was SIM.
It is a characteristic view showing the result evaluated by S.
【図9】下地層を形成後、その表面をRFパワー300
mW/cm2、圧力100Pa、水素流量:1000s
ccmにて水素プラズマ処理を行った際のArプラズマ
処理時間と表面から50Åの領域の膜中水素量の関係を
示す特性図である。FIG. 9 is a diagram showing an RF power of 300 after forming an underlayer.
mW / cm 2 , pressure 100 Pa, hydrogen flow rate: 1000 s
FIG. 4 is a characteristic diagram showing a relationship between an Ar plasma processing time when hydrogen plasma processing is performed at ccm and an amount of hydrogen in a film in a region 50 ° from the surface.
【図10】図9に示す下地層上、発電層を基板温度12
0℃、150mW/cm2、圧力100Pa、SiH4流
量:50sccm、H2流量:200sccmにて膜厚
1500Å形成し膜中水素量の膜厚方向の変化をSIM
Sにより評価した結果を示す特性図である。FIG. 10 shows a case where the power generation layer is set at a substrate temperature of 12 on the underlayer shown in FIG.
A film thickness of 1500 ° was formed at 0 ° C., 150 mW / cm 2 , pressure 100 Pa, SiH 4 flow rate: 50 sccm, H 2 flow rate: 200 sccm, and the change of hydrogen amount in the film in the thickness direction was SIM.
It is a characteristic view showing the result evaluated by S.
【図11】図2にて評価した従来の条件おける光起電力
装置構造でのSIMSにより評価した水素プロファイル
である。FIG. 11 is a hydrogen profile evaluated by SIMS in the photovoltaic device structure under the conventional conditions evaluated in FIG.
【図12】図8で評価した本発明の実施形態の条件にお
ける光起電力装置構造でのSIMSにより評価した水素
プロファイルである。FIG. 12 is a hydrogen profile evaluated by SIMS in the photovoltaic device structure under the conditions of the embodiment of the present invention evaluated in FIG.
【図13】基板温度120℃、450mW/cm2、圧
力300Pa、SiH4流量:50sccm、H2流量:
20000sccm、2%ボロンドープにて形成した微
結晶p層上に、基板温度120℃、450mW/c
m2、圧力300Pa、SiH4流量:50sccm、H
2流量:20000sccmにて形成した微結晶i層を
1500Å形成し、膜中水素量の膜厚方向の変化をSI
MSにより評価した結果を示す特性図である。FIG. 13: substrate temperature 120 ° C., 450 mW / cm 2 , pressure 300 Pa, SiH 4 flow rate: 50 sccm, H 2 flow rate:
A substrate temperature of 120 ° C., 450 mW / c is formed on a microcrystalline p-layer formed by 20,000 sccm and 2% boron doping.
m 2 , pressure 300 Pa, SiH 4 flow rate: 50 sccm, H
(2) A microcrystalline i-layer formed at a flow rate of 20,000 sccm was formed at 1500 °, and the change in the amount of hydrogen in the film in the thickness direction was determined by SI.
It is a characteristic view showing the result evaluated by MS.
【図14】下地層に、RFパワー300mW/cm2、
圧力100Pa、H2流量:1000sccmにてH2プ
ラズマ処理を行った後に、微結晶発電層を形成した際の
SIMSによる膜中水素量の評価結果を示す特性図であ
る。FIG. 14 shows an RF power of 300 mW / cm 2 ,
FIG. 9 is a characteristic diagram showing the results of evaluating the amount of hydrogen in a film by SIMS when a microcrystalline power generation layer is formed after performing H 2 plasma processing at a pressure of 100 Pa and an H 2 flow rate of 1000 sccm.
【図15】pin接合を有するpin型a−Si光起電
力装置の構造を示す断面図である。FIG. 15 is a cross-sectional view showing a structure of a pin type a-Si photovoltaic device having a pin junction.
1 ガラス基板 2 透明電極 3 p型a−SiC層 4 i型a−Si層(発電層) 5 n型微結晶シリコン 7 裏面金属電極 Reference Signs List 1 glass substrate 2 transparent electrode 3 p-type a-SiC layer 4 i-type a-Si layer (power generation layer) 5 n-type microcrystalline silicon 7 back metal electrode
Claims (4)
らなる光電変換層を化学的気相成長法により形成する光
起電力装置の製造方法において、前記光電変換層の発電
層が形成される下地半導体層の前記発電層との界面側に
位置する表面近傍の膜中水素の濃度を下地半導体層のバ
ルクの膜中水素濃度に比べて相対的に少なくなるように
形成した後、発電層を形成することを特徴とする光起電
力装置の製造方法。1. A method of manufacturing a photovoltaic device in which a photoelectric conversion layer made of a thin film semiconductor having a semiconductor junction therein is formed by a chemical vapor deposition method, wherein a power generation layer of the photoelectric conversion layer is formed. After forming the layer so that the concentration of hydrogen in the film near the surface located on the interface side with the power generation layer of the layer is relatively lower than the hydrogen concentration in the bulk film of the underlying semiconductor layer, the power generation layer is formed. A method for manufacturing a photovoltaic device, comprising:
型半導体層側から光が入射されることを特徴とする請求
項1に記載の光起電力装置の製造方法。2. The photoelectric conversion layer has a pin junction,
The method for manufacturing a photovoltaic device according to claim 1, wherein light is incident from the side of the mold semiconductor layer.
させ、表面近傍の膜中水素の濃度を下地半導体層のバル
クの膜中水素濃度に比べて相対的に少なくすることを特
徴とする請求項1ないし2に記載の光起電力装置の製造
方法。3. The method according to claim 1, wherein the concentration of hydrogen in the film near the surface is made relatively lower than the concentration of hydrogen in the bulk film of the underlying semiconductor layer by changing the dilution hydrogen gas of the underlying semiconductor layer. Item 3. A method for manufacturing a photovoltaic device according to Item 1 or 2.
地半導体層表面にアルゴンまたは水素ガスによるプラズ
マ処理を施し、表面近傍の膜中水素の濃度を下地半導体
層のバルクの膜中水素濃度に比べて相対的に少なくする
ことを特徴とする請求項1ないし2に記載の光起電力装
置の製造方法。4. After the formation of the base semiconductor layer, the surface of the base semiconductor layer is subjected to a plasma treatment with argon or hydrogen gas to reduce the concentration of hydrogen in the film near the surface to the concentration of hydrogen in the bulk film of the base semiconductor layer. 3. The method for manufacturing a photovoltaic device according to claim 1, wherein the number is relatively small.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001069593A JP4502534B2 (en) | 2001-03-13 | 2001-03-13 | Photovoltaic device manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001069593A JP4502534B2 (en) | 2001-03-13 | 2001-03-13 | Photovoltaic device manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002270872A true JP2002270872A (en) | 2002-09-20 |
JP4502534B2 JP4502534B2 (en) | 2010-07-14 |
Family
ID=18927611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001069593A Expired - Lifetime JP4502534B2 (en) | 2001-03-13 | 2001-03-13 | Photovoltaic device manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4502534B2 (en) |
-
2001
- 2001-03-13 JP JP2001069593A patent/JP4502534B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP4502534B2 (en) | 2010-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mazzarella et al. | Nanocrystalline silicon emitter optimization for Si‐HJ solar cells: substrate selectivity and CO2 plasma treatment effect | |
CN103119727B (en) | The manufacture method of photoelectric conversion device | |
US9812599B2 (en) | Method of stabilizing hydrogenated amorphous silicon and amorphous hydrogenated silicon alloys | |
US7238545B2 (en) | Method for fabricating tandem thin film photoelectric converter | |
US7960646B2 (en) | Silicon-based thin-film photoelectric converter and method of manufacturing the same | |
EP2110859B1 (en) | Laminate type photoelectric converter and method for fabricating the same | |
US6383898B1 (en) | Method for manufacturing photoelectric conversion device | |
Myong et al. | Improvement of pin-type amorphous silicon solar cell performance by employing double silicon-carbide p-layer structure | |
JP2008153646A (en) | Manufacturing method of semiconductor device | |
JP5314697B2 (en) | Silicon-based thin film solar cell and method for manufacturing the same | |
Multone et al. | Triple-junction amorphous/microcrystalline silicon solar cells: Towards industrially viable thin film solar technology | |
JP2692091B2 (en) | Silicon carbide semiconductor film and method for manufacturing the same | |
US20130269767A1 (en) | Method of coating a substrate for manufacturing a solar cell | |
Ma et al. | Bi-layer in-situ phosphorus doped poly-Si films by PECVD for blistering-free high-efficiency industrial TOPCon solar cells | |
Wen et al. | Boron-doped amorphous buffer layer for p-type microcrystalline silicon emitter to prepare efficient silicon heterojunction solar cell | |
JP2008283075A (en) | Manufacturing method of photoelectric conversion device | |
JP3248227B2 (en) | Thin film solar cell and method of manufacturing the same | |
CN118476039A (en) | Solar cell and method of forming the same | |
JP4502534B2 (en) | Photovoltaic device manufacturing method | |
TWI790245B (en) | Manufacturing method of photoelectric conversion device | |
CN110383496B (en) | Solar cell apparatus and method for forming single, tandem and heterojunction system solar cell apparatus | |
JPH09315811A (en) | Amorphous semiconductor, its production and photovoltaic device | |
JP2644901B2 (en) | Method for manufacturing pin type amorphous silicon solar cell | |
WO2006006368A1 (en) | Method for manufacturing thin film photoelectric converter | |
JPH04212474A (en) | Manufacture of thin film solar battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050301 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080610 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080610 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080805 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080924 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081120 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20081128 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20090626 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100420 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4502534 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140430 Year of fee payment: 4 |
|
EXPY | Cancellation because of completion of term |