[go: up one dir, main page]

JP4502534B2 - Photovoltaic device manufacturing method - Google Patents

Photovoltaic device manufacturing method Download PDF

Info

Publication number
JP4502534B2
JP4502534B2 JP2001069593A JP2001069593A JP4502534B2 JP 4502534 B2 JP4502534 B2 JP 4502534B2 JP 2001069593 A JP2001069593 A JP 2001069593A JP 2001069593 A JP2001069593 A JP 2001069593A JP 4502534 B2 JP4502534 B2 JP 4502534B2
Authority
JP
Japan
Prior art keywords
layer
hydrogen
power generation
generation layer
photovoltaic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001069593A
Other languages
Japanese (ja)
Other versions
JP2002270872A (en
Inventor
英治 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001069593A priority Critical patent/JP4502534B2/en
Publication of JP2002270872A publication Critical patent/JP2002270872A/en
Application granted granted Critical
Publication of JP4502534B2 publication Critical patent/JP4502534B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光起電力装置の製造方法に関し、特に、非晶質薄膜半導体を光発電層に用いた光起電力装置の製造方法に関する。
【0002】
【従来の技術】
従来、原料ガスのグロー放電分解等により形成される非晶質シリコン(以下、a−Siという。)を主材料にした光起電力装置は、薄膜、大面積化が容易という特長を持ち、低コスト光起電力装置として期待されている。
【0003】
この種の光起電力装置としては、pin接合からなる光電変換層を有するpin型a−Si光起電力装置が知られている。図15はこのような光起電力装置の構造を示し、ガラス基板1上に、酸化錫(SnO2)などの透明電極2、p型a−SiC層3、i型a−Si層4、n型微結晶シリコン(以下、μc−Siという。)層5、裏面金属電極7を順次積層することにより作成される。この光起電力装置は、ガラス基板1を通して入射する光により、光起電力が発生する。なお、図15に示すものは、裏面金属電極7とμc−Si層5との間に合金化等を抑制するために、ZnOやITOなどの透明導電層6を設けている。
【0004】
ところで、上記したガラス基板から光を入射する非晶質シリコン(a−Si:H)を用いたpin型光起電力装置においては、一般的に光入射側に位置し光誘起キャリア密度が高い発電層(i層)のp層側の膜特性が太陽電池特性を大きく左右することが知られている。
【0005】
【発明が解決しようとする課題】
しかしながら、一般的に半導体層の形成に用いられているプラズマCVD技術においては、放電の初期にバルクに比べて相対的に膜中水素量が高く、SiH2/SiH結合比が大きく膜特性が劣るa−Si:H膜が形成され、初期のみならず光劣化後においても太陽電池特性の劣化の原因となっている。
【0006】
更に、昨今の低コスト化の要求に対して発電層の高速成膜技術の開発が精力的に行われているが、高速成膜条件では更に初期放電での発電層の膜中水素量増加、膜質の低下が顕著となる。
【0007】
本発明は、これらの問題点を解決して、光起電力装置の発電層の下地層との界面領域での高水素量含有発電層の発生を抑制し、高効率光起電力装置を得ることを目的とする。
【0008】
【課題を解決するための手段】
この発明は、内部に半導体接合を有する薄膜半導体からなる光電変換層を化学的気相成長法により形成する光起電力装置の製造方法において、前記光電変換層の発電層が形成される下地半導体層の表面に、該表面近傍の膜中水素の濃度が下地半導体層のバルクの膜中水素濃度に比べて相対的に少なくなるように、水素ガスによるプラズマ処理を施す工程と、水素の濃度が少なくされた前記表面上に発電層を形成する工程と、を備え、一定量の水素濃度プロファイルを有する発電層を形成することを特徴とする。
【0009】
上記した構成によれば、発電層を形成する下地層の表面近傍の膜中水素量を下地層のバルクの膜中水素量に比べて相対的に少なくすることにより、プラズマCVDの初期放電に起因した光起電力装置の発電層の下地層との界面領域での高水素量含有発電層の水素が低水素量下地層に拡散することにより、一定量の水素濃度プロファイルを形成することができる。
【0010】
また、この発明は、前記光電変換層はpin接合を有し、p型半導体層側から光を入射する光起電力装置に適用すると良い。
【0011】
pin型光起電力装置において発電層を形成する下地層の表面近傍の膜中水素量を下地層のバルクの膜中水素量に比べて相対的に少なくすることにより、プラズマCVDの初期放電に起因した光起電力装置の発電層の下地層との界面領域での高水素量含有発電層の水素が低水素量下地層に拡散することにより高水素量含有発電層の発生を抑制し、高効率非晶質光起電力装置を得ることができる。
【0014】
【発明の実施の形態】
以下、この発明の実施の形態につき図面を参照して説明する。
まず、この発明者は、上記したプラズマCVD法により形成される発電層となるi型a−Si:H膜の膜中水素濃度につき鋭意検討した。この検討のために、下記のように光起電力装置を作成した。
【0015】
ガラス基板上に透明導電膜としてSnO2を形成した基板上に、公知のRFプラズマCVD(13.56MHz)を用いて、p層、発電層となるi層、n層を形成した。発電層となるi型a−Si:Hの形成温度は100〜300℃、反応圧力は5〜100Pa、RFパワーは1〜500mW/cm2である。
【0016】
この発電層の光学ギャップEoptは1.60eV、膜厚1000〜3000Åのシングル接合構造である。
【0017】
上記p層、n層も公知のRFプラズマCVDを用いて形成し、ドーピング量(p層ではボロン原子/シリコン原子、n層ではリン原子/シリコン原子)1%、p層の膜厚〜200Å一定、n層の膜厚100Åとした。
【0018】
図1、図2は、基板温度120℃、圧力100Pa、モノシラン(SiH4)流量:50sccm、水素(H2)流量:200sccmにて、発電層(i層)を成膜した時の下地p層と発電層近傍の2次イオン質量分析法(SIMS)により評価した水素濃度の深さ方向分布を示す特性図である。図1は、RFパワーを50mW/cm2にて、膜厚1500Åの発電層(i層)を形成した場合、図2はRFパワーを150mW/cm2にて、膜厚1500Åの発電層(i層)を形成した場合を示している。
【0019】
尚、特に断りのない限り、本明細書において、水素プロファイルを確認する場合は、表面が平坦な単結晶シリコン(c−Si)基板上に下地層とi層を形成して行った。これは、水素のプロファイルの深さ方向の測定精度を向上させるためである。
【0020】
また、下地層/i層の膜厚および界面特定には断面TEM(透過電子顕微鏡)写真を用いた。
【0021】
図1、図2より下地p層と発電層の界面近傍にバルク発電層の水素量より相対的に水素含有量の多い高水素量含有発電層が存在し、図1と図2からRFパワーが高い場合には水素濃度ピークの増加、高水素量含有発電層膜厚の増加が確認された。これは、初期放電に起因したプラズマ中の高次ラジカル(SiH2ラジカル)の生成によると考えられる。
【0022】
また、断面TEM写真により特定したp/i界面のp層側にも高水素領域が存在しているのは、i層成膜時の水素打ち込み、発電層の形成中の水素拡散によると考えられる。
【0023】
更に、初期放電対策として一般的によく用いられる初期放電の低パワー化を使用したプラズマCVD装置において安定放電が可能な最低パワー密度25mW/cm2にて初期の50Åを形成し、その後50mW/cm2にて残り1450Åのi層からなる発電層を形成した場合のSIMSによる水素濃度評価結果を図3に示す。
【0024】
図3により、i層の初期50Åを低パワー化することにより、下地p層と発電層の界面近傍の高水素量含有発電層の水素濃度ピークの低下、高水素量含有発電層膜厚の減少が確認されたが、完全な解消に至っていない。
【0025】
また、図3では25mW/cm2から50mW/cm2にRFパワーを連続して増加させた際に、バルクより水素濃度の高い高水素量含有発電層の形成が観察された。
【0026】
表1は、発電成膜時のRFパワーを50mW/cm2および150mW/cm2一定にて形成した場合の太陽電池特性をi層の初期50Åを低パワー化した条件の太陽電池特性にて規格化した規格化I―Vおよび規格化劣化後効率(500mW/cm2、25℃、160min)を示す。RFパワーを一定にした条件で作成したものはいずれもIsc、F.F.の低下が見られ、p/i界面近傍でのキャリアの再結合増加によると考えられる。
【0027】
また、50mW/cm2から150mW/cm2の場合にはIsc、F.F.の低下が見られ、更に光劣化率にも有意差が確認された。膜特性から両者のバルクの膜質(導電率、光感度、欠陥密度)には有意差がないことが確認されており、下地p層と発電層の界面近傍の高水素量含有発電層の水素濃度ピークの増加、高水素量含有発電層膜厚の増加と関係があると考えられる。
【0028】
【表1】

Figure 0004502534
【0029】
次に、本発明の実施形態である下地層の表面近傍の膜中水素量を下地層のバルクの膜中水素量に比べて相対的に少なくした場合の効果を検討した。ここで、下地層の表面近傍とは、最表面から深さ50Å以下の領域をいう。
【0030】
図4は、基板温度120℃、RFパワー150mW/cm2、圧力100Pa、SiH4流量:50sccmに固定して、H2流量を0〜5000sccmまで変化させて水素希釈率(H2/SiH4)を変化させた際のa−Si:Hp層の膜中水素量の変化を示す。図1から図3までに用いたp層はH2/SiH4=25にて形成した。これに対して、図4に示すものは、初期の170ÅをH2/SiH4=25、すなわち水素量21at.%の条件、残りの30ÅをH2/SiH4=60、すなわち水素量16at.%の条件にて形成し、発電層を形成する下地層として用いた。このようにして形成された下地層は、表面近傍の水素膜中濃度が他のバルクの水素膜中濃度より相対的に少なくなる。
【0031】
次に、発電層を先ほどの基板温度12℃、150mW/cm2、圧力100Pa、SiH4流量:50sccm、H2流量:200sccmにて膜厚150Åおよび1500Å形成し膜中水素量の膜厚方向の変化をSIMSにより評価した。その結果を図5、図6に夫々示す。図5は、発電層として膜厚150Åを形成したもの、図6は、発電層として膜厚1500Åを形成したものである。
【0032】
図5より、下地p層の発電層側の表面に低水素領域、発電層側のバルク発電層の水素量より相対的に水素含有量の多い高水素量含有発電層が存在していることが確認され、目的通りの構造が発電層の初期形成時に確認された。
【0033】
更に、図6の如く発電層膜厚が厚く形成される過程で熱による水素拡散が進行し、水素濃度の分布が大幅に改善されていることが明らかになった。すなわち、プラズマCVDの初期放電に起因した光起電力装置の発電層の下地層との界面領域での高水素量含有発電層の水素が低水素量下地層に拡散することにより高水素量含有発電層の発生を抑制できた。
【0034】
次に、光起電力装置を形成し、図2で水素プロファイルを評価した構造すなわち均質p層上にRFパワー150mW/cm2にて発電層を形成した場合の特性により規格化を行った結果を表2に示す。表2より、狙い通り初期のF.F.、変換効率が大幅に改善され、更に光劣化率の低減により光劣化後効率では約15%の改善が実現できた。
【0035】
【表2】
Figure 0004502534
【0036】
次に、基板温度120℃、RFパワー150mW/cm2、圧力10Pa、SiH4流量:50sccmに固定して、H2流量:1260sccmにて100Åのp層に対して、その表面をRFパワー300mW/cm2、圧力100Pa、Ar流量:1000sccmにてArプラズマ処理を行った際のArプラズマ処理時間と表面から50Åの領域の膜中水素量の関係を図7に示す。
【0037】
図7よりArプラズマ処理時間の増加に伴い表面近傍領域の水素量が低下することが分かる。この知見を利用して、Arプラズマ処理時間2分の条件を適用し、先ほど同様に発電層を基板温度120℃、150mW/cm2、圧力100Pa、SiH4流量:50sccm、H2流量:200sccmにて膜厚1500Å形成し、膜中水素量の膜厚方向の変化をSIMSにより評価した。その結果を図8に示す。
【0038】
図8より、図2に示した従来例に比べて光起電力装置の発電層の下地層との界面領域での高水素量含有発電層の発生を抑制できた。
【0039】
更に、光起電力装置を形成し、図2で水素プロファイルを評価した構造すなわち均質p層上にRFパワー150mW/cm2にて発電層を形成した場合の特性により規格化を行った結果を表3に示す。
【0040】
【表3】
Figure 0004502534
【0041】
表3より、狙い通り初期のF.F.、変換効率が大幅に改善され、更に光劣化率の低減により光劣化後効率では約14%の改善が実現できた。尚、同様の効果が、Ar以外の希ガスプラズマ処理でも得られることも確認した。
【0042】
次に、基板温度120℃、RFパワー150mW/cm2、圧力100Pa、SiH4流量:50sccmに固定してH2流量:1250sccmにて200Åのp層に対して、その表面をRFパワー300mW/cm2、圧力100Pa、H2流量:1000sccmにてH2プラズマ処理を行った際のH2プラズマ処理時間と表面から50Åの領域の膜中水素量、および50から200Åのバルクp層の膜中水素量の関係を図9に示す。
【0043】
図9よりH2プラズマ処理時間の増加に伴いバルクの膜中水素量は増加するが、表面近傍領域の水素量は低下することが分かる。これは、バルクの水素量増加は水素打ち込み効果により、表面近傍では水素プラズマによる表面へのエネルギー付与と水素濃度の増加によりa−Si:Hの構造緩和に伴った水素脱離反応が促進されているためであると考えられる。
【0044】
この知見を利用して、H2プラズマ処理時間3分の条件を適用し、先ほど同様に発電層を基板温度120℃、150mW/cm2、圧力100Pa、SiH4流量:50sccm、H2流量:200sccmにて膜厚1500Å形成し、膜中水素量の膜厚方向の変化をSIMSにより評価した。その結果を図10に示す。図10より、図2に示した従来例に比べて光起電力装置の発電層の下地層との界面領域での高水素量含有発電層の発生を抑制できた。
【0045】
更に、光起電力装置を形成し、図2で水素プロファイルを評価した構造すなわち均質p層上にRFパワー150mW/cm2にて発電層を形成した場合の特性により規格化を行った結果を表4に示す。
【0046】
【表4】
Figure 0004502534
【0047】
表4より、狙い通り初期のF.F.、変換効率が大幅に改善され、更に光劣化率の低減により光劣化後効率では約16%の改善が実現できた。表2、3の実施形態に比べてIscの増加が大きいのはp層のバルクヘの水素打ち込みによるワイドギャップ化に起因した光吸収ロス低減によると考えられる。
【0048】
ここで、表2〜3で評価した光起電力装置と図2で評価した光起電力装置の光起電力装置基板上での水素濃度プロファイルを比較した結果を図11、図12に示す。図11は図2にて評価した従来の条件、図12は図8で評価した本発明の実施形態の条件における光起電力装置構造でのSIMSにより評価した水素プロファイルである。太陽竜池では凹凸基板を使用している為に水素プロファイルの深さ方向の精度は劣ると考えられるが、従来例に比べて本発明の実施形態を用いた場合は、p/i界面近傍のi側での高水素量含有発電層の抑制効果は一目瞭然であった。
【0049】
次に、基板温度120℃、450mW/cm2、圧力300Pa、SiH4流量:50sccm、H2流量:20000sccm、2%ボロンドープにて形成した微結晶p層上に、基板温度120℃、450mW/cm2、圧力300Pa、SiH4流量:50sccm、H2流量:20000sccmにて形成した微結晶i層を1500Å形成し膜中水素量の膜厚方向の変化をSIMSにより評価した結果を図13に示す。微結晶の場合にも成膜初期に高水素領域が存在し、断面TEM写真よりa―Si:Hであることが確認された。
【0050】
更に、本発明の実施形態であるRFパワー300mW/cm2、圧力100Pa、H2流量:1000sccmにてH2プラズマ処理を行った後に前記条件にて微結晶発電層を形成した際のSIMSによる膜中水素量の評価結果を図14に示す。
【0051】
図14より、図13にみられた高水素量含有発電層の発生が抑制されていることが明らかとなった。
【0052】
更に、光起電力装置を作成して特性を比較した結果を表5に示す。表5は、本発明の実施形態の太陽電池特性を従来例の太陽電池特性にて規格化した値である。表5より、a―Si:H発電層の場合同様、微結晶Si発電層においても、本発明が有効であることが確認された。
【0053】
【表5】
Figure 0004502534
【0054】
以上から明らかなように、本発明によるところのpin型光起電力装置において発電層を形成する下地層の表面近傍の膜中水素量を下地層のバルクの膜中水素量に比べて相対的に少なくすることにより、プラズマCVDの初期放電に起因した光起電力装置の発電層の下地層との界面領域での高水素量含有発電層の水素が低水素量下地層に拡散することにより高水素量含有発電層の発生を抑制でき、光劣化前後において高効率非晶質光起電力装置を得ることが可能であることが明らかとなつた。
【0055】
上記した実施形態においては、p層上にi層を直接形成する際に、下地になるp層の表面近傍の水素量をバルクに比べて少なくした場合につき説明した。同様に、p層上にバッファ層を形成し、このバッファ層上にi層を形成する場合にも下地となるバッファ層のi層との界面の表面近傍の水素量をバルクに比べて少なくすることで、同様の効果が得られることは勿論のことである。
【0056】
さらに、上記した実施形態においては、pinのシングル構造の光起電力装置にこの発明を適用した場合につき説明した。同様に、pin構造の半導体層を数段階積層した所謂タンデム構造の光起電力装置にこの発明は適用できる。即ち、i層の下地になる層の表面近傍の水素量をバルクに比べて少なくするとよい。
【0057】
また、上記した実施形態においては、pin構造の光起電力装置の場合につき説明したが、nip型構造の光起電力装置にもこの発明は適用できる。このnip構造の場合には、下地となるn層の表面近傍の水素量をバルクに比べて少なくすればよい。このように、下地となるn層表面近傍の水素量をバルクに比べて少なくすることで、発電層の水素含有プロファイルが平坦化し、長波長側の感度を上げることができる。
【0058】
【発明の効果】
以上から明らかなように、本発明によれば、発電層を形成する下地層の表面近傍の膜中水素量を下地層のバルクの膜中水素量に比べて相対的に少なくすることにより、プラズマCVDの初期放電に起因した光起電力装置の発電層の下地層との界面領域での高水素量含有発電層の水素が低水素量下地層に拡散することにより高水素量含有発電層の発生を抑制し、高効率非晶質光起電力装置を得ることできる。
【図面の簡単な説明】
【図1】基板温度120℃、圧力100Pa、SiH4流量:50sccm、H2流量:200sccmにて発電層成膜時のRFパワーを50mW/cm2にて膜厚1500Åの発電層を形成した際の、下地p層と発電層近傍の2次イオン質量分析法(SIMS)により評価した水素濃度の深さ方向分布を示す特性図である。
【図2】基板温度120℃、圧力100Pa、SiH4流量:50sccm、H2流量:200sccmにて発電層成膜時のRFパワーを150mW/cm2にて膜厚1500Åの発電層を形成した際の、下地p層と発電層近傍の2次イオン質量分析法(SIMS)により評価した水素濃度の深さ方向分布を示す特性図である。
【図3】p層上にパワー密度25mW/cm2にて初期の50Åを形成し、その後50mW/cm2にて残り1450Åの発電層を形成した場合のSIMSによる水素濃度評価結果を示す特性図である。
【図4】基板温度120℃、RFパワー150mW/cm2、圧力100Pa、SiH4流量:50sccmに固定してH2流量を0〜5000sccmまで変化させて水素希釈率(H2/SiH4)を変化させた際のp層の膜中水素量の変化を示す特性図である。
【図5】図4に示す下地層上に、発電層を基板温度120℃、150mW/cm2、圧力100Pa、8iH4流量:50sccm、H2流量:200sccmにて膜厚150Å形成し、膜中水素量の膜厚方向の変化をSIMSにより評価した結果を示す特性図である。
【図6】図4に示す下地層上に、発電層を基板温度120℃、150mW/cm2、圧力100Pa、SiH4流量:50sccm、H2流量:200sccmにて膜厚1500Å形成し膜中水素量の膜厚方向の変化をSIMSにより評価した結果を示す特性図である。
【図7】下地層を形成後、その表面をRFパワー300mW/cm2、圧力100Pa、Ar流量:1000sccmにてArプラズマ処理を行った際のArプラズマ処理時間と表面から50Åの領域の膜中水素量の関係を示す特性図である。
【図8】図7に示す下地層上、発電層を基板温度120℃、150mW/cm2、圧力100Pa、SiH4流量:50sccm、H2流量:200sccmにて膜厚1500Å形成し膜中水素量の膜厚方向の変化をSIMSにより評価した結果を示す特性図である。
【図9】下地層を形成後、その表面をRFパワー300mW/cm2、圧力100Pa、水素流量:1000sccmにて水素プラズマ処理を行った際のArプラズマ処理時間と表面から50Åの領域の膜中水素量の関係を示す特性図である。
【図10】図9に示す下地層上、発電層を基板温度120℃、150mW/cm2、圧力100Pa、SiH4流量:50sccm、H2流量:200sccmにて膜厚1500Å形成し膜中水素量の膜厚方向の変化をSIMSにより評価した結果を示す特性図である。
【図11】図2にて評価した従来の条件おける光起電力装置構造でのSIMSにより評価した水素プロファイルである。
【図12】図8で評価した本発明の実施形態の条件における光起電力装置構造でのSIMSにより評価した水素プロファイルである。
【図13】基板温度120℃、450mW/cm2、圧力300Pa、SiH4流量:50sccm、H2流量:20000sccm、2%ボロンドープにて形成した微結晶p層上に、基板温度120℃、450mW/cm2、圧力300Pa、SiH4流量:50sccm、H2流量:20000sccmにて形成した微結晶i層を1500Å形成し、膜中水素量の膜厚方向の変化をSIMSにより評価した結果を示す特性図である。
【図14】下地層に、RFパワー300mW/cm2、圧力100Pa、H2流量:1000sccmにてH2プラズマ処理を行った後に、微結晶発電層を形成した際のSIMSによる膜中水素量の評価結果を示す特性図である。
【図15】pin接合を有するpin型a−Si光起電力装置の構造を示す断面図である。
【符号の説明】
1 ガラス基板
2 透明電極
3 p型a−SiC層
4 i型a−Si層(発電層)
5 n型微結晶シリコン
7 裏面金属電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a photovoltaic device, and more particularly to a method for manufacturing a photovoltaic device using an amorphous thin film semiconductor for a photovoltaic layer.
[0002]
[Prior art]
Conventionally, a photovoltaic device mainly made of amorphous silicon (hereinafter referred to as a-Si) formed by glow discharge decomposition of a raw material gas has a feature that it is easy to increase the thickness and area of a thin film. Expected to be a cost photovoltaic device.
[0003]
As this type of photovoltaic device, a pin-type a-Si photovoltaic device having a photoelectric conversion layer composed of a pin junction is known. FIG. 15 shows the structure of such a photovoltaic device. On a glass substrate 1, a transparent electrode 2, such as tin oxide (SnO 2 ), a p-type a-SiC layer 3, an i-type a-Si layer 4, n It is formed by sequentially laminating a type microcrystalline silicon (hereinafter referred to as μc-Si) layer 5 and a back metal electrode 7. In the photovoltaic device, photovoltaic power is generated by light incident through the glass substrate 1. In FIG. 15, a transparent conductive layer 6 such as ZnO or ITO is provided between the back metal electrode 7 and the μc-Si layer 5 in order to suppress alloying or the like.
[0004]
By the way, in the pin-type photovoltaic device using amorphous silicon (a-Si: H) in which light is incident from the above glass substrate, power generation is generally located on the light incident side and has a high photoinduced carrier density. It is known that the film characteristics on the p-layer side of the layer (i-layer) greatly influence the solar cell characteristics.
[0005]
[Problems to be solved by the invention]
However, in the plasma CVD technique generally used for forming a semiconductor layer, the amount of hydrogen in the film is relatively high compared to the bulk at the beginning of discharge, the SiH 2 / SiH bond ratio is large, and the film characteristics are inferior. An a-Si: H film is formed, which causes deterioration of solar cell characteristics not only in the initial stage but also after light deterioration.
[0006]
Furthermore, the development of high-speed film formation technology for power generation layers has been energetically performed in response to the recent demand for cost reduction, but under high-speed film formation conditions, the amount of hydrogen in the power generation layer in the initial generation discharge has increased. The deterioration of the film quality becomes remarkable.
[0007]
The present invention solves these problems and suppresses the generation of a power generation layer containing a high hydrogen content in the interface region between the power generation layer of the photovoltaic device and the underlying layer, thereby obtaining a highly efficient photovoltaic device. With the goal.
[0008]
[Means for Solving the Problems]
The present invention relates to a photovoltaic device manufacturing method in which a photoelectric conversion layer made of a thin film semiconductor having a semiconductor junction therein is formed by chemical vapor deposition, and a base semiconductor layer on which the power generation layer of the photoelectric conversion layer is formed A step of performing plasma treatment with hydrogen gas so that the hydrogen concentration in the film near the surface is relatively lower than the hydrogen concentration in the bulk of the base semiconductor layer; Forming a power generation layer on the surface, and forming a power generation layer having a certain amount of hydrogen concentration profile .
[0009]
According to the above configuration, the amount of hydrogen in the film near the surface of the underlayer that forms the power generation layer is relatively small compared to the amount of hydrogen in the bulk of the underlayer, resulting in the initial discharge of plasma CVD. A hydrogen concentration profile of a certain amount can be formed by diffusing hydrogen in the high hydrogen content-containing power generation layer into the low hydrogen content base layer in the interface region between the power generation layer and the base layer of the photovoltaic device.
[0010]
In addition, the present invention is preferably applied to a photovoltaic device in which the photoelectric conversion layer has a pin junction and light is incident from the p-type semiconductor layer side.
[0011]
Due to the initial discharge of plasma CVD, the amount of hydrogen in the film near the surface of the underlayer that forms the power generation layer in the pin type photovoltaic device is relatively small compared to the amount of hydrogen in the bulk of the underlayer. The high hydrogen content power generation layer diffuses into the low hydrogen content base layer in the interface region between the photovoltaic device power generation layer and the base layer. An amorphous photovoltaic device can be obtained.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
First, the inventor has intensively studied the hydrogen concentration in the i-type a-Si: H film serving as a power generation layer formed by the plasma CVD method described above. For this study, a photovoltaic device was created as follows.
[0015]
A p-layer, an i-layer serving as a power generation layer, and an n-layer were formed using a known RF plasma CVD (13.56 MHz) on a substrate in which SnO 2 was formed as a transparent conductive film on a glass substrate. The formation temperature of i-type a-Si: H serving as a power generation layer is 100 to 300 ° C., the reaction pressure is 5 to 100 Pa, and the RF power is 1 to 500 mW / cm 2 .
[0016]
This power generation layer has a single junction structure with an optical gap Eopt of 1.60 eV and a film thickness of 1000 to 3000 mm.
[0017]
The p layer and the n layer are also formed by using known RF plasma CVD, the doping amount (boron atom / silicon atom in the p layer, phosphorus atom / silicon atom in the n layer) is 1%, and the film thickness of the p layer is constant to 200 mm. The film thickness of the n layer was 100 mm.
[0018]
1 and 2 show a base p layer when a power generation layer (i layer) is formed at a substrate temperature of 120 ° C., a pressure of 100 Pa, a monosilane (SiH 4 ) flow rate: 50 sccm, and a hydrogen (H 2 ) flow rate: 200 sccm. 2 is a characteristic diagram showing a depth direction distribution of hydrogen concentration evaluated by secondary ion mass spectrometry (SIMS) in the vicinity of the power generation layer. FIG. 1 shows that when a power generation layer (i layer) having a film thickness of 1500 Å is formed at an RF power of 50 mW / cm 2 , FIG. 2 shows a power generation layer (i) having a film thickness of 1500 Å at an RF power of 150 mW / cm 2 . In this case, the layer is formed.
[0019]
Unless otherwise specified, in this specification, when a hydrogen profile is confirmed, an underlayer and an i layer are formed on a single crystal silicon (c-Si) substrate having a flat surface. This is to improve the measurement accuracy in the depth direction of the hydrogen profile.
[0020]
Moreover, the cross-sectional TEM (transmission electron microscope) photograph was used for the film thickness of an underlayer / i layer, and interface specification.
[0021]
1 and 2, there is a high hydrogen content power generation layer having a hydrogen content relatively higher than that of the bulk power generation layer in the vicinity of the interface between the base p layer and the power generation layer. When it was high, an increase in the hydrogen concentration peak and an increase in the thickness of the power generation layer containing a high hydrogen content were confirmed. This is thought to be due to the generation of higher-order radicals (SiH 2 radicals) in the plasma due to the initial discharge.
[0022]
The high hydrogen region also exists on the p layer side of the p / i interface specified by the cross-sectional TEM photograph is considered to be due to hydrogen implantation during the formation of the i layer and hydrogen diffusion during the formation of the power generation layer. .
[0023]
Further, an initial 50 mm is formed at a minimum power density of 25 mW / cm 2 capable of stable discharge in a plasma CVD apparatus using low power of the initial discharge, which is generally used as a countermeasure for initial discharge, and then 50 mW / cm. the hydrogen concentration evaluation results by SIMS in the case of forming a power generation layer consisting of i layer remaining 1450Å at 2 shown in FIG.
[0024]
As shown in FIG. 3, by reducing the initial power of 50 layers of the i layer, the hydrogen concentration peak of the high hydrogen content-containing power generation layer near the interface between the base p layer and the power generation layer is reduced, and the thickness of the high hydrogen content power generation layer is reduced. Has been confirmed, but has not been completely resolved.
[0025]
Further, in FIG. 3, when the RF power was continuously increased from 25 mW / cm 2 to 50 mW / cm 2 , formation of a high hydrogen content-containing power generation layer having a hydrogen concentration higher than that of the bulk was observed.
[0026]
Table 1 shows the solar cell characteristics when the RF power during power generation film formation is constant at 50 mW / cm 2 and 150 mW / cm 2 in terms of the solar cell characteristics under the condition that the initial 50 mm of the i layer is reduced in power. Normalized IV and normalized degradation efficiency (500 mW / cm 2 , 25 ° C., 160 min) are shown. All of the samples prepared under the condition of constant RF power are I sc , F.I. F. This is considered to be due to an increase in carrier recombination in the vicinity of the p / i interface.
[0027]
In the case of 50 mW / cm 2 to 150 mW / cm 2 , I sc , F.I. F. A significant difference was also confirmed in the photodegradation rate. It has been confirmed from the film properties that there is no significant difference in the bulk film quality (conductivity, photosensitivity, defect density) between the two, and the hydrogen concentration in the power generation layer with a high hydrogen content near the interface between the underlying p layer and the power generation layer This is thought to be related to an increase in peak and an increase in the thickness of the power generation layer containing a high hydrogen content.
[0028]
[Table 1]
Figure 0004502534
[0029]
Next, the effect of reducing the amount of hydrogen in the film near the surface of the underlayer, which is an embodiment of the present invention, relative to the amount of hydrogen in the bulk of the underlayer was examined. Here, the vicinity of the surface of the underlayer refers to a region having a depth of 50 mm or less from the outermost surface.
[0030]
FIG. 4 shows a hydrogen dilution rate (H 2 / SiH 4 ) with a substrate temperature of 120 ° C., RF power of 150 mW / cm 2 , pressure of 100 Pa, SiH 4 flow rate: 50 sccm, and H 2 flow rate changed from 0 to 5000 sccm. The change of the amount of hydrogen in the film of the a-Si: Hp layer when changing is shown. The p layer used in FIGS. 1 to 3 was formed with H 2 / SiH 4 = 25. On the other hand, in the case shown in FIG. 4, the initial 170% is H 2 / SiH 4 = 25, that is, the hydrogen amount is 21 at. % Condition, the remaining 30% is H 2 / SiH 4 = 60, that is, the amount of hydrogen is 16 at. %, And used as a base layer for forming a power generation layer. The underlayer formed in this way has a hydrogen film concentration in the vicinity of the surface that is relatively lower than other bulk hydrogen film concentrations.
[0031]
Next, the power generation layer is formed with a substrate temperature of 12 ° C., 150 mW / cm 2 , a pressure of 100 Pa, a SiH 4 flow rate of 50 sccm, and an H 2 flow rate of 200 sccm. Changes were evaluated by SIMS. The results are shown in FIGS. 5 and 6, respectively. FIG. 5 shows a power generation layer with a thickness of 150 mm, and FIG. 6 shows a power generation layer with a thickness of 1500 mm.
[0032]
From FIG. 5, it can be seen that there is a high hydrogen content-containing power generation layer having a relatively high hydrogen content in the low hydrogen region and the power generation layer side bulk power generation layer on the surface of the base p layer on the power generation layer side. It was confirmed that the intended structure was confirmed at the initial formation of the power generation layer.
[0033]
Furthermore, it became clear that hydrogen diffusion by heat progressed in the process of forming the power generation layer thick as shown in FIG. 6, and the hydrogen concentration distribution was greatly improved. In other words, high hydrogen content power generation due to diffusion of hydrogen in the high hydrogen content power generation layer to the low hydrogen content base layer in the interface region between the power generation layer of the photovoltaic device and the base layer due to the initial discharge of plasma CVD. Generation of layers could be suppressed.
[0034]
Next, a photovoltaic device was formed, and the result of normalization according to the characteristics obtained when the hydrogen profile was evaluated in FIG. 2, that is, when the power generation layer was formed at a RF power of 150 mW / cm 2 on the homogeneous p-layer was obtained. It shows in Table 2. From Table 2, the initial F.D. F. As a result, the conversion efficiency was greatly improved, and the post light degradation efficiency was improved by about 15% by reducing the light degradation rate.
[0035]
[Table 2]
Figure 0004502534
[0036]
Next, the substrate temperature is 120 ° C., the RF power is 150 mW / cm 2 , the pressure is 10 Pa, the SiH 4 flow rate is fixed to 50 sccm, and the surface is applied to the p layer of 100 mm at the H 2 flow rate: 1260 sccm with the RF power of 300 mW / FIG. 7 shows the relationship between the Ar plasma processing time and the amount of hydrogen in the film in the region 50 mm from the surface when Ar plasma processing is performed at cm 2 , pressure 100 Pa, Ar flow rate: 1000 sccm.
[0037]
FIG. 7 shows that the amount of hydrogen in the vicinity of the surface decreases as the Ar plasma treatment time increases. Using this knowledge, the condition of Ar plasma treatment time of 2 minutes was applied, and the power generation layer was similarly set to the substrate temperature of 120 ° C., 150 mW / cm 2 , pressure of 100 Pa, SiH 4 flow rate: 50 sccm, and H 2 flow rate: 200 sccm. A film thickness of 1500 mm was formed, and the change in the film thickness direction of the amount of hydrogen in the film was evaluated by SIMS. The results are shown in FIG.
[0038]
From FIG. 8, compared with the prior art shown in FIG. 2, the generation of the high hydrogen content power generation layer in the interface region between the power generation layer of the photovoltaic device and the base layer could be suppressed.
[0039]
Further, the results of normalization by the characteristics when a photovoltaic device was formed and the structure in which the hydrogen profile was evaluated in FIG. 2, that is, when the power generation layer was formed on the homogeneous p layer at an RF power of 150 mW / cm 2 are shown. 3 shows.
[0040]
[Table 3]
Figure 0004502534
[0041]
From Table 3, the initial F.D. F. The conversion efficiency was greatly improved, and the post-light degradation efficiency was improved by about 14% by reducing the light degradation rate. It was also confirmed that the same effect can be obtained by a rare gas plasma treatment other than Ar.
[0042]
Next, the substrate temperature is 120 ° C., the RF power is 150 mW / cm 2 , the pressure is 100 Pa, the SiH 4 flow rate is fixed to 50 sccm, the H 2 flow rate is 1250 sccm, and the surface is RF power 300 mW / cm with respect to the 200-cm p layer. 2. H 2 plasma treatment time when H 2 plasma treatment was performed at a pressure of 100 Pa and H 2 flow rate: 1000 sccm, the amount of hydrogen in the film in the region of 50 mm from the surface, and the hydrogen in the film of the bulk p layer of 50 to 200 kg The quantity relationship is shown in FIG.
[0043]
As can be seen from FIG. 9, the amount of hydrogen in the bulk film increases as the H 2 plasma treatment time increases, but the amount of hydrogen in the vicinity of the surface decreases. This is because the increase in the amount of hydrogen in the bulk is due to the hydrogen implantation effect, and in the vicinity of the surface, the hydrogen desorption reaction accompanying the structural relaxation of a-Si: H is promoted by the application of energy to the surface by hydrogen plasma and the increase in the hydrogen concentration. It is thought that this is because.
[0044]
Using this knowledge, the condition of 3 minutes of H 2 plasma treatment time was applied, and the power generation layer was similarly subjected to the substrate temperature of 120 ° C., 150 mW / cm 2 , pressure of 100 Pa, SiH 4 flow rate: 50 sccm, H 2 flow rate: 200 sccm. The film thickness was 1500 mm and the change in the film thickness direction of the hydrogen content in the film was evaluated by SIMS. The result is shown in FIG. From FIG. 10, compared with the conventional example shown in FIG. 2, generation | occurrence | production of the high hydrogen content content electric power generation layer in the interface area | region with the base layer of the electric power generation layer of a photovoltaic apparatus was able to be suppressed.
[0045]
Furthermore, the results of normalization by the characteristics when a photovoltaic device is formed and the structure in which the hydrogen profile is evaluated in FIG. 2, that is, when a power generation layer is formed on a homogeneous p layer at an RF power of 150 mW / cm 2 are shown. 4 shows.
[0046]
[Table 4]
Figure 0004502534
[0047]
From Table 4, the initial F.D. F. The conversion efficiency was greatly improved, and the post-light degradation efficiency was improved by about 16% by reducing the light degradation rate. It can be considered that the increase in Isc is larger than that in the embodiments of Tables 2 and 3 due to the reduction in light absorption loss due to the wide gap due to hydrogen implantation into the bulk of the p layer.
[0048]
Here, the hydrogen concentration profile on the photovoltaic device substrate of the photovoltaic device evaluated in Tables 2 to 3 and the photovoltaic device evaluated in FIG. 2 is compared and shown in FIGS. FIG. 11 shows the hydrogen profile evaluated by SIMS in the photovoltaic device structure under the conventional conditions evaluated in FIG. 2, and FIG. 12 shows the conditions of the embodiment of the present invention evaluated in FIG. Although the solar dragon pond uses an uneven substrate, it is considered that the accuracy of the hydrogen profile in the depth direction is inferior. However, when the embodiment of the present invention is used as compared with the conventional example, it is near the p / i interface. The suppression effect of the high hydrogen content power generation layer on the i side was obvious.
[0049]
Next, a substrate temperature of 120 ° C., 450 mW / cm 2 , a pressure of 300 Pa, a SiH 4 flow rate of 50 sccm, a H 2 flow rate of 20000 sccm, and a microcrystalline p layer formed by 2% boron doping, a substrate temperature of 120 ° C. and 450 mW / cm. 2, pressure 300 Pa, SiH 4 flow rate: 50 sccm, H 2 flow rate: the results of the change in the film thickness direction of 1500Å formed Makuchu hydrogen amount microcrystalline i layer formed was evaluated by SIMS at 20000sccm 13. Even in the case of microcrystals, a high hydrogen region was present at the initial stage of film formation, and a-Si: H was confirmed from a cross-sectional TEM photograph.
[0050]
Furthermore, a film by SIMS when a microcrystalline power generation layer is formed under the above conditions after performing H 2 plasma treatment with RF power of 300 mW / cm 2 , pressure of 100 Pa, H 2 flow rate: 1000 sccm, which is an embodiment of the present invention The evaluation result of the amount of medium hydrogen is shown in FIG.
[0051]
From FIG. 14, it became clear that generation | occurrence | production of the high hydrogen content containing electric power generation layer seen by FIG. 13 is suppressed.
[0052]
Further, Table 5 shows the result of comparing the characteristics of the photovoltaic device. Table 5 is a value obtained by normalizing the solar cell characteristics of the embodiment of the present invention with the solar cell characteristics of the conventional example. From Table 5, it was confirmed that the present invention is effective in the microcrystalline Si power generation layer as in the case of the a-Si: H power generation layer.
[0053]
[Table 5]
Figure 0004502534
[0054]
As is clear from the above, in the pin type photovoltaic device according to the present invention, the amount of hydrogen in the film near the surface of the underlayer forming the power generation layer is relatively smaller than the amount of hydrogen in the underlayer bulk. By reducing the amount of hydrogen in the power generation layer containing the high hydrogen content in the interface region with the base layer of the power generation layer of the photovoltaic device due to the initial discharge of plasma CVD, the hydrogen is diffused into the low hydrogen content base layer. It has been clarified that generation of a quantity-containing power generation layer can be suppressed and a highly efficient amorphous photovoltaic device can be obtained before and after photodegradation.
[0055]
In the above-described embodiment, the case where the amount of hydrogen in the vicinity of the surface of the p layer serving as the base is reduced compared to the bulk when forming the i layer directly on the p layer has been described. Similarly, when a buffer layer is formed on the p layer and an i layer is formed on the buffer layer, the amount of hydrogen in the vicinity of the surface of the interface with the i layer of the buffer layer serving as the base is reduced as compared with the bulk. Of course, the same effect can be obtained.
[0056]
Further, in the above-described embodiment, the case where the present invention is applied to a photovoltaic device having a single pin structure has been described. Similarly, the present invention can be applied to a so-called tandem photovoltaic device in which several pin-structure semiconductor layers are stacked. That is, the amount of hydrogen in the vicinity of the surface of the layer serving as the base of the i layer may be smaller than that of the bulk.
[0057]
In the above-described embodiment, the case of a photovoltaic device having a pin structure has been described. However, the present invention can also be applied to a photovoltaic device having a nip type structure. In the case of this nip structure, the amount of hydrogen in the vicinity of the surface of the n layer serving as the base may be reduced compared to the bulk. In this way, by reducing the amount of hydrogen in the vicinity of the surface of the n layer serving as the base as compared with the bulk, the hydrogen-containing profile of the power generation layer is flattened, and the sensitivity on the long wavelength side can be increased.
[0058]
【The invention's effect】
As is clear from the above, according to the present invention, the amount of hydrogen in the film near the surface of the underlayer that forms the power generation layer is relatively reduced compared to the amount of hydrogen in the bulk of the underlayer. Generation of a high hydrogen content power generation layer by diffusion of hydrogen in the high hydrogen content power generation layer to the low hydrogen content base layer in the interface region between the power generation layer of the photovoltaic device and the base layer due to the initial discharge of CVD And a highly efficient amorphous photovoltaic device can be obtained.
[Brief description of the drawings]
FIG. 1 shows a case where a power generation layer having a thickness of 1500 mm is formed with a substrate temperature of 120 ° C., a pressure of 100 Pa, an SiH 4 flow rate of 50 sccm, an H 2 flow rate of 200 sccm and an RF power during film formation of a power generation layer of 50 mW / cm 2 . It is a characteristic view which shows the depth direction distribution of the hydrogen concentration evaluated by the secondary ion mass spectrometry (SIMS) of the base p layer and the electric power generation layer vicinity.
FIG. 2 shows a case where a power generation layer having a thickness of 1500 mm is formed with a substrate temperature of 120 ° C., a pressure of 100 Pa, an SiH 4 flow rate of 50 sccm, an H 2 flow rate of 200 sccm and an RF power during film formation of a power generation layer of 150 mW / cm 2 . It is a characteristic view which shows the depth direction distribution of the hydrogen concentration evaluated by the secondary ion mass spectrometry (SIMS) of the base p layer and the electric power generation layer vicinity.
[3] The initial 50Å was formed by the power density 25 mW / cm 2 on the p layer, then characteristic diagram showing the hydrogen concentration evaluation results by SIMS in the case of forming the power generation layer of the remaining 1450Å at 50 mW / cm 2 It is.
FIG. 4 shows a substrate temperature of 120 ° C., RF power of 150 mW / cm 2 , pressure of 100 Pa, SiH 4 flow rate: 50 sccm, H 2 flow rate is changed from 0 to 5000 sccm, and hydrogen dilution rate (H 2 / SiH 4 ) is changed. It is a characteristic view which shows the change of the hydrogen amount in the film | membrane of p layer at the time of making it change.
5 is formed on the underlayer shown in FIG. 4 by forming a power generation layer with a substrate temperature of 120 ° C., 150 mW / cm 2 , pressure of 100 Pa, 8iH 4 flow rate: 50 sccm, H 2 flow rate: 200 sccm, and a film thickness of 150 mm. It is a characteristic view which shows the result of having evaluated the change of the film thickness direction of hydrogen amount by SIMS.
6 is formed on the underlayer shown in FIG. 4 by forming a power generation layer with a substrate temperature of 120 ° C., 150 mW / cm 2 , pressure of 100 Pa, SiH 4 flow rate: 50 sccm, H 2 flow rate: 200 sccm and a film thickness of 1500 μm. It is a characteristic view which shows the result of having evaluated the change of the film thickness direction of quantity by SIMS.
FIG. 7 shows that after forming the underlayer, the surface is subjected to Ar plasma treatment at an RF power of 300 mW / cm 2 , a pressure of 100 Pa, and an Ar flow rate of 1000 sccm, and an Ar plasma treatment time and a film in a region of 50 mm from the surface. It is a characteristic view which shows the relationship of hydrogen amount.
FIG. 8 shows that the power generation layer is formed on the base layer shown in FIG. 7 with a substrate temperature of 120 ° C., 150 mW / cm 2 , pressure of 100 Pa, SiH 4 flow rate: 50 sccm, H 2 flow rate: 200 sccm and a film thickness of 1500 Å. It is a characteristic view which shows the result of having evaluated the change of the film thickness direction of this by SIMS.
FIG. 9 shows that after forming the underlayer, the surface is subjected to hydrogen plasma treatment at an RF power of 300 mW / cm 2 , a pressure of 100 Pa, and a hydrogen flow rate of 1000 sccm. It is a characteristic view which shows the relationship of hydrogen amount.
10 is formed on the base layer shown in FIG. 9 by forming a power generation layer with a substrate temperature of 120 ° C., 150 mW / cm 2 , pressure of 100 Pa, SiH 4 flow rate: 50 sccm, H 2 flow rate: 200 sccm and a film thickness of 1500 Å. It is a characteristic view which shows the result of having evaluated the change of the film thickness direction of this by SIMS.
FIG. 11 is a hydrogen profile evaluated by SIMS in the photovoltaic device structure under the conventional conditions evaluated in FIG.
12 is a hydrogen profile evaluated by SIMS in a photovoltaic device structure under the conditions of the embodiment of the present invention evaluated in FIG.
FIG. 13 shows a substrate temperature of 120 ° C., 450 mW / cm 2 , a pressure of 300 Pa, a SiH 4 flow rate of 50 sccm, a H 2 flow rate of 20000 sccm, and a microcrystalline p layer formed by 2% boron doping. Characteristic diagram showing the result of evaluating the change in the film thickness direction of the amount of hydrogen in the film by SIMS after forming 1500 μm of microcrystalline i layer formed at cm 2 , pressure 300 Pa, SiH 4 flow rate: 50 sccm, H 2 flow rate: 20000 sccm It is.
FIG. 14 shows the amount of hydrogen in a film by SIMS when a microcrystalline power generation layer was formed after performing an H 2 plasma treatment on an underlayer at an RF power of 300 mW / cm 2 , a pressure of 100 Pa, and an H 2 flow rate: 1000 sccm. It is a characteristic view which shows an evaluation result.
FIG. 15 is a cross-sectional view showing the structure of a pin-type a-Si photovoltaic device having a pin junction.
[Explanation of symbols]
1 glass substrate 2 transparent electrode 3 p-type a-SiC layer 4 i-type a-Si layer (power generation layer)
5 n-type microcrystalline silicon 7 Back side metal electrode

Claims (2)

内部に半導体接合を有する薄膜半導体からなる光電変換層を化学的気相成長法により形成する光起電力装置の製造方法において、
前記光電変換層の発電層が形成される下地半導体層の表面に、該表面近傍の膜中水素の濃度が下地半導体層のバルクの膜中水素濃度に比べて相対的に少なくなるように、水素ガスによるプラズマ処理を施す工程と、
水素の濃度が少なくされた前記表面上に発電層を形成する工程と、
を備え、一定量の水素濃度プロファイルを有する発電層を形成することを特徴とする光起電力装置の製造方法。
In a method for manufacturing a photovoltaic device, in which a photoelectric conversion layer made of a thin film semiconductor having a semiconductor junction therein is formed by chemical vapor deposition,
Hydrogen is added to the surface of the base semiconductor layer on which the power generation layer of the photoelectric conversion layer is formed so that the concentration of hydrogen in the film near the surface is relatively smaller than the hydrogen concentration in the bulk of the base semiconductor layer. Applying plasma treatment with gas;
Forming a power generation layer on the surface where the concentration of hydrogen is reduced;
And forming a power generation layer having a certain amount of hydrogen concentration profile .
前記光電変換層はpin接合を有し、p型半導体層側から光が入射されることを特徴とする請求項1に記載の光起電力装置の製造方法。  The method for manufacturing a photovoltaic device according to claim 1, wherein the photoelectric conversion layer has a pin junction, and light is incident from the p-type semiconductor layer side.
JP2001069593A 2001-03-13 2001-03-13 Photovoltaic device manufacturing method Expired - Lifetime JP4502534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001069593A JP4502534B2 (en) 2001-03-13 2001-03-13 Photovoltaic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001069593A JP4502534B2 (en) 2001-03-13 2001-03-13 Photovoltaic device manufacturing method

Publications (2)

Publication Number Publication Date
JP2002270872A JP2002270872A (en) 2002-09-20
JP4502534B2 true JP4502534B2 (en) 2010-07-14

Family

ID=18927611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001069593A Expired - Lifetime JP4502534B2 (en) 2001-03-13 2001-03-13 Photovoltaic device manufacturing method

Country Status (1)

Country Link
JP (1) JP4502534B2 (en)

Also Published As

Publication number Publication date
JP2002270872A (en) 2002-09-20

Similar Documents

Publication Publication Date Title
US7960646B2 (en) Silicon-based thin-film photoelectric converter and method of manufacturing the same
EP2110859B1 (en) Laminate type photoelectric converter and method for fabricating the same
CN1135635C (en) Plasma deposition process to enhance the optical and electrical characteristics of optoelectronic and electronic devices
US6242686B1 (en) Photovoltaic device and process for producing the same
US6383898B1 (en) Method for manufacturing photoelectric conversion device
JP5314697B2 (en) Silicon-based thin film solar cell and method for manufacturing the same
KR101262871B1 (en) Photovoltaic device including flexible or inflexible substrate and method for manufacturing the same
US20150136210A1 (en) Silicon-based solar cells with improved resistance to light-induced degradation
JP2008283075A (en) Manufacturing method of photoelectric conversion device
JP3248227B2 (en) Thin film solar cell and method of manufacturing the same
JP4502534B2 (en) Photovoltaic device manufacturing method
KR20240127440A (en) Solar cell and method of forming same
JPWO2005109526A1 (en) Thin film photoelectric converter
TWI790245B (en) Manufacturing method of photoelectric conversion device
CN110383496B (en) Solar cell apparatus and method for forming single, tandem and heterojunction system solar cell apparatus
JPS6132416A (en) Manufacture of semiconductor device
JP4124309B2 (en) Photovoltaic device manufacturing method
JPH0685291A (en) Semiconductor device and its manufacture
JP2644901B2 (en) Method for manufacturing pin type amorphous silicon solar cell
WO2006006368A1 (en) Method for manufacturing thin film photoelectric converter
JPH0562830B2 (en)
JPH06268240A (en) Thin film solar cell and method of manufacturing the same
JP2013008750A (en) Thin film silicon based solar cell
CN103797590A (en) Thin film photoelectric conversion device and method for manufacturing same
JP2011192795A (en) Photoelectric conversion device, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081128

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100420

R151 Written notification of patent or utility model registration

Ref document number: 4502534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

EXPY Cancellation because of completion of term