[go: up one dir, main page]

JP2002246273A - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor

Info

Publication number
JP2002246273A
JP2002246273A JP2001036543A JP2001036543A JP2002246273A JP 2002246273 A JP2002246273 A JP 2002246273A JP 2001036543 A JP2001036543 A JP 2001036543A JP 2001036543 A JP2001036543 A JP 2001036543A JP 2002246273 A JP2002246273 A JP 2002246273A
Authority
JP
Japan
Prior art keywords
anode body
oxide film
film layer
dielectric oxide
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001036543A
Other languages
Japanese (ja)
Inventor
Tatsuji Aoyama
達治 青山
Koichi Kojima
浩一 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001036543A priority Critical patent/JP2002246273A/en
Priority to CN 02107712 priority patent/CN1280853C/en
Publication of JP2002246273A publication Critical patent/JP2002246273A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

(57)【要約】 【課題】 陽極酸化中に発生するガス等により陽極体の
外表面に形成される誘電体酸化皮膜層が不均質になって
漏れ電流特性や誘電体酸化皮膜層の強度が低下するとい
う課題を解決し、均質な誘電体酸化皮膜層を形成して優
れた性能を安定して発揮することができる固体電解コン
デンサの製造方法を提供することを目的とする。 【解決手段】 陽極酸化の途中で一旦陽極体を化成液か
ら引き上げて熱処理した後、この陽極体を化成液中に戻
して再度陽極酸化することにより、誘電体酸化皮膜層中
の欠陥部や不純物が少ない均質な誘電体酸化皮膜層を形
成することができ、その結果、漏れ電流の低減と誘電体
酸化皮膜層の耐圧が向上し、より高性能で高信頼性の固
体電解コンデンサを提供することができる。
(57) [Summary] [Problem] A dielectric oxide film layer formed on the outer surface of an anode body becomes non-uniform due to a gas or the like generated during anodic oxidation, resulting in leakage current characteristics and strength of the dielectric oxide film layer. It is an object of the present invention to provide a method for manufacturing a solid electrolytic capacitor capable of solving the problem of deterioration and forming a uniform dielectric oxide film layer to stably exhibit excellent performance. SOLUTION: In the course of anodic oxidation, the anode body is once pulled up from the chemical conversion solution and heat-treated, and then the anode body is returned to the chemical formation solution and anodized again, so that a defective portion or an impurity in the dielectric oxide film layer is formed. To form a homogeneous dielectric oxide film layer with less leakage, and as a result, to reduce leakage current and improve the withstand voltage of the dielectric oxide film layer to provide a solid electrolytic capacitor with higher performance and higher reliability. Can be.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はタンタル等の弁作用
金属粉末を用いた固体電解コンデンサの製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor using a valve metal powder such as tantalum.

【0002】[0002]

【従来の技術】図2はこの種の固体電解コンデンサの構
成を示した断面図であり、同図において、1は陽極体、
2はこの陽極体1に埋設されたタンタル線からなる陽極
導出線、3は上記陽極体1の外表面に形成された誘電体
酸化皮膜層、4はこの誘電体酸化皮膜層3上に形成され
た固体電解質層、5と6はこの固体電解質層4上に形成
されたカーボン層と銀ペースト層であり、このカーボン
層5と銀ペースト層6により陰極層が構成されている。
2. Description of the Related Art FIG. 2 is a sectional view showing the structure of a solid electrolytic capacitor of this type. In FIG.
Reference numeral 2 denotes an anode lead wire made of a tantalum wire buried in the anode body 1, reference numeral 3 denotes a dielectric oxide film layer formed on the outer surface of the anode body 1, and reference numeral 4 denotes a dielectric oxide film layer formed on the dielectric oxide film layer 3. The solid electrolyte layers 5, 5 and 6 are a carbon layer and a silver paste layer formed on the solid electrolyte layer 4, and the carbon layer 5 and the silver paste layer 6 constitute a cathode layer.

【0003】次に、このように構成された固体電解コン
デンサの従来の製造方法について図9を用いて説明する
と、まず、成形工程において、弁作用金属であるタンタ
ルの粉末を加圧成形金型内に充填すると共にタンタル線
からなる陽極導出線2を埋設した状態で所望の形状に成
形する。次に、この成形された陽極体1を高真空雰囲気
中で焼結する。次に、この陽極体1をリン酸水溶液や硝
酸水溶液等の化成液中で希望する容量に見合った電圧を
印加して陽極酸化することにより陽極体1の外表面に誘
電体酸化皮膜層3を形成する。次に、電解重合や化学重
合により上記誘電体酸化皮膜層3上に二酸化マンガンや
導電性高分子からなる固体電解質層4を形成する。次
に、上記固体電解質層4上にカーボン層5と銀ペースト
層6を設けることにより陰極層を形成して固体電解コン
デンサが製造されるものであった。
Next, a conventional method for manufacturing a solid electrolytic capacitor having the above-described structure will be described with reference to FIG. 9. First, in a molding step, a powder of tantalum, which is a valve metal, is placed in a pressure molding die. And molded into a desired shape with the anode lead wire 2 made of tantalum wire embedded. Next, the formed anode body 1 is sintered in a high vacuum atmosphere. Next, the anode body 1 is anodized in a chemical solution such as a phosphoric acid aqueous solution or a nitric acid aqueous solution by applying a voltage corresponding to a desired capacity, thereby forming a dielectric oxide film layer 3 on the outer surface of the anode body 1. Form. Next, a solid electrolyte layer 4 made of manganese dioxide or a conductive polymer is formed on the dielectric oxide film layer 3 by electrolytic polymerization or chemical polymerization. Next, a carbon layer 5 and a silver paste layer 6 were provided on the solid electrolyte layer 4 to form a cathode layer, whereby a solid electrolytic capacitor was manufactured.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記従来
の固体電解コンデンサの製造方法では、陽極体1の外表
面に誘電体酸化皮膜層3を陽極酸化により形成するため
の化成工程において、希望する容量に見合った電圧を印
加し、それを一定時間保持して陽極酸化を行うものであ
るが、単に希望する容量に見合った電圧を一定時間印加
するだけでは陽極酸化中に発生するガスや誘電体酸化皮
膜層3の欠陥部への電流集中、また粉末や化成液中の不
純物により、陽極体1の外表面に形成される誘電体酸化
皮膜層3が不均質になりやすく、これにより、漏れ電流
特性や誘電体酸化皮膜層3の電気的、物理的強度が低下
するという課題があった。
However, in the above-mentioned conventional method for manufacturing a solid electrolytic capacitor, in the formation step for forming the dielectric oxide film layer 3 on the outer surface of the anode body 1 by anodic oxidation, a desired capacity is obtained. The anodic oxidation is performed by applying the appropriate voltage and holding it for a certain period of time.However, simply applying the voltage corresponding to the desired capacity for a certain period of time applies to the gas and dielectric oxide film generated during anodic oxidation. The dielectric oxide film layer 3 formed on the outer surface of the anode body 1 is likely to be non-uniform due to current concentration on the defective portion of the layer 3 and impurities in the powder and the chemical conversion solution. There is a problem that the electrical and physical strength of the dielectric oxide film layer 3 is reduced.

【0005】本発明はこのような従来の課題を解決し、
均質な誘電体酸化皮膜層を形成して優れた性能を安定し
て発揮することができる高信頼性の固体電解コンデンサ
を得ることが可能な固体電解コンデンサの製造方法を提
供することを目的とするものである。
The present invention solves such a conventional problem,
It is an object of the present invention to provide a method for manufacturing a solid electrolytic capacitor capable of obtaining a highly reliable solid electrolytic capacitor capable of stably exhibiting excellent performance by forming a uniform dielectric oxide film layer. Things.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に本発明の請求項1に記載の発明は、特に、弁作用金属
粉末を所望の形状に成形し、これを焼結して陽極体を作
製し、この陽極体を化成液中で陽極酸化して外表面に誘
電体酸化皮膜層を形成し、この誘電体酸化皮膜層上に固
体電解質層と陰極層を順次形成する固体電解コンデンサ
の製造方法において、上記陽極酸化の途中で一旦陽極体
を化成液から引き上げて熱処理した後、この陽極体を化
成液中に戻して再度陽極酸化するようにした固体電解コ
ンデンサの製造方法であり、この方法により、均質で緻
密な誘電体酸化皮膜層を形成することができるようにな
るために漏れ電流が減少し、信頼性の向上を図ることが
できるという作用効果が得られる。
In order to solve the above-mentioned problems, the invention according to the first aspect of the present invention is particularly directed to a method of forming a valve metal powder into a desired shape, and sintering the powder to form an anode body. The anode body is anodized in a chemical conversion solution to form a dielectric oxide film layer on the outer surface, and a solid electrolyte layer and a cathode layer are sequentially formed on the dielectric oxide film layer. In the manufacturing method, a method for manufacturing a solid electrolytic capacitor in which the anode body is once pulled up from the chemical conversion solution during the anodization and heat-treated, and then the anode body is returned to the chemical formation solution and anodized again, According to the method, a uniform and dense dielectric oxide film layer can be formed, so that the leakage current is reduced and the effect of improving reliability can be obtained.

【0007】請求項2に記載の発明は、請求項1に記載
の発明において、陽極体を化成液から引き上げて熱処理
するタイミングを陽極酸化用電圧の保持時間の前半部分
で行うようにしたものであり、この方法により、請求項
1に記載の発明により得られる作用効果をより効率良く
得ることができるという作用効果が得られる。
According to a second aspect of the present invention, in the first aspect of the invention, the timing at which the anode body is pulled up from the chemical conversion solution and heat-treated is performed in the first half of the holding time of the anodizing voltage. In this case, this method has an effect that the effect obtained by the first aspect can be obtained more efficiently.

【0008】請求項3に記載の発明は、請求項1に記載
の発明において、化成液から引き上げた陽極体を200
〜400℃で、かつ20〜60分間熱処理するようにし
たものであり、この方法により、請求項1に記載の発明
により得られる作用効果をより効率良く得ることができ
るという作用効果が得られる。
According to a third aspect of the present invention, in the first aspect of the present invention, the anode body pulled up from the chemical conversion solution is 200 times.
The heat treatment is performed at a temperature of up to 400 ° C. for 20 to 60 minutes. According to this method, the operation and effect obtained by the invention of claim 1 can be obtained more efficiently.

【0009】請求項4に記載の発明は、請求項1に記載
の発明において、化成液から引き上げた陽極体を多湿雰
囲気中で熱処理するようにしたものであり、この方法に
より、請求項1に記載の発明により得られる作用効果を
より効率良く得ることができるという作用効果が得られ
る。
According to a fourth aspect of the present invention, in the first aspect, the anode body pulled up from the chemical conversion solution is heat-treated in a humid atmosphere. The operation and effect that the operation and effect obtained by the described invention can be obtained more efficiently can be obtained.

【0010】請求項5に記載の発明は、請求項1に記載
の発明において、化成液から引き上げた陽極体を活性ま
たは不活性ガス雰囲気中で熱処理するようにしたもので
あり、この方法により、請求項1に記載の発明により得
られる作用効果をより効率良く得ることができるという
作用効果が得られる。
According to a fifth aspect of the present invention, in the first aspect of the present invention, the anode body pulled up from the chemical conversion solution is heat-treated in an active or inert gas atmosphere. The operation and effect obtained by the invention according to claim 1 can be obtained more efficiently.

【0011】請求項6に記載の発明は、請求項1に記載
の発明において、化成液から引き上げた陽極体を真空雰
囲気中で熱処理するようにしたものであり、この方法に
より、請求項1に記載の発明により得られる作用効果を
より効率良く得ることができるという作用効果が得られ
る。
According to a sixth aspect of the present invention, in the first aspect, the anode body pulled up from the chemical conversion solution is heat-treated in a vacuum atmosphere. The operation and effect that the operation and effect obtained by the described invention can be obtained more efficiently can be obtained.

【0012】請求項7に記載の発明は、請求項1に記載
の発明において、化成液から引き上げた陽極体を熱処理
する前に洗浄を行うようにしたものであり、この方法に
より、陽極体に付着した化成液が強制的に除去されるた
め、請求項1に記載の発明により得られる作用効果をよ
り効率良く得ることができるという作用効果が得られ
る。
According to a seventh aspect of the present invention, in the first aspect of the present invention, the anode body lifted from the chemical conversion solution is washed before heat-treating the anode body. Since the adhering chemical solution is forcibly removed, the operation and effect obtained by the invention of claim 1 can be obtained more efficiently.

【0013】なお、この洗浄を温水により行うことで、
より一層顕著な効果が得られる。
[0013] By performing this washing with warm water,
An even more remarkable effect is obtained.

【0014】[0014]

【発明の実施の形態】以下、本発明の一実施の形態を用
いて、本発明の請求項1〜7に記載の発明について詳細
に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described in detail with reference to claims 1 to 7 of the present invention.

【0015】図2は本発明の一実施の形態による固体電
解コンデンサの構成を示した断面図であり、同図におい
て、1は陽極体、2はこの陽極体1に埋設されたタンタ
ル線からなる陽極導出線、3は上記陽極体1の外表面に
形成された誘電体酸化皮膜層、4はこの誘電体酸化皮膜
層3上に形成された固体電解質層、5と6はこの固体電
解質層4上に形成されたカーボン層と銀ペースト層であ
り、このカーボン層5と銀ペースト層6により陰極層が
構成されているのは上記従来の技術の項で説明した従来
の固体電解コンデンサと同様である。
FIG. 2 is a sectional view showing the structure of a solid electrolytic capacitor according to an embodiment of the present invention. In FIG. 2, reference numeral 1 denotes an anode body, and 2 denotes a tantalum wire embedded in the anode body 1. Anode lead wire 3 is a dielectric oxide film layer formed on the outer surface of anode body 1, 4 is a solid electrolyte layer formed on dielectric oxide film layer 3, 5 and 6 are solid electrolyte layers 4 The carbon layer and the silver paste layer formed thereon, and the cathode layer is constituted by the carbon layer 5 and the silver paste layer 6 are the same as those of the conventional solid electrolytic capacitor described in the section of the prior art. is there.

【0016】次に、このように構成された本実施の形態
による固体電解コンデンサの製造方法について図1を用
いて説明する。まず、成形工程において、弁作用金属で
あるタンタルの粉末を加圧成形金型内に充填すると共に
タンタル線からなる陽極導出線2を埋設した状態で所望
の形状に成形する。次に、この成形された陽極体1を高
真空雰囲気中で焼結する。
Next, a method of manufacturing the solid electrolytic capacitor according to the present embodiment thus configured will be described with reference to FIG. First, in a molding step, powder of tantalum as a valve metal is filled in a pressure molding die, and is molded into a desired shape with the anode lead-out wire 2 made of a tantalum wire embedded. Next, the formed anode body 1 is sintered in a high vacuum atmosphere.

【0017】次に、この陽極体1をリン酸水溶液からな
る化成液中で希望する容量に見合った電圧を印加して陽
極酸化することにより陽極体1の外表面に誘電体酸化皮
膜層3を形成する。次に、この陽極酸化の途中で上記陽
極体1を化成液中から引き上げ、これを温水を用いて残
留するリン酸を洗い流した後、熱処理炉にて加熱処理を
する。次に、この加熱処理後の陽極体1を再び化成液中
に戻し、再度電圧を印加して陽極酸化することにより陽
極体1の外表面に誘電体酸化皮膜層3を形成する。
Next, the anode body 1 is anodized by applying a voltage corresponding to a desired capacity in a chemical conversion solution composed of a phosphoric acid aqueous solution, thereby forming a dielectric oxide film layer 3 on the outer surface of the anode body 1. Form. Next, during the anodic oxidation, the anode body 1 is pulled out of the chemical conversion solution, the remaining phosphoric acid is washed away using warm water, and then heat treatment is performed in a heat treatment furnace. Next, the anode body 1 after the heat treatment is returned to the chemical conversion solution, and a voltage is applied again to perform anodic oxidation, thereby forming a dielectric oxide film layer 3 on the outer surface of the anode body 1.

【0018】次に、電解重合(または化学重合)により
上記誘電体酸化皮膜層3上に導電性高分子(または二酸
化マンガン)からなる固体電解質層4を形成する。次
に、上記固体電解質層4上にカーボン層5と銀ペースト
層6を設けることにより陰極層を形成して本発明の固体
電解コンデンサを作製した。
Next, a solid electrolyte layer 4 made of a conductive polymer (or manganese dioxide) is formed on the dielectric oxide film layer 3 by electrolytic polymerization (or chemical polymerization). Next, a cathode layer was formed by providing a carbon layer 5 and a silver paste layer 6 on the solid electrolyte layer 4 to produce a solid electrolytic capacitor of the present invention.

【0019】(実施例1)上記陽極酸化の途中で陽極体
1を化成液中から引き上げるタイミングを、陽極酸化に
必要な時間(基本的には120分間とした)の1/4、
2/4、3/4、4/4の各タイミングで夫々行い、こ
の引き上げた陽極体1を300℃の大気中雰囲気で、1
0分、30分、60分、90分間の加熱処理を夫々行っ
た。
(Example 1) The timing of pulling up the anode body 1 from the chemical conversion solution during the above-described anodic oxidation was set to 1 / of the time required for anodic oxidation (basically 120 minutes),
The operation is performed at each timing of 2/4, 3/4, and 4/4.
Heat treatment was performed for 0 minute, 30 minutes, 60 minutes, and 90 minutes, respectively.

【0020】このようにして製造した本実施例1の陽極
体1と比較例としての従来品を液中にて検査を行い、化
成電圧保持時間での熱処理のタイミングと漏れ電流の関
係を測定した結果を図3に、化成電圧保持時間での熱処
理のタイミングと誘電体酸化皮膜層の耐圧の関係を測定
した結果を図4に示す。
The anode body 1 of Example 1 thus manufactured and a conventional product as a comparative example were inspected in a liquid, and the relationship between the timing of heat treatment at the formation voltage holding time and the leakage current was measured. FIG. 3 shows the results, and FIG. 4 shows the results of measuring the relationship between the timing of heat treatment during the formation voltage holding time and the withstand voltage of the dielectric oxide film layer.

【0021】なお、検査条件としては、10vol%リ
ン酸水溶液、温度25℃、印加電圧は化成電圧の70%
で測定した。また、誘電体酸化皮膜層3の強度は15v
ol%アジピン酸アンモニウム水溶液、印加電流100
μA/素子とし、従来品を100として比較した。
The test conditions were a 10 vol% phosphoric acid aqueous solution, a temperature of 25 ° C., and an applied voltage of 70% of the formation voltage.
Was measured. The strength of the dielectric oxide film layer 3 is 15 V
ol% ammonium adipate aqueous solution, applied current 100
μA / element was compared, and the conventional product was compared with 100.

【0022】(実施例2)上記実施例1において、熱処
理温度を150℃、200℃、250℃、300℃、3
50℃、400℃、450℃、500℃、550℃の夫
々において行った以外は実施例1と同様にして検査を行
い、化成電圧保持時間での熱処理のタイミングと漏れ電
流の関係を測定した結果を図5に、化成電圧保持時間で
の熱処理のタイミングと誘電体酸化皮膜層の耐圧の関係
を測定した結果を図6に示す。
(Example 2) In Example 1, the heat treatment temperature was set at 150 ° C, 200 ° C, 250 ° C, 300 ° C,
Inspection was performed in the same manner as in Example 1 except that the test was performed at each of 50 ° C., 400 ° C., 450 ° C., 500 ° C., and 550 ° C., and the results of measuring the relationship between the timing of heat treatment and the leakage current during the formation voltage holding time FIG. 5 shows the relationship between the timing of heat treatment during the formation voltage holding time and the breakdown voltage of the dielectric oxide film layer, and FIG. 6 shows the results.

【0023】(実施例3)上記実施例2において、熱処
理雰囲気を大気中、30%H2O中、85%H2O中、真
空中、N2中、Ar中の夫々において行った以外は実施
例2と同様にして検査を行い、化成電圧保持時間での熱
処理のタイミングと漏れ電流の関係を測定した結果を図
7に、化成電圧保持時間での熱処理のタイミングと誘電
体酸化皮膜層の耐圧の関係を測定した結果を図8に示
す。
Example 3 Example 2 was repeated except that the heat treatment was performed in air, 30% H 2 O, 85% H 2 O, vacuum, N 2 , and Ar. Inspection was performed in the same manner as in Example 2, and the result of measuring the relationship between the timing of the heat treatment at the formation voltage holding time and the leakage current was shown in FIG. FIG. 8 shows the result of measuring the relationship between the breakdown voltages.

【0024】以上の実施例1〜実施例3の結果から明ら
かなように、陽極酸化の途中で一旦陽極体1を化成液か
ら引き上げて熱処理した後、この陽極体1を化成液中に
戻して再度陽極酸化するようにしたことにより、陽極体
1は漏れ電流に悪影響を及ぼすカーボン量が減少し、漏
れ電流の低減に効果があることが分かる。
As is clear from the results of Examples 1 to 3, after the anode body 1 is once pulled up from the chemical forming solution during the anodic oxidation and heat-treated, the anode body 1 is returned to the chemical forming solution. It can be seen that by performing the anodic oxidation again, the amount of carbon that adversely affects the leakage current of the anode body 1 is reduced, which is effective in reducing the leakage current.

【0025】また、誘電体酸化皮膜層3中に存在する欠
陥部を一旦さらに大きな欠陥部へと破壊し、熱処理後の
再度の陽極酸化で上記大きく破壊された欠陥部に新たな
誘電体酸化皮膜層3を再度形成することにより、より均
質で、かつ緻密な誘電体酸化皮膜層3を形成することが
可能になるものである。これにより、漏れ電流が低減
し、誘電体酸化皮膜層3の電気的、物理的強度が向上す
るという効果が得られる。
Further, the defective portion existing in the dielectric oxide film layer 3 is once broken into a larger defect portion, and a new dielectric oxide film is formed on the large broken defect portion by the second anodic oxidation after the heat treatment. By forming the layer 3 again, a more uniform and dense dielectric oxide film layer 3 can be formed. This has the effect of reducing the leakage current and improving the electrical and physical strength of the dielectric oxide film layer 3.

【0026】また、本発明の熱処理条件としては、好ま
しくは全電圧保持時間の前半1/3が経過したタイミン
グで行うのが良く、また温度が200℃〜400℃、湿
度が85%以上または真空中で20分以上40分以下で
行うことが望ましい。これは熱処理が過多である場合、
誘電体酸化皮膜層3を破壊しすぎ、熱処理後の再度の陽
極酸化で緻密な誘電体酸化皮膜層3を形成することが困
難になるためである。
The heat treatment conditions of the present invention are preferably carried out at the timing when the first half of the total voltage holding time has elapsed, and the temperature is 200 ° C. to 400 ° C., the humidity is 85% or more, or the vacuum is applied. In this case, it is desirable to perform the process for 20 minutes to 40 minutes. This is because if the heat treatment is excessive,
This is because the dielectric oxide film layer 3 is excessively broken, and it becomes difficult to form the dense dielectric oxide film layer 3 by anodic oxidation again after the heat treatment.

【0027】[0027]

【発明の効果】以上のように本発明は、陽極酸化の途中
で一旦陽極体を化成液から引き上げて熱処理した後、こ
の陽極体を化成液中に戻して再度陽極酸化するようにし
たことにより、誘電体酸化皮膜層中の欠陥部や不純物が
少ない均質な誘電体酸化皮膜層を形成することができ、
その結果、漏れ電流の低減と誘電体酸化皮膜層の耐圧が
向上し、より高性能で高信頼性の固体電解コンデンサを
提供することができるものである。
As described above, according to the present invention, the anode body is once pulled up from the chemical conversion solution during the anodization and heat-treated, and then the anode body is returned to the chemical formation solution and anodized again. , A homogeneous dielectric oxide film layer with few defects and impurities in the dielectric oxide film layer can be formed,
As a result, the leakage current is reduced and the dielectric breakdown voltage of the dielectric oxide film layer is improved, so that a higher performance and higher reliability solid electrolytic capacitor can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態による固体電解コンデン
サの製造方法を示す製造工程図
FIG. 1 is a manufacturing process diagram showing a method for manufacturing a solid electrolytic capacitor according to an embodiment of the present invention.

【図2】本発明の一実施の形態ならびに従来の固体電解
コンデンサの構成を示す断面図
FIG. 2 is a sectional view showing an embodiment of the present invention and a configuration of a conventional solid electrolytic capacitor.

【図3】本発明の実施例1による化成電圧保持時間での
熱処理のタイミングと漏れ電流の関係を測定した特性図
FIG. 3 is a characteristic diagram obtained by measuring the relationship between the timing of heat treatment and the leakage current during the formation voltage holding time according to the first embodiment of the present invention.

【図4】同化成電圧保持時間での熱処理のタイミングと
誘電体酸化皮膜層の耐圧の関係を測定した特性図
FIG. 4 is a characteristic diagram obtained by measuring the relationship between the timing of heat treatment during the assimilation voltage holding time and the withstand voltage of the dielectric oxide film layer.

【図5】本発明の実施例2による化成電圧保持時間での
熱処理のタイミングと漏れ電流の関係を測定した特性図
FIG. 5 is a characteristic diagram obtained by measuring the relationship between the timing of heat treatment and the leakage current during the formation voltage holding time according to the second embodiment of the present invention.

【図6】同化成電圧保持時間での熱処理のタイミングと
誘電体酸化皮膜層の耐圧の関係を測定した特性図
FIG. 6 is a characteristic diagram obtained by measuring the relationship between the timing of heat treatment during the formation voltage holding time and the withstand voltage of the dielectric oxide film layer.

【図7】本発明の実施例3による化成電圧保持時間での
熱処理のタイミングと漏れ電流の関係を測定した特性図
FIG. 7 is a characteristic diagram obtained by measuring the relationship between the timing of heat treatment and the leakage current during the formation voltage holding time according to the third embodiment of the present invention.

【図8】同化成電圧保持時間での熱処理のタイミングと
誘電体酸化皮膜層の耐圧の関係を測定した特性図
FIG. 8 is a characteristic diagram obtained by measuring the relationship between the timing of heat treatment during the assimilation voltage holding time and the withstand voltage of the dielectric oxide film layer.

【図9】従来の固体電解コンデンサの製造方法を示す製
造工程図
FIG. 9 is a manufacturing process diagram showing a conventional method for manufacturing a solid electrolytic capacitor.

【符号の説明】[Explanation of symbols]

1 陽極体 2 陽極導出線 3 誘電体酸化皮膜層 4 固体電解質層 5 カーボン層 6 銀ペースト層 REFERENCE SIGNS LIST 1 anode body 2 anode lead 3 dielectric oxide film layer 4 solid electrolyte layer 5 carbon layer 6 silver paste layer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 弁作用金属粉末を加圧成形金型を用いて
所望の形状に成形する成形工程と、これを焼結して陽極
体を作製する焼結工程と、この陽極体を化成液中で陽極
酸化することにより陽極体の外表面に誘電体酸化皮膜層
を形成する化成工程と、この誘電体酸化皮膜層上に固体
電解質層を形成する電解質層形成工程と、固体電解質層
上に陰極層を形成する陰極層形成工程とを少なくとも有
した固体電解コンデンサの製造方法において、上記化成
工程の途中で一旦陽極体を化成液から引き上げて熱処理
した後、この陽極体を化成液中に戻して再度陽極酸化す
るようにした固体電解コンデンサの製造方法。
1. A molding step for molding a valve metal powder into a desired shape using a pressure molding die, a sintering step for producing an anode body by sintering the metal powder, and a chemical liquid A formation step of forming a dielectric oxide film layer on the outer surface of the anode body by anodizing in the anode body; an electrolyte layer forming step of forming a solid electrolyte layer on the dielectric oxide film layer; And a cathode layer forming step of forming a cathode layer. Of manufacturing a solid electrolytic capacitor in which anodization is performed again.
【請求項2】 陽極体を化成液から引き上げて熱処理す
るタイミングを陽極酸化用電圧の保持時間の前半部分で
行う請求項1に記載の固体電解コンデンサの製造方法。
2. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the timing of heat-treating the anode body from the chemical conversion liquid is performed in the first half of the holding time of the anodizing voltage.
【請求項3】 化成液から引き上げた陽極体を200〜
400℃で、かつ20〜60分間熱処理する請求項1に
記載の固体電解コンデンサの製造方法。
3. The anode body pulled up from the chemical conversion solution is 200 to
The method for producing a solid electrolytic capacitor according to claim 1, wherein the heat treatment is performed at 400C for 20 to 60 minutes.
【請求項4】 化成液から引き上げた陽極体を多湿雰囲
気中で熱処理する請求項1に記載の固体電解コンデンサ
の製造方法。
4. The method for producing a solid electrolytic capacitor according to claim 1, wherein the anode body pulled up from the chemical conversion solution is heat-treated in a humid atmosphere.
【請求項5】 化成液から引き上げた陽極体を活性また
は不活性ガス雰囲気中で熱処理する請求項1に記載の固
体電解コンデンサの製造方法。
5. The method for producing a solid electrolytic capacitor according to claim 1, wherein the anode body pulled up from the chemical conversion solution is heat-treated in an active or inert gas atmosphere.
【請求項6】 化成液から引き上げた陽極体を真空雰囲
気中で熱処理する請求項1に記載の固体電解コンデンサ
の製造方法。
6. The method for producing a solid electrolytic capacitor according to claim 1, wherein the anode body pulled up from the chemical conversion solution is heat-treated in a vacuum atmosphere.
【請求項7】 化成液から引き上げた陽極体を熱処理す
る前に洗浄を行う請求項1に記載の固体電解コンデンサ
の製造方法。
7. The method for producing a solid electrolytic capacitor according to claim 1, wherein cleaning is performed before heat-treating the anode body pulled up from the chemical conversion solution.
JP2001036543A 2001-02-14 2001-02-14 Method for manufacturing solid electrolytic capacitor Withdrawn JP2002246273A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001036543A JP2002246273A (en) 2001-02-14 2001-02-14 Method for manufacturing solid electrolytic capacitor
CN 02107712 CN1280853C (en) 2001-02-14 2002-02-19 Solid electrolytic capacitor making process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001036543A JP2002246273A (en) 2001-02-14 2001-02-14 Method for manufacturing solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2002246273A true JP2002246273A (en) 2002-08-30

Family

ID=18899807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001036543A Withdrawn JP2002246273A (en) 2001-02-14 2001-02-14 Method for manufacturing solid electrolytic capacitor

Country Status (2)

Country Link
JP (1) JP2002246273A (en)
CN (1) CN1280853C (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004068517A1 (en) 2003-01-31 2004-08-12 Showa Denko K.K. Method for manufacturing solid electrolytic capacitor
JP2006108626A (en) * 2004-09-10 2006-04-20 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP2007059629A (en) * 2005-08-24 2007-03-08 Nichicon Corp Method of manufacturing electrode foil for electrolytic capacitor
JP2007123569A (en) * 2005-10-28 2007-05-17 Nichicon Corp Method and apparatus for producing aluminum electrode foil for electrolytic capacitor
WO2011013375A1 (en) * 2009-07-29 2011-02-03 昭和電工株式会社 Manufacturing method for solid electrolytic capacitor
CN113192755A (en) * 2021-04-29 2021-07-30 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) Anodic oxidation method of electrolytic capacitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103366963B (en) * 2013-07-22 2016-05-18 株洲宏达电子股份有限公司 High temperature chip tantalum capacitor and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004068517A1 (en) 2003-01-31 2004-08-12 Showa Denko K.K. Method for manufacturing solid electrolytic capacitor
JPWO2004068517A1 (en) * 2003-01-31 2006-05-25 昭和電工株式会社 Manufacturing method of solid electrolytic capacitor
EP1592030A4 (en) * 2003-01-31 2009-04-29 Showa Denko Kk Method for manufacturing solid electrolytic capacitor
JP4596543B2 (en) * 2003-01-31 2010-12-08 昭和電工株式会社 Manufacturing method of solid electrolytic capacitor
JP2006108626A (en) * 2004-09-10 2006-04-20 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP2007059629A (en) * 2005-08-24 2007-03-08 Nichicon Corp Method of manufacturing electrode foil for electrolytic capacitor
JP2007123569A (en) * 2005-10-28 2007-05-17 Nichicon Corp Method and apparatus for producing aluminum electrode foil for electrolytic capacitor
WO2011013375A1 (en) * 2009-07-29 2011-02-03 昭和電工株式会社 Manufacturing method for solid electrolytic capacitor
US8512423B2 (en) 2009-07-29 2013-08-20 Showa Denko K.K. Method for producing solid electrolytic capacitor
CN113192755A (en) * 2021-04-29 2021-07-30 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) Anodic oxidation method of electrolytic capacitor

Also Published As

Publication number Publication date
CN1280853C (en) 2006-10-18
CN1371109A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
JP4275044B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4660222B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2002246273A (en) Method for manufacturing solid electrolytic capacitor
JP5062770B2 (en) Solid electrolytic capacitor and manufacturing method thereof
EP1102287A2 (en) Fabrication method of solid electolytic capacitor
JP4931776B2 (en) Solid electrolytic capacitor
JP4398794B2 (en) Manufacturing method of solid electrolytic capacitor
JP4719823B2 (en) Manufacturing method of niobium solid electrolytic capacitor
JPH0396210A (en) Manufacture of solid electrolytic capacitor
JP2007250920A (en) Method for manufacturing solid electrolytic capacitor
JP5273736B2 (en) Manufacturing method of solid electrolytic capacitor
JPH09246111A (en) Formation method of electrode foil for aluminum electrolytic capacitor
JPH09237743A (en) Solid electrolytic capacitor
JP2006108192A (en) Solid electrolytic capacitor
JP5091710B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3669191B2 (en) Manufacturing method of solid electrolytic capacitor
JP2847001B2 (en) Manufacturing method of solid electrolytic capacitor
JP4671350B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4545204B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2908830B2 (en) Manufacturing method of electrolytic capacitor
JP3748091B2 (en) Manufacturing method of solid electrolytic capacitor
JP3454733B2 (en) Method for manufacturing solid electrolytic capacitor
JP2772154B2 (en) Method for manufacturing solid electrolytic capacitor
JPH09237742A (en) Method for manufacturing solid electrolytic capacitor
JP2004040134A (en) Method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060417

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060512

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070613