CN1280853C - Solid electrolytic capacitor making process - Google Patents
Solid electrolytic capacitor making process Download PDFInfo
- Publication number
- CN1280853C CN1280853C CN 02107712 CN02107712A CN1280853C CN 1280853 C CN1280853 C CN 1280853C CN 02107712 CN02107712 CN 02107712 CN 02107712 A CN02107712 A CN 02107712A CN 1280853 C CN1280853 C CN 1280853C
- Authority
- CN
- China
- Prior art keywords
- anode
- electrolytic capacitor
- solid electrolytic
- anolyte
- manufacture method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 30
- 239000007787 solid Substances 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims description 41
- 230000003647 oxidation Effects 0.000 claims abstract description 47
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 47
- 238000004519 manufacturing process Methods 0.000 claims abstract description 22
- 238000010438 heat treatment Methods 0.000 claims description 35
- 230000000694 effects Effects 0.000 claims description 17
- 239000007784 solid electrolyte Substances 0.000 claims description 10
- 238000005868 electrolysis reaction Methods 0.000 claims description 7
- 239000003792 electrolyte Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 3
- 150000007522 mineralic acids Chemical class 0.000 claims description 3
- 150000007524 organic acids Chemical class 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims 2
- 239000000758 substrate Substances 0.000 claims 2
- 238000001125 extrusion Methods 0.000 claims 1
- 239000007788 liquid Substances 0.000 abstract description 4
- 239000012535 impurity Substances 0.000 abstract description 3
- 230000002950 deficient Effects 0.000 abstract description 2
- 239000007789 gas Substances 0.000 abstract description 2
- 230000015556 catabolic process Effects 0.000 abstract 1
- 230000006866 deterioration Effects 0.000 abstract 1
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 230000001681 protective effect Effects 0.000 description 19
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 12
- 239000008151 electrolyte solution Substances 0.000 description 9
- 238000007743 anodising Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 229940021013 electrolyte solution Drugs 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- FLDCSPABIQBYKP-UHFFFAOYSA-N 5-chloro-1,2-dimethylbenzimidazole Chemical compound ClC1=CC=C2N(C)C(C)=NC2=C1 FLDCSPABIQBYKP-UHFFFAOYSA-N 0.000 description 1
- 239000001741 Ammonium adipate Substances 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 235000019293 ammonium adipate Nutrition 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
技术领域technical field
本发明涉及使用钽等阀金属(valve metal)粉末的固体电解电容器的制造方法。The present invention relates to a method of manufacturing a solid electrolytic capacitor using valve metal powder such as tantalum.
发明背景Background of the invention
图2是示出了所述固体电解电容器结构的截面图,在该图中,1是阳极,2是在该阳极中埋设的由钽线所组成的阳极导出线,3是在上述阳极1的外表面上形成的介电体氧化保护膜层,4是在该介电体氧化保护膜层3上形成的固体电解质层,5和6为在固体电解质层4上所形成的碳层以及银粘贴层,通过该碳层5和银粘贴层6形成阴极。Fig. 2 is a sectional view showing the structure of the solid electrolytic capacitor. In this figure, 1 is an anode, 2 is an anode lead-out wire made of tantalum wire embedded in the anode, and 3 is an anode in the
其次,用图9说明如上所述构成的固体电解电容器的已有制造方法,开始,在成形操作,在加压成形金属模内填充作为阀金属的钽粉末的同时,填埋由钽线组成的阳极导出线2的状态下从而形成所希望的形状。然后,在高真空气氛中烧结所述成形的阳极1。通过施加与磷酸水溶液硝酸水溶液等阳极电解液(anodizing liquid)所需的电容平衡的电压使阳极1进行阳极氧化,从而在阳极体1的外表面上形成介电体氧化保护膜3。随后,通过电解聚合以及化学聚合在上述介电体氧化保护膜层3上形成由二氧化锰以及导电性高分子组成的固体电解质层4。然后,通过在上述固体电解质层4上设置碳层5和银粘贴层6从而形成阴极层,这样制造固体电解电容器。Next, the conventional manufacturing method of the solid electrolytic capacitor constituted as described above will be described with reference to FIG. In the state where the anode leads out the
但是,在上述已有的固体电解电容器的制造方法,在通过阳极氧化在阳极1外表面上形成介电体氧化保护膜层3所进行的电解过程,施加与所需电容平衡的电压,将其保持一定的时间,进行阳极氧化,但是,由于仅将与所需要电容平衡的电压施加一定时间,在阳极氧化中产生的气体、电流向介电体氧化保护膜层3的凹陷部分集中、以及粉末和阳极电解液中的杂质,在阳极1的外表面上所形成的介电体氧化保护膜层3也会变得不均匀。由此,存在漏电流特性、介电体氧化保护膜层3的电子的、物理强度变低的问题。But, in the manufacturing method of above-mentioned existing solid electrolytic capacitor, in the electrolytic process that forms the dielectric oxidation
发明内容Contents of the invention
本发明解决了现有技术中的上述问题,其目的在于提供一种固体电解电容器的制造方法,该方法可以获得能形成均匀的介电体氧化保护膜、能稳定和发挥较好的性能的高可靠性固体电解电容器。The present invention solves the above-mentioned problems in the prior art, and its purpose is to provide a method for manufacturing a solid electrolytic capacitor, which can form a uniform dielectric oxide protective film, and can be stable and exert better performance. reliability solid electrolytic capacitors.
为了解决上述问题,本发明是这样固体电解电容器的制造方法,尤其是,在固体电解电容器制造方法中,将阀金属粉末做成所希望的形状,将其烧结从而做成阳极,在阳极氧化液中将该阳极进行阳极氧化,在其外表面上形成介电体氧化保护膜,在该介电体氧化保护膜上依次形成固体电解质层和阴极层,在上述阳极氧化当中,将暂时从阳极电解液中捞出阳极进行热处理,之后,将该阳极再度返回到阳极电解液中进行阳极氧化的热处理过程进行不少于1次以上。通过该方法,可以形成均匀细致的介电体氧化保护膜,从而可以减少漏电流,获得增加可靠性的作用效果。In order to solve the above-mentioned problems, the present invention is a method for manufacturing a solid electrolytic capacitor. In particular, in the method for manufacturing a solid electrolytic capacitor, the valve metal powder is made into a desired shape, and then sintered to make an anode. In the process of anodizing the anode, a dielectric oxide protective film is formed on the outer surface, and a solid electrolyte layer and a cathode layer are sequentially formed on the dielectric oxidation protective film. Remove the anode from the anolyte for heat treatment, and then return the anode to the anolyte for anodic oxidation for no less than one time. Through this method, a uniform and fine dielectric oxidation protection film can be formed, thereby reducing leakage current and achieving the effect of increasing reliability.
在前述发明中,本发明在阳极氧化用电压保持时间的前半部分进行从阳极电解液中取出阳极来作热处理的定时,通过该方法,可以获得比前述发明所获得效果更好的作用效果。In the aforementioned invention, the timing of taking out the anode from the anolyte for heat treatment is performed in the first half of the voltage holding time for anodic oxidation. By this method, better effects than those obtained in the aforementioned invention can be obtained.
在前述发明中,本发明对从阳极电解液中取出的阳极在200-400度温度条件下每次进行20-60分钟的加热处理,通过该方法,可以获得比前述发明所获得效果更好的作用效果。In the foregoing invention, the present invention heats the anode taken out from the anolyte at a temperature of 200-400 degrees for 20-60 minutes at a time. By this method, a better effect than that obtained in the foregoing invention can be obtained. Effect.
在前述发明中,本发明将从阳极电解液中取出的阳极在多潮湿气氛中进行热处理,通过该方法,可以获得比前述发明所获得效果更好的作用效果。In the foregoing invention, the present invention heat-treats the anode taken out of the anolyte in a humid atmosphere, and through this method, better effects than those obtained in the foregoing invention can be obtained.
在前述发明中,本发明将从阳极电解液中取出的阳极在活性或惰性气体气氛中进行热处理,通过该方法,可以获得比前述发明所获得效果更好的效率的作用效果。In the aforementioned invention, the present invention heat-treats the anode taken out of the anolyte in an active or inert gas atmosphere, and by this method, a better efficiency effect than that obtained by the aforementioned invention can be obtained.
在前述发明中,本发明将从阳极电解液中取出的阳极在真空气氛中进行热处理,通过该方法,可以获得比前述发明所获得效果更好的作用效果。In the aforementioned invention, the present invention heat-treats the anode taken out of the anolyte in a vacuum atmosphere, and through this method, better effects than those obtained in the aforementioned invention can be obtained.
在前述发明中,本发明在对从阳极电解液中取出的阳极进行热处理之前先将其洗干净,通过该方法,可以强制性去掉附着在阳极上的阳极电解液,可以获得比前述发明所获得效果更好的作用效果。In the foregoing invention, the present invention cleans the anode taken out from the anolyte before heat-treating it. By this method, the anolyte attached to the anode can be forcibly removed, and the anode obtained in the foregoing invention can be obtained The effect is better.
并且,通过使用温水将其洗干净,则可以获得更显著的效果。And, by washing it off with warm water, you can get even more dramatic results.
在前述发明中,本发明中作为在电解过程中所使用的阳极电解液可以使用无机酸、有机酸、溶融盐中的任何一个以上,通过该方法,可以获得比前述发明所获得效果更好的作用效果。In the aforementioned invention, any one or more of inorganic acid, organic acid, and molten salt can be used as the anolyte used in the electrolysis process in the present invention. Effect.
在前述发明中,本发明在热处理过程前后使用的电解过程的阳极氧化用的电解液可以相同或不同,通过该方法,可以获得比前述发明所获得效果更好的作用效果。In the aforementioned invention, the electrolytic solution used for anodic oxidation in the electrolytic process used before and after the heat treatment process of the present invention may be the same or different, and by this method, a better effect than that obtained in the aforementioned invention can be obtained.
附图简述Brief description of the drawings
图1是示出了根据本发明的一个实施例的固体电解电容器制造方法的制造过程图;1 is a manufacturing process diagram illustrating a method of manufacturing a solid electrolytic capacitor according to an embodiment of the present invention;
图2是示出了根据本发明一个实施例以及现有的固体电解电容器结构截面图;Fig. 2 is a cross-sectional view showing the structure of an existing solid electrolytic capacitor according to an embodiment of the present invention;
图3是测定根据本发明实施例1的电解电压保持时间内热处理定时与漏电流之间关系的特性图;Fig. 3 is a characteristic diagram of measuring the relationship between heat treatment timing and leakage current according to the electrolysis voltage holding time in Example 1 of the present invention;
图4是测定该电解电压保持时间内的热处理定时与介电体氧化保护膜的耐压之间关系的特性图;Fig. 4 is a characteristic diagram of the relationship between the heat treatment timing and the withstand voltage of the dielectric oxide protective film in the electrolytic voltage holding time;
图5是测定根据本发明实施例2的电解电压保持时间内热处理定时与漏电流之间关系的特性图;Fig. 5 is a characteristic diagram measuring the relationship between heat treatment timing and leakage current within the electrolytic voltage holding time according to
图6是测定该电解电压保持时间内的热处理定时与介电体氧化保护膜的耐压之间关系的特性图;Fig. 6 is a characteristic diagram measuring the relationship between the heat treatment timing and the withstand voltage of the dielectric oxidation protective film within the electrolytic voltage holding time;
图7是测定根据本发明实施例3的电解保持时间内的热处理温度与各种气氛内的漏电流之间关系的特性图;7 is a characteristic diagram of the relationship between the heat treatment temperature and the leakage current in various atmospheres during the electrolysis holding time according to Example 3 of the present invention;
图8是测定该电解电压保持时间内的热处理与各种气氛内的介电体氧化保护膜的耐压之间关系的特性图;Fig. 8 is a characteristic diagram measuring the relationship between the heat treatment within the electrolytic voltage holding time and the withstand voltage of the dielectric oxidation protective film in various atmospheres;
图9是示出了现有固体电解电容器制造方法的制造过程图。FIG. 9 is a manufacturing process diagram showing a conventional solid electrolytic capacitor manufacturing method.
本发明的实施例Embodiments of the invention
下面,使用本发明的实施例详细描述在本发明权利要求1-9中所记载的发明。Next, the invention described in
图2是示出了根据本发明一个实施例的固体电解电容器结构截面图,在该图中,1是阳极,2是在该阳极中埋设的由钽线所组成的阳极导出线,3是在上述阳极1的外表面上形成的介电体氧化保护膜层,4是在该介电体氧化保护膜层3上形成的固体电解质层,5和6为在固体电解质层4上所形成的碳层以及银粘贴层,通过该碳层5和银粘贴层6形成阴极,上述这些与本发明背景技术中所描述的现有技术中的固体电解电容器结构相同。2 is a cross-sectional view showing the structure of a solid electrolytic capacitor according to an embodiment of the present invention. In this figure, 1 is an anode, 2 is an anode lead-out wire embedded in the anode and composed of a tantalum wire, and 3 is a The dielectric oxidation protection film layer formed on the outer surface of the above-mentioned
其次,使用图1说明根据本发明如此构成的固体电解电容器的制造方法。Next, a method of manufacturing the thus-constructed solid electrolytic capacitor according to the present invention will be described with reference to FIG. 1 .
首先,在成形过程中,在加压成形金属模中填充具有阀金属作用的钽粉末的同时,在埋设由钽线组成的阳极导出线2的状态中形成所需形状。First, in the forming process, a desired shape is formed in a state where an anode lead-out
然后,在高真空气氛中烧结这样形成的阳极1。Then, the
随后,通过施加与在由磷酸水溶液组成电解液中希望的电容平衡的电解电压,阳极氧化该阳极1而在阳极1的外表面上形成介电体氧化保护膜层3。并且,根据固体电解电容器的电容等确定电解电压值。Subsequently, the
接着,在该阳极氧化过程中,从电解液中取出上述阳极1,使用温水洗掉残留的磷酸之后,在热处理炉中进行加热处理。Next, in this anodizing process, the above-mentioned
然后,将热处理之后的阳极1再次返回电解液中,再次施加电压,通过阳极氧化在阳极1的外表面上形成介电体氧化保护膜层3。Then, the
通过电解聚合(或化学聚合)在上述介电体氧化保护膜层3上形成由导电性高分子(或二氧化锰)组成的固体电解质层4。A
然后,通过在上述固体电解质层4上设置碳层5和银粘贴层6形成阴极层,做成本发明的固体电解电容器。Then, a cathode layer is formed by disposing a
(实施例1)(Example 1)
在上述阳极氧化过程中,将从电解液中取出阳极1的定时分别确定为阳极氧化所需时间(基本上为120分钟)的1/4、2/4、3/4、4/4的各定时,在300℃的大气气氛中,将取出的阳极1分别进行10分钟、30分钟、60分钟、90分钟的加热处理。In the above-mentioned anodizing process, the timing of taking out the
在液体中对由此制造的本实施例1的阳极1与作为比较的现有产品进行检查,在图3中示出了测定在电解电压保持时间内热处理的定时与漏电流之间关系的结果,在图4中示出了测定在A电解电压保持时间内热处理的定时与介电体氧化保护膜的耐压之间关系的结果。The thus manufactured
并且,作为检查条件是10vol(容量)%磷酸水溶液、温度为25℃、施加电压为电解电压的70%进行测定。并且,介电体氧化保护膜层3的浓度为15vol%己二酸铵水溶液,施加电流100μA/元件,将现有产品作为100来比较。In addition, the test conditions were 10 vol (capacity) % phosphoric acid aqueous solution, the temperature was 25° C., and the applied voltage was 70% of the electrolysis voltage. In addition, the concentration of the dielectric oxidation
(实施例2)(Example 2)
在上述实施例1中,除将热处理温度分别确定为150℃、200℃、250℃、300℃、350℃、400℃、450℃、500℃、550℃以外,进行与实施例1相同的检查,在图5中示出了测定在电解电压保持时间内热处理的定时与漏电流之间关系的结果,在图6中示出了测定在电解电压保持时间内热处理的定时与介电体氧化保护膜的耐压之间关系的结果。In the above-mentioned Example 1, except that the heat treatment temperature was determined to be 150°C, 200°C, 250°C, 300°C, 350°C, 400°C, 450°C, 500°C, and 550°C, the same inspection as in Example 1 was carried out. , the results of measuring the timing of heat treatment within the electrolytic voltage holding time and the relationship between the leakage current are shown in Figure 5, and the results of measuring the timing of heat treatment within the electrolytic voltage holding time and the dielectric oxidation protection The result of the relationship between the pressure resistance of the membrane.
(实施例3)(Example 3)
在上述实施例2中,除将热处理气氛分别定为大气、30%H2O(湿度)中、85%H2O中、真空中、N2中、Ar中外,进行与实施例2相同的检查,在图7中示出了测定在电解电压保持时间内热处理的定时与漏电流之间关系的结果,在图8中示出了测定在电解电压保持时间内热处理的定时与介电体氧化保护膜的耐压之间关系的结果。In the above-mentioned Example 2, except that the heat treatment atmosphere is respectively set as air, 30% H 2 O (humidity), 85% H 2 O, vacuum, N 2 , Ar, the same procedure as in Example 2 is carried out. Check, Figure 7 shows the results of measuring the relationship between the timing of heat treatment within the electrolytic voltage holding time and the leakage current, and Figure 8 shows the relationship between the timing of heat treatment within the electrolytic voltage holding time and the dielectric oxidation The result of the relationship between the pressure resistance of the protective film.
如同上述实施例1-3的结果所体现的那样,在阳极氧化过程中,暂时从电解液中取出阳极1并进行热处理之后,通过将阳极1送回电解液中再次进行阳极氧化,阳极1可以获得这样的效果:减少对漏电流带来坏影响的碳量,从而减轻漏电流。As reflected in the results of Examples 1-3 above, in the anodizing process, after the
并且,通过热处理将在介电体氧化保护膜层3中存在的缺陷部分破坏为更加大的缺陷部分,通过采用热处理之后的再次阳极氧化,在上述大大地被破坏的缺陷部分中再次形成新的介电体氧化保护膜层3,从而可以形成比较均匀更加细致的介电体氧化保护膜层3。由此,可以获得降低漏电流、提高介电体氧化保护膜层3的电气、物理强度这样的效果。And, the defect portion existing in the dielectric oxide
还有,如图3和4所示,前面的电解处理最好是,阳极1的取出在电解电压保持时间的前半部分时间的1/4时刻取出。在该时刻取出时,漏电流变化率、保护膜耐压变化率可以获得最佳效果。但是,以前半部分的1/4时间为中心到前后15分钟(约为全部的1/8)左右范围内最好。并且,作为本发明的热处理条件,如图5和6所示,温度为200℃到400℃进行最好,最佳的加热处理温度为300℃前后。特别地,如图7和8所示,作为加热处理的气氛的条件,最好使用在湿度为85%以上或者活性或者惰性气体气氛中或真空。加热时间希望在20分钟以上40分钟以下进行。这是因为,在加热处理过多的情况下,过分破坏介电体氧化保护膜层3,使采用热处理之后再次阳极氧化来形成介电体氧化保护膜层3变得困难。Also, as shown in Figures 3 and 4, the electrolytic treatment in front is preferably that the
虽然本实施例以在电解过程中使用用于进行阳极氧化的电解液以及磷酸水溶液为例进行了说明,但是,本发明不局限于此,还可以使用磷酸、硝酸、硫酸、水溶液等无机酸或其盐、酒石酸、已二酸、草酸、柠檬酸、琥珀酸、甲酸等有机酸或其盐,可以获得同样的效果。Although the present embodiment has described the use of an electrolytic solution for anodic oxidation and an aqueous phosphoric acid solution as an example in the electrolysis process, the present invention is not limited thereto, and inorganic acids such as phosphoric acid, nitric acid, sulfuric acid, and aqueous solutions can also be used or Salts thereof, organic acids such as tartaric acid, adipic acid, oxalic acid, citric acid, succinic acid, and formic acid, or salts thereof, can obtain the same effect.
并且,在电解过程中,多次进行从电解液中暂时取出阳极并加热处理之后,将该阳极再次返回电解液中,进行阳极氧化的热处理过程,此时,通过使用不同的电解液(最好使用相同的),能增大本发明的效果。Moreover, in the electrolysis process, after the anode is temporarily taken out from the electrolyte solution and heat-treated, the anode is returned to the electrolyte solution again, and the heat treatment process of anodic oxidation is carried out several times. At this time, by using different electrolyte solutions (preferably Using the same), the effect of the present invention can be increased.
上述本发明在阳极氧化过程中,将暂时从电解液中取出阳极作热处理之后,将该阳极再次返回电解液中,进行阳极氧化热处理过程一次以上,可以形成介电体氧化保护膜内的缺陷部分以及不纯物变少的均匀的介电体氧化保护膜。其结果,可以减少漏电流并提高介电体氧化保护膜层的耐压,并提供比较高性能高可靠度的固体电解电容器。In the above-mentioned anodic oxidation process of the present invention, after the anode is temporarily taken out from the electrolyte for heat treatment, the anode is returned to the electrolyte again, and the anodic oxidation heat treatment process is performed more than once, so that the defective part in the dielectric oxidation protection film can be formed And a uniform dielectric oxidation protection film with less impurities. As a result, the leakage current can be reduced, the withstand voltage of the dielectric oxidation protective film layer can be increased, and a solid electrolytic capacitor with relatively high performance and high reliability can be provided.
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP036543/01 | 2001-02-14 | ||
JP2001036543A JP2002246273A (en) | 2001-02-14 | 2001-02-14 | Method for producing solid electrolytic capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1371109A CN1371109A (en) | 2002-09-25 |
CN1280853C true CN1280853C (en) | 2006-10-18 |
Family
ID=18899807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 02107712 Expired - Fee Related CN1280853C (en) | 2001-02-14 | 2002-02-19 | Solid electrolytic capacitor making process |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2002246273A (en) |
CN (1) | CN1280853C (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1592030B1 (en) * | 2003-01-31 | 2012-01-11 | Showa Denko K.K. | Method for manufacturing solid electrolytic capacitor |
JP2006108626A (en) * | 2004-09-10 | 2006-04-20 | Sanyo Electric Co Ltd | Solid electrolytic capacitor and its manufacturing method |
JP2007059629A (en) * | 2005-08-24 | 2007-03-08 | Nichicon Corp | Method of manufacturing electrode foil for electrolytic capacitor |
JP4641486B2 (en) * | 2005-10-28 | 2011-03-02 | ニチコン株式会社 | Method and apparatus for producing aluminum electrode foil for electrolytic capacitor |
EP2461337B1 (en) * | 2009-07-29 | 2017-04-05 | Showa Denko K.K. | Manufacturing method for solid electrolytic capacitor |
CN103366963B (en) * | 2013-07-22 | 2016-05-18 | 株洲宏达电子股份有限公司 | High temperature chip tantalum capacitor and preparation method thereof |
CN113192755A (en) * | 2021-04-29 | 2021-07-30 | 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) | Anodic oxidation method of electrolytic capacitor |
-
2001
- 2001-02-14 JP JP2001036543A patent/JP2002246273A/en not_active Withdrawn
-
2002
- 2002-02-19 CN CN 02107712 patent/CN1280853C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002246273A (en) | 2002-08-30 |
CN1371109A (en) | 2002-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1210736C (en) | Solid electrolytic condenser and manufacture method thereof | |
US6614063B2 (en) | Solid electrolytic capacitor | |
JP4275044B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
CN1280853C (en) | Solid electrolytic capacitor making process | |
JP2000348984A (en) | Manufacture of electrode foil for aluminum electrolytic capacitor | |
US8000085B2 (en) | Solid electrolytic capacitor | |
JPH0396210A (en) | Manufacture of solid electrolytic capacitor | |
JPH09246111A (en) | Formation of electrode foil for aluminum electrolytic capacitor | |
JP3669191B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP2811648B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP2006108192A (en) | Solid electrolytic capacitor | |
JP4545204B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP2001167981A (en) | Solid electrolytic capacitor and manufacturing method therefor | |
JPH0684709A (en) | Manufacture of solid electrolytic capacitor | |
JP2847001B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JPH02277212A (en) | Tantalum electrolytic capacitor and its manufacture | |
JP4671350B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP2001102256A (en) | Method for manufacturing solid electrolytic capacitor | |
JP2005005430A (en) | Solid electrolytic capacitor and its manufacturing method | |
JPS63146425A (en) | Manufacture of solid electrolytic capacitor | |
JP2004040134A (en) | Manufacturing method of solid electrolytic capacitor | |
JP2001126960A (en) | Solid electrolytic capacitor and method for manufacturing the same | |
JP3454733B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH0274016A (en) | Solid electrolytic condenser | |
JPH02298011A (en) | Solid electrolytic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20061018 Termination date: 20200219 |
|
CF01 | Termination of patent right due to non-payment of annual fee |