[go: up one dir, main page]

JP2002241765A - Fluid catalytic cracking of heavy oil - Google Patents

Fluid catalytic cracking of heavy oil

Info

Publication number
JP2002241765A
JP2002241765A JP2001045198A JP2001045198A JP2002241765A JP 2002241765 A JP2002241765 A JP 2002241765A JP 2001045198 A JP2001045198 A JP 2001045198A JP 2001045198 A JP2001045198 A JP 2001045198A JP 2002241765 A JP2002241765 A JP 2002241765A
Authority
JP
Japan
Prior art keywords
catalytic cracking
catalyst
zone
fluid catalytic
heavy oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001045198A
Other languages
Japanese (ja)
Other versions
JP4223690B2 (en
Inventor
Toshiaki Okuhara
俊彰 奥原
Takashi Ino
隆 井野
Halim Hamid Redhwi
ハリム・ハミッド・レドウィ
Aburuhamaeru Mohammad
モハマッド・アブルハマエル
Abdullah Aitani
アブドラ・アイタニ
Maghrabi Abdulgader
アブドゥルガデル・マグラビ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Energy Center JPEC
Eneos Corp
King Fahd University of Petroleum and Minerals
Original Assignee
Petroleum Energy Center PEC
Nippon Mitsubishi Oil Corp
King Fahd University of Petroleum and Minerals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Nippon Mitsubishi Oil Corp, King Fahd University of Petroleum and Minerals filed Critical Petroleum Energy Center PEC
Priority to JP2001045198A priority Critical patent/JP4223690B2/en
Publication of JP2002241765A publication Critical patent/JP2002241765A/en
Application granted granted Critical
Publication of JP4223690B2 publication Critical patent/JP4223690B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

(57)【要約】 (修正有) 【課題】 重質油を高温・短接触時間で流動接触分解
し、プロピレン、ブテン等の軽質オレフィンを高収率で
得るための流動接触分解方法を提供する。 【解決手段】 反応帯域1、気固分離帯域2、ストリッ
ピング帯域3および触媒再生帯域4を有する流動接触分
解反応装置を用いて軽質オレフィンを製造する重質油の
流動接触分解方法であって、反応帯域出口温度が550
〜630℃、反応帯域での炭化水素の滞留時間が0.0
1〜1.0秒であり、かつ該重質油が水素分圧7.84
MPa(80kg/cm2)以上の条件で水素化処理さ
れた減圧軽油であることを特徴とする重質油の流動接触
分解方法。
PROBLEM TO BE SOLVED: To provide a fluid catalytic cracking method for fluid catalytic cracking of heavy oil at high temperature and short contact time to obtain light olefins such as propylene and butene in high yield. . SOLUTION: This is a fluid catalytic cracking method for heavy oil, which produces a light olefin using a fluid catalytic cracking reactor having a reaction zone 1, a gas-solid separation zone 2, a stripping zone 3, and a catalyst regeneration zone 4, Reaction zone outlet temperature is 550
~ 630 ° C, hydrocarbon residence time in the reaction zone is 0.0
1 to 1.0 second, and the heavy oil has a hydrogen partial pressure of 7.84.
A fluidized catalytic cracking method for heavy oil, characterized in that it is a reduced pressure gas oil that has been hydrotreated under the conditions of MPa (80 kg / cm 2 ) or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、重質油の流動接触分解
方法に関し、詳しくは重質油からプロピレン、ブテン等
の軽質オレフィンを高収率で得るための流動接触分解方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid catalytic cracking method for heavy oil, and more particularly to a fluid catalytic cracking method for obtaining light olefins such as propylene and butene from heavy oil in high yield.

【0002】[0002]

【従来の技術】通常の接触分解は石油系炭化水素を触媒
と接触させて分解し、主生成物としてのガソリンと少量
のLPGと分解軽油等を得、さらに触媒上に堆積したコ
−クを空気で燃焼除去して触媒を循環再使用するもので
ある。しかしながら最近では流動接触分解装置をガソリ
ン製造装置としてではなく石油化学原料としての軽質オ
レフィン(特にプロピレン)製造装置として利用してい
こうという動きがある。また一方、プロピレン、ブテン
は高オクタン価ガソリン基材であるアルキレートやメチ
ル−t−ブチルエーテル(MTBE)の原料となる。こ
のような流動接触分解装置の利用法は、石油精製と石油
化学工場が高度に結びついた精油所において特に経済的
なメリットがある。重質油の流動接触分解により軽質オ
レフィンを製造する方法としては、例えば、触媒と原料
油の接触時間を短くする方法(米国特許第4,419,221
号、米国特許第3,074,878号、米国特許第5,462,652号、
ヨーロッパ特許第315,179A号)、高温で反応を行う方法
(米国特許第4,980,053号)、ペンタシル型ゼオライト
を用いる方法(米国特許第5,326,465号、公表特許公報7
-506389号)等が挙げられる。
2. Description of the Related Art In conventional catalytic cracking, petroleum hydrocarbons are decomposed by contact with a catalyst to obtain gasoline as a main product, a small amount of LPG, cracked gas oil, and the like. The catalyst is circulated and reused by burning off with air. However, recently, there has been a movement to utilize a fluid catalytic cracking unit not as a gasoline production unit but as a light olefin (particularly propylene) production unit as a petrochemical raw material. On the other hand, propylene and butene are raw materials for alkylate and methyl-t-butyl ether (MTBE) which are high octane gasoline base materials. The use of such a fluid catalytic cracking unit has a particular economic advantage in a refinery where petroleum refining and petrochemical plants are highly connected. As a method for producing a light olefin by fluid catalytic cracking of heavy oil, for example, a method of shortening the contact time between a catalyst and a feed oil (US Pat. No. 4,419,221)
No., U.S. Pat.No. 3,074,878, U.S. Pat.No. 5,462,652,
European Patent No. 315,179A), a method in which the reaction is carried out at a high temperature (US Pat. No. 4,980,053), a method using a pentasil type zeolite (US Pat. No. 5,326,465, published patent publication 7).
-506389) and the like.

【0003】しかし、これらの方法においてもまだ軽質
オレフィン選択性を十分高めるまでには至っていない。
例えば、高温反応による方法おいては熱分解を併発して
不必要なドライガス収率が増大し、その分有用な軽質オ
レフィンの収率が犠牲となる。また高温反応ではジエン
の生成が増加するため軽質オレフィンとともに得られる
ガソリンの品質が劣化するという欠点もある。接触時間
を短くする方法では、水素移行反応を抑制し、軽質オレ
フィンが軽質パラフィンへ転化する割合を低減すること
はできるが、転化率を増加させることはできないため、
軽質オレフィン収率はまだ不充分である。また、これら
の高温反応、高触媒/油比、短接触時間などの技術を組
み合わせて熱分解を抑制し、しかも高い転化率を達成す
る方法(特開平10-60453号)が提案されているが、まだ
軽質オレフィン収率は充分とはいえない。またペンタシ
ル型ゼオライトを用いた方法ではガソリンを過分解して
軽質オレフィン収率を高めているだけであるから、軽質
オレフィン収率の増加も充分ではなく、ガソリン収率が
著しく減少するという欠点がある。従ってこれらの方法
で重質油から高い収率で軽質オレフィンを得ることは困
難である。
However, even in these methods, the selectivity of light olefins has not yet been sufficiently increased.
For example, in a method using a high-temperature reaction, unnecessary dry gas yield increases due to simultaneous thermal decomposition, and the yield of useful light olefins is sacrificed accordingly. In addition, the high temperature reaction has the disadvantage that the quality of gasoline obtained with light olefins is deteriorated due to the increased production of diene. In the method of shortening the contact time, the hydrogen transfer reaction can be suppressed, and the rate of conversion of light olefins to light paraffin can be reduced, but the conversion cannot be increased.
Light olefin yields are still inadequate. Further, a method has been proposed in which thermal decomposition is suppressed by combining these high-temperature reactions, high catalyst / oil ratio, short contact time and other techniques, and a high conversion is achieved (Japanese Patent Laid-Open No. 10-60453). However, the light olefin yield is not yet sufficient. In addition, in the method using pentasil-type zeolite, gasoline is only decomposed to increase the light olefin yield, so that the light olefin yield is not sufficiently increased and the gasoline yield is significantly reduced. . Therefore, it is difficult to obtain a light olefin from a heavy oil in a high yield by these methods.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、反応
条件と原料重質油を限定することにより、熱分解による
ドライガス発生量が少なく、高い軽質オレフィン収率が
得られる改良された重質油の流動接触分解方法を提供す
ることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an improved heavy oil that can produce a small amount of dry gas due to thermal cracking and obtain a high light olefin yield by limiting the reaction conditions and the starting heavy oil. An object of the present invention is to provide a fluid catalytic cracking method for high quality oil.

【0005】[0005]

【課題を解決するための手段】本発明者等は、重質油を
高温・短接触時間に流動接触分解してプロピレン、ブテ
ン等の軽質オレフィンを得るための流動接触分解方法に
おいて、高収率で軽質オレフィンを得ることを主眼に鋭
意研究した結果、特定の重質油を用い、かつ特定の条件
下に流動接触分解することによりその目的が達成される
ことを見いだし、本発明に到達したものである。すなわ
ち本発明は、反応帯域、気固分離帯域、ストリッピング
帯域および触媒再生帯域を有する流動接触分解反応装置
を用いて軽質オレフィンを製造する重質油の流動接触分
解方法であって、反応帯域出口温度が550〜630
℃、反応帯域での炭化水素の滞留時間が0.01〜1.
0秒であり、かつ該重質油が水素分圧7.84MPa
(80kg/cm2)以上の条件で水素化処理された減
圧軽油であることを特徴とする重質油の接触分解方法に
関する。
SUMMARY OF THE INVENTION The present inventors have developed a fluid catalytic cracking process for obtaining light olefins such as propylene and butene by subjecting heavy oil to fluid catalytic cracking at a high temperature for a short contact time. As a result of diligent research focused on obtaining light olefins, it was found that the purpose was achieved by fluid catalytic cracking using specific heavy oil and under specific conditions, and reached the present invention. It is. That is, the present invention is a method for fluid catalytic cracking of heavy oil for producing light olefins using a fluid catalytic cracking reactor having a reaction zone, a gas-solid separation zone, a stripping zone and a catalyst regeneration zone, comprising a reaction zone outlet. Temperature 550-630
° C, the residence time of hydrocarbons in the reaction zone is 0.01-1.
0 seconds and the heavy oil has a hydrogen partial pressure of 7.84 MPa.
(80 kg / cm 2 ) The present invention relates to a method for catalytic cracking of heavy oil, characterized in that it is a reduced pressure gas oil which has been hydrotreated under conditions of 80 kg / cm 2 or more.

【0006】[0006]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明は、反応帯域、気固分離帯域、ストリッピ
ング帯域および触媒再生帯域を有する流動接触分解反応
装置を用いて軽質オレフィンを製造する重質油の流動接
触分解方法である。本発明において流動接触分解は、重
質油を流動状態に保持されている触媒に連続的に接触さ
せて、重質油を軽質オレフィンおよびガソリンを主体と
した軽質な炭化水素に分解するものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The present invention is a method for fluid catalytic cracking of heavy oil for producing light olefins using a fluid catalytic cracking reactor having a reaction zone, a gas-solid separation zone, a stripping zone and a catalyst regeneration zone. In the present invention, fluidized catalytic cracking is a process in which heavy oil is continuously brought into contact with a catalyst held in a fluidized state to crack heavy oil into light hydrocarbons mainly composed of light olefins and gasoline. .

【0007】通常の流動接触分解方法では触媒粒子と原
料油が共に管中を上昇するいわゆるライザ−反応帯域が
採用される。しかし、通常のライザー反応帯域を用いた
場合には逆混合が起こり、局部的にガスの滞留時間が長
くなり、熱分解を併発することになる。特に、本発明の
ように反応温度が通常の流動接触分解方法に比べて高い
場合、逆混合による熱分解の程度は大きくなる。熱分解
は不必要なドライガスの発生を増加させ、目的とする軽
質オレフィンおよびガソリンの収率を減少させるため好
ましくない。本発明において反応帯形式は特に限定され
ないが、逆混合を避けるため触媒粒子と原料油が共に管
中を降下するダウンフロー形式(ダウナー)反応帯域が
好ましく採用される。
The usual fluid catalytic cracking method employs a so-called riser-reaction zone in which both the catalyst particles and the feed oil rise in the tube. However, when a normal riser reaction zone is used, back mixing occurs, locally increasing the residence time of the gas, and causing thermal decomposition. In particular, when the reaction temperature is higher than that of the ordinary fluid catalytic cracking method as in the present invention, the degree of thermal decomposition due to back mixing increases. Thermal cracking is not preferred because it increases the generation of unnecessary dry gas and decreases the yield of the target light olefin and gasoline. In the present invention, the type of the reaction zone is not particularly limited, but a downflow type (downer) reaction zone in which both the catalyst particles and the feed oil descend in the tube is preferably employed to avoid back mixing.

【0008】流動接触分解を受けた分解反応生成物、未
反応物および使用済み触媒の混合物からなる分解反応混
合物は、次に気固分離帯域に送られ、触媒粒子から分解
反応生成物、未反応物等の炭化水素類の大部分が除去さ
れる。なお、場合によっては、不必要な熱分解あるいは
過分解を抑制するため、分解反応混合物は気固分離帯域
の直前あるいは直後で急冷される。
[0008] The cracking reaction mixture, which is a mixture of the cracking reaction product, the unreacted product and the spent catalyst, which has undergone the fluid catalytic cracking, is then sent to a gas-solid separation zone, where the cracking reaction product, unreacted product is separated from the catalyst particles. Most of the hydrocarbons such as substances are removed. In some cases, the decomposition reaction mixture is quenched immediately before or immediately after the gas-solid separation zone in order to suppress unnecessary thermal decomposition or excessive decomposition.

【0009】大部分の炭化水素類が除去された使用済み
触媒は、さらにストリッピング帯域に送られ、ストリッ
ピング用ガスにより気固分離帯域で除去しきれなかった
炭化水素類の除去が行われる。このようにして使用済み
触媒と炭化水素類を分離した後、使用済み触媒を再生す
るため、炭素質物質および一部重質の炭化水素類が付着
した使用済み触媒は、ストリッピング帯域から触媒再生
帯域に送られる。触媒再生帯域においては使用済み触媒
に酸化処理が施され、触媒上に沈着・付着した炭素質物
質および重質炭化水素類が除去され再生される。この酸
化処理を受けて再生された触媒は前記反応帯域に再び送
られ、連続的に循環される。
The spent catalyst from which most of the hydrocarbons have been removed is further sent to a stripping zone, where the stripping gas removes hydrocarbons that could not be completely removed in the gas-solid separation zone. After the spent catalyst and hydrocarbons are separated in this way, the spent catalyst to which the carbonaceous material and some heavy hydrocarbons are attached is regenerated from the stripping zone in order to regenerate the spent catalyst. Sent to the band. In the catalyst regeneration zone, the spent catalyst is subjected to an oxidation treatment to remove and regenerate carbonaceous substances and heavy hydrocarbons deposited and adhered on the catalyst. The catalyst regenerated after the oxidation treatment is sent again to the reaction zone and continuously circulated.

【0010】図1に本発明で用いられる流動接触分解反
応装置装置の一例を示す。この例では、ダウンフロー形
式反応帯域を有する流動接触分解反応装置を示す。図1
においては、原料である重質油は、ライン10を通って
混合領域7に供給され、触媒貯槽6から循環される再生
触媒と混合される。その混合物は反応帯域1内を並流で
流下し、この間に原料重質油と触媒は高温で短時間接触
して重質油の分解反応が行われる。反応帯域1からの分
解反応混合物は、反応帯域1の下方に位置する気固分離
帯域2に流下し、ここで使用済み触媒は、分解反応生成
物及び未反応原料から分離され、ディップレッグ9を経
てストリッピング帯域3の上部に導かれる。
FIG. 1 shows an example of a fluid catalytic cracking reaction apparatus used in the present invention. In this example, a fluid catalytic cracking reactor having a downflow type reaction zone is shown. Figure 1
In, the heavy oil as the raw material is supplied to the mixing area 7 through the line 10 and mixed with the regenerated catalyst circulated from the catalyst storage tank 6. The mixture flows down in the reaction zone 1 in a parallel flow, during which the raw heavy oil and the catalyst are brought into contact with each other at high temperature for a short time to carry out the cracking reaction of the heavy oil. The cracked reaction mixture from reaction zone 1 flows down to gas-solid separation zone 2 located below reaction zone 1, where the spent catalyst is separated from the cracked reaction products and unreacted raw materials and dipreg 9 is removed. Through the stripping zone 3.

【0011】大部分の使用済み触媒が除去された炭化水
素気体は、次に二次分離器8へ導かれる。ここで気体中
に少量残存した使用済み触媒が取り除かれ、炭化水素気
体は系外へ抜き出されて回収される。二次分離器8とし
ては接線型サイクロンが好ましく用いられる。
The hydrocarbon gas from which most of the spent catalyst has been removed is then led to a secondary separator 8. Here, a small amount of used catalyst remaining in the gas is removed, and the hydrocarbon gas is extracted out of the system and collected. As the secondary separator 8, a tangential cyclone is preferably used.

【0012】ストリッピング帯域3内の使用済み触媒
は、ライン11から導入されるストリッピング用ガスに
より、使用済み触媒の表面や触媒間に付着残存した炭化
水素類が取り除かれる。ストリッピング用ガスとして
は、ボイラーにより発生されたスチームやコンプレッサ
ー等により昇圧された窒素等の不活性ガスなどが用いら
れる。
From the spent catalyst in the stripping zone 3, hydrocarbons adhering and remaining on the surface of the spent catalyst and between the catalysts are removed by the stripping gas introduced from the line 11. As the stripping gas, an inert gas such as steam generated by a boiler or nitrogen pressurized by a compressor or the like is used.

【0013】ストリッピング条件としては、通常、温度
500〜900℃、好ましくは500〜700℃、触媒
粒子の滞留時間1〜10分が採用される。ストリッピン
グ帯域3においては、使用済み触媒に付着残存する分解
反応生成物並びに未反応原料が除去され、ストリッピン
グ用ガスと共にストリッピング帯域3頂部のライン12
から抜き出され、回収系に導かれる。一方、ストリッピ
ング処理を受けた使用済み触媒は、第1流量調節器13
を備えたラインを通って、触媒再生帯域4に供給され
る。
The stripping conditions include a temperature of 500 to 900 ° C., preferably 500 to 700 ° C., and a residence time of the catalyst particles of 1 to 10 minutes. In the stripping zone 3, cracking reaction products and unreacted raw materials adhering to the used catalyst and unreacted raw materials are removed, and the stripping gas and the line 12 at the top of the stripping zone 3 are removed.
, And guided to the recovery system. On the other hand, the spent catalyst which has been subjected to the stripping treatment is supplied to the first flow controller 13
Is supplied to the catalyst regeneration zone 4 through a line provided with.

【0014】ストリッピング帯域3のガス空塔速度は、
通常、0.05〜0.4m/sの範囲に保持することが
好ましく、これによってストリッピング帯域の流動層を
気泡流動層とすることができる。気泡流動層ではガス速
度が比較的小さいため、ストリッピング用ガスの消費量
を少なくすることができ、また、層密度が比較的大きい
ことから、第1流量調節器13の圧力制御幅を大きくで
きるので、ストリッピング帯域3から触媒再生帯域4へ
の触媒粒子の移送が容易となる。ストリッピング帯域3
には、使用済み触媒とストリッピング用ガスとの接触を
良くし、ストリッピングの効率向上を図る目的で、水平
多孔板やその他の内挿物を多段に設けることができる。
The gas superficial velocity in stripping zone 3 is:
Usually, it is preferable to keep the pressure in the range of 0.05 to 0.4 m / s, so that the fluidized bed in the stripping zone can be a bubble fluidized bed. In the bubble fluidized bed, since the gas velocity is relatively low, the consumption of the stripping gas can be reduced, and since the bed density is relatively large, the pressure control width of the first flow rate controller 13 can be increased. Therefore, the transfer of the catalyst particles from the stripping zone 3 to the catalyst regeneration zone 4 becomes easy. Stripping band 3
In order to improve the contact between the used catalyst and the stripping gas and improve the stripping efficiency, a horizontal perforated plate or other inserts can be provided in multiple stages.

【0015】触媒再生帯域4は、上部域が円錐状で下部
域が円筒状を呈する容器で区画され、その上部円錐部分
は直立導管(ライザー型再生塔)5と連通している。触
媒再生帯域4は、上部円錐部分の頂角が通常30〜90
度の範囲にあり、上部円錐部分の高さが下部円筒部分の
直径の1/2〜2倍の範囲にあることが好ましい。スト
リッピング帯域3から触媒再生帯域4に供給された使用
済み触媒は、触媒再生帯域4の底部から導入される再生
用ガス(典型的には空気などの酸素含有ガス)により、
流動化されながら触媒表面に付着した炭素質物質並びに
重質炭化水素の実質的に全てが燃焼除去されることで再
生される。再生条件としては、通常、温度600〜10
00℃、好ましくは650〜750℃、触媒滞留時間1
〜5分が採用され、ガス空塔速度は、通常、0.4〜
1.2m/sが好ましく採用される。
The catalyst regeneration zone 4 is defined by a vessel having an upper region having a conical shape and a lower region having a cylindrical shape, and the upper conical portion thereof communicates with an upright conduit (riser-type regeneration tower) 5. In the catalyst regeneration zone 4, the apex angle of the upper conical portion is usually 30 to 90.
Preferably, the height of the upper conical portion is in the range of 1/2 to 2 times the diameter of the lower cylindrical portion. The spent catalyst supplied from the stripping zone 3 to the catalyst regeneration zone 4 is regenerated by a regeneration gas (typically an oxygen-containing gas such as air) introduced from the bottom of the catalyst regeneration zone 4.
While being fluidized, substantially all of the carbonaceous materials and heavy hydrocarbons attached to the catalyst surface are burned off and regenerated. The regeneration conditions are usually at a temperature of 600 to 10
00 ° C, preferably 650-750 ° C, catalyst residence time 1
~ 5 minutes is adopted, and the gas superficial velocity is usually 0.4 ~
1.2 m / s is preferably adopted.

【0016】触媒再生帯域4内で再生され、乱流流動層
の上部から飛び出した再生触媒は、使用済みの再生用ガ
スに同伴されて上部円錐部分からライザー型再生塔5に
移送される。触媒再生帯域4の上部円錐部分と連通する
ライザー型再生塔5の直径は、下部円筒部分の直径の1
/6〜1/3であることが好ましい。こうすることで、
触媒再生帯域4内の流動層のガス空塔速度を、乱流流動
層の形成に適した0.4〜1.2m/sの範囲に維持す
ることができ、ライザー型再生塔5のガス空塔速度を、
再生触媒の上昇移送に適した4〜12m/sの範囲に維
持できる。
The regenerated catalyst that has been regenerated in the catalyst regeneration zone 4 and has jumped out from the upper part of the turbulent fluidized bed is transferred from the upper conical portion to the riser type regeneration tower 5 together with the used regeneration gas. The diameter of the riser-type regeneration tower 5 communicating with the upper conical portion of the catalyst regeneration zone 4 is one of the diameter of the lower cylindrical portion.
/ 6 to 1/3. By doing this,
The gas superficial velocity of the fluidized bed in the catalyst regeneration zone 4 can be maintained in a range of 0.4 to 1.2 m / s suitable for forming a turbulent fluidized bed. Tower speed,
The range of 4 to 12 m / s suitable for ascending transfer of the regenerated catalyst can be maintained.

【0017】ライザー型再生塔5内を上昇した再生触媒
は、ライザー型再生塔頂部に設置された触媒貯槽6に運
ばれる。触媒貯槽6は気固分離器としても機能し、炭酸
ガスなどを含有する使用済み再生用ガスは、ここで再生
触媒から分離され、サイクロン15を経由して系外に排
出される。
The regenerated catalyst that has risen inside the riser type regeneration tower 5 is carried to a catalyst storage tank 6 installed at the top of the riser type regeneration tower. The catalyst storage tank 6 also functions as a gas-solid separator, and the used regeneration gas containing carbon dioxide gas and the like is separated from the regeneration catalyst here and discharged outside the system via the cyclone 15.

【0018】一方、触媒貯槽6内の再生触媒は、第2流
量調節器17を備えた流下管を経て混合領域7に供給さ
れる。また必要に応じ、ライザー型再生塔5における触
媒循環量の制御を容易にするため、触媒貯槽6内の再生
触媒の一部を第3流量調節器16を備えたバイパス導管
を経由して再生帯域4に戻すこともできる。このように
触媒は、反応帯域1、気固分離帯域2、ストリッピング
帯域3、触媒再生帯域4、ライザー型再生塔5、触媒貯
槽6、および混合領域7を経て、再び反応帯域1の順で
系内を循環している。
On the other hand, the regenerated catalyst in the catalyst storage tank 6 is supplied to the mixing area 7 via a downflow pipe provided with a second flow controller 17. If necessary, a part of the regenerated catalyst in the catalyst storage tank 6 is regenerated through a bypass conduit provided with a third flow controller 16 in order to facilitate control of the amount of catalyst circulated in the riser type regenerator 5. You can change it back to 4. As described above, the catalyst passes through the reaction zone 1, the gas-solid separation zone 2, the stripping zone 3, the catalyst regeneration zone 4, the riser type regeneration tower 5, the catalyst storage tank 6, and the mixing zone 7, and then again into the reaction zone 1. Circulating in the system.

【0019】本発明でいう反応帯域出口温度とはライザ
ーあるいはダウナー反応器の出口温度のことであり、分
解反応生成物が触媒と分離される直前の温度、あるいは
気固分離帯域の手前で急冷される場合は急冷される直前
の温度である。本発明において反応帯域出口温度は55
0〜630℃であり、好ましくは580〜620℃であ
る。550℃より低い温度では高い収率で軽質オレフィ
ンを得ることができず、630℃より高い温度では熱分
解が顕著になりドライガス発生量が多くなるため好まし
くない。本発明でいう炭化水素の滞留時間とは再生触媒
と原料油が接触してから反応帯域出口において触媒と分
解反応生成物が分離されるまでの時間、あるいは分離帯
域の手前で急冷される場合は急冷されるまでの時間を示
す。本発明において該滞留時間は0.01〜1.0秒で
あり、好ましくは0.05〜0.8秒であり、さらに好
ましくは0.1秒〜0.6秒である。反応帯域内での炭
化水素の滞留時間が0.01秒より短い場合、分解反応
が不充分となり高い収率で軽質オレフィンが得られな
い。また該滞留時間が1.0秒より長い場合、熱分解の
寄与が大きくなり好ましくない。
In the present invention, the reaction zone outlet temperature refers to the outlet temperature of a riser or a downer reactor, and is a temperature immediately before a decomposition reaction product is separated from a catalyst, or is quenched immediately before a gas-solid separation zone. In this case, it is the temperature immediately before quenching. In the present invention, the reaction zone outlet temperature is 55
It is 0-630 degreeC, Preferably it is 580-620 degreeC. If the temperature is lower than 550 ° C., a light olefin cannot be obtained in a high yield, and if the temperature is higher than 630 ° C., thermal decomposition becomes remarkable and the amount of dry gas generated is not preferable. The hydrocarbon residence time referred to in the present invention is the time from when the regenerated catalyst comes into contact with the feed oil until the catalyst and the decomposition reaction product are separated at the reaction zone outlet, or when quenched before the separation zone. Indicates the time until quenching. In the present invention, the residence time is from 0.01 to 1.0 second, preferably from 0.05 to 0.8 second, and more preferably from 0.1 to 0.6 second. When the residence time of the hydrocarbon in the reaction zone is shorter than 0.01 second, the cracking reaction becomes insufficient and a light olefin cannot be obtained with a high yield. If the residence time is longer than 1.0 second, the contribution of thermal decomposition increases, which is not preferable.

【0020】本発明における流動接触分解反応装置の操
作条件のうち上記以外については特に限定されないが、
通常、反応圧力196〜392kPa(1〜3kg/c
2G)、再生帯域温度600〜1000℃、好ましく
は650〜750℃、触媒/油比8〜40重量/重量、
好ましくは12〜30重量/重量で好ましく運転され
る。ここでいう触媒/油比とは触媒循環量(ton/
h)と原料油供給速度(ton/h)の比のことであ
る。
There are no particular restrictions on the operating conditions of the fluid catalytic cracking reactor of the present invention other than those described above.
Usually, the reaction pressure is 196 to 392 kPa (1 to 3 kg / c
m 2 G), regeneration zone temperature 600-1000 ° C., preferably 650-750 ° C., catalyst / oil ratio 8-40 weight / weight,
It is preferably operated at 12 to 30 weight / weight. Here, the catalyst / oil ratio means the catalyst circulation amount (ton /
h) and the feed rate (ton / h) of the feedstock.

【0021】本発明に用いる原料油である重質油は、水
素化処理装置で処理された減圧軽油(減圧蒸留装置から
の留出油)であり、該水素化処理装置の運転条件は、水
素分圧が7.84MPa(80kg/cm2)以上であ
ることが必要であり、好ましくは9.8MPa(100
kg/cm2)以上である。このような高い水素分圧下
で減圧軽油を処理することにより、流動接触分解触媒の
被毒物質である窒素化合物が除去されるばかりでなく減
圧軽油中の芳香族分が水素化され飽和分となるため、減
圧軽油の分解反応性が極めて高くなる。該水素化処理装
置の水素分圧が7.84MPa(80kg/cm2)に
満たない場合、減圧軽油中の芳香族分の水素化が十分進
行しないため、その減圧軽油を高温・短接触時間で接触
分解しても高いオレフィン収率は得られない。
The heavy oil, which is the feedstock oil used in the present invention, is reduced-pressure gas oil (distillate from a reduced-pressure distillation unit) which has been treated by a hydrotreatment unit. The partial pressure needs to be 7.84 MPa (80 kg / cm 2 ) or more, and preferably 9.8 MPa (100 kg / cm 2 ).
kg / cm 2 ) or more. By treating vacuum gas oil under such a high hydrogen partial pressure, not only nitrogen compounds which are poisons of the fluid catalytic cracking catalyst are removed, but also aromatic components in the vacuum gas oil are hydrogenated to become saturated components. Therefore, the decomposition reactivity of the vacuum gas oil becomes extremely high. If the hydrogen partial pressure of the hydrotreating device is less than 7.84 MPa (80 kg / cm 2 ), the hydrogenation of aromatics in the vacuum gas oil does not proceed sufficiently. A high olefin yield cannot be obtained by catalytic cracking.

【0022】該水素化処理装置におけるその他の運転条
件については特に限定されないが、通常、反応温度35
0〜430℃、LHSV 0.5〜4、水素/油比 1,
000〜4,000 scf/bblで好ましく運転さ
れる。本発明の流動接触分解方法において原料油として
用いられる減圧軽油の好ましい性状としては、水素分:
13質量%以上、好ましくは13.5質量%以上、窒素
分:0.01質量%以下、好ましくは0.005質量%
以下、硫黄分:0.1質量%以下、比重(15℃):
0.80〜0.85g/cm3、アニリン点:100〜
130℃である。また該減圧軽油の好ましい蒸留性状
は、10%留出点:250〜470℃、好ましくは34
0〜420℃、50%留出点:300〜520℃、好ま
しくは400〜500℃、90%留出点:340〜56
0℃、好ましくは470〜550℃である。
The other operating conditions in the hydrotreating apparatus are not particularly limited, but usually, the reaction temperature is 35.
0-430 ° C, LHSV 0.5-4, hydrogen / oil ratio 1,
It is preferably operated at 000 to 4,000 scf / bbl. Preferred properties of the vacuum gas oil used as a feed oil in the fluid catalytic cracking method of the present invention include a hydrogen content:
13% by mass or more, preferably 13.5% by mass or more, nitrogen content: 0.01% by mass or less, preferably 0.005% by mass
Or less, sulfur content: 0.1% by mass or less, specific gravity (15 ° C.):
0.80 to 0.85 g / cm 3 , aniline point: 100 to
130 ° C. The preferable distillation properties of the vacuum gas oil are as follows: 10% distillation point: 250 to 470 ° C, preferably 34%
0-420 ° C, 50% distillation point: 300-520 ° C, preferably 400-500 ° C, 90% distillation point: 340-56.
0 ° C., preferably 470-550 ° C.

【0023】本発明の流動接触分解方法に用いる触媒
は、活性成分であるゼオライトとその支持母体であるマ
トリックスよりなる。該ゼオライトの主成分は超安定Y
型ゼオライトである。触媒中の該ゼオライトの含有量は
5〜50質量%が好ましく、15〜40質量%がさらに
好ましい。また本発明の流動接触分解方法に用いる触媒
としては、前記超安定Y型ゼオライトの他にY型ゼオラ
イトよりも細孔径の小さい結晶性アルミノシリケートゼ
オライトあるいはシリコアルミノフォスフェート(SA
PO)を含むこともできる。そのようなゼオライトある
いはSAPOとしては、ZSM−5、β、オメガ、SA
PO−5、SAPO−11、SAPO−34等が例示で
きる。これらのゼオライトあるいはSAPOは前記超安
定Y型ゼオライトとを含む触媒と同一の触媒粒子中に含
まれていてもよいし、別粒子であってもよい。本発明の
流動接触分解方法に用いる触媒のかさ密度は0.5〜
1.0g/ml、平均粒径は50〜90μm、表面積は
50〜350m2/g、細孔容積は0.05〜0.5m
l/gの範囲であるのが好ましい。
The catalyst used in the fluid catalytic cracking method of the present invention comprises zeolite as an active component and a matrix as a supporting base thereof. The main component of the zeolite is ultra-stable Y
It is a type zeolite. The content of the zeolite in the catalyst is preferably 5 to 50% by mass, more preferably 15 to 40% by mass. As the catalyst used in the fluid catalytic cracking method of the present invention, in addition to the ultra-stable Y-type zeolite, crystalline aluminosilicate zeolite or silicoaluminophosphate (SA) having a smaller pore diameter than Y-type zeolite is used.
PO). Such zeolites or SAPOs include ZSM-5, β, Omega, SA
PO-5, SAPO-11 and SAPO-34 can be exemplified. These zeolites or SAPOs may be contained in the same catalyst particles as the catalyst containing the ultra-stable Y-type zeolite, or may be different particles. The bulk density of the catalyst used in the fluid catalytic cracking method of the present invention is 0.5 to
1.0 g / ml, average particle size 50-90 μm, surface area 50-350 m 2 / g, pore volume 0.05-0.5 m
It is preferably in the range of 1 / g.

【0024】[0024]

【実施例】次に本発明の実施例等について説明するが本
発明はこれに限定されるものではない。
Next, embodiments of the present invention will be described, but the present invention is not limited thereto.

【0025】実施例1 ダウナータイプFCCパイロット装置を用いて重質油の
流動接触分解を行なった。装置規模は、インベントリ−
5kg、フィ−ド量1kg/hであり、運転条件は、リ
アクター出口温度600℃、反応圧力196kPa
(1.0kg/cm 2G)、触媒/油比15.5重量/
重量、再生塔温度720℃である。このときリアクター
内の炭化水素滞留時間は0.4秒であった。用いた触媒
は市販の流動接触分解触媒(触媒化成工業(株)製、商
品名Harmorex)である。流動接触分解触媒を装
置に充填する前に810℃で6時間、100%スチ−ム
でスチ−ミングした。原料油として用いた重質油はアラ
ビアンライト系減圧軽油を水素分圧14.7MPa(1
50kg/cm2)、反応温度400℃、LHSVを1
とした条件で水素化処理したものである。水素化処理さ
れた減圧軽油の性状は、比重(15℃):0.828g
/cm3、アニリン点:118℃、水素分:14.1質
量%、窒素分:0.003質量%、硫黄分:0.02質
量%であり、蒸留性状としては10%留出点:387
℃、50%留出点:445℃、90%留出点:512℃
であった。分解反応の結果を第1表に示す。
Example 1 Using a downer type FCC pilot device, heavy oil was
Fluid catalytic cracking was performed. The equipment scale is the inventory
5 kg, feed rate 1 kg / h.
Actor outlet temperature 600 ° C, reaction pressure 196kPa
(1.0kg / cm TwoG), catalyst / oil ratio of 15.5 weight /
Weight and regeneration tower temperature are 720 ° C. At this time the reactor
The hydrocarbon residence time in the reactor was 0.4 seconds. Catalyst used
Is a commercially available fluid catalytic cracking catalyst (manufactured by Catalyst Chemical Industry Co., Ltd.
Harmorex). Equipped with a fluid catalytic cracking catalyst
100% steam at 810 ° C for 6 hours before filling
And steamed. Heavy oil used as feedstock
Bianlite vacuum gas oil was converted to hydrogen partial pressure of 14.7 MPa (1
50kg / cmTwo), Reaction temperature 400 ° C, LHSV 1
Under the conditions described above. Hydrotreated
The properties of the vacuum gas oil obtained were as follows: specific gravity (15 ° C): 0.828 g
/ CmThree, Aniline point: 118 ° C, hydrogen content: 14.1
%, Nitrogen: 0.003 mass%, sulfur: 0.02
%, And the distillation property is 10%. Distillation point: 387
° C, 50% distillation point: 445 ° C, 90% distillation point: 512 ° C
Met. Table 1 shows the results of the decomposition reaction.

【0026】比較例1 実施例1と同じ装置、同じ触媒を用いて重質油の流動接
触分解を行なった。運転条件は、リアクター出口温度6
00℃、反応圧力196kPa(1.0kg/cm
2G)、触媒/油比14.9重量/重量、再生塔温度7
20℃である。原料油として用いた重質油はアラビアン
ライト系減圧軽油を水素分圧6.37MPa(65kg
/cm2)、反応温度400℃、LHSVを2とした条
件で水素化処理したものである。水素化処理された減圧
軽油の性状は、比重(15℃):0.897g/c
3、アニリン点:77.9℃、水素分:12.6質量
%、窒素分:0.04質量%、硫黄分:0.13質量%
であり、蒸留性状としては10%留出点:384℃、5
0%留出点:462℃、90%留出点:556℃であっ
た。分解反応の結果を表1に示す。
Comparative Example 1 The fluid catalytic cracking of heavy oil was carried out using the same apparatus and the same catalyst as in Example 1. The operating conditions are: reactor outlet temperature 6
00 ° C., reaction pressure 196 kPa (1.0 kg / cm
2 G), a catalyst / oil ratio 14.9 wt / wt, regenerator temperature 7
20 ° C. The heavy oil used as the feed oil was a Arabian light vacuum gas oil with a hydrogen partial pressure of 6.37 MPa (65 kg).
/ Cm 2 ), a hydrogenation treatment at a reaction temperature of 400 ° C. and an LHSV of 2. The properties of the hydrotreated vacuum gas oil are as follows: specific gravity (15 ° C): 0.897 g / c
m 3 , aniline point: 77.9 ° C., hydrogen content: 12.6 mass%, nitrogen content: 0.04 mass%, sulfur content: 0.13 mass%
The distillation properties were as follows: 10% distillation point: 384 ° C, 5
The 0% distillation point was 462 ° C and the 90% distillation point was 556 ° C. Table 1 shows the results of the decomposition reaction.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】以上のように、反応条件と原料重質油を
限定して流動接触分解することにより、熱分解によるド
ライガス発生量が少なく、プロピレン、ブテンなどの軽
質オレフィンを高い収率で得ることができる。
As described above, by performing fluid catalytic cracking by limiting the reaction conditions and the raw material heavy oil, the amount of dry gas generated by thermal cracking is small, and light olefins such as propylene and butene can be produced with high yield. Obtainable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いられる流動接触分解反応装置の一
例である。
FIG. 1 is an example of a fluid catalytic cracking reactor used in the present invention.

【符号の説明】 1 ダウンフロー形式反応帯域 2 気固分離帯域 3 ストリッピング帯域 4 再生帯域 5 ライザー型再生塔 6 触媒貯槽 7 混合領域 8 二次分離器 9 ディップレッグ[Description of Signs] 1 Downflow type reaction zone 2 Gas-solid separation zone 3 Stripping zone 4 Regeneration zone 5 Riser type regeneration tower 6 Catalyst storage tank 7 Mixing area 8 Secondary separator 9 Dip-reg

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥原 俊彰 サウジアラビア王国,ダハラン31261, 財団法人石油産業活性化センター 新FC Cサウジ分室内 (72)発明者 井野 隆 サウジアラビア王国,ダハラン31261, 財団法人石油産業活性化センター 新FC Cサウジ分室内 (72)発明者 ハリム・ハミッド・レドウィ サウジアラビア王国,ダハラン31261, キング ファハド ユニバーシティ オブ ペトロリアム アンド ミネラルズ 内 (72)発明者 モハマッド・アブルハマエル サウジアラビア王国,ダハラン31261, キング ファハド ユニバーシティ オブ ペトロリアム アンド ミネラルズ 内 (72)発明者 アブドラ・アイタニ サウジアラビア王国,ダハラン31261, キング ファハド ユニバーシティ オブ ペトロリアム アンド ミネラルズ 内 (72)発明者 アブドゥルガデル・マグラビ サウジアラビア王国,ダハラン31261, キング ファハド ユニバーシティ オブ ペトロリアム アンド ミネラルズ 内 Fターム(参考) 4H029 BA12 BB03 BC04 BC05 BC07 BD08 DA03 DA09  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiaki Okuhara, Saudi Arabia, Daharan 31261, Petroleum Industry Activation Center New FC C Saudi Branch Office (72) Inventor, Takashi Ino Kingdom of Saudi Arabia, Dahran 31261, Petroleum Industry Activation Center New FC C Saudi Branch Office (72) Inventor Harim Hamid Redwi Saudi Arabia, Dahlan 31261, King Fahd University of Petroleum and Minerals (72) Inventor Mohammad Abulhamael Saudi Arabia, Dahran 31261, King Fahd University of Petroleum and Minerals (72) Inventor Abdullah Aitani Dahran 3, Kingdom of Saudi Arabia 1261, King Fahd University of Petroleum and Minerals (72) Inventor Abdulgadel Magravi Saudi Arabia, Dahlan 31261, King Fahd University of Petroleum and Minerals F-term (reference) 4H029 BA12 BB03 BC04 BC03 DA08

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 反応帯域、気固分離帯域、ストリッピン
グ帯域および触媒再生帯域を有する流動接触分解反応装
置を用いて軽質オレフィンを製造する重質油の流動接触
分解方法であって、反応帯域出口温度が550〜630
℃、反応帯域での炭化水素の滞留時間が0.01〜1.
0秒であり、かつ該重質油が水素分圧7.84MPa
(80kg/cm2)以上の条件で水素化処理された減
圧軽油であることを特徴とする重質油の流動接触分解方
法。
1. A method for fluid catalytic cracking of heavy oil in which a light olefin is produced using a fluid catalytic cracking reactor having a reaction zone, a gas-solid separation zone, a stripping zone and a catalyst regeneration zone, comprising a reaction zone outlet. Temperature is 550-630
° C, the residence time of hydrocarbons in the reaction zone is 0.01-1.
0 seconds and the heavy oil has a hydrogen partial pressure of 7.84 MPa.
(80 kg / cm 2 ) A method for fluid catalytic cracking of heavy oil, which is a reduced pressure gas oil hydrotreated under conditions of not less than 80 kg / cm 2 .
JP2001045198A 2001-02-21 2001-02-21 Fluid catalytic cracking method of heavy oil Expired - Lifetime JP4223690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001045198A JP4223690B2 (en) 2001-02-21 2001-02-21 Fluid catalytic cracking method of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001045198A JP4223690B2 (en) 2001-02-21 2001-02-21 Fluid catalytic cracking method of heavy oil

Publications (2)

Publication Number Publication Date
JP2002241765A true JP2002241765A (en) 2002-08-28
JP4223690B2 JP4223690B2 (en) 2009-02-12

Family

ID=18907041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001045198A Expired - Lifetime JP4223690B2 (en) 2001-02-21 2001-02-21 Fluid catalytic cracking method of heavy oil

Country Status (1)

Country Link
JP (1) JP4223690B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100667960B1 (en) 2003-09-28 2007-01-11 차이나 페트로리움 앤드 케미컬 코포레이션 Hydrocarbon Oil Cracking Method
JP2008069328A (en) * 2006-09-15 2008-03-27 Nippon Oil Corp Gasoline composition
JP2010509329A (en) * 2006-11-07 2010-03-25 サウジ アラビアン オイル カンパニー Advanced control of severe fluid catalytic cracking process to maximize propylene production from petroleum feedstock
CN104513673A (en) * 2013-09-29 2015-04-15 中石化洛阳工程有限公司 Double-riser catalytic cracking method and device
WO2015111566A1 (en) * 2014-01-24 2015-07-30 Jx日鉱日石エネルギー株式会社 Fluid catalytic cracking process for heavy oil
WO2020096741A1 (en) * 2018-11-09 2020-05-14 Exxonmobil Research And Engineering Company Fluidized coking with oxygen-containing stripping gas

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234529A (en) * 2010-05-06 2011-11-09 中国石油天然气股份有限公司 Combined process method for heavy oil processing
CN102234530B (en) * 2010-05-06 2013-12-04 中国石油天然气股份有限公司 Heavy oil vacuum deep-drawing grading-partition catalytic cracking combined process method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100667960B1 (en) 2003-09-28 2007-01-11 차이나 페트로리움 앤드 케미컬 코포레이션 Hydrocarbon Oil Cracking Method
JP2008069328A (en) * 2006-09-15 2008-03-27 Nippon Oil Corp Gasoline composition
JP2010509329A (en) * 2006-11-07 2010-03-25 サウジ アラビアン オイル カンパニー Advanced control of severe fluid catalytic cracking process to maximize propylene production from petroleum feedstock
CN104513673A (en) * 2013-09-29 2015-04-15 中石化洛阳工程有限公司 Double-riser catalytic cracking method and device
CN104513673B (en) * 2013-09-29 2016-08-17 中石化洛阳工程有限公司 A kind of double lift pipe catalytic cracking method and device
WO2015111566A1 (en) * 2014-01-24 2015-07-30 Jx日鉱日石エネルギー株式会社 Fluid catalytic cracking process for heavy oil
JP2015137360A (en) * 2014-01-24 2015-07-30 Jx日鉱日石エネルギー株式会社 Method for fluid catalytic cracking of heavy oil
WO2020096741A1 (en) * 2018-11-09 2020-05-14 Exxonmobil Research And Engineering Company Fluidized coking with oxygen-containing stripping gas

Also Published As

Publication number Publication date
JP4223690B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP4656689B2 (en) Riser reactor for fluid catalytic conversion.
KR101447299B1 (en) Methods for converting and recovering a heavy oil feed stream associated with FCC unit operation into a light hydrocarbon product stream
JP6172819B2 (en) Fluid catalytic cracking process and apparatus for maximizing light olefins or medium effluents and light olefins
JP3580518B2 (en) Fluid catalytic cracking of heavy oil
RU2417976C2 (en) Method for catalytic conversion of light olefins
RU2580829C2 (en) Method and apparatus for catalytic cracking for producing propylene
US20020195373A1 (en) Heavy oil fluid catalytic cracking process
EP0585247B1 (en) Catalytic cracking process and apparatus
JPH04501579A (en) Catalytic cracking method combined with light olefin modification
US6495028B1 (en) Catalytic conversion process for producing isobutane and isoparaffin-enriched gasoline
JPH01279993A (en) Modification of hydrocarbon
JPS6384632A (en) Fluid catalytic cracking method
CN103732726A (en) A dual riser catalytic cracking process for making middle distillate and lower olefins
CN101440014A (en) Method for producing light olefins
JP3996320B2 (en) Method for producing gasoline with a high content of isobutane and isoparaffin by conversion using a catalyst
JPS6369534A (en) Two-phase fluid catalytic cracking method and its equipment
JP3948905B2 (en) Fluid catalytic cracking of heavy oil
JP2019089907A (en) Method of producing light olefin
CN109722289A (en) Reduce the catalyst cracking method of dry gas and coke yield
JP4223690B2 (en) Fluid catalytic cracking method of heavy oil
CN105980527B (en) The FCC process of heavy oil
CA2553783C (en) System and method for selective component cracking to maximize production of light olefins
JP5947797B2 (en) Catalytic modification to improve product distribution
JP3724934B2 (en) Fluid catalytic cracking method of oil
JP3724932B2 (en) Fluid catalytic cracking method of oil

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4223690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term