JP2002029841A - Low temperature sintering dielectric material - Google Patents
Low temperature sintering dielectric materialInfo
- Publication number
- JP2002029841A JP2002029841A JP2000202740A JP2000202740A JP2002029841A JP 2002029841 A JP2002029841 A JP 2002029841A JP 2000202740 A JP2000202740 A JP 2000202740A JP 2000202740 A JP2000202740 A JP 2000202740A JP 2002029841 A JP2002029841 A JP 2002029841A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- powder
- dielectric material
- temperature
- low temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は配線基板や回路部品の作
製に用いられ、1000℃以下の低温で焼結できる低温
焼結誘電体材料に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-temperature sintered dielectric material which is used for producing wiring boards and circuit parts and can be sintered at a low temperature of 1000.degree.
【0002】[0002]
【従来の技術】配線基板や回路部品の誘電体材料として
従来広く使用されているアルミナセラミックは、焼成温
度が1600℃と高く、同時焼成できる内部導体材料と
してはモリブデン、タングステン等の高融点金属のみで
ある。これらの金属は導体抵抗が高く、伝送損失が大き
くなるという欠点がある。2. Description of the Related Art Alumina ceramic, which has been widely used as a dielectric material for wiring boards and circuit parts, has a high firing temperature of 1600 ° C., and only high-melting metals such as molybdenum and tungsten can be used as internal conductor materials that can be simultaneously fired. It is. These metals have the disadvantage that the conductor resistance is high and the transmission loss increases.
【0003】そこで1000℃以下の温度で焼成可能な
ガラスセラミックス材料が開発され実用化されている。
このガラスセラミックス材料は、ガラス粉末とセラミッ
ク粉末からなり、1000℃以下の温度で焼成できるの
で、導体損失の低い銀や銅を内部導体として使用できる
という長所がある。[0003] Therefore, a glass ceramic material that can be fired at a temperature of 1000 ° C or less has been developed and put into practical use.
This glass-ceramic material is composed of a glass powder and a ceramic powder, and can be fired at a temperature of 1000 ° C. or less. Therefore, there is an advantage that silver or copper with low conductor loss can be used as the internal conductor.
【0004】[0004]
【発明が解決しようとする課題】高周波用回路部品材料
には、その周波数帯域における誘電損失が低いことが要
求される。しかしながら従来より知られているガラスセ
ラミックス材料は、0.1GHz以上の高周波域での誘
電損失が20〜50-4と高いという欠点があり、これを
用いて高性能の高周波回路部品や誘電体フィルターを作
製することはできないという問題がある。A high frequency circuit component material is required to have a low dielectric loss in the frequency band. However, conventionally known glass ceramic materials have a drawback that the dielectric loss in a high frequency range of 0.1 GHz or higher is as high as 20 to 50 -4, and high performance high frequency circuit components and dielectric filters are used by using this. Cannot be manufactured.
【0005】本発明の目的は、1000℃以下の温度で
焼成でき、しかも高周波域において誘電損失が低い低温
焼結誘電体材料を提供することである。An object of the present invention is to provide a low-temperature sintered dielectric material which can be fired at a temperature of 1000 ° C. or less and has a low dielectric loss in a high frequency range.
【0006】[0006]
【課題を解決するための手段】本発明者は種々の実験を
行った結果、焼成後の残存ガラス相の割合が少ないほど
高周波域での誘電損失が小さくなることを見いだし、本
発明を提案するに至った。As a result of various experiments, the present inventor has found that the smaller the ratio of the residual glass phase after firing, the lower the dielectric loss in a high frequency range, and proposes the present invention. Reached.
【0007】即ち、本発明の低温焼結誘電体材料は、体
積%で、結晶性ガラス粉末60〜100%、セラミック
粉末0〜40体積%からなり、焼成後に結晶相が95〜
100体積%、ガラス相が0〜5体積%となる性質を有
することを特徴とする。That is, the low-temperature sintered dielectric material of the present invention comprises, by volume, 60 to 100% of a crystalline glass powder and 0 to 40% by volume of a ceramic powder.
It is characterized in that it has a property of 100% by volume and a glass phase of 0 to 5% by volume.
【0008】[0008]
【作用】本発明の低温焼結誘電体材料は、結晶性ガラス
粉末からなり、また必要に応じて40体積%以下のセラ
ミック粉末を含み、1000℃以下の温度で焼成可能な
材料である。なおセラミック粉末の添加量が40体積%
を超えると焼結体が緻密化せず、内部気孔が多くなり絶
縁性が低下する。The low-temperature sintering dielectric material of the present invention is made of crystalline glass powder, contains 40% by volume or less of ceramic powder if necessary, and can be fired at a temperature of 1000 ° C. or less. The amount of ceramic powder added was 40% by volume.
If it exceeds 300, the sintered body is not densified, the number of internal pores increases, and the insulating property decreases.
【0009】結晶性ガラスは、焼成するとガラス内部か
ら、或いはセラミック粉末と反応して結晶を析出する。
例えばSiO2−CaO−ZnO系ガラスとアルミナ粉
末を使用すれば、アノーサイト結晶とガーナイト結晶が
析出した高強度で低誘電損失の特徴を有する焼結体を得
ることができる。またSiO2−MgO−CaO系ガラ
スとフォルステライト粉末を使用すれば、フォルステラ
イト結晶とウォラストナイト結晶が析出した高膨脹で低
誘電損失の特徴を有する焼結体を得ることができる。ま
たSiO2−TiO2−Nd2O3系ガラスとアルミナ粉末
を使用すれば、チタン酸ネオジウム結晶が析出した高誘
電率で低誘電損失の特徴を有する焼結体を得ることがで
きる。またSiO2−CaO−MgO−Al2O3系ガラ
スを使用すれば、ディオプサイド結晶が析出した低誘電
率、低誘電損失の焼結体を得ることができる。When crystalline glass is fired, it reacts with the inside of the glass or with ceramic powder to precipitate crystals.
For example, if a SiO 2 —CaO—ZnO-based glass and alumina powder are used, a sintered body having high strength and low dielectric loss, in which anorthite crystals and garnet crystals are precipitated, can be obtained. When a SiO 2 —MgO—CaO-based glass and forsterite powder are used, a sintered body having high expansion and low dielectric loss, in which forsterite crystals and wollastonite crystals are precipitated, can be obtained. If a SiO 2 —TiO 2 —Nd 2 O 3 -based glass and alumina powder are used, a sintered body having a high dielectric constant and a low dielectric loss, in which neodymium titanate crystals are precipitated, can be obtained. When a SiO 2 —CaO—MgO—Al 2 O 3 system glass is used, a sintered body having a low dielectric constant and a low dielectric loss in which diopside crystals are precipitated can be obtained.
【0010】さらに本発明において、焼成後の結晶相と
ガラス相の割合を上記のように限定した理由は、ガラス
相が5体積%を超えると、0.1GHz以上の高周波に
おいて、誘電損失が大きくなり好ましくないためであ
る。ガラス相の割合を少なくするには、例えば使用する
結晶性ガラスの組成を析出結晶の理論値に近づければよ
い。Further, in the present invention, the reason that the ratio of the crystal phase and the glass phase after firing is limited as described above is that when the glass phase exceeds 5% by volume, the dielectric loss becomes large at a high frequency of 0.1 GHz or more. This is not preferred. In order to reduce the ratio of the glass phase, for example, the composition of the crystalline glass to be used may be close to the theoretical value of the precipitated crystal.
【0011】なお本発明において規定する結晶相の割合
とは、焼成時にガラス内部から析出した析出結晶、ガラ
ス粉末とセラミック粉末とが反応して生成した析出結
晶、及び反応せずに残存したセラミック粉末の合計量を
示している。The proportion of the crystal phase specified in the present invention refers to the precipitated crystal precipitated from the inside of the glass during firing, the precipitated crystal formed by the reaction between the glass powder and the ceramic powder, and the ceramic powder remaining without reacting. Shows the total amount of
【0012】[0012]
【実施例】以下、実施例及び比較例に基づいて本発明を
説明する。The present invention will be described below based on examples and comparative examples.
【0013】表1は本発明の実施例(試料No.1〜
4)、表2は比較例(試料No.5〜8)をそれぞれ示
している。Table 1 shows examples of the present invention (samples No. 1 to No. 1).
4) and Table 2 show comparative examples (samples Nos. 5 to 8), respectively.
【0014】[0014]
【表1】 [Table 1]
【0015】[0015]
【表2】 [Table 2]
【0016】各試料は次のようにして調製した。まず表
の組成となるようにガラス原料を調合した後、白金坩堝
に入れて1400〜1500℃で3〜6時間溶融してか
ら、水冷ローラーによって薄板状に成形した。次いでこ
の成形体を粗砕した後、水を加えてボールミルにより湿
式粉砕し、平均粒径が1.5〜3μmの結晶性ガラス粉
末を得た。さらに試料No.1〜3、5〜7については
セラミック粉末(平均粒径2μm)を添加し、混合粉末
とした。Each sample was prepared as follows. First, a glass raw material was prepared so as to have the composition shown in the table, put in a platinum crucible, melted at 1400 to 1500 ° C. for 3 to 6 hours, and then formed into a thin plate with a water-cooled roller. Next, after roughly pulverizing the molded product, water was added thereto and wet-pulverized by a ball mill to obtain a crystalline glass powder having an average particle size of 1.5 to 3 μm. Further, the sample No. Ceramic powders (average particle size: 2 μm) were added to 1-3, 5-7, to give mixed powders.
【0017】次に試料粉末にバインダー(ポリブチルメ
タアクリレート)、可塑剤(ブチルベンジルフタレー
ト)、溶剤(トルエン)を加え、混練してスラリーと
し、ドクターブレード法により厚さ0.2mmのグリー
ンシートに成形した。さらに作製したグリーンシート6
枚を積層圧着して脱脂後、焼成することにより誘電体を
得た。なお焼成温度は、種々の温度で焼成した焼結体に
インクを塗布した後に拭き取り、インクが残らない(=
緻密に焼結した)試料のうち最低の温度で焼成したもの
の焼成温度を記載した。また得られた焼結体について、
析出結晶、結晶相とガラス相の割合、誘電損失及び誘電
率を評価した。結果を各表に示す。Next, a binder (polybutyl methacrylate), a plasticizer (butylbenzyl phthalate), and a solvent (toluene) are added to the sample powder, and the mixture is kneaded to form a slurry, which is formed into a green sheet having a thickness of 0.2 mm by a doctor blade method. Molded. Green sheet 6 further prepared
The sheets were laminated and pressed, degreased, and fired to obtain a dielectric. The firing temperature was such that the ink was applied to the sintered body fired at various temperatures and then wiped off so that no ink remained (=
The firing temperature of the sample fired at the lowest temperature among the samples (sintered densely) was described. In addition, about the obtained sintered body,
The precipitated crystal, the ratio of the crystal phase to the glass phase, the dielectric loss and the dielectric constant were evaluated. The results are shown in each table.
【0018】表から明らかなように、実施例の各試料
は、1000℃以下の温度で焼成可能であった。また
2.4GHzの周波数で誘電率が6〜25、誘電損失が
3〜10×10-4であった。As can be seen from the table, each of the samples of the examples could be fired at a temperature of 1000 ° C. or less. At a frequency of 2.4 GHz, the dielectric constant was 6 to 25, and the dielectric loss was 3 to 10 × 10 −4 .
【0019】一方、比較例の各試料は、焼成後のガラス
相の割合が多いため、誘電損失が25〜60×10-4と
大きかった。On the other hand, each sample of the comparative example had a large ratio of the glass phase after firing, and thus had a large dielectric loss of 25 to 60 × 10 −4 .
【0020】なお析出結晶は、焼結体を粉砕し、粉末X
線回折装置により同定した。結晶相とガラス相の割合は
100%ガラス相のハローの高さとの比より評価した。
誘電率及び誘電損失の測定は次のようにして行った。ま
ず原料粉末を7×7×70mmの大きさにプレス成形
し、900〜1000℃で焼成して試料を作製した。こ
の試料を用い、測定周波数2.4GHzで空洞共振器摂
動法により測定した。The precipitated crystal is obtained by pulverizing a sintered body,
It was identified by a line diffractometer. The ratio of the crystal phase to the glass phase was evaluated from the ratio of the halo height of the 100% glass phase.
The measurement of the dielectric constant and the dielectric loss was performed as follows. First, the raw material powder was press-molded into a size of 7 × 7 × 70 mm, and fired at 900 to 1000 ° C. to prepare a sample. Using this sample, measurement was performed at a measurement frequency of 2.4 GHz by a cavity resonator perturbation method.
【0021】[0021]
【発明の効果】本発明の低温焼結誘電体材料を使用すれ
ば、1000℃以下の焼成温度で緻密な焼結体が得られ
るため、銀、銅を内層導体とした積層セラミックデバイ
スが製造できる。しかも0.1GHz以上の高周波域に
おいて、低い誘電損失を有するので、高周波用回路部品
材料として好適である。By using the low-temperature sintered dielectric material of the present invention, a dense sintered body can be obtained at a sintering temperature of 1000 ° C. or less, so that a multilayer ceramic device using silver and copper as inner conductors can be manufactured. . Moreover, since it has a low dielectric loss in a high frequency range of 0.1 GHz or more, it is suitable as a high frequency circuit component material.
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 3/02 C04B 35/18 B Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H01B 3/02 C04B 35/18 B
Claims (1)
0%、セラミック粉末0〜40体積%からなり、焼成後
に結晶相が95〜100体積%、ガラス相が0〜5体積
%となる性質を有することを特徴とする低温焼結誘電体
材料。1. A crystalline glass powder of 60 to 10% by volume.
A low-temperature sintered dielectric material comprising 0%, 0 to 40% by volume of a ceramic powder, and having a property that a crystal phase becomes 95 to 100% by volume and a glass phase becomes 0 to 5% by volume after firing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000202740A JP2002029841A (en) | 2000-07-04 | 2000-07-04 | Low temperature sintering dielectric material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000202740A JP2002029841A (en) | 2000-07-04 | 2000-07-04 | Low temperature sintering dielectric material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002029841A true JP2002029841A (en) | 2002-01-29 |
Family
ID=18700225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000202740A Pending JP2002029841A (en) | 2000-07-04 | 2000-07-04 | Low temperature sintering dielectric material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002029841A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004107149A (en) * | 2002-09-19 | 2004-04-08 | Sumitomo Metal Electronics Devices Inc | Low dielectric constant ceramic composition for high frequency component and method of manufacturing the same |
-
2000
- 2000-07-04 JP JP2000202740A patent/JP2002029841A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004107149A (en) * | 2002-09-19 | 2004-04-08 | Sumitomo Metal Electronics Devices Inc | Low dielectric constant ceramic composition for high frequency component and method of manufacturing the same |
JP4534413B2 (en) * | 2002-09-19 | 2010-09-01 | 株式会社村田製作所 | Method for producing low dielectric constant porcelain composition for high frequency component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3687443B2 (en) | Low temperature fired ceramic composition and ceramic multilayer substrate | |
JP4632534B2 (en) | Dielectric porcelain and manufacturing method thereof | |
JP2002104870A (en) | Dielectric porcelain and laminate | |
JP4228344B2 (en) | Glass powder, glass ceramic dielectric material, sintered body, and circuit member for high frequency | |
KR100672198B1 (en) | Compositions for Ceramic Substrates, Ceramic Substrates, Manufacturing Methods of Ceramic Substrates and Glass Compositions | |
JP3033568B1 (en) | Low temperature firing glass ceramics | |
JP3624405B2 (en) | Glass ceramic dielectric material | |
JP3721570B2 (en) | Glass ceramic dielectric material | |
JP2006256956A (en) | Glass ceramic sintered compact and circuit member for microwave | |
JP2002029841A (en) | Low temperature sintering dielectric material | |
JP2010037126A (en) | Ceramic composition and ceramic sintered compact | |
JP3624406B2 (en) | Glass ceramic dielectric material | |
JP2002211971A (en) | Glass-ceramics dielectric material, sintered body and circuit member for microwave | |
JP4288656B2 (en) | Glass ceramic dielectric material | |
JP4704836B2 (en) | Low-temperature fired porcelain composition, method for producing the same, and electronic component using the same | |
JP2001348268A (en) | Low temperature sintered dielectric material and dielectric | |
JP4047050B2 (en) | Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board using the same | |
JP3215004B2 (en) | Dielectric porcelain composition | |
JP3074194B2 (en) | Dielectric porcelain composition | |
JP2740689B2 (en) | Dielectric porcelain composition, method for producing the same, and wiring board using the same | |
JP2710311B2 (en) | Ceramic insulation material | |
JP3085618B2 (en) | Dielectric porcelain composition | |
JP3624407B2 (en) | Glass ceramic dielectric material | |
JP3631589B2 (en) | Dielectric porcelain composition and laminate | |
JP3411190B2 (en) | Dielectric porcelain composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040325 |