JP2001047066A - Treatment of trace metal-containing water - Google Patents
Treatment of trace metal-containing waterInfo
- Publication number
- JP2001047066A JP2001047066A JP22547899A JP22547899A JP2001047066A JP 2001047066 A JP2001047066 A JP 2001047066A JP 22547899 A JP22547899 A JP 22547899A JP 22547899 A JP22547899 A JP 22547899A JP 2001047066 A JP2001047066 A JP 2001047066A
- Authority
- JP
- Japan
- Prior art keywords
- water
- metal
- membrane separation
- trace
- chelating agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 229910021654 trace metal Inorganic materials 0.000 title claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims abstract description 35
- 239000002184 metal Substances 0.000 claims abstract description 35
- 239000012528 membrane Substances 0.000 claims abstract description 34
- 238000000926 separation method Methods 0.000 claims abstract description 24
- 239000002738 chelating agent Substances 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 19
- 229910021655 trace metal ion Inorganic materials 0.000 claims abstract description 5
- 238000000108 ultra-filtration Methods 0.000 claims description 11
- 238000001223 reverse osmosis Methods 0.000 claims description 9
- 229910021645 metal ion Inorganic materials 0.000 abstract description 18
- 150000002739 metals Chemical class 0.000 abstract description 16
- 239000000203 mixture Substances 0.000 abstract 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 19
- 239000012498 ultrapure water Substances 0.000 description 19
- 238000005342 ion exchange Methods 0.000 description 10
- 239000000084 colloidal system Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 4
- 239000013522 chelant Substances 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 1
- 239000005750 Copper hydroxide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical group NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910001956 copper hydroxide Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Removal Of Specific Substances (AREA)
Abstract
(57)【要約】
【課題】 1.0μg/L以下というような極微量領域
の水中の金属又は金属イオンを膜分離装置により効率的
に除去する。
【解決手段】 1.0μg/L以下の微量金属又は微量
金属イオンを含有する水にキレート剤を添加した後、膜
分離装置5に通水する微量金属含有水の処理方法。
PROBLEM TO BE SOLVED: To efficiently remove metals or metal ions in water in a trace amount region of 1.0 μg / L or less by a membrane separation device. SOLUTION: A method for treating trace metal-containing water, wherein a chelating agent is added to water containing a trace metal or trace metal ion of 1.0 μg / L or less, and then the mixture is passed through a membrane separation device 5.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、1.0μg/L以
下の微量金属又は微量金属イオンを含有する水を膜分離
装置で効率的に処理する方法に係り、超純水中の微量金
属又は金属イオンを膜分離装置により効率的に除去して
高水質処理水を得る方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently treating water containing trace metals or trace metal ions of 1.0 μg / L or less with a membrane separation device, and relates to trace metals or ultrapure water. The present invention relates to a method for efficiently removing metal ions by a membrane separation device to obtain high-quality treated water.
【0002】[0002]
【従来の技術】近年、LSIの集積度の上昇に伴い、半
導体分野で使用される超純水の要求水質は益々高くなっ
ており、超純水中の金属又は金属イオン量もppm,p
pbレベルからppt(ng/L)レベルないしはそれ
以下に制御する必要にせまられている。2. Description of the Related Art In recent years, as the degree of integration of LSIs has increased, the required water quality of ultrapure water used in the semiconductor field has been increasing, and the amount of metals or metal ions in ultrapure water has also been reduced to ppm, p.
It is necessary to control from pb level to ppt (ng / L) level or lower.
【0003】従来、超純水中の金属又は金属イオンの除
去は、逆浸透(RO)膜分離装置とイオン交換装置とを
組み合わせて実施されている。しかし、この方法では、
ppb以上のレベルではイオン交換理論の通り、ほぼ完
璧な処理が可能であったが、pptレベルではイオン交
換処理後も金属イオンが残留し、それ以上に除去するこ
とはできなかった。このような極低濃度の金属を除去す
るためには、非再生型イオン交換装置を多段に設置し
て、順次通水処理する必要があり、この場合には、現状
の装置配列を増やす必要がある。しかも、非再生型イオ
ン交換装置の除去量(交換容量)は極めて少量であるた
め、イオン交換樹脂を頻繁に交換する必要があり、交換
頻度を考慮するとランニングコストが過大となって実用
上不利である。[0003] Conventionally, removal of metal or metal ions from ultrapure water has been carried out by combining a reverse osmosis (RO) membrane separation device with an ion exchange device. But with this method,
At a level of ppb or higher, almost perfect treatment was possible according to the ion exchange theory, but at a ppt level, metal ions remained after the ion exchange treatment and could not be removed any more. In order to remove such extremely low-concentration metals, it is necessary to install non-regenerative ion exchange devices in multiple stages and sequentially pass water through them. In this case, it is necessary to increase the current device arrangement is there. In addition, since the removal amount (replacement capacity) of the non-regeneration type ion exchange device is extremely small, it is necessary to frequently replace the ion exchange resin. is there.
【0004】なお、従来、キレート剤を添加して膜分離
する方法については、例えば特開平7−328391号
公報に還元剤を含有するRO膜分離装置の供給液にキレ
ート剤を添加することにより、重金属類の触媒作用によ
る膜劣化を防止するためのマスキング剤としてキレート
剤を利用する方法が記載されている。また、特開平11
−10150号公報には、銅含有水にキレート剤を添加
した後、RO膜分離することにより、銅水酸化物の生成
を防止してRO膜の目詰まりを防止する方法が記載され
ている。Conventionally, a method of separating a membrane by adding a chelating agent is disclosed in, for example, JP-A-7-328391, by adding a chelating agent to a feed liquid of an RO membrane separation apparatus containing a reducing agent. A method is described in which a chelating agent is used as a masking agent for preventing film deterioration due to catalytic action of heavy metals. Also, Japanese Unexamined Patent Application Publication No.
Japanese Patent Application Publication No. -10150 describes a method of adding a chelating agent to copper-containing water and then separating the RO membrane, thereby preventing the formation of copper hydroxide and preventing the RO membrane from being clogged.
【0005】しかし、これらの公知例には、超純水レベ
ルの微量金属の除去に関する記載はなく、水中の極低濃
度の金属又は金属イオンについてキレート剤がどのよう
な作用効果を示すかは認識されていない。[0005] However, none of these known examples describes removal of trace metals at the level of ultrapure water, and recognizes what kind of action and effect a chelating agent exerts on extremely low concentrations of metals or metal ions in water. It has not been.
【0006】[0006]
【発明が解決しようとする課題】本発明は上記従来の実
情に鑑みてなされたものであって、1.0μg/L以下
というような極微量領域における水中の金属又は金属イ
オンを膜分離装置により効率的に除去する微量金属含有
水の処理方法を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional circumstances, and uses a membrane separation device to separate metals or metal ions in water in an extremely small amount of 1.0 μg / L or less. An object of the present invention is to provide a method for treating trace metal-containing water that is efficiently removed.
【0007】[0007]
【課題を解決するための手段】本発明の微量金属含有水
の処理方法は、1.0μg/L以下の微量金属又は微量
金属イオンを含有する水の処理方法において、前記水に
キレート剤を添加した後、膜分離装置に通水することを
特徴とする。A method for treating trace metal-containing water according to the present invention is a method for treating water containing trace metals or trace metal ions of 1.0 μg / L or less, wherein a chelating agent is added to the water. After that, water is passed through the membrane separation device.
【0008】本発明により、キレート剤の添加により、
水中の微量金属又は微量金属イオンが膜分離装置で除去
できる理由の詳細は明らかではないが、キレート剤を添
加することにより、水中の金属又は金属イオンが金属キ
レート化合物を形成し、見掛けのイオン半径が大きくな
ることにより膜分離装置で除去可能となるものと考えら
れる。According to the present invention, by adding a chelating agent,
The details of why trace metals or trace metal ions in water can be removed by a membrane separation device are not clear, but by adding a chelating agent, metals or metal ions in water form a metal chelate compound and an apparent ion radius Is considered to be removable by the membrane separation device as the value of increases.
【0009】本発明者は、極微量領域の分析法を開発
し、現状の超純水製造装置で生産される超純水を調査し
た結果、ppt領域の微量金属が存在することが判明し
た。これは、従来のイオン交換理論(イオン交換樹脂で
の除去率)では当然除去されるはずのものであり、理論
に反することである。The present inventor has developed an analytical method for a trace amount region, and investigated ultrapure water produced by a current ultrapure water production apparatus. As a result, it was found that a trace metal in the ppt region exists. This is naturally supposed to be removed by the conventional ion exchange theory (removal rate with the ion exchange resin), which is contrary to the theory.
【0010】本発明者は、この微量金属について更に調
査検討した結果、超純水中の微量金属、金属イオンは従
来の溶解度理論では説明がつかず、イオン以外の形態
(一種のコロイド等)で存在する可能性が高いものと推
測した。例えば、金属(Fe)イオンの標準液を超純水
で希釈し、50ppt濃度の液を調製し、これを1L容
量のポリエチレン製容器に密封しておくと、図2に示す
如く、時間の経過とともに液中のFeイオン濃度が減少
する。この現象は金属成分が容器の表面に付着するため
に液中濃度が減少することが判明した。The present inventors have further investigated and studied the trace metals. As a result, the trace metals and metal ions in the ultrapure water cannot be explained by the conventional solubility theory, and are in a form other than ions (a kind of colloid). We speculated that it was likely to be present. For example, a standard solution of metal (Fe) ions is diluted with ultrapure water to prepare a solution having a concentration of 50 ppt, and the solution is sealed in a 1-L polyethylene container. At the same time, the Fe ion concentration in the liquid decreases. This phenomenon was found to decrease the concentration in the liquid because the metal component adhered to the surface of the container.
【0011】この結果から、超純水中の金属はイオンと
しては存在しておらず、極微細なコロイドとして存在す
るものと推定された。即ち、微量金属は水中に対となる
イオンが存在しないため、その雰囲気中で一番安定な状
態へ移行するものと考えられ、例えばFeなどの金属は
超純水中で微量に存在する(ppbレベル)酸素と結合
して酸化物のコロイドとなっているものと推定された。From these results, it was presumed that the metal in the ultrapure water did not exist as ions, but existed as ultrafine colloids. That is, it is considered that the trace metal shifts to the most stable state in the atmosphere because there is no paired ion in the water. For example, a metal such as Fe is present in a very small amount in ultrapure water (ppb (Level) It is presumed that they are combined with oxygen to form oxide colloids.
【0012】このように超純水中の極微量の金属は微細
なコロイドとして存在し、この微細コロイドは、イオン
交換樹脂との反応が極めて遅いため、イオン交換処理で
は除去し難く、また、現状で使用されている限外濾過
(UF)膜(分画分子量4000〜100000)では
除去し得ないために、UF膜分離処理でも処理水中に残
留することとなる。As described above, a trace amount of metal in ultrapure water exists as a fine colloid, and the reaction of the fine colloid with the ion exchange resin is extremely slow, so that it is difficult to remove the fine colloid by the ion exchange treatment. Cannot be removed by the ultrafiltration (UF) membrane (molecular weight cut-off: 4000 to 100,000) used in the above process, and remains in the treated water even in the UF membrane separation treatment.
【0013】本発明の方法ではこのように、従来、イオ
ン交換処理や膜分離処理では容易に除去し得なかった水
中の微量金属を、キレート剤により大粒子化し、RO膜
やUF膜で除去可能とした。As described above, in the method of the present invention, trace metals in water, which could not be easily removed by conventional ion-exchange treatment or membrane separation treatment, are turned into large particles by a chelating agent and can be removed by an RO film or a UF film. And
【0014】本発明において、膜分離装置としてはRO
膜分離装置又はUF膜分離装置が好適である。In the present invention, RO separation is used as the membrane separation device.
A membrane separator or a UF membrane separator is preferred.
【0015】[0015]
【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。Embodiments of the present invention will be described below in detail.
【0016】本発明において処理対象となる水は、1.
0μg/L以下、特に100ng/L以下という極微量
の金属又は金属イオンを含有する水であって、具体的に
は、半導体分野で使用される超純水や、電力分野で使用
される純水やコンデミ循環水などが挙げられる。The water to be treated in the present invention comprises:
Water containing a trace amount of metal or metal ion of 0 μg / L or less, particularly 100 ng / L or less, specifically, ultrapure water used in the semiconductor field or pure water used in the power field And condemi circulating water.
【0017】本発明においては、このような極微量の金
属又は金属イオンを含有する水にキレート剤を添加した
後、膜分離装置に通水して処理する。In the present invention, after a chelating agent is added to water containing such a trace amount of metal or metal ion, the water is passed through a membrane separation apparatus to be treated.
【0018】添加するキレート剤としては、液体又は微
粉末状のカチオン交換樹脂が好適であるが、これに限ら
ず、エチレンジアミン四酢酸(EDTA)、ジチオカル
バミン酸基を有するもの及びNグルカミン酸基を有する
もの等を用いることもできる。As the chelating agent to be added, a cation exchange resin in the form of a liquid or a fine powder is suitable, but not limited thereto, ethylenediaminetetraacetic acid (EDTA), a compound having a dithiocarbamic acid group, and a compound having an N-glucamic acid group Those and the like can also be used.
【0019】これらのキレート剤は液体状で添加しても
粉末状で添加しても良く、膜分離処理される段階で水中
の金属又は金属イオンと粒径の大きな金属キレート化合
物を形成するに十分な量が水中に添加されていれば良
い。These chelating agents may be added in liquid form or in powder form, and are sufficient to form a metal chelate compound having a large particle size with metal or metal ions in water at the stage of membrane separation treatment. It is only necessary that an appropriate amount be added to water.
【0020】このキレート剤の添加量は、水中の金属又
は金属イオン量によって適宜決定され、通常、水中の金
属又は金属イオン量の1〜10重量倍、一般的な純水又
は超純水であれば1〜100ppt程度添加すれば良
い。The amount of the chelating agent to be added is appropriately determined depending on the amount of the metal or metal ion in the water, and is usually 1 to 10 times the weight of the metal or the metal ion in the water, whether it is ordinary pure water or ultrapure water. For example, about 1 to 100 ppt may be added.
【0021】キレート剤を添加した水を膜分離装置、好
ましくはUF膜分離装置又はRO膜分離装置に通水する
ことで、水中の金属又は金属イオンを0.1ppt以下
の極低濃度に低減することができる。The metal or metal ion in the water is reduced to an extremely low concentration of 0.1 ppt or less by passing the water containing the chelating agent through a membrane separator, preferably a UF membrane separator or an RO membrane separator. be able to.
【0022】なお、本発明の方法においては、キレート
剤の添加で形成した金属キレート化合物を凝集させて、
より一層見掛けの粒径を大きくすることが好ましく、更
に、膜分離処理に先立ち、キレート剤を添加した水に電
場や磁場をかけて金属キレート化合物を凝集させても良
い。In the method of the present invention, a metal chelate compound formed by adding a chelating agent is aggregated,
It is preferable to further increase the apparent particle size. Further, prior to the membrane separation treatment, an electric field or a magnetic field may be applied to water containing the chelating agent to aggregate the metal chelate compound.
【0023】このような本発明の方法は、例えば、既存
の純水製造装置又は超純水製造装置のUF膜分離装置又
はRO膜分離装置の前段の任意の箇所にキレート剤の添
加手段を設けることにより容易に実施することができ、
過大な設備投資を必要とすることなく、従来の装置では
除去し得なかった極微量の金属又は金属イオンを極低濃
度にまで効率的に除去することができる。In the method of the present invention as described above, for example, a means for adding a chelating agent is provided at an arbitrary position before a UF membrane separator or an RO membrane separator of an existing pure water production apparatus or ultrapure water production apparatus. Can be easily implemented by
It is possible to efficiently remove a trace amount of metal or metal ion, which cannot be removed by a conventional apparatus, to an extremely low concentration without requiring excessive capital investment.
【0024】[0024]
【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。The present invention will be described more specifically below with reference to examples and comparative examples.
【0025】実施例1 図1に示す超純水製造装置に本発明を適用し、キレート
剤貯槽1より、キレート剤としてEDTAをタンク2内
の一次純水に100ppt添加した後UV酸化装置3、
非再生型イオン交換装置4及びUF膜分離装置(分画分
子量8000)5で順次処理し、各部の水のFe濃度を
調べ、結果を表1に示した。Embodiment 1 The present invention is applied to the ultrapure water producing apparatus shown in FIG. 1, and 100 ppm of EDTA is added as a chelating agent to primary pure water in a tank 2 from a chelating agent storage tank 1 and then a UV oxidizing apparatus 3 is used.
The treatment was sequentially performed by the non-regeneration type ion exchange device 4 and the UF membrane separation device (fraction molecular weight: 8000) 5, and the Fe concentration of water in each part was examined. The results are shown in Table 1.
【0026】比較例1 実施例1において、キレート剤を添加しなかったこと以
外は同様にして処理し、各部の水のFe濃度を調べ、結
果を表1に示した。Comparative Example 1 The procedure of Example 1 was repeated, except that no chelating agent was added, and the Fe concentration of each part of the water was examined. The results are shown in Table 1.
【0027】[0027]
【表1】 [Table 1]
【0028】表1より明らかなように、本発明によれ
ば、水中の微量金属をUF膜分離装置で極低濃度にまで
除去することができる。As is clear from Table 1, according to the present invention, trace metals in water can be removed to an extremely low concentration by a UF membrane separation device.
【0029】[0029]
【発明の効果】以上詳述した通り、本発明の微量金属含
有水の処理方法によれば、極微量の金属ないし金属イオ
ンを極低濃度にまで効率的に除去することができる。本
発明によれば、要求水質として限りなく低濃度であるこ
とが要求されている超純水中の金属ないし金属イオンを
現状の超純水製造装置に過大な装置を付加することな
く、容易かつ効率的に除去することができ、本発明の工
業的有用性は極めて大である。As described in detail above, according to the method for treating trace metal-containing water of the present invention, a trace amount of metal or metal ion can be efficiently removed to a very low concentration. According to the present invention, metals or metal ions in ultrapure water, which is required to have an extremely low concentration as the required water quality, can be easily and easily added to the current ultrapure water production apparatus without adding an excessive apparatus. It can be efficiently removed, and the industrial utility of the present invention is extremely large.
【図1】実施例で用いた超純水製造装置を示す系統図で
ある。FIG. 1 is a system diagram showing an ultrapure water production apparatus used in an example.
【図2】微量Fe含有液のFe濃度の経時変化を示すグ
ラフである。FIG. 2 is a graph showing the change over time in the Fe concentration of a trace amount of Fe-containing liquid.
1 キレート剤貯槽 2 タンク 3 UV酸化装置 4 非再生型イオン交換装置 5 UF膜分離装置 DESCRIPTION OF SYMBOLS 1 Chelating agent storage tank 2 Tank 3 UV oxidation apparatus 4 Non-regeneration type ion exchange apparatus 5 UF membrane separation apparatus
Claims (2)
金属イオンを含有する水の処理方法において、前記水に
キレート剤を添加した後、膜分離装置に通水することを
特徴とする微量金属含有水の処理方法。1. A method for treating water containing a trace metal or a trace metal ion of 1.0 μg / L or less, wherein a chelating agent is added to the water, and then the water is passed through a membrane separation device. A method for treating metal-containing water.
濾過膜分離装置である請求項1の微量金属含有水の処理
方法。2. The method for treating trace metal-containing water according to claim 1, wherein the membrane separation device is a reverse osmosis membrane separation device or an ultrafiltration membrane separation device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22547899A JP4389301B2 (en) | 1999-08-09 | 1999-08-09 | Method for treating trace metal-containing water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22547899A JP4389301B2 (en) | 1999-08-09 | 1999-08-09 | Method for treating trace metal-containing water |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001047066A true JP2001047066A (en) | 2001-02-20 |
JP4389301B2 JP4389301B2 (en) | 2009-12-24 |
Family
ID=16829960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22547899A Expired - Fee Related JP4389301B2 (en) | 1999-08-09 | 1999-08-09 | Method for treating trace metal-containing water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4389301B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017064641A (en) * | 2015-09-30 | 2017-04-06 | 栗田工業株式会社 | Metal pollution inhibitor, metal pollution prevention method and product cleaning method |
JP2018034157A (en) * | 2017-10-23 | 2018-03-08 | 栗田工業株式会社 | Metal pollution prevention method, metal pollution prevention membrane, metal pollution prevention method and product cleaning method |
-
1999
- 1999-08-09 JP JP22547899A patent/JP4389301B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017064641A (en) * | 2015-09-30 | 2017-04-06 | 栗田工業株式会社 | Metal pollution inhibitor, metal pollution prevention method and product cleaning method |
WO2017056947A1 (en) * | 2015-09-30 | 2017-04-06 | 栗田工業株式会社 | Metal-contamination preventive agent, metal-contamination preventive membrane, metal-contamination preventive method, and product-cleansing method |
US10717076B2 (en) | 2015-09-30 | 2020-07-21 | Kurita Water Industries Ltd. | Metal contamination inhibitor, metal contamination inhibition membrane, method for preventing metal contamination, and method for cleaning product |
TWI705937B (en) * | 2015-09-30 | 2020-10-01 | 日商栗田工業股份有限公司 | Metal contamination prevention agent, metal contamination prevention film, metal contamination prevention method and product cleaning method |
JP2018034157A (en) * | 2017-10-23 | 2018-03-08 | 栗田工業株式会社 | Metal pollution prevention method, metal pollution prevention membrane, metal pollution prevention method and product cleaning method |
Also Published As
Publication number | Publication date |
---|---|
JP4389301B2 (en) | 2009-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4332687A (en) | Removal of complexed heavy metals from waste effluents | |
JP2912226B2 (en) | Wastewater treatment method | |
KR20100075970A (en) | Process and apparatus for producing ultrapure water, and method and apparatus for cleaning electronic component members | |
JP4609675B2 (en) | Metal polishing CMP process wastewater treatment apparatus and method | |
JP3524618B2 (en) | How to remove selenium from drainage | |
JP4585100B2 (en) | How to recycle polishing used liquid | |
JP6067037B2 (en) | Regeneration method of plating solution | |
JP2001047066A (en) | Treatment of trace metal-containing water | |
JP5499433B2 (en) | Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus | |
JP4614093B2 (en) | Arsenic wastewater treatment method | |
JP4231934B2 (en) | How to remove selenium in wastewater | |
JP2007244930A (en) | Method and apparatus for treating wastewater containing organic matter | |
JP2508983B2 (en) | Method and apparatus for removing metal impurities | |
CN113544098B (en) | Method for treating electrolyte from an electrorefining process | |
JP3826497B2 (en) | Pure water production method | |
JPS62294491A (en) | Treatment of waste water incorporating gallium and arsenic | |
JP2007326023A (en) | Method for treating liquid waste and/or washing water from electroless nickel plating bath | |
JP4350078B2 (en) | Treatment method for fluorine-containing wastewater | |
JP2500568B2 (en) | Method for purifying chemical solution containing hydrofluoric acid | |
JP2852692B2 (en) | Method of removing iron from plating solution containing zinc | |
US5015458A (en) | Method for purifying sulfuric acid solutions | |
JPH1099874A (en) | Reduction of hexavalent selenium | |
JPH07165427A (en) | Purification of iron chloride solution | |
JP2011177696A (en) | REGENERATION TREATMENT METHOD FOR WASTE LIQUID CONTAINING Sn ION | |
JP2013202521A (en) | Treatment method of selenium-containing waste water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090310 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090428 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090915 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090928 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121016 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121016 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131016 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |