[go: up one dir, main page]

JP2013202521A - Treatment method of selenium-containing waste water - Google Patents

Treatment method of selenium-containing waste water Download PDF

Info

Publication number
JP2013202521A
JP2013202521A JP2012074503A JP2012074503A JP2013202521A JP 2013202521 A JP2013202521 A JP 2013202521A JP 2012074503 A JP2012074503 A JP 2012074503A JP 2012074503 A JP2012074503 A JP 2012074503A JP 2013202521 A JP2013202521 A JP 2013202521A
Authority
JP
Japan
Prior art keywords
selenium
reducing agent
reaction
wastewater
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012074503A
Other languages
Japanese (ja)
Inventor
Naoto Funaki
直登 船木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012074503A priority Critical patent/JP2013202521A/en
Publication of JP2013202521A publication Critical patent/JP2013202521A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To highly efficiently remove selenium in a shorter time compared to addition of a reducing agent in a solution state when reducing the selenium.SOLUTION: In a treatment method of selenium-containing waste water, for introducing the selenium-containing waste water to a reaction tank, adding a reducing agent into the reaction tank, and coprecipitating/removing selenium together with the reducing agent, powder of ferrous salt is used as the reducing agent.

Description

本発明は、セレンを含む廃水の処理方法に関し、特に、非鉄製錬における電解沈殿物等の処理時に発生する廃水中に含まれるセレンを連続して高効率に、かつ、迅速に除去する方法についての提案である。   The present invention relates to a method for treating wastewater containing selenium, and more particularly, to a method for continuously and efficiently removing selenium contained in wastewater generated during the treatment of electrolytic precipitates and the like in non-ferrous smelting. This is a proposal.

非鉄製錬、特に、銅の電解製錬工程においては、製錬中間物としてセレンを含む沈殿物が発生する。従来の製錬プロセスは、このセレン含有沈殿物からセレンを回収する工程を設けるのが普通である。ところが、このセレン回収工程で発生する廃水中には、水溶液中に溶けこんで回収できなかったセレンが、亜セレン酸またはセレン酸として比較的高濃度で含まれている。従って、このような廃水は、工場外にそのまま排出することができないので、前記廃水からもセレンを回収することが必要となる。   In non-ferrous smelting, especially in the electrolytic smelting process of copper, a precipitate containing selenium is generated as a smelting intermediate. Conventional smelting processes usually have a step of recovering selenium from this selenium-containing precipitate. However, the selenium generated in this selenium recovery step contains selenium that has been dissolved in an aqueous solution and cannot be recovered at a relatively high concentration as selenous acid or selenic acid. Therefore, since such waste water cannot be discharged as it is outside the factory, it is necessary to collect selenium from the waste water.

セレン含有廃水からセレンを回収する技術としては、
(1)バッチ式の反応槽にセレン含有廃水を導入し、その廃水中に第一鉄塩を加えることにより、廃水中のセレンと該第一鉄塩とを反応させてセレンと鉄を共沈物として回収する方法、
(2)セレン含有廃水に対し、含有セレン量の2倍モル相当量の第一鉄塩を添加し、ついで、セレン含有廃水のpHを3〜5に調整し、0.5〜1倍モル相当量の銅塩を添加することによって、第一鉄塩の酸化・加水分解を促進し、さらにセレン廃水のpHを5〜6に維持して該セレンを水酸化第二鉄と共沈回収する方法(特公昭48−030558号公報参照)、
(3)(2)の方法において、セレン含有排水の処理を多段階で行い、かつ、各段階において還元剤を添加するセレン含有排水の処理方法(特開平09−249922号公報参照)
などが知られている。
As a technology to recover selenium from selenium-containing wastewater,
(1) By introducing selenium-containing wastewater into a batch-type reaction tank and adding ferrous salt to the wastewater, selenium in the wastewater reacts with the ferrous salt to coprecipitate selenium and iron. A method of collecting as a product,
(2) The ferrous salt equivalent to twice the molar amount of the selenium content is added to the selenium-containing wastewater, and then the pH of the selenium-containing wastewater is adjusted to 3 to 5, corresponding to 0.5 to 1 times the molar amount. Method of promoting oxidation and hydrolysis of ferrous salt by adding an amount of copper salt, and further maintaining the pH of selenium wastewater at 5 to 6 and recovering the selenium by coprecipitation with ferric hydroxide (See Japanese Patent Publication No. 48-030558),
(3) In the method of (2), the treatment of selenium-containing wastewater is performed in multiple stages, and a reducing agent is added in each stage (see JP 09-249922 A).
Etc. are known.

特公昭48−030558号公報Japanese Patent Publication No. 48-030558 特開平09−249922号公報JP 09-249922 A

第一鉄塩を加えてセレンを除去する上記(1)の従来技術は、反応速度が遅く、セレン濃度を廃水の排出許容基準にまで低下させるのには時間がかかりすぎ、また、反応槽が大型化するという課題があった。   The prior art (1) in which ferrous salt is added to remove selenium has a slow reaction rate, and it takes too much time to reduce the selenium concentration to the waste water discharge allowance standard. There was a problem of increasing the size.

また、特許文献1に開示された上記(2)の従来技術は、上記第一鉄塩による処理方法の改良技術に関するものであって、廃水中のセレン濃度を比較的速く低下させることができ、鉄塩を添加した後にpHの調整と銅添加とを、高度かつ高効率で連続的に処理することは技術的に難しく、バッチ式でのみ実施可能な技術である。従って、セレン含有廃水の処理量に限りがあり、連続して排出されるセレン含有廃水を、連続して処理したいという要望を解決することはできなかった。   In addition, the prior art (2) disclosed in Patent Document 1 relates to a technique for improving the treatment method using the ferrous salt, and can reduce the selenium concentration in wastewater relatively quickly. It is technically difficult to continuously adjust the pH and the copper addition with high efficiency and high efficiency after adding the iron salt, and this is a technique that can be carried out only in a batch system. Accordingly, the amount of selenium-containing wastewater to be treated is limited, and it has not been possible to solve the desire to continuously treat selenium-containing wastewater that is continuously discharged.

また、特許文献2に開示された上記(3)の従来技術は、上記(2)の従来技術の改良技術であって、排水中に含まれるセレンを連続して高効率かつ迅速に除去するものであり、さらに好ましい態様として、各段階での反応におけるpHをアルカリ側にコントロールしてセレンの還元に寄与するFeOH+の層を安定化させて、排水中セレンの反応速度を高めて、セレン除去率を向上させる技術が開示されている。しかしながら、セレンの還元にはなお時間を要するという点で改良の余地が残る。 The prior art (3) disclosed in Patent Document 2 is an improved technique of the prior art (2), and continuously and efficiently removes selenium contained in waste water. In a more preferred embodiment, the pH in each stage of reaction is controlled to the alkali side to stabilize the FeOH + layer that contributes to the reduction of selenium, thereby increasing the reaction rate of selenium in wastewater and removing selenium. Techniques for improving the rate are disclosed. However, there remains room for improvement in that selenium reduction still takes time.

本発明の目的は、従来技術が抱える上記課題を解消するためになされたものであり、その目的とするところは、廃水中に含まれるセレンを短時間で、高効率に除去するところにある。   An object of the present invention is to solve the above-mentioned problems of the prior art, and the object is to remove selenium contained in wastewater with high efficiency in a short time.

本発明者は、さらに短時間で、排水中に含まれるセレンを高効率に除去するという課題について鋭意検討をした結果、還元剤として添加する第一鉄塩を溶液状態とするのではなく、粉末状態にすることにより、廃液中に含まれるセレンをより短時間で高効率で行うことができることを見出し、本発明を完成させるに至った。   As a result of intensive studies on the problem of removing selenium contained in wastewater with high efficiency in a shorter time, the present inventor did not make the ferrous salt added as a reducing agent into a solution, but a powder. By making it into a state, it has been found that selenium contained in the waste liquid can be performed in a shorter time and with higher efficiency, and the present invention has been completed.

そこで、本発明は以下のとおりである。
(1)セレンを含む廃水を反応槽に導入し、該反応槽内に還元剤を添加してセレンを還元剤と共に共沈・除去するセレン含有廃水の処理方法において、前記還元剤として第一鉄塩の粉末を用いることを特徴とするセレン含有廃水の処理方法。
(2)上記還元剤は、硫酸第一鉄であることを特徴とする(1)に記載の方法。
(3)上記還元剤の篩で測定した粒度が、1mm〜150μmであることを特徴とする(1)または(2)に記載の方法。
(4)上記還元剤を、セレン含有排水中のセレンの含有質量に対して、765〜1529倍の鉄量添加割合で添加することを特徴とする(1)〜(3)のいずれかに記載の方法。
(5)上記セレン含有排水中のセレン濃度が、5〜10mg/lであることを特徴とする(1)〜(4)のいずれかに記載の方法。
(6)還元反応時の酸化還元電位が、−700mV vs Ag|AgCl(70℃)以下であることを特徴とする(1)〜(5)のいずれか一項に記載の方法。
(7)前記還元反応時の反応液のpHが、6.9〜7.2であることを特徴とする(6)に記載の方法。
Therefore, the present invention is as follows.
(1) In a method for treating selenium-containing wastewater in which wastewater containing selenium is introduced into a reaction vessel, a reducing agent is added to the reaction vessel, and selenium is coprecipitated and removed together with the reducing agent, ferrous iron as the reducing agent A method for treating selenium-containing wastewater, wherein a salt powder is used.
(2) The method according to (1), wherein the reducing agent is ferrous sulfate.
(3) The method according to (1) or (2), wherein the particle size measured with a sieve of the reducing agent is 1 mm to 150 μm.
(4) The reducing agent is added at an iron content addition ratio of 765 to 1529 times the content of selenium in the selenium-containing wastewater. the method of.
(5) The method according to any one of (1) to (4), wherein the selenium concentration in the selenium-containing wastewater is 5 to 10 mg / l.
(6) The method according to any one of (1) to (5), wherein an oxidation-reduction potential during the reduction reaction is −700 mV vs Ag | AgCl (70 ° C.) or less.
(7) The method according to (6), wherein the pH of the reaction solution during the reduction reaction is 6.9 to 7.2.

本発明にかかるセレン含有廃水の処理方法によれば、セレンの還元に際して、還元剤を溶液状態で添加するよりも、短時間でセレンの高効率での除去を行うことができる。   According to the method for treating selenium-containing wastewater according to the present invention, when reducing selenium, selenium can be removed with high efficiency in a shorter time than when a reducing agent is added in a solution state.

本発明の実施形態に係る処理方法を示すフロー図である。It is a flowchart which shows the processing method which concerns on embodiment of this invention. 実験例1〜4および6について、反応時間と反応液中のSe濃度との関係を示すグラフである。It is a graph which shows the relationship between reaction time and Se density | concentration in a reaction liquid about Experimental example 1-4 and 6. FIG.

以下、本発明に係るセレン含有排水の処理方法の実施形態について説明する。
図1は、本実施形態のセレン含有排水の処理方法の手順を示すフローチャートである。セレン(Se)含有排水を、まずpH調整し(ステップ(S1))、続いて、還元剤添加を行い(ステップ(S2))、還元反応を行い(ステップ(S3))、反応後液をろ過により固液分離し(ステップ(S4))、セレン(Se)金属が除かれ、ろ液として処理後液が得られる。
Hereinafter, the embodiment of the processing method of the selenium content drainage concerning the present invention is described.
FIG. 1 is a flowchart showing a procedure of a method for treating selenium-containing wastewater according to this embodiment. First, pH of the selenium (Se) -containing wastewater is adjusted (step (S1)), followed by addition of a reducing agent (step (S2)), a reduction reaction (step (S3)), and filtration of the post-reaction solution. (Step (S4)), selenium (Se) metal is removed, and a post-treatment liquid is obtained as a filtrate.

本実施形態の処理方法に適用するセレン含有排水は、例えば鉛滓の炭酸化処理において排出されるろ過の過程で得られるものであり、例えばセレンを5〜10mg/lの濃度、あるいは0.0008質量%の量で含有する。   The selenium-containing wastewater applied to the treatment method of this embodiment is obtained, for example, in the process of filtration discharged in the carbonation treatment of lead soot. For example, selenium has a concentration of 5 to 10 mg / l, or 0.0008. It is contained in an amount of mass%.

また、本実施形態では、ステップ(S2)において、還元剤として、第一鉄塩を粉末状態で導入することを特徴としている。
第一鉄塩としては、硫酸第一鉄を好適に使用することができる。
また、粉末を構成する粒子の粒度は、0.5mm粒子径で表すことができ、容易な溶解性の観点から1mm〜150μmが好ましく、1mm〜250μmがより好ましく、250μmより小さい粒度がさらに好ましい。
Moreover, in this embodiment, in step (S2), ferrous salt is introduced as a reducing agent in a powder state.
As the ferrous salt, ferrous sulfate can be preferably used.
Further, the particle size of the particles constituting the powder can be represented by a 0.5 mm particle size, preferably 1 mm to 150 μm, more preferably 1 mm to 250 μm, and even more preferably a particle size smaller than 250 μm from the viewpoint of easy solubility.

以下、図1に沿って、好ましい実施形態について説明する。
ステップ(S1)では、上述したSe含有廃液に、適切なpH調整剤を用いて、pHを中性近辺、例えば6.9〜7.2、好ましくは7.0〜7.1に調整する。ここで、pH調整剤としては、アルカリ、酸を適宜使用することができ、例えばアルカリとしては水酸化ナトリウム水溶液などが挙げられる。ここで、pHを上述した範囲に調整する理由としては、後述するように電位を−700mVに調整するにあたり必要なpH範囲である。
Hereinafter, a preferred embodiment will be described with reference to FIG.
In step (S1), the pH is adjusted to near neutral, for example, 6.9 to 7.2, preferably 7.0 to 7.1, using an appropriate pH adjuster for the Se-containing waste liquid described above. Here, as a pH adjuster, an alkali and an acid can be used as appropriate. Examples of the alkali include an aqueous sodium hydroxide solution. Here, the reason for adjusting the pH to the above-described range is a pH range necessary for adjusting the potential to −700 mV as described later.

ステップ(S2)では、上述した還元剤の粉末をステップ(S1)でpH調整したSe含有廃液に添加する。
このときの還元剤の粉末の添加量が小さすぎるとステップ(S3)の還元反応の条件によってはSeの還元に時間を要することがあるため、短時間でセレンの還元を行うという観点からは十分ではなく、大きすぎると、溶解性に乏しくなる。
セレン含有排水中のセレンの含有質量に対して、好ましくは765〜1529倍の鉄量、さらに好ましくは1147〜1529倍の鉄量の割合で行う。
In step (S2), the reducing agent powder described above is added to the Se-containing waste liquid whose pH has been adjusted in step (S1).
If the amount of the reducing agent powder added is too small at this time, depending on the conditions of the reduction reaction in step (S3), it may take time to reduce Se, which is sufficient from the viewpoint of reducing selenium in a short time. However, if it is too large, the solubility will be poor.
The amount of iron is preferably 765 to 1529 times that of the selenium contained in the selenium-containing wastewater, and more preferably 1147 to 1529 times the amount of iron.

ステップ(S3)では、還元反応を行う。この還元反応の条件としては、ステップ(S1)で調整したpHで、および好ましくは70℃以上、さらに好ましくは70〜75℃である。
このときの溶液のAg|AgCl標準電極に対する酸化還元電位(ORP)は、−700mV以下、好ましくは−760mV以下である。
In step (S3), a reduction reaction is performed. The conditions for this reduction reaction are the pH adjusted in step (S1), preferably 70 ° C. or higher, and more preferably 70 to 75 ° C.
At this time, the oxidation-reduction potential (ORP) of the solution with respect to the Ag | AgCl standard electrode is −700 mV or less, preferably −760 mV or less.

ステップ(S4)では、ステップ(S3)で得られた反応後液を口径1.0μmのろ紙を用い吸引ろ過により固液分離する。セレンは、固体として除去される。   In step (S4), the post-reaction liquid obtained in step (S3) is subjected to solid-liquid separation by suction filtration using a filter paper having a diameter of 1.0 μm. Selenium is removed as a solid.

以下、実施例に基づいて説明する。
(実験例1〜4)
処理対象のセレン含有排水は、以下のとおりであった。
−pH:1.01
−ORP:112mV
−Se含有量:1.7mg(濃度:8.3mg/l)
Hereinafter, a description will be given based on examples.
(Experimental Examples 1-4)
The selenium-containing wastewater to be treated was as follows.
-PH: 1.01
-ORP: 112 mV
-Se content: 1.7 mg (concentration: 8.3 mg / l)

このセレン含有排水を、70℃にて、100g/lの濃度の水酸化ナトリウム水溶液を添加して、表1に示したそれぞれのpHに調整した。
その後、当該pHのセレン含有排水200mlに対して、液温と保ちながら、2価鉄イオン濃度に換算して、0.75g、1.3g、1.95g、2.6gになるように硫酸第一鉄・七水和物(分子量278.05)の粉末をそれぞれ添加し、還元反応を120分間行った。
The selenium-containing wastewater was adjusted to each pH shown in Table 1 by adding a sodium hydroxide aqueous solution having a concentration of 100 g / l at 70 ° C.
Thereafter, with respect to 200 ml of the selenium-containing waste water having the pH, the sulfuric acid solution was adjusted so as to be 0.75 g, 1.3 g, 1.95 g, 2.6 g in terms of divalent iron ion concentration while maintaining the liquid temperature. Ferrous and heptahydrate (molecular weight 278.05) powders were added, respectively, and the reduction reaction was performed for 120 minutes.

反応開始の直後、15分後、30分後、60分、120分後に少量(0.45μm)取り出して1.0μmのメンブレンフィルタでろ過し、ろ液中のセレン濃度を測定した。
反応終了後、反応後液を1.0μmのメンブレンフィルタでろ過し、ろ液のセレン濃度を測定した。
結果を表1に示す。
Immediately after the start of the reaction, 15 minutes, 30 minutes, 60 minutes, and 120 minutes later, a small amount (0.45 μm) was taken out and filtered through a 1.0 μm membrane filter, and the selenium concentration in the filtrate was measured.
After completion of the reaction, the post-reaction solution was filtered through a 1.0 μm membrane filter, and the selenium concentration of the filtrate was measured.
The results are shown in Table 1.

(実験例5〜8)
上述したセレン含有排水200mlに対して、2価鉄イオン濃度が64.3g/lの硫酸第一鉄溶液を20ml、40ml、60ml、80mlの量でそれぞれ添加して還元反応を行った以外は、実験例1〜4と同様にして、還元反応の直後、15分後、30分後、60分、120分後の少量サンプルの溶液成分中のセレン濃度、および反応終了後の溶液成分中のセレン濃度を測定した。結果を表1に示す。
(Experimental Examples 5-8)
Except that the ferrous sulfate solution having a divalent iron ion concentration of 64.3 g / l was added in an amount of 20 ml, 40 ml, 60 ml, and 80 ml, respectively, to the selenium-containing waste water described above, and the reduction reaction was performed. In the same manner as in Experimental Examples 1 to 4, the selenium concentration in the solution component of a small sample immediately after, 15 minutes, 30 minutes, 60 minutes, and 120 minutes after the reduction reaction, and selenium in the solution component after completion of the reaction Concentration was measured. The results are shown in Table 1.

Figure 2013202521
Figure 2013202521

また、図2に、表1における実験例1〜6について、反応時間と反応液中のSe濃度との関係を示す。
表1および図2によれば、実験例4と実験例6とでは、還元剤添加量が等しいにもかかわらず、Se濃度が還元反応開始後、短時間でゼロになった。これはSe還元が短時間で進行したことを示唆する。さらに、実験例3は、実験例4よりも還元剤の使用量が少ないにもかかわらず、実験例4よりもSe還元が短時間で進行したことがわかる。
なお、実験例2と実験例5とを比較すると、還元剤を溶液状態で導入しても、粉末状態で導入してもSe濃度の経時変化に大きな差異はなかった。
以上の点から、還元剤を粉末状態で導入した場合、溶液状態で導入する場合と比較すると、Se還元に要する時間に関して、同等かそれ以上の格段効果が得られる結果となった。
FIG. 2 shows the relationship between the reaction time and the Se concentration in the reaction solution for Experimental Examples 1 to 6 in Table 1.
According to Table 1 and FIG. 2, in Experimental Example 4 and Experimental Example 6, although the reducing agent addition amount was equal, the Se concentration became zero in a short time after the start of the reduction reaction. This suggests that Se reduction proceeded in a short time. Furthermore, it can be seen that in Experimental Example 3, Se reduction proceeded in a shorter time than Experimental Example 4 although the amount of reducing agent used was smaller than in Experimental Example 4.
In comparison between Experimental Example 2 and Experimental Example 5, there was no significant difference in se concentration change with time even when the reducing agent was introduced in the solution state or in the powder state.
In view of the above, when the reducing agent is introduced in the powder state, the result is that a remarkable effect equal to or higher than that in the case where the reducing agent is introduced in the solution state is obtained with respect to the time required for Se reduction.

Claims (7)

セレンを含む廃水を反応槽に導入し、該反応槽内に還元剤を添加してセレンを還元剤と共に共沈・除去するセレン含有廃水の処理方法において、前記還元剤として第一鉄塩の粉末を用いることを特徴とするセレン含有廃水の処理方法。   In the method for treating selenium-containing wastewater, in which wastewater containing selenium is introduced into a reaction vessel, a reducing agent is added to the reaction vessel, and selenium is coprecipitated and removed together with the reducing agent. Ferrous salt powder as the reducing agent A method for treating selenium-containing wastewater, wherein 上記還元剤は、硫酸第一鉄であることを特徴とする請求項1に記載の方法。   The method according to claim 1, wherein the reducing agent is ferrous sulfate. 上記還元剤の篩で測定した粒度が、1mm〜150μmであることを特徴とする請求項1または2に記載の方法。   3. The method according to claim 1, wherein the particle size measured with a sieve of the reducing agent is 1 mm to 150 μm. 上記還元剤を、セレン含有排水中のセレンの含有質量に対して、765〜1529倍の鉄量添加割合で添加することを特徴とする請求項1〜3のいずれか一項に記載の方法。   The method according to any one of claims 1 to 3, wherein the reducing agent is added at an iron content addition ratio of 765 to 1529 times the mass of selenium in the selenium-containing wastewater. 上記セレン含有排水中のセレン濃度が、5〜10mg/lであることを特徴とする請求項1〜4のいずれか一項に記載の方法。   The selenium concentration in the said selenium containing waste water is 5-10 mg / l, The method as described in any one of Claims 1-4 characterized by the above-mentioned. 還元反応時の酸化還元電位が、−700mV vs Ag|AgCl(70℃)以下であることを特徴とする請求項1〜5のいずれか一項に記載の方法。   6. The method according to claim 1, wherein an oxidation-reduction potential at the time of the reduction reaction is −700 mV vs Ag | AgCl (70 ° C.) or less. 前記還元反応時の反応液のpHが、6.9〜7.2であることを特徴とする請求項6に記載の方法。   The method according to claim 6, wherein the pH of the reaction solution during the reduction reaction is 6.9 to 7.2.
JP2012074503A 2012-03-28 2012-03-28 Treatment method of selenium-containing waste water Pending JP2013202521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012074503A JP2013202521A (en) 2012-03-28 2012-03-28 Treatment method of selenium-containing waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012074503A JP2013202521A (en) 2012-03-28 2012-03-28 Treatment method of selenium-containing waste water

Publications (1)

Publication Number Publication Date
JP2013202521A true JP2013202521A (en) 2013-10-07

Family

ID=49522226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012074503A Pending JP2013202521A (en) 2012-03-28 2012-03-28 Treatment method of selenium-containing waste water

Country Status (1)

Country Link
JP (1) JP2013202521A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104313640A (en) * 2014-11-10 2015-01-28 广西大学 Method for recycling selenium from electrolytic manganese anolyte
JP2015128746A (en) * 2014-01-07 2015-07-16 オルガノ株式会社 Apparatus and method for treating selenium-containing water

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647385A (en) * 1991-04-08 1994-02-22 Romar Technol Inc Ferrous dithionite process for removing dissolved heavy metal
JPH07973A (en) * 1993-03-17 1995-01-06 Westinghouse Electric Corp <We> Method of removing heavy metal and radioactive contamination factor
JPH09249922A (en) * 1996-03-13 1997-09-22 Nikko Kinzoku Kk Treatment of waste water containing selenium
JPH09299964A (en) * 1996-05-13 1997-11-25 Asahi Glass Co Ltd Method for removing Se from Se-containing liquid
JP2000167571A (en) * 1998-12-03 2000-06-20 Kurita Water Ind Ltd Treatment method for selenium-containing water
JP2007105557A (en) * 2005-09-15 2007-04-26 Aichi Steel Works Ltd Organic matter decomposition material, and method for decomposing organic matter-containing material to be decomposed by using the same
JP2009136873A (en) * 2009-02-03 2009-06-25 Ube Ind Ltd Cement kiln extraction dust processing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0647385A (en) * 1991-04-08 1994-02-22 Romar Technol Inc Ferrous dithionite process for removing dissolved heavy metal
JPH07973A (en) * 1993-03-17 1995-01-06 Westinghouse Electric Corp <We> Method of removing heavy metal and radioactive contamination factor
JPH09249922A (en) * 1996-03-13 1997-09-22 Nikko Kinzoku Kk Treatment of waste water containing selenium
JPH09299964A (en) * 1996-05-13 1997-11-25 Asahi Glass Co Ltd Method for removing Se from Se-containing liquid
JP2000167571A (en) * 1998-12-03 2000-06-20 Kurita Water Ind Ltd Treatment method for selenium-containing water
JP2007105557A (en) * 2005-09-15 2007-04-26 Aichi Steel Works Ltd Organic matter decomposition material, and method for decomposing organic matter-containing material to be decomposed by using the same
JP2009136873A (en) * 2009-02-03 2009-06-25 Ube Ind Ltd Cement kiln extraction dust processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015128746A (en) * 2014-01-07 2015-07-16 オルガノ株式会社 Apparatus and method for treating selenium-containing water
CN104313640A (en) * 2014-11-10 2015-01-28 广西大学 Method for recycling selenium from electrolytic manganese anolyte

Similar Documents

Publication Publication Date Title
JP5749461B2 (en) Wastewater treatment method for wastewater containing aluminum, magnesium and manganese
JP4894403B2 (en) Cyanide-containing wastewater treatment method and apparatus
JP5512482B2 (en) Method for separating and recovering zinc from galvanizing waste liquid
JP2010209384A (en) Method for recovering manganese
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JP2015020103A (en) Method for removing heavy metal
CN104355444B (en) A kind of processing method of complexing heavy metal waste water
JP4816897B2 (en) Electrolytic extraction method of metal manganese and high purity metal manganese
JP2012176864A (en) Method for producing polyferric sulfate
JP2017136539A (en) Method for treating blast furnace drain water
JP2014012880A (en) Method for disposing electroless copper plating waste solution, and device for the same
JP2017178749A (en) Method for producing manganese sulfate aqueous solution and method for producing manganese oxide
JP5719320B2 (en) Zinc recovery method from galvanizing waste liquid
JP2013202521A (en) Treatment method of selenium-containing waste water
JP3998345B2 (en) Treatment method for molybdenum-containing wastewater
JP5187199B2 (en) Fluorine separation method from fluorine-containing wastewater
JP4039820B2 (en) Wastewater treatment method
JP2003181467A (en) Treatment method for wastewater containing selenium
JPH0578105A (en) Treatment of selenium-containing waste water
JP2011106010A (en) Method for separating indium from tin by using organic solvent
JP4815082B2 (en) Treatment method of iron-containing sulfuric acid solution
JPH1099874A (en) Reduction of hexavalent selenium
JP7359059B2 (en) Method for producing cadmium hydroxide
JP2010001564A (en) Method for recovering cobalt from aqueous chloride solution
JP2019055350A (en) Processing method of tin-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630