JP2000308400A - Vector controller for induction motor of elevator - Google Patents
Vector controller for induction motor of elevatorInfo
- Publication number
- JP2000308400A JP2000308400A JP11111924A JP11192499A JP2000308400A JP 2000308400 A JP2000308400 A JP 2000308400A JP 11111924 A JP11111924 A JP 11111924A JP 11192499 A JP11192499 A JP 11192499A JP 2000308400 A JP2000308400 A JP 2000308400A
- Authority
- JP
- Japan
- Prior art keywords
- command
- torque
- magnetic flux
- induction motor
- current command
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000006698 induction Effects 0.000 title claims abstract description 29
- 230000004907 flux Effects 0.000 claims abstract description 76
- 230000005284 excitation Effects 0.000 claims description 21
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- 238000004364 calculation method Methods 0.000 description 24
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- 238000010586 diagram Methods 0.000 description 10
- 238000001514 detection method Methods 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 7
- 230000004044 response Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Landscapes
- Control Of Ac Motors In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、エレベータ用誘導
電動機のベクトル制御装置に係り、特にエレベータかご
の良好な乗り心地を得るためのトルク電流の制御に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vector control apparatus for an induction motor for an elevator, and more particularly to a control of a torque current for obtaining a good ride quality of an elevator car.
【0002】[0002]
【従来の技術】エレベータの駆動源を誘導電動機とする
場合、エレベータかごの着床精度や乗り心地の要求を満
たすため、誘導電動機は一般的にはベクトル制御方式の
インバータで駆動される。2. Description of the Related Art When an induction motor is used as a drive source of an elevator, the induction motor is generally driven by a vector control type inverter in order to satisfy the requirements of the elevator car landing accuracy and riding comfort.
【0003】図3は、エレベータ用誘導電動機のベクト
ル制御装置のブロック図を示す。誘導電動機1を駆動す
るインバータ2は、制御電流源電圧形にされてPWM制
御され、励磁電流指令id*とトルク電流指令iq*につ
いて電流制御部3によるディジタル演算結果で電圧制御
信号vu,vv,vwが与えられる。FIG. 3 is a block diagram of a vector control device for an elevator induction motor. Inverter 2 to drive the induction motor 1 is controlled current source is a voltage-controlled by PWM exciting current command i d * and the torque current command i q * voltage control signal by a digital calculation result of the current control unit 3 for v u , V v , v w .
【0004】この電流制御部3を中枢部とする電流制御
系は、フィードバック信号には誘導電動機1の2相の電
流iu,iwの検出信号から減算部4により電流ivの信
号も得、これら3相電流信号から3相/2相変換部5に
よりd,q軸の2相電流に変換し、さらに座標変換部6
により誘導電動機1の回転位相θに合わせた電流検出信
号id,iqへの固定/回転座標変換を行う。[0004] The current control system for the current control section 3 and the central portion is obtained even if the signal current i v currents i u two-phase induction motor 1 is in the feedback signal, the subtraction unit 4 from the detection signal of the i w These three-phase current signals are converted into d- and q-axis two-phase currents by a three-phase / two-phase converter 5, and further converted into coordinate converters 6.
Rotational phase θ in the combined current detection signal i d of the induction motor 1, a fixed / rotating coordinate conversion to i q performed by.
【0005】電流制御部3の演算結果は、d,qの2軸
の電圧指令vd,vqになり、これら電圧指令を座標変換
部7により位相θに合わせた回転/固定座標変換を行
い、さらに2相/3相変換部8により3相の電圧制御信
号vu,vv,vwに変換する。The operation result of the current control unit 3 becomes two-axis voltage commands v d and v q of d and q . These voltage commands are subjected to rotation / fixed coordinate conversion by the coordinate conversion unit 7 in accordance with the phase θ. Are further converted into three-phase voltage control signals v u , v v , v w by a two-phase / three-phase converter 8.
【0006】誘導電動機1の速度制御系は、パルスピッ
クアップ9と速度検出回路10による速度検出部を有し
てフィードバック制御を行う。位置制御器11は、エレ
ベータかごの呼び階や着床階に応じた加速と定速及び減
速領域からなるパターンとした速度指令の他、昇降開始
時の加速度指令及び乗員数(重量計測)に応じた荷重指
令を発生する。速度制御部12は、位置制御器11から
の速度指令と加速度指令及び荷重指令から速度設定値を
ディジタル演算で求め、この速度設定値と速度検出信号
ωrの偏差を比例積分(PI)演算した結果をトルク指
令T*として得る。[0006] The speed control system of the induction motor 1 has a speed detection unit including a pulse pickup 9 and a speed detection circuit 10 to perform feedback control. The position controller 11 responds not only to the acceleration command according to the elevator car floor and the landing floor, but also to the acceleration command at the start of ascending and descending and the number of occupants (weight measurement) in addition to the speed command in a pattern consisting of a constant speed and a deceleration area. Generates a load command. Speed control unit 12 obtains a digital calculating the speed setting value from the speed command and the acceleration command and the load command from the position controller 11, proportional integral (PI) calculation for the deviation of the speed setting value and the speed detection signal omega r The result is obtained as a torque command T *.
【0007】磁束・電流指令演算部13は、トルク指令
T*を二次磁束指令λ*とトルク電流指令iq*に分離
し、トルク電流指令iq*は直接に電流制御部3への指
令とし、二次磁束指令λ*には速度検出信号ωrによる
補正をする。励磁電流演算部14は、二次磁束指令λ*
から励磁電流指令id*を求めて電流制御部3への指令
とする。The magnetic flux / current command calculator 13 separates the torque command T * into a secondary magnetic flux command λ * and a torque current command iq *, and the torque current command iq * is directly sent to the current controller 3. and then, the correction by the speed detection signal ω r in the secondary flux command λ *. The exciting current calculation unit 14 outputs the secondary magnetic flux command λ *
, An excitation current command id * is obtained as a command to the current control unit 3.
【0008】滑り角周波数演算部15は、励磁電流演算
部14で求めた磁束λ(又は励磁電流指令id*)とト
ルク電流指令iq*及び電動機の二次時定数τ2から滑
り角周波数ωsを求める。加算器16は、滑り角周波数
ωsと速度検出信号ωrを加算して一次角周波数ωを求め
る。積分器17は、一次角周波数ωを積分して回転位相
θを求める。[0008] Slip angular frequency arithmetic unit 15, flux lambda (or excitation current command i d *) and the torque current command iq * and the slip angular frequency from the secondary time constant tau 2 of the motor ω determined by the excitation current calculation unit 14 Ask for s . The adder 16 obtains the primary angular frequency omega by adding the slip angular frequency omega s and the speed detection signal omega r. The integrator 17 calculates the rotational phase θ by integrating the primary angular frequency ω.
【0009】[0009]
【発明が解決しようとする課題】従来のベクトル制御装
置は、過渡状態でのトルク変動を防止するために、磁束
・電流指令演算部13では、定出力運転領域を除いて、
二次磁束指令λ*(励磁電流指令id*)を運転状態に
関係なく常に一定にする。このため、負荷が軽い(エレ
ベータでは、かごの重さとカウンタ・ウエイトの重さが
釣り合った状態での一定速度運転中)においても、負荷
が重いときと同じ励磁電流を流すことになり、軽負荷時
には鉄損の割合が大きくなり、電動機での電気−機械変
換効率が低下する。In the conventional vector control apparatus, in order to prevent torque fluctuation in a transient state, the magnetic flux / current command calculation unit 13 excludes a constant output operation region except for a constant output operation region.
The secondary magnetic flux command λ * (excitation current command id *) is always kept constant regardless of the operation state. Therefore, even when the load is light (in an elevator, when the car is operating at a constant speed with the weight of the car and the weight of the counterweight balanced), the same exciting current flows as when the load is heavy, and the light load At times, the ratio of iron loss increases, and the electric-mechanical conversion efficiency of the motor decreases.
【0010】この課題を解決するため、電気自動車用誘
導電動機のベクトル制御装置では、負荷に応じて励磁電
流を変化させることで効率を最大限に高めようとする方
式が提案されている。この方式は、鉄損を考慮したベク
トル制御時の電動機等価回路より、励磁分電流とトルク
分電流の電流比に着目し、任意の負荷に対して効率を最
大とする簡素な条件式を導き、この条件式に基づいて最
大効率制御を得るもので、以下に最大効率制御方式を原
理的に説明する。In order to solve this problem, in a vector control device for an induction motor for an electric vehicle, there has been proposed a method of maximizing the efficiency by changing an exciting current according to a load. This method focuses on the current ratio between the exciting component current and the torque component current from the motor equivalent circuit at the time of vector control taking into account iron loss, and derives a simple conditional expression that maximizes the efficiency for any load. The maximum efficiency control is obtained based on this conditional expression. The maximum efficiency control method will be described below in principle.
【0011】誘導電動機をベクトル制御した場合の等価
回路は図4で表すことができる。ここでの各部定数は、
通常のT型等価回路の定数になる、L1を一次自己イン
ダクタンス、L2を二次自己インダクタンス、Rmを等価
鉄損抵抗、Mを相互インダクタンス、R1を一次抵抗、
R2を二次抵抗とすると、下記式の関係になる。FIG. 4 shows an equivalent circuit when the induction motor is controlled by the vector. Each part constant here is
It becomes constant in a normal T-type equivalent circuit, L 1 the primary self-inductance, L 2 a secondary self-inductance, equivalent iron loss resistance R m, mutual inductance, primary resistance R 1 to M,
Assuming that R 2 is a secondary resistance, the following equation is obtained.
【0012】[0012]
【数1】Lσ=(L1L2−M2)/L2 RC=α{(ωM)2/Rm} …(1) R2’=α2R2 M’=αM α=M/L2 ω:電源角周波数 上記の等価回路において、励磁分電流id、トルク分電
流iqとして、鉄損を考慮したベクトル制御を行うと、
一次電流I1及び滑り角周波数ωSは次式になる。Lσ = (L 1 L 2 −M 2 ) / L 2 RC = α {(ωM) 2 / R m } (1) R 2 ′ = α 2 R 2 M ′ = αM α = M / L 2 omega: in power supply angular frequency above the equivalent circuit, the exciting component current i d, as torque current i q, Doing vector control in consideration of iron loss,
The primary current I 1 and the slip angle frequency ω S are given by the following equations.
【0013】[0013]
【数2】 (Equation 2)
【0014】ここで、icは鉄損分電流であり、次式に
なる。Here, ic is the iron loss current, and is given by the following equation.
【0015】[0015]
【数3】 ic=ωM’id/Rc=Rmid/(ωM) …(4) また、発生トルクTは、極対数pとすると、次式にな
る。Equation 3] i c = ωM'i d / R c = R m i d / (ωM) ... (4) In addition, the torque T, when the pole pairs p, becomes the following equation.
【0016】[0016]
【数4】T=3pM’idiq …(5) 励磁電流idは、定出力範囲を考慮し、基底速度ω0以下
では一定の値idmaxに、それ以上の速度では電動機の端
子電圧がほぼ一定になるように、次式で弱め界磁制御を
行う。Equation 4] T = 3pM'i d i q ... ( 5) exciting current i d takes into account the constant output range, a constant value i dmax in the base speed omega 0 or less, the terminal of the motor at higher speed Field weakening control is performed by the following equation so that the voltage becomes substantially constant.
【0017】[0017]
【数5】id=idmax×ω0/ωr …(6) ωr:回転子角速度 また、誘導電動機の全損失Wtotalについては、図4の
等価回路及び前記の(2)式と(4)式より、次の
(7)式で表される。ただし、Rm 2≪(ωM)2と仮定
している。Equation 5] i d = i dmax × ω 0 / ω r ... (6) ω r: rotor speed also for total loss W total of the induction motor, equivalent circuits above and (2) in FIG. 4 expression and From the expression (4), it is expressed by the following expression (7). However, it is assumed that R m 2 ≪ (ωM) 2 .
【0018】[0018]
【数6】 Wtotal=3R1I1 2+3R2’iq 2+3RCic 2+Wm =3〔(R1+R2’)iq 2+(R1+Rm’)id 2 +2{Rm/(ωM)}R1idiq〕+Wm …(7) Wm:機械損 Rm’=αRm なお、等価鉄損抵抗Rmは、電源周波数により変化し、
電源周波数fの1.6乗に比例するものとし、定格周波
数f0における鉄損抵抗Rm0とすると、次式の関係にな
る。[6] W total = 3R 1 I 1 2 + 3R 2 'i q 2 + 3R C i c 2 + W m = 3 [(R 1 + R 2') i q 2 + (R 1 + R m ') i d 2 +2 {R m / (ωM)} R 1 i d i q ] + W m ... (7) W m: mechanical loss R m '= [alpha] R m Incidentally, the equivalent iron loss resistance R m will vary by power frequency,
Assuming that the power loss frequency is proportional to the 1.6th power and the iron loss resistance R m0 at the rated frequency f 0 , the following relationship is obtained.
【0019】[0019]
【数7】 Rm=Rm0×(f/f0)1.6 …(8) また、機械損は、次式のように回転子角速度の2乗に比
例すると仮定する。R m = R m0 × (f / f 0 ) 1.6 (8) Further, it is assumed that the mechanical loss is proportional to the square of the rotor angular velocity as in the following equation.
【0020】[0020]
【数8】Wm=Km×ωr 2 …(9) これらの関係と図4の等価回路から、任意の速度及び負
荷トルクに対して、電動機の損失を求めることができ
る。W m = K m × ω r 2 (9) From these relationships and the equivalent circuit of FIG. 4, the loss of the motor can be obtained for an arbitrary speed and load torque.
【0021】一方、電動機の軸出力Poutは、次式にな
る。On the other hand, the shaft output P out of the motor is given by the following equation.
【0022】[0022]
【数9】Pout=ωr×T−Wm …(10) したがって、電動機の効率η(%)は、次式になる。P out = ω r × T−W m (10) Accordingly, the efficiency η (%) of the motor is given by the following equation.
【0023】[0023]
【数10】 η=100×Pout/(Pout+Wtotal) …(11) ここで、トルク分電流と励磁分電流の比をAとおくと、Η = 100 × P out / (P out + W total ) (11) Here, assuming that the ratio between the torque component current and the excitation component current is A,
【0024】[0024]
【数11】A=(iq/id) …(12) 前記の(5)式のトルクより、次式が得られる。A = ( iq / id ) (12) From the torque of the above equation (5), the following equation is obtained.
【0025】[0025]
【数12】 idiq=T/3pM’ …(13) iq 2=(T/3pM’)A …(14) id 2=T/(3pM’A) …(15) これらを前記の(7)式に代入すると、電動機損失W
totalを比Aの関数として表すことができる。Equation 12] i d i q = T / 3pM '... (13) i q 2 = (T / 3pM') A ... (14) i d 2 = T / (3pM'A) ... (15) wherein these Substituting into equation (7), the motor loss W
total can be expressed as a function of the ratio A.
【0026】[0026]
【数13】 Wtotal=(R1+R2’)(T/3pM’)A +(R1+Rm’)T/(3pM’A) +2{Rm/(ωM)}R1T/(pM’)+Wm …(16) ここで、任意の負荷状態において、電動機の効率を最大
とするには、その運転状態における損失を最小とすれば
よい。したがって、∂Wtotal/∂A=0として、A
(=iq/id)について解くことによって効率を最大と
する条件を求めることができ、次式で表される。W total = (R 1 + R 2 ') (T / 3 pM') A + (R 1 + R m ') T / (3 pM'A) +2 {R m / (ωM)} R 1 T / ( pM ′) + W m (16) Here, in order to maximize the efficiency of the electric motor in an arbitrary load state, it is sufficient to minimize the loss in the operating state. Therefore, assuming that ∂W total / ∂A = 0, A
By solving for (= iq / id ), a condition that maximizes the efficiency can be obtained, and is expressed by the following equation.
【0027】[0027]
【数14】 [Equation 14]
【0028】ただし、上記の(17)式の導出におい
て、厳密にはω及びRmもAの関数になり、微分の影響
を受けるが、回転数を固定した場合にはこれらの値はほ
ぼ一定の値と考えられる。However, in the derivation of the above equation (17), strictly speaking, ω and R m also become functions of A and are affected by the differentiation. However, when the rotation speed is fixed, these values are almost constant. Value.
【0029】したがって、トルク電流iqと励磁電流id
の比Aを前記の(17)式で決定でき、与えられたトル
ク指令Tに対して、最大効率になる電流指令値iq,id
が次式で求められる。Therefore, the torque current iq and the exciting current id
The ratio A can be determined by the above equation (17) of, for a given torque command T, becomes maximum efficiency current command value i q, i d
Is obtained by the following equation.
【0030】[0030]
【数15】 (Equation 15)
【0031】図5は、最大効率制御を行うためのエレベ
ータ用ベクトル制御装置のブロック図であり、同図が図
3と異なる部分は、磁束・電流指令演算部13に代えて
最大効率制御部18を設け、この最大効率制御部18に
よってトルク指令T*に対して前記の(18)、(1
9)式の演算を行う(励磁電流idについてはそれに代
えて磁束λを求める)ことで、常に最大効率にしたベク
トル制御を行う。FIG. 5 is a block diagram of an elevator vector control device for performing maximum efficiency control. In FIG. 5, a portion different from FIG. 3 is a maximum efficiency control portion 18 instead of the magnetic flux / current command calculation portion 13. The maximum efficiency control unit 18 provides the torque command T * with the above (18), (1)
9) For the performs computation (exciting current i d seek flux λ Alternatively) that is, always perform vector control in the maximum efficiency.
【0032】また、図5では、図3の励磁電流演算部1
4に代えて、高速磁束制御部14Aを設ける。この制御
部14Aは、励磁電流変化に対するトルクの応答遅れを
改善するものである。In FIG. 5, the exciting current calculator 1 shown in FIG.
4 is provided with a high-speed magnetic flux control section 14A. The control section 14A improves the response delay of the torque with respect to the change in the exciting current.
【0033】すなわち、励磁電流の変化に対して二次磁
束の応答が遅れ、結果的にトルクの応答遅れが生じる。
この二次磁束の応答遅れを改善するため、高速磁束制御
部14Aは、磁束指令λ*を疑似微分して励磁電流指令
id*を得る。That is, the response of the secondary magnetic flux to the change of the exciting current is delayed, and as a result, the response of the torque is delayed.
In order to improve the response delay of the secondary magnetic flux, the high-speed magnetic flux controller 14A pseudo-differentiates the magnetic flux command λ * to obtain an excitation current command id *.
【0034】例えば、高速磁束制御部14Aは、図6に
示す演算ブロックに構成する。同図において、磁束指令
λ*と磁束推定値λeの関係は次式になる。For example, the high-speed magnetic flux control section 14A is configured as an operation block shown in FIG. In the figure, the relationship between the magnetic flux command λ * and the magnetic flux estimation value λe is as follows.
【0035】[0035]
【数16】 (Equation 16)
【0036】この式で比例ゲインGの値を適当に選ぶこ
とによって、二次磁束応答の時定数を二次時定数τ2の
1/(1+G)にすることができ、トルクの応答性が改
善される。By appropriately selecting the value of the proportional gain G in this equation, the time constant of the secondary magnetic flux response can be set to 1 / (1 + G) of the secondary time constant τ 2 , thereby improving the torque response. Is done.
【0037】以上のように、従来装置は、最大効率制御
部18に高速磁束制御部14Aを設けることでトルクの
追従遅れを改善しようとするが、トルクの追従遅れを零
にすることはできない。このトルクの追従遅れの発生
は、エレベータ用ベクトル制御装置に最大効率制御を採
用した場合、乗り心地を悪くすることがある。As described above, the conventional device attempts to improve the torque tracking delay by providing the high-speed magnetic flux controller 14A in the maximum efficiency controller 18, but cannot reduce the torque tracking delay to zero. The occurrence of the delay in following the torque may deteriorate ride comfort when the maximum efficiency control is employed in the vector control device for the elevator.
【0038】本発明の目的は、トルクの追従遅れによる
乗り心地の低下を防止したベクトル制御装置を提供する
ことにある。An object of the present invention is to provide a vector control device which prevents a decrease in ride quality due to a delay in following a torque.
【0039】[0039]
【課題を解決するための手段】本発明は、磁束指令また
は励磁電流指令から電動機の磁束を推定し、この推定磁
束を使ってトルク電流指令を求めることにより、トルク
の追従性を高め、乗り心地を向上させるものであり、以
下の構成を特徴とする。SUMMARY OF THE INVENTION The present invention estimates the magnetic flux of an electric motor from a magnetic flux command or an exciting current command, and obtains a torque current command using the estimated magnetic flux, thereby improving the followability of torque and improving ride comfort. Which is characterized by the following configuration.
【0040】エレベータの駆動源を誘導電動機とし、速
度制御系に得るトルク指令を基に誘導電動機のトルク電
流指令と励磁電流指令を得て前記誘導電動機をベクトル
制御するエレベータ用誘導電動機のベクトル制御装置に
おいて、前記トルク指令から得る磁束指令または該磁束
指令から得る励磁電流指令から誘導電動機の磁束を推定
する磁束推定部と、前記磁束推定部が推定する磁束を使
って前記トルク指令から前記トルク電流指令を求めるト
ルク電流演算部とを備えたことを特徴とする。A vector control device for an induction motor for an elevator, wherein an induction motor is used as a drive source of the elevator, and a torque current command and an excitation current command of the induction motor are obtained based on a torque command obtained by a speed control system to vector-control the induction motor. A magnetic flux estimating unit for estimating a magnetic flux of the induction motor from a magnetic flux command obtained from the torque command or an exciting current command obtained from the magnetic flux command; and a torque current command from the torque command using the magnetic flux estimated by the magnetic flux estimating unit. And a torque current calculation unit for determining
【0041】また、前記トルク指令から前記磁束指令を
得るのに、前記トルク電流指令と励磁電流指令の比を誘
導電動機の負荷に応じて変化させることで最大効率運転
を得るための最大効率制御部を備えたことを特徴とす
る。In order to obtain the magnetic flux command from the torque command, a maximum efficiency control unit for obtaining a maximum efficiency operation by changing a ratio between the torque current command and the exciting current command according to the load of the induction motor. It is characterized by having.
【0042】[0042]
【発明の実施の形態】(第1の実施形態)図1は、本発
明の実施形態を示すベクトル制御装置のブロック図であ
る。同図が図5と異なる部分は、高速磁束制御部14A
に代えて、励磁電流演算部21と磁束推定部22に分離
した構成とし、この磁束推定部22で推定する磁束λe
を使ってトルク電流演算部23がトルク電流指令iq*
を求める点にある。DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) FIG. 1 is a block diagram of a vector control device showing an embodiment of the present invention. This figure differs from FIG. 5 in that the high-speed magnetic flux control unit 14A
, The magnetic flux estimating unit 22 estimates the magnetic flux λe
The torque current calculation unit 23 uses the torque current command iq *
The point is to seek.
【0043】励磁電流演算部21は、最大効率制御部1
8で求める最大効率の磁束指令λ*から励磁電流指令i
d*を求め、電流制御部3への励磁電流指令を得る。The excitation current calculation unit 21 includes the maximum efficiency control unit 1
8 to the excitation current command i from the maximum efficiency flux command λ *
d * is obtained, and an excitation current command to the current control unit 3 is obtained.
【0044】磁束推定部22は、励磁電流演算部21で
求めた励磁電流指令id*から推定磁束λeを求める。
この磁束推定には、図6の高速磁束制御部のブロック構
成と同様に、磁束モデルを使用することで電動機の磁束
を遅れを少なくして推定する。The magnetic flux estimator 22 obtains the estimated magnetic flux λe from the exciting current command i d * determined by the excitation current calculation unit 21.
In this magnetic flux estimation, similarly to the block configuration of the high-speed magnetic flux control unit in FIG. 6, the magnetic flux of the electric motor is estimated with a small delay by using a magnetic flux model.
【0045】トルク電流演算部23は、速度制御部12
が求めたトルク指令T*からトルク電流指令iq*を求
める。このトルク電流演算に、磁束推定部22が推定す
る磁束λeを用いることにより、遅れを少なくしたトル
ク電流指令演算を可能にする。なお、磁束推定部22の
推定磁束λeは、滑り角周波数演算部15への入力にも
使用する。The torque current calculator 23 is provided with the speed controller 12
A torque current command iq * is obtained from the torque command T * obtained by. By using the magnetic flux λe estimated by the magnetic flux estimating unit 22 in the torque current calculation, a torque current command calculation with a reduced delay can be performed. Note that the estimated magnetic flux λe of the magnetic flux estimating unit 22 is also used as an input to the slip angle frequency calculating unit 15.
【0046】本実施形態によれば、最大効率制御により
電力変換効率を高めるのに加えて、磁束推定部22によ
って推定した磁束を用いてトルク電流指令iq*を求め
ることにより、このトルク電流指令iq*と励磁電流指
令id*を使ってベクトル制御を行うことができ、電動
機に必要なトルクを得るのに、トルク電流指令の遅れを
少なくすること、つまりトルク指令に対する電動機の発
生トルクの追従性を高め、乗り心地の低下を防止するこ
とができる。According to the present embodiment, in addition to increasing the power conversion efficiency by the maximum efficiency control, the torque current command iq * is obtained by using the magnetic flux estimated by the magnetic flux estimating unit 22. Vector control can be performed using iq * and the excitation current command id *. To obtain the torque required for the motor, reduce the delay of the torque current command, that is, reduce the torque generated by the motor with respect to the torque command. It is possible to enhance the followability and prevent a decrease in ride comfort.
【0047】(第2の実施形態)図2は、本発明の他の
実施形態を示すブロック図である。同図が図1と異なる
部分は、励磁電流演算部21と磁束推定部22に代え
て、高速磁束制御部24を設けた点にある。(Second Embodiment) FIG. 2 is a block diagram showing another embodiment of the present invention. 1 differs from FIG. 1 in that a high-speed magnetic flux control unit 24 is provided instead of the exciting current calculation unit 21 and the magnetic flux estimation unit 22.
【0048】高速磁束制御部24は、図6と同等のブロ
ック図で構成され、最大効率制御部18からの磁束指令
λ*から推定磁束λeと励磁電流指令id*を求める。
推定磁束λeは、トルク電流演算部23でのトルク電流
演算に使用すると共に、滑り角周波数演算部15での滑
り角周波数演算に使用する。The high-speed magnetic flux controller 24 is constituted by a block diagram equivalent to the FIG. 6 is obtained from the flux command lambda * from the maximum efficiency control unit 18 and the estimated flux λe excitation current command i d *.
The estimated magnetic flux λe is used in the torque current calculation in the torque current calculation unit 23 and is also used in the slip angle frequency calculation in the slip angle frequency calculation unit 15.
【0049】前記の第1の実施形態においては、推定磁
束λeには励磁電流演算部21による励磁電流指令の遅
れが含まれることから、この遅れがトルク電流演算部2
3でのトルク電流演算にも含まれる。In the first embodiment, since the estimated magnetic flux λe includes the delay of the excitation current command by the excitation current calculation unit 21, this delay is determined by the torque current calculation unit 2.
3 is also included in the torque current calculation.
【0050】これに対して、本実施形態では、推定磁束
λeには励磁電流演算部21での遅れが含まれることが
無くなり、トルク電流演算部23でのトルク電流演算の
遅れを一層少なくすることができ、乗り心地を一層向上
させることができる。On the other hand, in the present embodiment, the estimated magnetic flux λe does not include the delay in the exciting current calculator 21, and the delay in the torque current calculation in the torque current calculator 23 is further reduced. And the riding comfort can be further improved.
【0051】以上までの実施形態においては、最大効率
制御部18によって磁束指令又は励磁電流指令を最大効
率にする装置に適用する場合を示したが、この最大効率
制御部18に代えて、トルク指令T*から磁束とトルク
電流を演算する装置に適用することができる。この場
合、効率的には劣るが、トルクの追従性は優れ、乗り心
地の向上を図ることができる。In the above embodiments, the case where the maximum efficiency control unit 18 applies the magnetic flux command or the excitation current command to the device for maximizing the efficiency has been described. The present invention can be applied to a device that calculates magnetic flux and torque current from T *. In this case, although the efficiency is inferior, the followability of the torque is excellent and the riding comfort can be improved.
【0052】[0052]
【発明の効果】以上のとおり、本発明によれば、磁束指
令または励磁電流指令から電動機の磁束を推定し、この
推定磁束を使ってトルク電流指令を求めるようにしたた
め、ベクトル制御におけるトルクの追従性を高め、エレ
ベータかごの乗り心地を向上させることができる。As described above, according to the present invention, the magnetic flux of the electric motor is estimated from the magnetic flux command or the excitation current command, and the torque current command is obtained using the estimated magnetic flux. Performance and the ride comfort of the elevator car can be improved.
【0053】さらに、最大効率制御と組み合わせること
により、乗り心地がよくしかも効率のよいベクトル制御
ができる。Further, by combining this with the maximum efficiency control, a comfortable and efficient vector control can be performed.
【図1】本発明の第1の実施形態を示すエレベータ用ベ
クトル制御装置のブロック図。FIG. 1 is a block diagram of an elevator vector control device according to a first embodiment of the present invention.
【図2】本発明の第2の実施形態を示すエレベータ用ベ
クトル制御装置のブロック図。FIG. 2 is a block diagram of an elevator vector control device according to a second embodiment of the present invention.
【図3】従来の一般的なエレベータ用ベクトル制御装置
のブロック図。FIG. 3 is a block diagram of a conventional general elevator vector control device.
【図4】ベクトル制御時の誘導電動機の等価回路。FIG. 4 is an equivalent circuit of an induction motor at the time of vector control.
【図5】従来の最大効率制御を用いたエレベータ用ベク
トル制御装置のブロック図。FIG. 5 is a block diagram of a conventional vector control device for an elevator using maximum efficiency control.
【図6】図5における高速磁束制御部のブロック図。FIG. 6 is a block diagram of a high-speed magnetic flux controller in FIG. 5;
1…誘導電動機 2…インバータ 3…電流制御部 11…位置制御器 12…速度制御部 13…磁束・電流指令演算部 14…励磁電流演算部 18…最大効率制御部 21…励磁電流演算部 22…磁束推定部 23…トルク電流演算部 24…最大効率制御部 DESCRIPTION OF SYMBOLS 1 ... Induction motor 2 ... Inverter 3 ... Current control part 11 ... Position controller 12 ... Speed control part 13 ... Magnetic flux / current command calculation part 14 ... Excitation current calculation part 18 ... Maximum efficiency control part 21 ... Excitation current calculation part 22 ... Magnetic flux estimator 23 ... Torque current calculator 24 ... Maximum efficiency controller
Claims (2)
速度制御系に得るトルク指令を基に誘導電動機のトルク
電流指令と励磁電流指令を得て前記誘導電動機をベクト
ル制御するエレベータ用誘導電動機のベクトル制御装置
において、 前記トルク指令から得る磁束指令または該磁束指令から
得る励磁電流指令から誘導電動機の磁束を推定する磁束
推定部と、 前記磁束推定部が推定する磁束を使って前記トルク指令
から前記トルク電流指令を求めるトルク電流演算部とを
備えたことを特徴とするエレベータ用誘導電動機のベク
トル制御装置。1. A drive source for an elevator is an induction motor,
A vector control device for an elevator induction motor for vector-controlling the induction motor by obtaining a torque current command and an excitation current command of the induction motor based on a torque command obtained by a speed control system, wherein a magnetic flux command or the magnetic flux obtained from the torque command A magnetic flux estimating unit for estimating a magnetic flux of the induction motor from an exciting current command obtained from the command, and a torque current calculating unit for obtaining the torque current command from the torque command using the magnetic flux estimated by the magnetic flux estimating unit. A vector control device for induction motors for elevators.
のに、前記トルク電流指令と励磁電流指令の比を誘導電
動機の負荷に応じて変化させることで最大効率運転を得
るための最大効率制御部を備えたことを特徴とする請求
項1に記載のエレベータ用誘導電動機のベクトル制御装
置。2. A maximum efficiency control unit for obtaining a maximum efficiency operation by changing a ratio between the torque current command and the excitation current command according to a load of an induction motor to obtain the magnetic flux command from the torque command. The vector control device for an induction motor for an elevator according to claim 1, further comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11111924A JP2000308400A (en) | 1999-04-20 | 1999-04-20 | Vector controller for induction motor of elevator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11111924A JP2000308400A (en) | 1999-04-20 | 1999-04-20 | Vector controller for induction motor of elevator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000308400A true JP2000308400A (en) | 2000-11-02 |
Family
ID=14573541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11111924A Pending JP2000308400A (en) | 1999-04-20 | 1999-04-20 | Vector controller for induction motor of elevator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000308400A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009519878A (en) * | 2005-12-20 | 2009-05-21 | オーチス エレベータ カンパニー | Elevator drive device control method |
CN102201777A (en) * | 2010-03-26 | 2011-09-28 | 三垦电气株式会社 | Control device and control method of induction motor |
JP2013188074A (en) * | 2012-03-09 | 2013-09-19 | Nissan Motor Co Ltd | Induction motor control device and method for controlling induction motor |
JP5328892B2 (en) * | 2009-03-18 | 2013-10-30 | 三菱電機株式会社 | Elevator door control device |
JP2014027807A (en) * | 2012-07-27 | 2014-02-06 | Aisin Aw Co Ltd | Induction machine control device |
WO2014115626A1 (en) * | 2013-01-25 | 2014-07-31 | 日産自動車株式会社 | Induction motor control device and induction motor control method |
WO2020261751A1 (en) * | 2019-06-25 | 2020-12-30 | 株式会社日立産機システム | Power conversion device |
JP2023001487A (en) * | 2021-06-21 | 2023-01-06 | ユニパルス株式会社 | Motor control device, lifting device and motor control method |
-
1999
- 1999-04-20 JP JP11111924A patent/JP2000308400A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009519878A (en) * | 2005-12-20 | 2009-05-21 | オーチス エレベータ カンパニー | Elevator drive device control method |
JP5328892B2 (en) * | 2009-03-18 | 2013-10-30 | 三菱電機株式会社 | Elevator door control device |
CN102201777A (en) * | 2010-03-26 | 2011-09-28 | 三垦电气株式会社 | Control device and control method of induction motor |
JP2013188074A (en) * | 2012-03-09 | 2013-09-19 | Nissan Motor Co Ltd | Induction motor control device and method for controlling induction motor |
JP2014027807A (en) * | 2012-07-27 | 2014-02-06 | Aisin Aw Co Ltd | Induction machine control device |
US9621092B2 (en) | 2013-01-25 | 2017-04-11 | Nissan Motor Co., Ltd. | Induction motor control apparatus and induction motor control method |
CN104885356A (en) * | 2013-01-25 | 2015-09-02 | 日产自动车株式会社 | Induction motor control device and induction motor control method |
JP5939316B2 (en) * | 2013-01-25 | 2016-06-22 | 日産自動車株式会社 | Induction motor control device and induction motor control method |
WO2014115626A1 (en) * | 2013-01-25 | 2014-07-31 | 日産自動車株式会社 | Induction motor control device and induction motor control method |
WO2020261751A1 (en) * | 2019-06-25 | 2020-12-30 | 株式会社日立産機システム | Power conversion device |
JP2021005922A (en) * | 2019-06-25 | 2021-01-14 | 株式会社日立産機システム | Power conversion device |
CN113302832A (en) * | 2019-06-25 | 2021-08-24 | 株式会社日立产机系统 | Power conversion device |
US11575338B2 (en) | 2019-06-25 | 2023-02-07 | Hitachi Industrial Equipment Systems Co., Ltd. | Power conversion device |
CN113302832B (en) * | 2019-06-25 | 2023-09-12 | 株式会社日立产机系统 | power conversion device |
JP7479128B2 (en) | 2019-06-25 | 2024-05-08 | 株式会社日立産機システム | Power Conversion Equipment |
JP2023001487A (en) * | 2021-06-21 | 2023-01-06 | ユニパルス株式会社 | Motor control device, lifting device and motor control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3860031B2 (en) | Synchronous motor control device and control method of synchronous motor | |
JP4205157B1 (en) | Electric motor control device | |
CN101237209B (en) | Highly responsive permanent magent motor controller | |
JP5104239B2 (en) | Control device for permanent magnet type synchronous motor | |
EP1729407B1 (en) | Controller of permanent magnet synchronous motor | |
KR100850415B1 (en) | Vector controller of induction motor | |
JPH08322279A (en) | Controller for brushless dc motor | |
JPH07107772A (en) | Drive control circuit of permanent magnet-type synchronous motor | |
JPH11299297A (en) | Control device for permanent magnet synchronous motor | |
JP3731060B2 (en) | Inertia calculation method and motor drive device | |
JP2009284694A (en) | Controller for permanent magnet type synchronous motor | |
JP2010105763A (en) | Power converter and elevator using the same | |
JP3513561B2 (en) | Induction motor control device | |
JP2000308400A (en) | Vector controller for induction motor of elevator | |
JP2003088194A (en) | Motor drive system | |
JPH09215115A (en) | Operation controller of pole change motor | |
JPH09233898A (en) | AC motor control device and elevator control device | |
JP2004129381A (en) | Control device for permanent magnet synchronous motor | |
JP2005304175A (en) | Speed controller of motor | |
JP2000184800A (en) | Vector controller of induction motor for elevator | |
JPH06284511A (en) | Electric vehicle torque control method | |
JP3840030B2 (en) | Electric vehicle drive control device | |
JP3474730B2 (en) | Vector control device for linear induction motor | |
JPH09233899A (en) | Number-of-pole changing and driving device for motor | |
JP4730493B2 (en) | Synchronous motor controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070327 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070724 |