FR2810406A1 - Nouveaux cryptates de terre rare peu sensibles a l'extinction de fluorescence - Google Patents
Nouveaux cryptates de terre rare peu sensibles a l'extinction de fluorescence Download PDFInfo
- Publication number
- FR2810406A1 FR2810406A1 FR0007650A FR0007650A FR2810406A1 FR 2810406 A1 FR2810406 A1 FR 2810406A1 FR 0007650 A FR0007650 A FR 0007650A FR 0007650 A FR0007650 A FR 0007650A FR 2810406 A1 FR2810406 A1 FR 2810406A1
- Authority
- FR
- France
- Prior art keywords
- rare earth
- group
- alk
- substituted
- macropolycyclic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 62
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 25
- 238000010791 quenching Methods 0.000 title claims abstract description 12
- 230000000171 quenching effect Effects 0.000 title claims abstract description 12
- 238000003271 compound fluorescence assay Methods 0.000 title claims abstract description 7
- -1 rare earth metal salt Chemical class 0.000 title claims description 56
- 150000001875 compounds Chemical class 0.000 title claims description 34
- 238000000034 method Methods 0.000 claims abstract description 32
- JUJWROOIHBZHMG-UHFFFAOYSA-N pyridine Substances C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims abstract description 32
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims abstract description 20
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical group N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 claims description 75
- 150000002678 macrocyclic compounds Chemical class 0.000 claims description 21
- 150000007942 carboxylates Chemical group 0.000 claims description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 16
- 239000001257 hydrogen Substances 0.000 claims description 14
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 12
- 229910052693 Europium Inorganic materials 0.000 claims description 12
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims description 12
- 125000001424 substituent group Chemical group 0.000 claims description 12
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 11
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 11
- 125000000217 alkyl group Chemical group 0.000 claims description 9
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 9
- 210000002966 serum Anatomy 0.000 claims description 9
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 8
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 claims description 8
- 125000000732 arylene group Chemical group 0.000 claims description 8
- 125000002993 cycloalkylene group Chemical group 0.000 claims description 8
- 125000005842 heteroatom Chemical group 0.000 claims description 8
- 150000002431 hydrogen Chemical group 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 102000004169 proteins and genes Human genes 0.000 claims description 8
- 108090000623 proteins and genes Proteins 0.000 claims description 8
- 125000002947 alkylene group Chemical group 0.000 claims description 7
- 125000000524 functional group Chemical group 0.000 claims description 7
- 239000003550 marker Substances 0.000 claims description 7
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 claims description 5
- 239000012491 analyte Substances 0.000 claims description 5
- 125000004429 atom Chemical group 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 125000006297 carbonyl amino group Chemical group [H]N([*:2])C([*:1])=O 0.000 claims description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 5
- 239000004215 Carbon black (E152) Substances 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical group [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 4
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 claims description 4
- 125000003277 amino group Chemical group 0.000 claims description 4
- 125000003118 aryl group Chemical group 0.000 claims description 4
- 238000003556 assay Methods 0.000 claims description 4
- DMLAVOWQYNRWNQ-UHFFFAOYSA-N azobenzene Chemical compound C1=CC=CC=C1N=NC1=CC=CC=C1 DMLAVOWQYNRWNQ-UHFFFAOYSA-N 0.000 claims description 4
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 4
- 125000005518 carboxamido group Chemical group 0.000 claims description 4
- VJTJVFFICHLTKX-UHFFFAOYSA-N dipyridin-2-yldiazene Chemical compound N1=CC=CC=C1N=NC1=CC=CC=N1 VJTJVFFICHLTKX-UHFFFAOYSA-N 0.000 claims description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical group 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 239000011574 phosphorus Chemical group 0.000 claims description 4
- 125000006850 spacer group Chemical group 0.000 claims description 4
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 239000011593 sulfur Chemical group 0.000 claims description 4
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 claims description 3
- 239000000427 antigen Substances 0.000 claims description 2
- 102000036639 antigens Human genes 0.000 claims description 2
- 108091007433 antigens Proteins 0.000 claims description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- 150000002500 ions Chemical class 0.000 claims description 2
- 102000039446 nucleic acids Human genes 0.000 claims description 2
- 108020004707 nucleic acids Proteins 0.000 claims description 2
- 150000007523 nucleic acids Chemical class 0.000 claims description 2
- 229920001184 polypeptide Polymers 0.000 claims description 2
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 2
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 2
- 150000001911 terphenyls Chemical class 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 13
- 230000008033 biological extinction Effects 0.000 abstract description 9
- 125000004432 carbon atom Chemical group C* 0.000 description 30
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 25
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 24
- 238000002360 preparation method Methods 0.000 description 22
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 20
- 239000000243 solution Substances 0.000 description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- 239000000203 mixture Substances 0.000 description 18
- 238000004128 high performance liquid chromatography Methods 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 239000011734 sodium Substances 0.000 description 13
- DTQVDTLACAAQTR-UHFFFAOYSA-N trifluoroacetic acid Substances OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 13
- 238000005481 NMR spectroscopy Methods 0.000 description 12
- GWQVMPWSEVRGPY-UHFFFAOYSA-N europium cryptate Chemical compound [Eu+3].N=1C2=CC=CC=1CN(CC=1N=C(C=CC=1)C=1N=C(C3)C=CC=1)CC(N=1)=CC(C(=O)NCCN)=CC=1C(N=1)=CC(C(=O)NCCN)=CC=1CN3CC1=CC=CC2=N1 GWQVMPWSEVRGPY-UHFFFAOYSA-N 0.000 description 11
- 238000004809 thin layer chromatography Methods 0.000 description 11
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000003480 eluent Substances 0.000 description 9
- 239000000377 silicon dioxide Substances 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 8
- 238000010265 fast atom bombardment Methods 0.000 description 8
- 239000012299 nitrogen atmosphere Substances 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 238000004587 chromatography analysis Methods 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 7
- 238000010992 reflux Methods 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 229910001868 water Inorganic materials 0.000 description 7
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 239000008363 phosphate buffer Substances 0.000 description 6
- 239000012429 reaction media Substances 0.000 description 6
- AAXBKQKUIXLJIU-UHFFFAOYSA-N 2,6-bis(bromomethyl)-4-methyl-3H-pyridine-4-carboxylic acid Chemical compound CC1(CC(=NC(=C1)CBr)CBr)C(=O)O AAXBKQKUIXLJIU-UHFFFAOYSA-N 0.000 description 5
- JRJLLMLYUFAZOM-UHFFFAOYSA-N 2,6-dimethylpyridine-4-carboxylic acid Chemical compound CC1=CC(C(O)=O)=CC(C)=N1 JRJLLMLYUFAZOM-UHFFFAOYSA-N 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 229910052681 coesite Inorganic materials 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 229910052906 cristobalite Inorganic materials 0.000 description 5
- 150000004985 diamines Chemical class 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 5
- PJUIMOJAAPLTRJ-UHFFFAOYSA-N monothioglycerol Chemical compound OCC(O)CS PJUIMOJAAPLTRJ-UHFFFAOYSA-N 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 229910052682 stishovite Inorganic materials 0.000 description 5
- 229940035024 thioglycerol Drugs 0.000 description 5
- 229910052905 tridymite Inorganic materials 0.000 description 5
- TXBLTSMCEXEFMI-UHFFFAOYSA-N 2,6-dimethylpyridine-4-carbonitrile Chemical compound CC1=CC(C#N)=CC(C)=N1 TXBLTSMCEXEFMI-UHFFFAOYSA-N 0.000 description 4
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 125000005431 alkyl carboxamide group Chemical group 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 229910052593 corundum Inorganic materials 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 125000003386 piperidinyl group Chemical group 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 4
- 229910001845 yogo sapphire Inorganic materials 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000006620 amino-(C1-C6) alkyl group Chemical group 0.000 description 3
- WORJEOGGNQDSOE-UHFFFAOYSA-N chloroform;methanol Chemical compound OC.ClC(Cl)Cl WORJEOGGNQDSOE-UHFFFAOYSA-N 0.000 description 3
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 3
- OLAPPGSPBNVTRF-UHFFFAOYSA-N naphthalene-1,4,5,8-tetracarboxylic acid Chemical compound C1=CC(C(O)=O)=C2C(C(=O)O)=CC=C(C(O)=O)C2=C1C(O)=O OLAPPGSPBNVTRF-UHFFFAOYSA-N 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- JWDFQMWEFLOOED-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(pyridin-2-yldisulfanyl)propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCSSC1=CC=CC=N1 JWDFQMWEFLOOED-UHFFFAOYSA-N 0.000 description 2
- MEKOFIRRDATTAG-UHFFFAOYSA-N 2,2,5,8-tetramethyl-3,4-dihydrochromen-6-ol Chemical compound C1CC(C)(C)OC2=C1C(C)=C(O)C=C2C MEKOFIRRDATTAG-UHFFFAOYSA-N 0.000 description 2
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 description 2
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 2
- YEKPNMQQSPHKBP-UHFFFAOYSA-N 2-methyl-6-nitrobenzoic anhydride Chemical compound CC1=CC=CC([N+]([O-])=O)=C1C(=O)OC(=O)C1=C(C)C=CC=C1[N+]([O-])=O YEKPNMQQSPHKBP-UHFFFAOYSA-N 0.000 description 2
- NWBIBNHNDICEMF-UHFFFAOYSA-N 3-(dimethylamino)-3-methoxypropanoic acid Chemical compound CN(C)C(CC(=O)O)OC NWBIBNHNDICEMF-UHFFFAOYSA-N 0.000 description 2
- 0 CCOC(c1cc(-c2cc(C(OCC)=O)cc(CNC/C3=*\CC/C(/c4cc(C(*)*)cc(CNC5)n4)=C\C(\C(OCC)=*)=C3)n2)nc5c1)O Chemical compound CCOC(c1cc(-c2cc(C(OCC)=O)cc(CNC/C3=*\CC/C(/c4cc(C(*)*)cc(CNC5)n4)=C\C(\C(OCC)=*)=C3)n2)nc5c1)O 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical compound CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 229920005654 Sephadex Polymers 0.000 description 2
- 239000012507 Sephadex™ Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 125000004442 acylamino group Chemical group 0.000 description 2
- 125000004945 acylaminoalkyl group Chemical group 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000003302 alkenyloxy group Chemical group 0.000 description 2
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000005083 alkoxyalkoxy group Chemical group 0.000 description 2
- 125000005081 alkoxyalkoxyalkyl group Chemical group 0.000 description 2
- 125000004689 alkyl amino carbonyl alkyl group Chemical group 0.000 description 2
- 125000006350 alkyl thio alkyl group Chemical group 0.000 description 2
- 125000004414 alkyl thio group Chemical group 0.000 description 2
- 230000029936 alkylation Effects 0.000 description 2
- 238000005804 alkylation reaction Methods 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- 125000004202 aminomethyl group Chemical group [H]N([H])C([H])([H])* 0.000 description 2
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 2
- RSDOASZYYCOXIB-UHFFFAOYSA-N beta-alaninamide Chemical compound NCCC(N)=O RSDOASZYYCOXIB-UHFFFAOYSA-N 0.000 description 2
- 230000031709 bromination Effects 0.000 description 2
- 238000005893 bromination reaction Methods 0.000 description 2
- 125000005242 carbamoyl alkyl group Chemical group 0.000 description 2
- 150000003857 carboxamides Chemical class 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- WGLUMOCWFMKWIL-UHFFFAOYSA-N dichloromethane;methanol Chemical compound OC.ClCCl WGLUMOCWFMKWIL-UHFFFAOYSA-N 0.000 description 2
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000012456 homogeneous solution Substances 0.000 description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- XECLYLPQCAODFI-UHFFFAOYSA-N methyl 2-(bromomethyl)-6-[6-(bromomethyl)-4-methoxycarbonylpyridin-2-yl]pyridine-4-carboxylate Chemical compound COC(=O)C1=CC(CBr)=NC(C=2N=C(CBr)C=C(C=2)C(=O)OC)=C1 XECLYLPQCAODFI-UHFFFAOYSA-N 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 150000003222 pyridines Chemical class 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 239000012047 saturated solution Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- KPZGRMZPZLOPBS-UHFFFAOYSA-N 1,3-dichloro-2,2-bis(chloromethyl)propane Chemical compound ClCC(CCl)(CCl)CCl KPZGRMZPZLOPBS-UHFFFAOYSA-N 0.000 description 1
- SFCALEGDDAKWMH-UHFFFAOYSA-N 1-(3-hydroxy-2-sulfanylphenyl)pyrrolidine-2,5-dione Chemical compound C1(CCC(N1C=1C(=C(C=CC=1)O)S)=O)=O SFCALEGDDAKWMH-UHFFFAOYSA-N 0.000 description 1
- GVJXGCIPWAVXJP-UHFFFAOYSA-N 2,5-dioxo-1-oxoniopyrrolidine-3-sulfonate Chemical compound ON1C(=O)CC(S(O)(=O)=O)C1=O GVJXGCIPWAVXJP-UHFFFAOYSA-N 0.000 description 1
- CWNPOQFCIIFQDM-UHFFFAOYSA-N 3-nitrobenzyl alcohol Chemical compound OCC1=CC=CC([N+]([O-])=O)=C1 CWNPOQFCIIFQDM-UHFFFAOYSA-N 0.000 description 1
- OIENFDIAYGSRKB-UHFFFAOYSA-N 4-methyl-3H-pyridine-4-carboxylic acid Chemical compound N1=CCC(C=C1)(C(=O)O)C OIENFDIAYGSRKB-UHFFFAOYSA-N 0.000 description 1
- HCXJFMDOHDNDCC-UHFFFAOYSA-N 5-$l^{1}-oxidanyl-3,4-dihydropyrrol-2-one Chemical group O=C1CCC(=O)[N]1 HCXJFMDOHDNDCC-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- SQMMQAWYLLBBIN-UHFFFAOYSA-N C1=CC=NC=C1.C1=CC=NC=C1.C1=CC=NC=C1 Chemical compound C1=CC=NC=C1.C1=CC=NC=C1.C1=CC=NC=C1 SQMMQAWYLLBBIN-UHFFFAOYSA-N 0.000 description 1
- JPXUQMFWZHNMDV-UHFFFAOYSA-N CC(C1CCC(CN(C(CC2)=O)C2=O)CC1)=O Chemical compound CC(C1CCC(CN(C(CC2)=O)C2=O)CC1)=O JPXUQMFWZHNMDV-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-OUBTZVSYSA-N Carbon-13 Chemical compound [13C] OKTJSMMVPCPJKN-OUBTZVSYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 150000000918 Europium Chemical class 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910021055 KNH2 Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- 238000011481 absorbance measurement Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- NUYOUQGHMOSOEQ-UHFFFAOYSA-N acridin-1-ylhydrazine Chemical compound C1=CC=C2C=C3C(NN)=CC=CC3=NC2=C1 NUYOUQGHMOSOEQ-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000005596 alkyl carboxamido group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- OQNGCCWBHLEQFN-UHFFFAOYSA-N chloroform;hexane Chemical compound ClC(Cl)Cl.CCCCCC OQNGCCWBHLEQFN-UHFFFAOYSA-N 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000007333 cyanation reaction Methods 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- WACQKHWOTAEEFS-UHFFFAOYSA-N cyclohexane;ethyl acetate Chemical compound CCOC(C)=O.C1CCCCC1 WACQKHWOTAEEFS-UHFFFAOYSA-N 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- HPYNZHMRTTWQTB-UHFFFAOYSA-N dimethylpyridine Natural products CC1=CC=CN=C1C HPYNZHMRTTWQTB-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003269 fluorescent indicator Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- ZBKFYXZXZJPWNQ-UHFFFAOYSA-N isothiocyanate group Chemical group [N-]=C=S ZBKFYXZXZJPWNQ-UHFFFAOYSA-N 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- LZWQNOHZMQIFBX-UHFFFAOYSA-N lithium;2-methylpropan-2-olate Chemical compound [Li+].CC(C)(C)[O-] LZWQNOHZMQIFBX-UHFFFAOYSA-N 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- WRCNHVLCKGQMSI-UHFFFAOYSA-N methyl 2,6-bis(bromomethyl)pyridine-4-carboxylate Chemical compound COC(=O)C1=CC(CBr)=NC(CBr)=C1 WRCNHVLCKGQMSI-UHFFFAOYSA-N 0.000 description 1
- MLDMYLXCMZTSHX-UHFFFAOYSA-N methyl 2,6-dimethylpyridine-4-carboxylate Chemical compound COC(=O)C1=CC(C)=NC(C)=C1 MLDMYLXCMZTSHX-UHFFFAOYSA-N 0.000 description 1
- 238000004452 microanalysis Methods 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- XUZLXCQFXTZASF-UHFFFAOYSA-N nitro(phenyl)methanol Chemical compound [O-][N+](=O)C(O)C1=CC=CC=C1 XUZLXCQFXTZASF-UHFFFAOYSA-N 0.000 description 1
- 125000006502 nitrobenzyl group Chemical group 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- FNGYBCWZUBEMNP-UHFFFAOYSA-N pyridin-2-ylsulfanyl propanoate Chemical compound CCC(=O)OSC1=CC=CC=N1 FNGYBCWZUBEMNP-UHFFFAOYSA-N 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- VUFNRPJNRFOTGK-UHFFFAOYSA-M sodium;1-[4-[(2,5-dioxopyrrol-1-yl)methyl]cyclohexanecarbonyl]oxy-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)C1CCC(CN2C(C=CC2=O)=O)CC1 VUFNRPJNRFOTGK-UHFFFAOYSA-M 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000012289 standard assay Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 150000003573 thiols Chemical group 0.000 description 1
- LMYRWZFENFIFIT-UHFFFAOYSA-N toluene-4-sulfonamide Chemical compound CC1=CC=C(S(N)(=O)=O)C=C1 LMYRWZFENFIFIT-UHFFFAOYSA-N 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/58—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
- G01N33/582—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/22—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed systems contains four or more hetero rings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2458/00—Labels used in chemical analysis of biological material
- G01N2458/40—Rare earth chelates
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Food Science & Technology (AREA)
- Pathology (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Pyridine Compounds (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Luminescent Compositions (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Abstract
L'invention concerne un procédé de réduction de l'extinction de fluorescence due au milieu de mesure dans un dosage par fluorescence par introduction dans ledit milieu de cryptates de terre rare peu sensibles à cette extinction de fluorescence, lesdits cryptates de terre rare comprenant au moins un radical pyridine substituée une ou plusieurs fois ou non substituée.L'invention concerne également de nouveaux cryptates de terre rare peu sensibles à l'extinction de fluorescence due au milieu de mesure.
Description
<Desc/Clms Page number 1>
L'invention concerne un procédé de réduction de l'extinction de fluorescence due au milieu de mesure dans un dosage par fluorescence par introduction dans ledit milieu de cryptates de terre rare peu sensibles à cette extinction de fluorescence.
L'invention concerne également de nouveaux cryptâtes de terre rare peu sensibles à l'extinction de fluorescence due au milieu de mesure.
L'avancée des connaissances en biologie crée un besoin croissant pour des méthodes de diagnostic permettant de suivre ou de quantifier des biomolécules.
Dans le même temps, on observe une désaffection vis à vis des marqueurs radioactifs qui sont généralement impliqués dans les méthodes de dosage de référence. D'une façon générale, on cherche actuellement à remplacer les traceurs radioactifs par d'autres marqueurs et principalement par des marqueurs fluorescents. L'utilisation de marqueurs fluorescents dans des conditions idéales permet d'obtenir des' sensibilités élevées théoriquement équivalentes à celles obtenu par les traceurs radioactifs.
De nombreuses molécules fluorescentes utilisables comme traceurs dans ce type de dosages ont été précédemment décrites parmi lesquelles les complexes de terre rare possèdent des propriétés intéressantes.
L'utilisation de complexes particuliers, les cryptates de terre rare, est décrite par exemple dans les demandes EP 0 180 492 et EP 0 321 353.
Dans la pratique, les performances des traceurs fluorescents sont limitées, d'une part, par la présence d'un bruit de fond souvent élevé et, d'autre part, par le fait qu'ils sont généralement très sensibles aux changements dans leur environnement. Des petites modifications du pH, de la polarité, de la présence d'oxygène dissous, de la proximité d'atome lourds (iode par exemple) ou de groupes absorbants peuvent modifier leur rendement quantique (dans le sens d'une exaltation ou d'une extinction) ou déplacer la longueur d'onde de l'émission.
Les problèmes inhérents aux méthodes d'analyse par mesure de la fluorescence sont répertoriés dans un article de revue (1. Hemmilâ, Clin. Chem.
31/3, 359-370 (1985)).
Les problèmes inhérents au bruit de fond provenant de la fluorescence intrinsèque des protéines ainsi que des autre biomolécules présentes dans les échantillons biologiques peuvent être partiellement résolus par l'utilisation de marqueurs fluorescents formés par des complexes de terres rares (principalement l'Europium) qui permettent une sélection temporelle du signal spécifique. Les durées de vie particulièrement longues (0,1 ms à 1 ms environ) qui caractérisent les
<Desc/Clms Page number 2>
complexes d'Europium permettent, à l'aide d'une mesure en temps résolu, de s'affranchir du bruit de fond provenant, par exemple, des protéines sériques qui lui, est caractérisé par une durée de vie relativement courte (environ 4ns).
L'utilisation de complexes particuliers, les cryptates de terre rare, est décrite par exemple dans les demandes EP 0 180 492 et EP 0 321 353.
Un format de type homogène présente l'intérêt considérable de pouvoir suivre en temps réel la cinétique de formation d'un complexe immunologique, mais ne permet cependant pas de s'affranchir des interactions éventuellement défavorables entre le marqueur et les molécules présentent dans un milieu biologique (extinction de la fluorescence).
Dans un milieu sérique, on peut obtenir une restauration des propriétés photophysiques, et notamment de la durée de vie, en ajoutant des ions fluorures au milieu comme décrit dans le brevet EP 0 539 435.
Les problème des interférences dues aux molécules présentes dans le milieu de mesure n'est néanmoins complètement résolu par aucune de ces méthodes. En effet, une source importante de limitation de la sensibilité de la mesure par fluorescence est l'existence de processus d'extinction ( quenching ) dues à des molécules présentes dans le milieu capables d'inhiber la fluorescence de la molécule fluorescente utilisée comme marqueur dans le dosage. Dans le cas des complexes de terre rare, l'extinction peut résulter de mécanismes de transfert d'électrons par proximité, dans lesquels la molécule inhibitrice vient occuper les sites de coordination restés libres au sein du complexe. On peut en particulier citer les réactions red/ox intervenant entre la molécule fluorescente dans son état fondamental ou dans son état excité et des molécules présentes dans le milieu.
Ces mécanismes sont susceptibles de faire vaner de façon non négligeable la fluorescence émise.
L'inhibition de la fluorescence par des mécanismes mettant en jeu un transfert d'électrons et en général par des mécanismes d'extinction est un phénomène extrêmement gênant dans la pratique car les éléments inhibiteurs peuvent soit se trouver naturellement présents en tant que composants dans le milieu de mesure (par exemple l'acide urique dans le sérum) ou encore y être ajoutés comme additifs ou stabilisants pour le dosage.
Ces inhibiteurs affectent fortement la fluorescence de la molécule marqueur. En particulier, dans le cas des réactions parasites red/ox le passage de l'état oxydé à l'état réduit d'un ion de terre rare par le biais d'un mécanisme red/ox entraîne une diminution de la durée de vie et une modification de spectre
<Desc/Clms Page number 3>
d'émission du complexe le contenant, de telle sorte que la sensibilité de la mesure est fortement affectée.
On a maintenant trouvé de nouveaux cryptates de terre rare constitués d'un sel de terre rare complexé par un composé macropolycyclique comprenant au moins un motif moléculaire constitué par une pyridine, qui présentent des propriétés photophysiques nouvelles et inattendues.
On a également trouvé que ces propriétés avantageuses sont observées lorsque ce composé macropolycyclique comporte également un motif moléculaire possédant une énergie de triplet supérieure à celle du niveau émissif de l'ion de terre rare complexé qui est substitué par un groupement donneur d'électrons.
Une hypothèse de mécanisme à cet égard est que le remplacement d'un motif moléculaire présentant un encombrement stérique plus important par une pyridine réduit la cavité du macrocycle et influe sur l'équilibre red/ox de l'ion de terre rare en favorisant l'état oxydé de celui-ci.
La présence d'un groupement donneur d'électrons est également susceptible d'influer sur le potentiel red/ox de l'ion terre rare.
Les cryptates de terre rare selon l'invention présentent ainsi la propriété avantageuse d'être moins sensibles, comparativement aux cryptates correspondants ne comportant pas de motif pyridine et/ou de substitution par un groupement donneur d'électrons, au phénomène d'extinction de la fluorescence résultant d'une interaction avec des molécules présentes dans le milieu.
Cette observation présente un grand intérêt puisqu'elle permet de réaliser des mesures de fluorescence dans des milieux biologiques sans utilisation d'un adjuvant comme les ions fluorures.
Les composés selon l'invention constituent donc de nouveaux marqueurs, qui peuvent être couplés à une molécule biologique ayant un rôle de reconnaissance et pouvant se lier à un partenaire, tout en conservant leurs propriétés de résistance à l'extinction.
L'invention concerne donc, selon un premier aspect, un procédé de réduction de l'extinction de fluorescence due au milieu de mesure dans un dosage par fluorescence d'un analyte mettant en #uvre au moins un marqueur fluorescent caractérisé en ce qu'on introduit dans le milieu de mesure un complexe macropolycyclique de terre rare, constitué d'au moins un sel de terre rare complexé par un composé macropolycyclique de formule
<Desc/Clms Page number 4>
dans laquelle Z est un atome ayant 3 ou 4 valences, R est rien ou représente l'hydrogène, le groupe hydroxy, un groupe amino ou un radical hydrocarboné, les radicaux bivalents #, # et #, sont indépendamment l'un de l'autre des chaînes hydrocarbonées qui contiennent éventuellement un ou plusieurs hétéroatomes et sont éventuellement interrompues par un hétéromacrocycle, au moins l'un des radicaux #, et @ comportant de plus au moins un motif moléculaire ou étant essentiellement constitué par un motif moléculaire possédant une énergie de triplet supérieure à celle du niveau émissif de l'ion de terre rare complexé et au moins l'un des radicaux #, et qui ne comporte pas ou n'est pas essentiellement constitué par ledit motif moléculaire comprend un radical pyndine substituée une ou plusieurs fois, ou non substituée.
Lorsque le composé macropolycyclique de formule (1) comprend un radical pyridine substituée, celle-ci peut l'être par un ou plusieurs substituants, identiques ou différents, tels que, par exemple, halogène, CN, ester carboxylique en Ci-Ce,
OH, NH2, N02, -CH2NHCONH-aryle, -CH2NHCSNH-aryle, -NHCONH-(Cl-C6)alkyle, -NHCSNH-(C,-C4)alkyle, -NHCONH-aryle, -NHCSNH-aryle, pipéridinyl, -N-(C,C6)alkyl-carboxypypéridinyl, (C,-C4)alkylamno-alkylamine, alkyle en C1-C10, alcényle contenant 2 à 10 atomes de carbone, alcynyle contenant 2 à 10 atomes de carbone, cycloalkyle contenant 3 à 8 atomes de carbone, hydroxyalkyle contenant 1 à 5 atomes de carbone, alcoxy contenant 1 à 10 atomes de carbone, alcoxyalkyle contenant 2 à 10 atomes de carbone, alcoxyalcoxyalkyle contenant 3 à 10 atomes de carbone, alcoxyalcoxy contenant 2 à 10 atomes de carbone, alcényloxy contenant 2 à 10 atomes de carbone, alkylthio contenant 1à 10 atomes de carbone, alkylthioalkyle contenant 2 à 10 atomes de carbone, acylamino contenant 1 à 7 atomes de carbone, acylaminoalkyle contenant 2 à 8 atomes de carbone, carbamoylalkyle contenant 2 à 5 atomes de carbone, alkylaminocarbonylalkyle contenant 3 à 9 atomes de carbone, amino(Ci-C6)alkyle, amino(C1-
C6)alkylcarboxamide, amino(Cl-C6)alkylcarboxamido(CI-C6)alkyle et carboxy(Ci- C10) alkyle.
OH, NH2, N02, -CH2NHCONH-aryle, -CH2NHCSNH-aryle, -NHCONH-(Cl-C6)alkyle, -NHCSNH-(C,-C4)alkyle, -NHCONH-aryle, -NHCSNH-aryle, pipéridinyl, -N-(C,C6)alkyl-carboxypypéridinyl, (C,-C4)alkylamno-alkylamine, alkyle en C1-C10, alcényle contenant 2 à 10 atomes de carbone, alcynyle contenant 2 à 10 atomes de carbone, cycloalkyle contenant 3 à 8 atomes de carbone, hydroxyalkyle contenant 1 à 5 atomes de carbone, alcoxy contenant 1 à 10 atomes de carbone, alcoxyalkyle contenant 2 à 10 atomes de carbone, alcoxyalcoxyalkyle contenant 3 à 10 atomes de carbone, alcoxyalcoxy contenant 2 à 10 atomes de carbone, alcényloxy contenant 2 à 10 atomes de carbone, alkylthio contenant 1à 10 atomes de carbone, alkylthioalkyle contenant 2 à 10 atomes de carbone, acylamino contenant 1 à 7 atomes de carbone, acylaminoalkyle contenant 2 à 8 atomes de carbone, carbamoylalkyle contenant 2 à 5 atomes de carbone, alkylaminocarbonylalkyle contenant 3 à 9 atomes de carbone, amino(Ci-C6)alkyle, amino(C1-
C6)alkylcarboxamide, amino(Cl-C6)alkylcarboxamido(CI-C6)alkyle et carboxy(Ci- C10) alkyle.
<Desc/Clms Page number 5>
De préférence, une pyridine substituée comportera un ou 2 substituants.
Des substituants préférés aux fins de l'invention sont par exemple les substituants
amino(CrC6)alkyle, notamment aminométhyl ou aminoéthyl ; amino(C1-
C6)alkylcarboxamide, notamment aminoéthylcarboxamide, phénylcarbamoyl ; phénylthiocarbamoyl ; nitrile ; pipéridinyl ; ester carboxylique en Ci-Ce, notamment méthylcarboxylate ou éthylcarboxylate ; amino(C1-C6)alkylcarboxamido(C1-
C6)alkyle, notamment aminocaproylamidométhyl et aminocaproylamidoéthyl ou carboxy (C1-C10)alkyle.
amino(CrC6)alkyle, notamment aminométhyl ou aminoéthyl ; amino(C1-
C6)alkylcarboxamide, notamment aminoéthylcarboxamide, phénylcarbamoyl ; phénylthiocarbamoyl ; nitrile ; pipéridinyl ; ester carboxylique en Ci-Ce, notamment méthylcarboxylate ou éthylcarboxylate ; amino(C1-C6)alkylcarboxamido(C1-
C6)alkyle, notamment aminocaproylamidométhyl et aminocaproylamidoéthyl ou carboxy (C1-C10)alkyle.
Par analyte , on entend dans la présente description toute substance ou groupe de substances, ainsi que ses ou leurs analogues, que l'on souhaite détecter et/ou déterminer.
Selon un aspect préféré du procédé selon l'invention, les deux radicaux #, ou qui ne comportent pas ou ne sont pas essentiellement constitués par un motif moléculaire possédant une énergie de triplet supérieure à celle du niveau émissif de l'ion de terre rare complexé comprennent un radical pyridine substituée ou non substituée.
Avantageusement, le motif moléculaire possédant une énergie de triplet supérieure à celle du niveau émissif de l'ion de terre rare complexé est substitué par un groupement donneur d'électrons.
De préférence, le motif moléculaire possédant une énergie de triplet supérieure à celle du niveau émissif de l'ion de terre rare complexé est choisi parmi la phénanthroline, l'anthracène, le benzène, le naphtalène, les bi- et ter-phényle, l'azobenzène, l'azopyridine, les bipyridines et les bisisoquinoléines, les bipyridines étant préférées.
Selon un autre aspect préféré du procédé selon l'invention, le (ou les) motif (s) bypiridine(s) est (sont) substitué(s) par un groupement donneur d'électrons choisi en particulier parmi les groupements carboxylate, -NH2, -NHAlk, -N(Alk)2,
OH, 0-, -OAlk, Alk, -CH(Alk)2, -C(Alk)3, -NHCOAlk, phényl substitué ou non substitué ; Alk étant un groupe (C1-C4)alkyle.
OH, 0-, -OAlk, Alk, -CH(Alk)2, -C(Alk)3, -NHCOAlk, phényl substitué ou non substitué ; Alk étant un groupe (C1-C4)alkyle.
Lorsque le phényl est substitué, il peut l'être par un ou plusieurs substituants identiques ou différents choisis par exemple parmi sulfonate, carboxylate, méthylcarboxylate, N,N-diméthylamino, méthoxyéthylcarboxylate et carboxamide.
Le groupement carboxylate est un groupement donneur d'électrons particulièrement préféré aux fins de l'invention.
<Desc/Clms Page number 6>
Par groupement carboxylate , on entend le couple -COOH/-COO : en effet, le complexe macrocyclique pourra comporter lors de sa synthèse un groupe acide carboxylique -COOH, celui-ci étant, lors de son utilisation dans le milieu de mesure, ionisé en groupement carboxylate -COO .
Selon un aspect avantageux du procédé selon l'invention, le composé macropolycyclique est composé d'au moins un sel de terre rare complexé par un composé macrocyclique répondant à la formule (II) ci-après :
dans laquelle : - le cycle de formule
est le macrocycle bis-bipyndine de formule :
-n=0,1ou2;
dans laquelle : - le cycle de formule
est le macrocycle bis-bipyndine de formule :
-n=0,1ou2;
<Desc/Clms Page number 7>
- A est un groupe fonctionnel susceptible de se lier de façon covalente avec une substance biologique ; - R1 est un groupe -COOR3 dans lequel R3 est l'hydrogène ou un groupe alkyle en C1 à C10 et représente de préférence le groupe méthyle, éthyle ou tertiobutyle ou bien R1 est un groupe -CO-NH-Y-A ou -Y-A ; - R2 est l'hydrogène, un groupement donneur d'électrons, en particulier carboxylate, -NH2, -NHAlk, -N(Alk)2, OH, 0-, -OAlk, Alk, -CH(Alk)2, -C(Alk)3, -NHCOAlk, phényl substitué ou non substitué ; Alk étant un groupe (C1-C4)alkyle, un groupe -CO-NH-Y-A ou -Y-A, sous réserve que l'un au plus des substituants R1 et R2 représente un groupe -CO-NH-Y-A ou -Y-A et R1 et R2 ne représentent pas simultanément un groupe-CO-NH-YA ou -Y-A ; - Y est un groupe ou un bras d'espacement qui est constitué par un radical organique bivalent, choisi parmi les groupes alkylène linéaires ou ramifiés en Ci à C20 contenant éventuellement une ou plusieurs doubles liaisons et/ou un ou plusieurs hétéroatomes tels que l'oxygène, l'azote, le soufre, le phosphore ou un ou plusieurs groupe(s) carbamoyle ou carboxamido ; parmi les groupes cycloalkylène en C5 à C8 ou parmi les groupes arylène en C6 à C14, lesdits groupes alkylène, cycloalkylène ou arylène étant éventuellement substitués par des groupes alkyle, aryle ou sulfonate.
Dans la présente description, on désigne par groupe fonctionnel susceptible de se lier de façon covalente avec une substance biologique tout groupe fonctionnel capable de se lier par liaison covalente, directement ou après activation, avec au moins l'une des fonctions naturellement présentes ou artificiellement introduites sur ladite substance biologique. De telles fonctions sont notamment les fonctions NH2, COOH, SH ou OH. De tels groupes ainsi que les procédés d'activation sont décrits en détail par P. TIJSSEN dans Practice and Theory of Enzyme immunoassays Elsevier 1985.
A titre d'exemples de groupes fonctionnels appropriés aux fins de l'invention, on peut citer notamment les groupes amino, thio, cyano, isocyano, isothiocyano, thiocyano, carboxyle, hydroxyle, maléimido, succinimido, mercapto, phénol, imidazole, aldéhyde, époxyde, halogénure, thionyle, sulfonyle, nitrobenzyle, carbonyl, triazo, anhydride, halogénoacétate, hydrazino, acridine, etc.
Les groupes particulièrement préférés sont les groupes amino, thio et carboxy qui doivent être activés avant le couplage covalent avec la substance biologique ainsi que les groupes maléimido, succinimido et isothiocyanate, lesquels peuvent se lier directement avec la substance biologique.
<Desc/Clms Page number 8>
L'ion de terre rare complexé est de préférence l'europium.
Dans la présente description, la notion de cryptate ainsi que la nomenclature des macrocycles et polycycles sont telles que définies par J.M. Lehn dans Struct. Bonding (Berlin), 16,1, 1973 et dans Acc. Chem. Res. 11, 49, (1978).
Les abréviations suivantes ont été utilisées pour désigner les motifs moléculaires constitutifs des macro(poly)cycles : bipyridine 2,2' = bpy pyridine = Py
4-méthylisonicotinate = Py(C02Me) diéthylcarboxylate-4,4'-bipyndine-2,2' = bpy(C02Et)2 ditertiobutylcarboxylate-4,4'-bipyridine-2,2' = bpy(C02tbu)2 dicarboxylique acide-4,4'-bipyridine-2,2' bpy(C02H)2 diéthylcarboxylate-3,5-pyridine-2,2' = Py(C02Et)2
3,5-di[N-(2-ammoéthyl)-carboxamidy!]-pyndine = Py(NH2)2 3,5-di[N-(4-maléimidométhylcyclohexylcarboxamido-2-éthyl)-carboxamidyl]- pyndine = Py[CONH(CH2)2NHR4]2, dans lequel
4-méthylisonicotinate = Py(C02Me) diéthylcarboxylate-4,4'-bipyndine-2,2' = bpy(C02Et)2 ditertiobutylcarboxylate-4,4'-bipyridine-2,2' = bpy(C02tbu)2 dicarboxylique acide-4,4'-bipyridine-2,2' bpy(C02H)2 diéthylcarboxylate-3,5-pyridine-2,2' = Py(C02Et)2
3,5-di[N-(2-ammoéthyl)-carboxamidy!]-pyndine = Py(NH2)2 3,5-di[N-(4-maléimidométhylcyclohexylcarboxamido-2-éthyl)-carboxamidyl]- pyndine = Py[CONH(CH2)2NHR4]2, dans lequel
Les complexes macropolycycliques de terre rare particulièrement préférés aux fins de l'invention sont les cryptates d'europium [Eu3+C
Py.Bpy(C02H)2.Bpy(C02H)] (exemple 4, b), [Eu3+C bpy(C02H)2.bpy(C02H)2.Py (NH2)2] (exemple 6) et [Eu3+C bpy(CO2H)2.bpy(C02H)2.Py(CONH(CH2NHR4 ] dans lequel
Py.Bpy(C02H)2.Bpy(C02H)] (exemple 4, b), [Eu3+C bpy(C02H)2.bpy(C02H)2.Py (NH2)2] (exemple 6) et [Eu3+C bpy(CO2H)2.bpy(C02H)2.Py(CONH(CH2NHR4 ] dans lequel
Selon un aspect préféré du procédé selon l'invention, le complexe macrocyclique de terre rare est utilisé comme seul marqueur ou comme l'un des marqueurs dans le dosage.
Avantageusement, le milieu de mesure est un milieu biologique, en particulier un milieu sérique.
<Desc/Clms Page number 9>
Les composés macro(poly)cycliques utilisables dans le procédé selon l'invention sont préparés selon des procédés connus. La préparation du macrocycle bipyridine passant par un intermédiaire tosylé est notamment décrite dans J. Org. Chem. 1983, 48, 4848 ; les analogues macrocycliques fonctionnalisés de type bpy.bpy.(R2)2 ont été obtenus suivant la même approche.
D'une manière générale, les ligands macrobicycliques sont préparés selon les techniques décrites respectivement dans le brevet EP 0 321 353 et dans Helv. Chim. Acta, 1988, 71, 1042. Notamment, ces molécules ont été préparées par alkylation d'une diamine macrocyclique préformée dans un solvant polaire aprotique en présence d'un carbonate alcalin jouant le rôle de base et d'ion template.
Les complexes macropolycycliques de terre rare utilisables selon l'invention peuvent être obtenus par les procédés classiques de préparation de complexes métalliques, qui consistent à faire réagir le composé complexant avec un composé donneur du cation à complexer.
Par exemple, les complexes macropolycycliques peuvent être obtenus par réaction d'un composé donneur de cation de terre rare avec le composé macropolycyclique ayant les caractéristiques définies ci-dessus, chaque composé étant avantageusement en solution, de préférence dans le même solvant ou dans des solvants compatibles inertes vis-à-vis de la complexation. En générai, on utilise comme solvant l'acétonitrile ou le méthanol, en chauffant à reflux.
Selon un aspect ultérieur, l'invention concerne également les complexes macropolycycliques de terre rare, constitués d'au moins un sel de terre rare complexé par un composé macropolycyclique de formule
dans laquelle Z est un atome ayant 3 ou 4 valences, R est rien ou représente l'hydrogène, le groupe hydroxy, un groupe amino ou un radical hydrocarboné, les radicaux bivalents #, # et #, sont indépendamment l'un de l'autre des chaînes hydrocarbonées qui contiennent éventuellement un ou plusieurs hétéroatomes et sont éventuellement interrompues par un
dans laquelle Z est un atome ayant 3 ou 4 valences, R est rien ou représente l'hydrogène, le groupe hydroxy, un groupe amino ou un radical hydrocarboné, les radicaux bivalents #, # et #, sont indépendamment l'un de l'autre des chaînes hydrocarbonées qui contiennent éventuellement un ou plusieurs hétéroatomes et sont éventuellement interrompues par un
<Desc/Clms Page number 10>
hétéromacrocycle, au moins l'un des radicaux #, # et # comportant de plus au moins un motif moléculaire ou étant essentiellement constitué par un motif moléculaire possédant une énergie de triplet supérieure à celle du niveau émissif de l'ion de terre rare complexé, caractérisé en ce que : - soit au moins l'un des radicaux #, () et # qui ne comporte pas ou n'est pas essentiellement constitué par ledit motif moléculaire comprend un radical pyridine substituée une ou plusieurs fois ; - soit au moins l'un des radicaux #, et qui ne comporte pas ou n'est pas essentiellement constitué par ledit motif moléculaire comprend un radical pyridine substituée une ou plusieurs fois ou non substituée et le ou les radicaux @ , ou # autres que celui-ci est substitué par un groupement donneur d'électrons.
Le (s) substituant(s) du radical pyridine peuvent par exemple être choisis parmi halogène, CN, ester carboxylique en Ci-Ce, OH, NH2, N02, -CH2NHCONH-
aryle, -CH2NHCSNH-aryle, -NHCONH-(CrC6)alkyle, -NHCSNH-(C,-C4)alkyle, -NHCONH-aryle, -NHCSNH-aryle, pipéridinyl, -N-(CrC6)alkyl-carboxypypéridinyl, (CrC4)alkylamino-alkylamine, alkyle en Cl-Clo, alcényle contenant 2 à 10 atomes de carbone, alcynyle contenant 2 à 10 atomes de carbone, cycloalkyle contenant 3 à 8 atomes de carbone, hydroxyalkyle contenant 1 à 5 atomes de carbone, alcoxy contenant 1 à 10 atomes de carbone, alcoxyalkyle contenant 2 à 10 atomes de carbone, alcoxyalcoxyalkyle contenant 3 à 10 atomes de carbone, alcoxyalcoxy contenant 2 à 10 atomes de carbone, alcényloxy contenant 2 à 10 atomes de carbone, alkylthio contenant 1à 10 atomes de carbone, alkylthioalkyle contenant 2 à 10 atomes de carbone, acylamino contenant 1 à 7 atomes de carbone, acylaminoalkyle contenant 2 à 8 atomes de carbone, carbamoylalkyle contenant 2 à 5 atomes de carbone, alkylaminocarbonylalkyle contenant 3 à 9 atomes de
carbone, amino(CI-C6)alkyle, ammo(C1-Ca)alkylcarboxamide, amino(C1C6)aikytcarboxamido(CrC6)atky!e et carboxy(Ci-Clo)alkyle.
aryle, -CH2NHCSNH-aryle, -NHCONH-(CrC6)alkyle, -NHCSNH-(C,-C4)alkyle, -NHCONH-aryle, -NHCSNH-aryle, pipéridinyl, -N-(CrC6)alkyl-carboxypypéridinyl, (CrC4)alkylamino-alkylamine, alkyle en Cl-Clo, alcényle contenant 2 à 10 atomes de carbone, alcynyle contenant 2 à 10 atomes de carbone, cycloalkyle contenant 3 à 8 atomes de carbone, hydroxyalkyle contenant 1 à 5 atomes de carbone, alcoxy contenant 1 à 10 atomes de carbone, alcoxyalkyle contenant 2 à 10 atomes de carbone, alcoxyalcoxyalkyle contenant 3 à 10 atomes de carbone, alcoxyalcoxy contenant 2 à 10 atomes de carbone, alcényloxy contenant 2 à 10 atomes de carbone, alkylthio contenant 1à 10 atomes de carbone, alkylthioalkyle contenant 2 à 10 atomes de carbone, acylamino contenant 1 à 7 atomes de carbone, acylaminoalkyle contenant 2 à 8 atomes de carbone, carbamoylalkyle contenant 2 à 5 atomes de carbone, alkylaminocarbonylalkyle contenant 3 à 9 atomes de
carbone, amino(CI-C6)alkyle, ammo(C1-Ca)alkylcarboxamide, amino(C1C6)aikytcarboxamido(CrC6)atky!e et carboxy(Ci-Clo)alkyle.
De préférence, une pyridine substituée comportera un ou 2 substituants.
Des substituants préférés aux fins de l'invention sont par exemple les substituants amino(C1-C6)alkyle, notamment aminométhyl ou aminoéthyl ; amino(Ci- C6)alkylcarboxamide, notamment aminoéthylcarboxamide, phénylcarbamoyl ; phénylthiocarbamoyl ; nitrile ; pipéridinyl ; ester carboxylique en Ci-Ce, notamment
méthylcarboxylate ou éthylcarboxylate ; amino(Ci-C6)aiky)carboxamido(Ci- C6)alkyle, notamment aminocaproylamidométhyl et aminocaproylamidoéthyl ou carboxy (C1-C10)alkyle.
méthylcarboxylate ou éthylcarboxylate ; amino(Ci-C6)aiky)carboxamido(Ci- C6)alkyle, notamment aminocaproylamidométhyl et aminocaproylamidoéthyl ou carboxy (C1-C10)alkyle.
De préférence, l'ion de terre rare complexé est l'europium.
<Desc/Clms Page number 11>
Avantageusement, les deux radicaux #, # ou # qui ne comportent pas ou ne sont pas essentiellement constitués par un motif moléculaire possédant une énergie de triplet supérieure à celle du niveau émissif de l'ion de terre rare complexé comprennent un radical pyridine substituée une ou plusieurs fois ou non substituée.
Selon un aspect préféré, le motif moléculaire possédant une énergie de triplet supérieure à celle du niveau émissif de l'ion de terre rare complexé est choisi parmi la phénanthroline, l'anthracène, le benzène, le naphtalène, les bi- et terphényle, l'azobenzène, l'azopyridine, les bipyridines et les bisisoquinoléines.
Avantageusement, le motif moléculaire possédant une énergie de triplet supérieure à celle du niveau émissif de l'ion de terre rare complexé est un groupe bipyridine.
De préférence, le (ou les) groupe (s) bipyridine(s) est (sont) substitué (s) un groupement donneur d'électrons choisi en particulier parmi les groupements carboxylate, -NH2, -NHAlk, -N(Alk)2, OH, 0-, -OAlk, Alk, -CH(Alk)2, -C(Alk)3, -NHCOAlk, phényt substitué ou non substitué ; Alk étant un groupe (C1-C4)alkyle, le groupement carboxylate étant particulièrement avantageux.
Lorsque le phényl est substitué, il peut l'être par un ou plusieurs substituants identiques ou différents choisis par exemple parmi sulfonate, carboxylate, méthylcarboxylate, N,N-diméthylamino, méthoxyéthylcarboxylate et carboxamide.
L'invention concerne en particulier les complexes macropolycycliques constitués d'au moins un sel de terre rare complexé par un composé macropolycyclique répondant à la formule Il :
dans laquelle : - le cycle de formule
dans laquelle : - le cycle de formule
<Desc/Clms Page number 12>
est le macrocycle bis-bipyndine de formule :
- n = 0, 1 ou 2 ; - Y est un groupe ou un bras d'espacement qui est constitué par un radical organique bivalent, choisi parmi les groupes alkylène linéaires ou ramifiés en Ci à C2o contenant éventuellement une ou plusieurs doubles liaisons et/ou un ou plusieurs hétéroatomes tels que l'oxygène, l'azote, le soufre, le phosphore ou un ou plusieurs groupe (s) carbamoyle ou carboxamido ; parmi les groupes cycloalkylène en C5 à Ce ou parmi les groupes arylène en C6 à C14, lesdits groupes alkylène, cycloalkylène ou arylène étant éventuellement substitués par des groupes alkyle, aryle ou sulfonate ; - A est un groupe fonctionnel susceptible de se lier de façon covalente avec une substance biologique ; - R1 est un groupe -COOR3 dans lequel R3 est l'hydrogène ou un groupe alkyle en Ci à C10 et représente de préférence le groupe méthyle, éthyle ou tertiobutyle ou bien Ri est un groupe -CO-NH-Y-A ou -Y-A ; - R2 est l'hydrogène, un groupement donneur d'électrons, en particulier carboxylate, -NH2, -NHAlk, -N(Alk)2, OH, 0-, -OAlk, Alk, -CH(Alk)2, -C(Alk)3, -NHCOAlk, phényl substitué ou non substitué ; Alk étant un groupe (C1-C4)alkyle, ou un groupe -CO-NH-Y-A ou -Y-A, sous réserve que l'un au plus des substituants Ri et R2 représente un groupe -CO-NH-Y-A ou -Y-A et Ri et R2 ne représentent pas simultanément un groupe -CO-NH-Y-A ou -Y-A, et
<Desc/Clms Page number 13>
sous réserve que lorsque n = 0, R2 soit différent de l'hydrogène.
Des complexes préférés sont ceux dans lesquels le composé macropolycyclique répond à la formule II dans laquelle : -n=0, - Y, A et Ri sont tels que définis ci-dessus, et - R2 est tel que défini ci-dessus et l'un des substituants R2 est un groupe -CO-NH-Y-A ou -Y-A.
Des complexes particulièrement avantageux sont les cryptates d'europium
[Eu3+C Py.Bpy(CO2H)2.Bpy(CO2H)2], [Eu3+C bpy(CO2H)2.bpy(CO2H)2.Py(NH2)2] et [Eu3+C bpy(C02H)2.bpy(C02H)2. Py(CONH(CH2)2NHR4]2 dans lequel
[Eu3+C Py.Bpy(CO2H)2.Bpy(CO2H)2], [Eu3+C bpy(CO2H)2.bpy(CO2H)2.Py(NH2)2] et [Eu3+C bpy(C02H)2.bpy(C02H)2. Py(CONH(CH2)2NHR4]2 dans lequel
Les complexes macropolycycliques de terre rare selon l'invention sont préparés par les procédés mentionnés plus haut.
L'invention concerne également les conjugués fluorescents constitués par les complexes macropolycycliques de terre rare tel que définis ci-dessus, liés de manière covalente à l'un des membres d'un couple de molécules capables de se lier spécifiquement entre elles, en particulier un polypeptide, une protéine, un récepteur cellulaire, un antigène, un anticorps ou un acide nucléique.
Selon un aspect ultérieur, l'invention concerne également l'utilisation d'un complexe macro polycyclique de terre rare tel que défini ci-dessus pour réduire l'extinction de fluorescence due au milieu de mesure dans un dosage par fluorescence d'un analyte.
L'invention est illustrée par les exemples ci-après, dans lesquels les techniques mises en #uvre pour la caractérisation et l'identification des composés sont les suivantes :
Les points de fusion ont été déterminés à l'aide d'un appareil à point de fusion capillaire : électrothermal IA8103 ; ils ne sont pas corrigés.
Les points de fusion ont été déterminés à l'aide d'un appareil à point de fusion capillaire : électrothermal IA8103 ; ils ne sont pas corrigés.
Les chromatographies sur couches minces (CCM) ont été réalisées sur des plaques Macherey-Nagel : AI2O3 (Polygram Alox N/UV254) et Si02 (Polygram SIL 6/UV254) contenant un indicateur fluorescent.
Les chromatographies liquides (HPLC) ont été réalisées à l'aide d'un système chromatographique LKB composé des éléments suivants :
<Desc/Clms Page number 14>
microprocesseur 2152, pompe 2150, détecteur Uvicord 2158; colonne Merck 50734 Lichrosphes 100RP18; gradient appliqué [temps (mn)-débit/ml) proportion du solvant B (%) : 0-1-15 ; 5-1-15 ; 35-1-100] , solvant A = H20 à 1 % de TFA, solvant B = CH3CN.
Les temps de rétention Tr sont exprimés en minutes.
Les spectres de RMN ont été enregistrés à l'aide d'un appareil Brucker AC 250 [250 ( 1 H) ; 62,9 (13C)]. Les déplacements chimiques sont donnés en ppm par rapport à la référence interne correspondante.
Pour les mesures concernant le (1H) : CHC13 = 7,26 ; CH30H = 3,34 ; tBuOH = 1,36. Les symboles suivants ont été utilisés : s = singulet d = doublet t = triplet m = multiplet
AB = système de couplage
J = constante de couplage
Pour les mesures concernant le carbone ( 13 C) : CHCI = 77,0, les symboles suivants ont été utilisés : Ct = carbone tertiaire ; Cq = carbone quaternaire.
AB = système de couplage
J = constante de couplage
Pour les mesures concernant le carbone ( 13 C) : CHCI = 77,0, les symboles suivants ont été utilisés : Ct = carbone tertiaire ; Cq = carbone quaternaire.
Les modes d'ionisation mis en #uvre pour les spectres de masse sont le FAB+ = fast atom bombardment en mode positif (matrice MNBA : métanitrobenzyl alcool ou thioglycérol) et l'impact électronique El.
Les spectres d'absorption (UV-visible) ont été enregistrés à l'aide d'un spectrophotomètre Perkin Elmer lambda15 à partir de solutions 10-5M.
L'invention est illustrée par les exemples ci-après dans lesquels les abréviations suivantes sont utilisées :
AIBN : azobisisobutyronitrile
CCM : chromatographie sur couche mince
HPLC . chromatographie liquide haute performance
M A.. microanalyse
NBS : N-bromosuccinimide
P.F.. point de fusion
RMN H : résonance magnétique nucléaire du proton
RMN C : résonance magnétique nucléaire du carbone 13
S. M.spectre de masse
SPDP : N-succmimidyl-3(2-pyridylthio)propionate
AIBN : azobisisobutyronitrile
CCM : chromatographie sur couche mince
HPLC . chromatographie liquide haute performance
M A.. microanalyse
NBS : N-bromosuccinimide
P.F.. point de fusion
RMN H : résonance magnétique nucléaire du proton
RMN C : résonance magnétique nucléaire du carbone 13
S. M.spectre de masse
SPDP : N-succmimidyl-3(2-pyridylthio)propionate
<Desc/Clms Page number 15>
Sulfo-SMCC = ester 3-sulfo-N-hydroxysuccinimide de l'acide 4-(Nmaleimidomethyl)-cyclohexane-1-carboxylique
TFA : acide trifluoroacétique
TMS : tetraméthylsilane Exemple 1 : Préparation du macrobicycle de formule (6) bpy.bpy.py(C02Me)
L'alkylation de la diamine macrocyclique (5) par le dérivé dibromométhylé (4) conduit au composé (6) représenté ci-dessous.
TFA : acide trifluoroacétique
TMS : tetraméthylsilane Exemple 1 : Préparation du macrobicycle de formule (6) bpy.bpy.py(C02Me)
L'alkylation de la diamine macrocyclique (5) par le dérivé dibromométhylé (4) conduit au composé (6) représenté ci-dessous.
(6) a) Préparation du 4-Methyl-2,6-dibromométhylisonicotinate (4)
La succession des réactions représentées ci-après permet d'isoler le composé (4).
La succession des réactions représentées ci-après permet d'isoler le composé (4).
- 4-Cyano-2,6-diméthylpyridine (1)
<Desc/Clms Page number 16>
Les travaux de W.E. Feely et E. M. Beavers décrits dans J.Am.chem.Soc.,1959,81,4004 concernant la cyanation des sels d'amine oxyde permettent d'accéder au composé (1).
- Acide-2,6-diméthylisonicotinique (2)
Un mélange de 1 g (7,56 mmol) de (1) et de 5 ml d'acide sulfurique concentré est chauffé à 100 C pendant 5 heures. La solution résultante est ensuite refroidie par un bain de glace, amenée à pH 3,5 avec de la soude 10N puis concentrée à sec. L'extraction à l'éther pendant 48 heures (soxhlet) d'une partie du résidu obtenu fournit 50 mg d'acide 2,6-diméthylisonicotinique (2) destinés à l'analyse. Le brut de la réaction restant, non traité à l'éther, est utilisé tel quel dans la réaction d'estérification sans purification supplémentaire.
Un mélange de 1 g (7,56 mmol) de (1) et de 5 ml d'acide sulfurique concentré est chauffé à 100 C pendant 5 heures. La solution résultante est ensuite refroidie par un bain de glace, amenée à pH 3,5 avec de la soude 10N puis concentrée à sec. L'extraction à l'éther pendant 48 heures (soxhlet) d'une partie du résidu obtenu fournit 50 mg d'acide 2,6-diméthylisonicotinique (2) destinés à l'analyse. Le brut de la réaction restant, non traité à l'éther, est utilisé tel quel dans la réaction d'estérification sans purification supplémentaire.
RMN : 1 H (D20);référence interne tBuOH 1,29 ppm.
2,82 (s, 6H, CH3); 8,05 (s, 2H, Py).
SM (El) 151 (M+, 100); 134 (M±OH, 7,2); 106 (M±C02H, 16,4)
MA C8H9NO2 + 0,1 NaHS04 (163,16)
Calculé : C 58,89 H 5,62 N 8,58 0 23,53
Obtenu : C 58,73 H 5,90 N 8,37 0 23,7 - 4-Méthyl-2,6-diméthylisomcotinate (3)
Un mélange de 2 g d'acide 2,6-diméthylisonicotinique (2) (non purifié), de 100 ml de méthanol et de 1 ml d'acide sulfurique à 98% est chauffé à reflux pendant 24 heures. Après refroidissement, le milieu réactionnel est neutralisé par une solution saturée de NaHC03 puis extrait cinq fois par 60 ml de CHCI3. Les phases chloroformiques rassemblées sont alors séchées sur Na2S04 puis concentrées. Le solide résultant est ensuite extrait quatre fois par 50 ml d'éther puis la phase éthérée est concentrée. Une chromatographie sur alumine [gradient : cyclohexane-CH2Cl2 (50-50) à CH2CI2 pur], du résidu blanc obtenu, permet d'isoler 1 g de 4-Méthyl-2,6-diméthylisonicotinate (3).
MA C8H9NO2 + 0,1 NaHS04 (163,16)
Calculé : C 58,89 H 5,62 N 8,58 0 23,53
Obtenu : C 58,73 H 5,90 N 8,37 0 23,7 - 4-Méthyl-2,6-diméthylisomcotinate (3)
Un mélange de 2 g d'acide 2,6-diméthylisonicotinique (2) (non purifié), de 100 ml de méthanol et de 1 ml d'acide sulfurique à 98% est chauffé à reflux pendant 24 heures. Après refroidissement, le milieu réactionnel est neutralisé par une solution saturée de NaHC03 puis extrait cinq fois par 60 ml de CHCI3. Les phases chloroformiques rassemblées sont alors séchées sur Na2S04 puis concentrées. Le solide résultant est ensuite extrait quatre fois par 50 ml d'éther puis la phase éthérée est concentrée. Une chromatographie sur alumine [gradient : cyclohexane-CH2Cl2 (50-50) à CH2CI2 pur], du résidu blanc obtenu, permet d'isoler 1 g de 4-Méthyl-2,6-diméthylisonicotinate (3).
PF 45-47 C
CCM : Rf : 0,3 [SiO2/CH2Cl2-MeOH (97-3) ]
HPLC : Tr : 2,4
CCM : Rf : 0,3 [SiO2/CH2Cl2-MeOH (97-3) ]
HPLC : Tr : 2,4
<Desc/Clms Page number 17>
UV : CHCI3 : 290,6 nm (3650)
RMN : 1 H CDCI3; référence interne TMS
2,59 (s, 6H, CH3); 3,93 (s, 3H, C02CH3); 7,51 (s, 2H, Py)
13C CDCI3; référence interne 77,0 ppm
24,5 (CH3); 52,5 (OCH3) ; 119,5 (Ct); 137,9, 158,9 (Cq);
166,1 (C=O).
RMN : 1 H CDCI3; référence interne TMS
2,59 (s, 6H, CH3); 3,93 (s, 3H, C02CH3); 7,51 (s, 2H, Py)
13C CDCI3; référence interne 77,0 ppm
24,5 (CH3); 52,5 (OCH3) ; 119,5 (Ct); 137,9, 158,9 (Cq);
166,1 (C=O).
SM (El) 165 (M+, 24); 134 (M±OCH3, 13); 106 (M±C02Me) - 4-Méthyl-2,6-dibromométhylisonicotinate (4)
Un mélange de 1,372 g (8,3 mmol) de (3), de 60 mg d'AIBN et de 2,866 g (16,1 mmol) de NBS dans 120 ml de CCl4 est chauffé à reflux, sous atmosphère d'azote et sous irradiation d'une lampe de 100 W, pendant 8 heures. Le milieu réactionnel est ensuite ramené à température ambiante puis lavé par 200 ml d'une solution saturée de NaHC03. Après soutirage de la phase inférieure (CCI4) ; la phase aqueuse est extraite 4 fois par 50 ml de CHCI3; les extraits organiques rassemblés sont par la suite lavés avec 100 ml d'H20, séchés (Na2S04) puis concentrés à sec. Une purification du résidu obtenu par chromatographie sur silice [gradient : cyclohexane-CH2C12 (80-20) à CH2CI2 pur] permet de séparer une première fraction du dérivé bromé (4), des espèces polybromées, d'un mélange d'isomères de dérivés dibromés symétnques et asymétriques et de l'espèce monobromée également formée.
Un mélange de 1,372 g (8,3 mmol) de (3), de 60 mg d'AIBN et de 2,866 g (16,1 mmol) de NBS dans 120 ml de CCl4 est chauffé à reflux, sous atmosphère d'azote et sous irradiation d'une lampe de 100 W, pendant 8 heures. Le milieu réactionnel est ensuite ramené à température ambiante puis lavé par 200 ml d'une solution saturée de NaHC03. Après soutirage de la phase inférieure (CCI4) ; la phase aqueuse est extraite 4 fois par 50 ml de CHCI3; les extraits organiques rassemblés sont par la suite lavés avec 100 ml d'H20, séchés (Na2S04) puis concentrés à sec. Une purification du résidu obtenu par chromatographie sur silice [gradient : cyclohexane-CH2C12 (80-20) à CH2CI2 pur] permet de séparer une première fraction du dérivé bromé (4), des espèces polybromées, d'un mélange d'isomères de dérivés dibromés symétnques et asymétriques et de l'espèce monobromée également formée.
Afin de disposer d'une quantité plus importante de 2,6-dibromométhylisonicotinate de méthyle, le composé monobromé précédemment isolé [0,543 g (2,2 mmol)] est mélangé à 0,4 g (2,2 mmol) de NBS, 23 mg de AIBN et 50 ml de CCI4 puis est traité dans les conditions de bromation précédente pour donner une deuxième fraction de (4).
Finalement, une purification par chromatographie sur silice [gradient : cyclohexane pur à cyclohexane-AcOEt (85-15) ] des mélanges d'isomères dibromés, isolés dans les deux réactions précédentes, fournit une dernière fraction de (4), soit au total 596 mg (22%).
PF : 90-92 C
CCM : Rf : 0,6 (SiO2/CH2Cl2)
HPLC : Tr : 20',5
UV CHCI3: 290,8 nm (4270) ; 240,3 nm (3010)
RMN : 1 H CDCI3; référence interne TMS
CCM : Rf : 0,6 (SiO2/CH2Cl2)
HPLC : Tr : 20',5
UV CHCI3: 290,8 nm (4270) ; 240,3 nm (3010)
RMN : 1 H CDCI3; référence interne TMS
<Desc/Clms Page number 18>
3,98 (s, 3H, CH3); 4,58 (s, 4H, CH2); 7,92 (s, 2H, Py)
13C CDCI3; référence interne 77,0 ppm
32,8 (CH2) ; 52,9 (OCH3); 122,2 (Ct); 139,8,157,9 (Cq) ;
164,7 (C=O).
13C CDCI3; référence interne 77,0 ppm
32,8 (CH2) ; 52,9 (OCH3); 122,2 (Ct); 139,8,157,9 (Cq) ;
164,7 (C=O).
SM (El) 322,9 (M+, 15); 243,9 (M±Br, 100); 163 (M±2Br, 15,7).
MA C9H9N02Br2 (322,98)
Calculé : C 33,47 H 2,80 N 4,33 O 9,90
Obtenu : C 33,69 H 2,81 N 4,29 0 10,17 b) Préparation du cryptate alcalin [Na+# bpy.bpy.pyC02Me] Br - de formule (6).
Calculé : C 33,47 H 2,80 N 4,33 O 9,90
Obtenu : C 33,69 H 2,81 N 4,29 0 10,17 b) Préparation du cryptate alcalin [Na+# bpy.bpy.pyC02Me] Br - de formule (6).
Un mélange de 0,2 g (0,508 mmol) de diamine macrocyclique bipyridine (5) (décrit dans J.Org.chem., 1983,48,4848) et de 0,376 g (5,08 mmol) de Li2CO3 dans 400 mi de CH3CN est chauffé 40 min à reflux sous atmosphère d'azote. A la suspension résultante, on additionne goutte à goutte (2 heures) une solution de 0,165 g (0,508 mmol) de 4-Méthyl-2,6-dibromométhylisonicotinate (4) dans 100 ml de CH3CN. En fin d'addition, l'agitation est maintenue dans les mêmes conditions 22 heures supplémentaires puis le milieu réactionnel est refroidi par un bain de glace. Par la suite, le carbonate est filtré et le filtrat évaporé à sec. Une chromatographie sur silice [gradient : CH2CI2 à 10% de MeOH] du résidu obtenu fournit 117,5 mg du composé (6) (35%).
CCM : Rf : 0,4 [Al2O3/CHCl3-MeOH (90-10) ]
HPLC : Tr : 4',1
UV : CHCI3 : 246 nm (27950) ; 291 nm (27410).
HPLC : Tr : 4',1
UV : CHCI3 : 246 nm (27950) ; 291 nm (27410).
RMN : 1 H (CDCI3); référence interne TMS.
3,94 (s, 3H, CH3); 4,00 (d, J = 15 Hz, AB, 4H, CH2);
4,08 (d, J = 14,7 Hz, AB, 4H, CH2); 4,09 (s, 4H, CH2);
7,39-7,42 (m, 4H, BPy); 7,77 (s, 2H, Py); 7,85-7,89 (m, 8H, BPy).
4,08 (d, J = 14,7 Hz, AB, 4H, CH2); 4,09 (s, 4H, CH2);
7,39-7,42 (m, 4H, BPy); 7,77 (s, 2H, Py); 7,85-7,89 (m, 8H, BPy).
13C (CDCI3); référence interne 77 ppm.
52,9 (CH3, CO2Me); 59,4 (CH2) ; 59,5 (CH2); Ct (119,9; 122,1; 123,4 ; 138,8)
Cq (139,2; 154,6; 158,5 ; 159,6); 165,3 (CO2Me).
Cq (139,2; 154,6; 158,5 ; 159,6); 165,3 (CO2Me).
SM (FAB+): Matrice thioglycérol.
578,2 (Ugand-U++Na+, 100%); 556,2 (Ugand-U++H, 10%).
MA : C33H29N702NaBr,3H20(712,53).
<Desc/Clms Page number 19>
Calculé : C 55,62 H 4,95 N 13,76
Obtenu : C 55,93 H 4,73 N 13,61 Exemple 2 : Préparation du cryptate d'europium
[EU3+C bpy.bpy.pyCO2Me]Cr3 du ligand (6) de l'exemple (1).
Obtenu : C 55,93 H 4,73 N 13,61 Exemple 2 : Préparation du cryptate d'europium
[EU3+C bpy.bpy.pyCO2Me]Cr3 du ligand (6) de l'exemple (1).
A 20,2 mg (2,84.10-5 mol) du macrobicycle (6) contenus dans 5 ml de méthanol anhydre on ajoute 11,8 mg de EuC13,6H20 (3,22.10-5 mol). Le mélange homogène résultant est porté à reflux sous atmosphère d'azote pendant 23 heures.
Par la suite, l'addition à cette solution ramenée à température ambiante de 4 ml d'éther provoque la cristallisation de 14,2 mg (52%) du cryptate d'europium.
HPLC : Tr : 14,1
UV H2O : 250 nm (18270) ; 309 nm (24400).
UV H2O : 250 nm (18270) ; 309 nm (24400).
SM (FAB+): Matrice nitrobenzylalcool
778 [(Eu3+C L+2Cl-)+, 40%]; 743 [(Eu2+C L+Cl-)+, 90%];
707 [(Eu3+C L-2H)+, 100%]
MA : C33H29N7O2EuCl3, 0,13 EuCI3, NaBr, 2 CH30H (1014,51)
Calculé : C 41,43 H 3,67 N 9,66
Obtenu : C 41,23 H 3,95 N 9,63 Exemple 3 : Préparation du macrobicycle de formule (12)
Py-BPY(C02Et)2-BPY(CO2Et)2 Ce composé est préparé suivant le schéma représenté ci-dessous.
778 [(Eu3+C L+2Cl-)+, 40%]; 743 [(Eu2+C L+Cl-)+, 90%];
707 [(Eu3+C L-2H)+, 100%]
MA : C33H29N7O2EuCl3, 0,13 EuCI3, NaBr, 2 CH30H (1014,51)
Calculé : C 41,43 H 3,67 N 9,66
Obtenu : C 41,23 H 3,95 N 9,63 Exemple 3 : Préparation du macrobicycle de formule (12)
Py-BPY(C02Et)2-BPY(CO2Et)2 Ce composé est préparé suivant le schéma représenté ci-dessous.
<Desc/Clms Page number 20>
a) Préparation du macrocycle de formule (11 )
La séquence réactionnelle suivante conduit au macrocycle bpy. bpy diamine tétraester (11 ).
La séquence réactionnelle suivante conduit au macrocycle bpy. bpy diamine tétraester (11 ).
-Macrocycle tosylé bpy. bpy tétraester (9)
Un mélange de 5,5 g(12 mmot) de diméthyl-6,6'-dibromométhyl-2,2'bipyridine-4,4'-dicarboxylate (8) (décrit dans Helv.Chim.Acta, 1988,71,1042), 4,64 g de sel de sodium de la tosylamide fraîchement préparé (24 mmol) et 900 ml d'éthanol absolu est porté à reflux sous atmosphère d'azote pendant 26 heures.
Un mélange de 5,5 g(12 mmot) de diméthyl-6,6'-dibromométhyl-2,2'bipyridine-4,4'-dicarboxylate (8) (décrit dans Helv.Chim.Acta, 1988,71,1042), 4,64 g de sel de sodium de la tosylamide fraîchement préparé (24 mmol) et 900 ml d'éthanol absolu est porté à reflux sous atmosphère d'azote pendant 26 heures.
<Desc/Clms Page number 21>
Cette suspension est par la suite refroidie 1 h par un bain de glace avant d'être filtrée. Le précipité isolé est ensuite lavé avec 700 ml d'eau, 500 ml d'éthanol et 20 ml de chloroforme pour donner 1,88 g (31,6%) de (9).
CCM : Rf : 0,7 [Si02/CHCI3 - MeOH (99-1 )]
HPLC : Tr : 36,1
SM (FAB)+: Matrice MNBA
991 (M+, 45%); 835 (L-Tos, 12%).
HPLC : Tr : 36,1
SM (FAB)+: Matrice MNBA
991 (M+, 45%); 835 (L-Tos, 12%).
MA C50H50012N6S2 NaBr. (1094)
Calculé : C 54,89 H 4,6 N 7,68 S 5,86 Na 2,1
Obtenu : C 55,66 H 4,64 N 7,75 S 6,04 Na 3,19 Macrocycle Bpy. Bpy. tétraacide (10)
Une solution de 0,15 g (0,15 mmol) du macrocycle tosylé (9) dans 1 ml de H2S04 concentré est chauffée 3 heures à 100 C sous atmosphère d'azote. Le mélange réactionnel est par la suite refroidi par un bain de glace, dilué par addition de 5 ml d'eau puis amené à pH = 3,0 par ajout de 7 ml de NaOH 5N. Le précipité formé est alors filtré, lavé abondamment à l'eau (50 ml) puis séché.
Calculé : C 54,89 H 4,6 N 7,68 S 5,86 Na 2,1
Obtenu : C 55,66 H 4,64 N 7,75 S 6,04 Na 3,19 Macrocycle Bpy. Bpy. tétraacide (10)
Une solution de 0,15 g (0,15 mmol) du macrocycle tosylé (9) dans 1 ml de H2S04 concentré est chauffée 3 heures à 100 C sous atmosphère d'azote. Le mélange réactionnel est par la suite refroidi par un bain de glace, dilué par addition de 5 ml d'eau puis amené à pH = 3,0 par ajout de 7 ml de NaOH 5N. Le précipité formé est alors filtré, lavé abondamment à l'eau (50 ml) puis séché.
Le macrocycle tétraacide (10) ainsi isolé (probablement sous forme de sel d'amine) est utilisé tel quel dans l'étape suivante.
Macrocycle Bpy.Bpy.diamine tétraéthylester (11)
Une suspension de 53 mg du composé (10) dans 100 ml d'éthanol absolu et 0,5 ml de H2S04 concentré est portée à reflux sous atmosphère d'azote pendant 28 heures. Par la suite la solution homogène résultante est successivement refroidie par un bain de glace, neutralisée avec une solution saturée de NaHC03 et traitée par 80 ml de CHC13 (4x20) pour donner 60 mg du composé (11) (quantitatif).
Une suspension de 53 mg du composé (10) dans 100 ml d'éthanol absolu et 0,5 ml de H2S04 concentré est portée à reflux sous atmosphère d'azote pendant 28 heures. Par la suite la solution homogène résultante est successivement refroidie par un bain de glace, neutralisée avec une solution saturée de NaHC03 et traitée par 80 ml de CHC13 (4x20) pour donner 60 mg du composé (11) (quantitatif).
CCM : Rf : 0,7 [Al2O3/CH2Cl2-MeOH (80-20) ]
HPLC :Tr:17,2
UV : CHCI3 : 243,1 nm (24150); 303,2 nm (25210).
HPLC :Tr:17,2
UV : CHCI3 : 243,1 nm (24150); 303,2 nm (25210).
RMN : 1 H (CDCI3); référence interne TMS.
1,44 (t, J = 7,0 Hz, 12H, CH3); 2,29 (s, large, NH); 4,17 (s, 8H, CH2)
4,39 (q, J = 6,9 Hz, 8H, CH2 ester); 7,43 (d, J = 1,4 Hz, 4H, BPy);
4,39 (q, J = 6,9 Hz, 8H, CH2 ester); 7,43 (d, J = 1,4 Hz, 4H, BPy);
<Desc/Clms Page number 22>
8,29 (d, J = 1,1 Hz, 4H, BPy).
13C (CDCI3); référence interne 77,0 ppm.
14,9 (CH3, C02CH2CH3); 56,8 (CH2); 62,3 (CO2ÇH2CH3);
Ct (119; 122,5); Cq (138,9; 158,9; 161,4); 165,7 (CO2C2H5)
SM (FAB+): Matrice thioglycérol
683 (M+, 100)
MA C36H38N608, H20 (700,74)
Calculé : C 61,7 H 5,75 N 11,99
Obtenu : C 62,2 H 6,01 N 11,48 b) Préparation du cryptate alcalin de formule (12) [Na+c
Py.Bpy(CO2Et)2.Bpy(CO2Et)2]Br '
Un mélange de 180,7 mg (0,265mmol) de diamine macrocyclique (11) et de 195,5 mg (2,65 mmol) de Li2CO3 dans 360 ml de CH3CN anhydre est chauffé 35 min à reflux sous atmosphère d'azote. A la suspension résultante, on additionne lentement (5 heures) une solution de 70,7 mg (0,267 mmol) de 2,6-dibromométhylpyndine (7) [la préparation de ce composé a été décrite par Vogtle à partir de la lutidine : Synthesis, 1977, 273] dans 360 ml de CH3CN anhydre. Le reflux est maintenu 72 heures puis le milieu réactionnel refroidi par un bain de glace. Après filtration des carbonates insolubles, le filtrat est évaporé à sec.
14,9 (CH3, C02CH2CH3); 56,8 (CH2); 62,3 (CO2ÇH2CH3);
Ct (119; 122,5); Cq (138,9; 158,9; 161,4); 165,7 (CO2C2H5)
SM (FAB+): Matrice thioglycérol
683 (M+, 100)
MA C36H38N608, H20 (700,74)
Calculé : C 61,7 H 5,75 N 11,99
Obtenu : C 62,2 H 6,01 N 11,48 b) Préparation du cryptate alcalin de formule (12) [Na+c
Py.Bpy(CO2Et)2.Bpy(CO2Et)2]Br '
Un mélange de 180,7 mg (0,265mmol) de diamine macrocyclique (11) et de 195,5 mg (2,65 mmol) de Li2CO3 dans 360 ml de CH3CN anhydre est chauffé 35 min à reflux sous atmosphère d'azote. A la suspension résultante, on additionne lentement (5 heures) une solution de 70,7 mg (0,267 mmol) de 2,6-dibromométhylpyndine (7) [la préparation de ce composé a été décrite par Vogtle à partir de la lutidine : Synthesis, 1977, 273] dans 360 ml de CH3CN anhydre. Le reflux est maintenu 72 heures puis le milieu réactionnel refroidi par un bain de glace. Après filtration des carbonates insolubles, le filtrat est évaporé à sec.
Le solide résiduel obtenu est chromatographié sur une colonne d'alumine avec CH2CI2-EtOH comme éluant (99-1 à 85-15) pour donner 78 mg de (12) (33%).
CCM : Rf = 0,6 [Al2O3 / CHCI3-MeOH (90-10)]
HPLC Tr = 20,8
UV : CHCI3 : 250 nm (24900) ; 316 nm (18900) RMN : H (CDCI3) ; référence interne TMS
1,45(t, J = 7,1 Hz, 12H, CH3) ; 4,07 (s, 4H, CH2) ;4,14 (d, J = 15,4 Hz, AB, 4H, CH2) ; 4,22 (d, J = 15,3 Hz, AB,
4H, CH2) ; 4,46 (q, J = 7Hz, 8H, CH2 ester) ; 7,27 (d, J =
7,7 Hz, 2H,Py) ; 7,66 (t, j = 7,7 Hz, 1 H, Py) ; 7,93(s, 4H,
Bpy) ; 8,42(s, 4H, Bpy).
HPLC Tr = 20,8
UV : CHCI3 : 250 nm (24900) ; 316 nm (18900) RMN : H (CDCI3) ; référence interne TMS
1,45(t, J = 7,1 Hz, 12H, CH3) ; 4,07 (s, 4H, CH2) ;4,14 (d, J = 15,4 Hz, AB, 4H, CH2) ; 4,22 (d, J = 15,3 Hz, AB,
4H, CH2) ; 4,46 (q, J = 7Hz, 8H, CH2 ester) ; 7,27 (d, J =
7,7 Hz, 2H,Py) ; 7,66 (t, j = 7,7 Hz, 1 H, Py) ; 7,93(s, 4H,
Bpy) ; 8,42(s, 4H, Bpy).
13C (CDCI3) ; référence interne 77ppm.
14,3 (CH3, C02Et) ; 59,4 (CH2) ; 59,5 (CH2) ; 62,5 (CH2,
C02Et) ; Ct (119,3; 122,8; 123; 138,1); Cq (140,5 ;
155,1 ; 157,8 ; 160,1) ; 164,5 (C02Et).
C02Et) ; Ct (119,3; 122,8; 123; 138,1); Cq (140,5 ;
155,1 ; 157,8 ; 160,1) ; 164,5 (C02Et).
<Desc/Clms Page number 23>
SM : (FAB+/ matrice NBA)
808,4 (ligand- Li++Na+,100%) ; 663,3(ligand+Na±
2CO2Et, 5%).
808,4 (ligand- Li++Na+,100%) ; 663,3(ligand+Na±
2CO2Et, 5%).
MA : C43H43N7O8NaBr, CH2CI2 (972,68)
Calculé : C 54,3 H 4,6 N 10
Obtenu : C 54,9 H 4,0 N 9,8 Exemple 4: Préparation du cryptate d'europium de formule 12bis [Eu3+#
Py.Bpy(C02H)2.Bpy(CO2H)2]
a) Préparation du complexe d'europium du ligand 12 de l'exemple 3
[Eu3+C PY-BPY(C02Et)2BPY(CO2Et)2]
A 69 mg (7,7.10-5 mole) du cryptate de sodium (12) contenus dans 32 ml de CH3CN anhydre, on ajoute 33 mg (9.10-5mole) de EuC13.6H20. La suspension résultante est chauffée à reflux sous atmosphère d'azote pendant 27 heures ;après refroidissement le solvant est évaporé. Par la suite, une chromatographie en phase inverse du résidu obtenu permet d'isoler 25 mg du cryptate d'europium [Eu3+# 12] (25%).
Calculé : C 54,3 H 4,6 N 10
Obtenu : C 54,9 H 4,0 N 9,8 Exemple 4: Préparation du cryptate d'europium de formule 12bis [Eu3+#
Py.Bpy(C02H)2.Bpy(CO2H)2]
a) Préparation du complexe d'europium du ligand 12 de l'exemple 3
[Eu3+C PY-BPY(C02Et)2BPY(CO2Et)2]
A 69 mg (7,7.10-5 mole) du cryptate de sodium (12) contenus dans 32 ml de CH3CN anhydre, on ajoute 33 mg (9.10-5mole) de EuC13.6H20. La suspension résultante est chauffée à reflux sous atmosphère d'azote pendant 27 heures ;après refroidissement le solvant est évaporé. Par la suite, une chromatographie en phase inverse du résidu obtenu permet d'isoler 25 mg du cryptate d'europium [Eu3+# 12] (25%).
HPLC: Tr: 21
UV : EtOH / 330 nnm (21000) SM : (FAB+) matnce thioglycérol
1164,2 [(Eu 3+ C 12 +2CF3CO2)+,64%
1051,8 [Eu 3+ C 12 + CF3C02 + H) 100%]
UV : EtOH / 330 nnm (21000) SM : (FAB+) matnce thioglycérol
1164,2 [(Eu 3+ C 12 +2CF3CO2)+,64%
1051,8 [Eu 3+ C 12 + CF3C02 + H) 100%]
<Desc/Clms Page number 24>
937,4 [(Eu2+c 12 - 1 H) 35%] b) Préparation du cryptate acide de formule 12 bis
A une solution aqueuse de 10 mg (7,83.10-6mole) de cryptate d'europium [Eu3+# 12], on ajoute 100 l d'une solution aqueuse de soude 1,6 M. Le mélange résultant est agité 2 heures à température ambiante puis évaporé à sec. La purification par chromatographie (phase inverse) avec un mélange H20 à 1% de TFA -CH3CN comme éluant, du résidu obtenu, fournit 8 mg (quantitatif) du cryptate d'europium de formule 12 bis Exemple 5 : préparation du macrobicycle pyridine diéthylester bisbipyridine tétratertiobutylester de formule (16)
(16)
a) Préparation du diéthyl-2,6-dibromométhyl-3,5-pyhdinecarboxylate de formule (14)
Ce composé est synthétisé suivant une procédure classique de bromation radicalaire à partir de la diéthyl-2,6-diméthyl-3,5-pyridine carboxylate commerciale.
<Desc/Clms Page number 25>
Un mélange de 0,5 g (2 mmol) de diéthyl-2,6-diméthyl-3,5-pyridine carboxylate, de 0,89 g (5 mmol) de NBS et 4 mg d'AIBN dans 20 ml de tétrachlorure de carbone est chauffé à reflux durant deux heures sous irradiation d'une lampe visible de 100 W. Par la suite, la suspension est refroidie par un bain de glace puis filtrée afin d'éliminer le succinimide formé. Le filtrat est alors concentré à sec ;une chromatographie sur silice du résidu obtenu avec un mélange hexane-chloroforme comme éluant (gradient 50-50 à 30-70) fournit 195 mg de dérivé bromé de formule (14) (26%).
CCM : Rf = 0,4 (Si02 / CH2CI2)
HPLC: Tr = 25,5
UV : CHCI3 / 245 nm (9400) RMN : 1H (CDCI3) ; référence interne TMS '1,45 (t, J = 7,0 Hz, 6H , CH3) ; 4,47 (q, J = 7,2 Hz, 4H
CH2) ; 5 (s, 4H, CH2Br) ; 8,80 (s, 1H , Py). b) Préparation du macrocycle diamine bisbipyridine tétratertiobutylester de formule (15).
HPLC: Tr = 25,5
UV : CHCI3 / 245 nm (9400) RMN : 1H (CDCI3) ; référence interne TMS '1,45 (t, J = 7,0 Hz, 6H , CH3) ; 4,47 (q, J = 7,2 Hz, 4H
CH2) ; 5 (s, 4H, CH2Br) ; 8,80 (s, 1H , Py). b) Préparation du macrocycle diamine bisbipyridine tétratertiobutylester de formule (15).
Ce composé est synthétisé par simple transestérification à partir de tertiobutylate de lithium et du macrocycle (11) de l'exemple 3.
Un mélange de 251 mg de macrocycle (11) (0,36 mmol), de 363 mg (4,5 mmol) de tertiobutylate de lithium, de 35 ml de toluène sec et de 35 ml de tertiobutanol sec est chauffé à 80 C sous courant d'azote pendant environ 3 heures. Après refroidissement, le tertiobutanol est éliminé par évaporation ; la
<Desc/Clms Page number 26>
phase organique résiduelle est dans un premier temps lavée à l'eau jusqu'à pH neutre (6x50 ml) puis successivement séchée sur Na2SO4, filtrée et concentrée à sec. Une chromatographie sur phase inverse du résidu obtenu avec CH3CN et H20 à 1 % de TFA comme éluants fournit 117 mg du macrocycle (15) (40%).
HPLC: Tr = 22,4
UV : CHCI3 / 311nm (18000) ; 280 nm (8300) ; 268 nm (7200)
RMN : 1 H (CDCI3) ; référence interne TMS
1,65 (s, 36H, CH3) ; 4,69 (s, 8H, CH2) ;7,97 (s, 4H, H bpy) ; 8,51 (s, 4H, Hbpy).
UV : CHCI3 / 311nm (18000) ; 280 nm (8300) ; 268 nm (7200)
RMN : 1 H (CDCI3) ; référence interne TMS
1,65 (s, 36H, CH3) ; 4,69 (s, 8H, CH2) ;7,97 (s, 4H, H bpy) ; 8,51 (s, 4H, Hbpy).
SM : (ES) 796 (M+H). c) Préparation du cryptate alcalin de formule (16)
[U+Cbpy(CO2tbu)2.bpy(CO2tbu)2.Py(CO2Et)2]Br'
Un mélange de 25,3 mg (3,18.10-5mole) de macrocycle (15) et de 27 mg (3,65.10 mole) de Li2CO3 dans 25 ml de CH3CN anhydre est chauffé 15 min à reflux sous courant d'azote. A la suspension résultante, on additionne goutte à goutte en 10 min une solution de 12,7 mg (3,1.10 mole) de diéthyl-2,6dibromométhyl-3,5-pyndine carboxylate (14) dans 12 ml de CH3CN anhydre.
[U+Cbpy(CO2tbu)2.bpy(CO2tbu)2.Py(CO2Et)2]Br'
Un mélange de 25,3 mg (3,18.10-5mole) de macrocycle (15) et de 27 mg (3,65.10 mole) de Li2CO3 dans 25 ml de CH3CN anhydre est chauffé 15 min à reflux sous courant d'azote. A la suspension résultante, on additionne goutte à goutte en 10 min une solution de 12,7 mg (3,1.10 mole) de diéthyl-2,6dibromométhyl-3,5-pyndine carboxylate (14) dans 12 ml de CH3CN anhydre.
L'agitation est maintenue dans ces conditions 23 heures puis le milieu réactionnel refroidi par un bain de glace avant d'être filtré. Après évaporation à sec du filtrat, une chromatographie sur phase inverse du résidu obtenu fournit 12 mg (35%) de macrobicycle (16).
HPLC : Tr = 28,5
SM : (ES) 1042,3 [ligand-Li±Br- (100%)] ; 1064,3 [ligand-
Li±Br-+Na+ (30%)] Exemple (6) : Préparation du cryptate d'europium de formule (19) [Eu3+#
bpy(CO2H)2.bpy(CO2H)2.Py(NH2>2]
SM : (ES) 1042,3 [ligand-Li±Br- (100%)] ; 1064,3 [ligand-
Li±Br-+Na+ (30%)] Exemple (6) : Préparation du cryptate d'europium de formule (19) [Eu3+#
bpy(CO2H)2.bpy(CO2H)2.Py(NH2>2]
<Desc/Clms Page number 27>
a) Préparation du complexe d'europium du ligand (16) de l'exemple (6) [Eu3+C bpy(C02tbu)2.bpy.(C02tbu)2.Py(C02Et)2
A une solution de 17,1 mg (1,51.10-5mole) de cryptate de lithium (16) dans 10 ml d'acétonitrile anhydre, on ajoute 12,8 mg (3,5.10-5 mole) de EuCl3.6H2O. Le mélange réactionnel est ensuite chauffé à reflux sous courant d'azote pendant 3 heures. Après refroidissement, le solvant est évaporé et le résidu obtenu (m = 27,6 mg) utilisé tel quel dans l'étape suivante. b) Préparation du cryptate d'europium acide [Eu3+C
bpy(CO2H)2.bpy(CO2H)2.Py(CO2Et)2](CF3CO2")3
Cette réaction consiste à hydrolyser sélectivement les esters tertiobutyliques portés par les sous unités bipyridines par traitement par l'acide trifluoroacétique pur.
27,6 mg du résidu obtenu dans le paragraphe a) de l'exemple 6 sont solubilisés dans 14 ml d'acide trifluoroacétique. La solution homogène résultante est agitée 4 heures à température ambiante puis concentré à sec par évaporation sous vide de l'acide. Une chromatographie sur phase inverse avec un mélange H20 à 1% de TFA -CH3CN comme éluants fournit 10,4 mg du cryptate d'europium
[Eu3+Cbpy(CO2H)2.bpy(CO2H)2.Py(CO2Et)2](CF3CO2")3 HPLC : Tr = 13,7 UV : MeOH / 324,6 nm (16000) ; 337 nm (13300)
[Eu3+Cbpy(CO2H)2.bpy(CO2H)2.Py(CO2Et)2](CF3CO2")3 HPLC : Tr = 13,7 UV : MeOH / 324,6 nm (16000) ; 337 nm (13300)
<Desc/Clms Page number 28>
c) Préparation du cryptate d'europium de formule (19)
A une solution de 10 mg (8,03.10 mole) de cryptate d'europium [Eu3+#
bpy(C02H)2-bpy(CO2H)2,PY(CO2Et)2] dans 2 ml de MeOH anhydre on additionne en 5 min, en refroidissant par un bain de glace et sous courant d'azote, une solution de 300 l d'éthylène diamine (4,45.10-3 mole) dans 300 l de MeOH anhydre. Par la suite, la température du milieu est ramenée progressivement à 20 C puis l'agitation poursuivie 2,5 heures dans ces conditions. Après évaporation du solvant une chromatographie en phase inverse du résidu résultant avec un mélange H20 à 1% de TFA -CH3CN comme éluants fournit 5,5 mg de cryptate (19) (45%).
A une solution de 10 mg (8,03.10 mole) de cryptate d'europium [Eu3+#
bpy(C02H)2-bpy(CO2H)2,PY(CO2Et)2] dans 2 ml de MeOH anhydre on additionne en 5 min, en refroidissant par un bain de glace et sous courant d'azote, une solution de 300 l d'éthylène diamine (4,45.10-3 mole) dans 300 l de MeOH anhydre. Par la suite, la température du milieu est ramenée progressivement à 20 C puis l'agitation poursuivie 2,5 heures dans ces conditions. Après évaporation du solvant une chromatographie en phase inverse du résidu résultant avec un mélange H20 à 1% de TFA -CH3CN comme éluants fournit 5,5 mg de cryptate (19) (45%).
UV : MeOH / 325 nm (17000) Exemple 7 : Préparation du cryptate d'europium de formule (20)
Ce composé est préparé selon le schéma représenté ci-dessous.
Ce composé est préparé selon le schéma représenté ci-dessous.
A une solution, refroidie par un bain de glace, de 0,2 mg (1,28.10-7 mole) de composé (19) dans 200 /il de tampon phosphate 0,1M, pH = 7,0 on ajoute goutte à goutte en 45 min une solution de 195 g (4,45.10-7 mole) de suifoSMCC dans 168 NI de tampon phosphate. En fin d'addition, la température du milieu est ramenée à 20-25 C et la réaction est poursuivie dans ces conditions pendant 3 heures. Par la suite, une purification directe par chromatographie en phase
<Desc/Clms Page number 29>
inverse avec un mélange H20 à 1 % de TFA-CH3CN comme éluant permet d'isoler 100 pg de cryptate (20) (50%).
Exemple 8 : Couplage du composé de formule (20) à la protéine a) Activation de la protéine
3,14 mg (4,43 mg /ml) d'anticorps (free PSA, cloneA455, CIS bio international, France) sont activés 30 min à température ambiante, en tampon phosphate 0,1 M, pH = 7,0, par ajout de 26,2 /il d'une solution éthanolique de SPDP à 2 mg/ ml (rapport molaire initial réactif-protéine : 8). A la fin de ce temps, on génère la formation de fonctions thiols (SH) par ajout au milieu réactionnel de 37 l d'une solution de dithiothréitol (DTT) à 61,7 mg / ml dans du tampon phosphate 0,1 M, pH = 7,0 et en incubant 15 min à température ambiante ; par la suite, le mélange est purifié sur une colonne Séphadex G25 HR10-10 avec comme éluant le tampon utilisé au cours de l'activation. b) Couplage de la protéine activée et du cryptate de formule (20)
A 386 l d'une solution d'anticorps A455 (1,2 mg/ ml en tampon phosphate 0,1 M, pH = 7,0) activé selon la procédure décrite au paragraphe a) de l'exemple 8 on additionne 55 l d'une solution à 1 mg/ ml dans le même tampon de cryptate de formule (20) puis on incube 20 heures à 4 C ; à la fin de ce temps, le mélange réactionnel est purifié sur une colonne Séphadex G25 HR10-30 avec comme éluant le tampon de la réaction de couplage. Des mesures d'absorbances du conjugué anticorps-cryptate à 280 nm et 325 nm donnent un taux de marquage de 8,0 et un rendement de 80%.
3,14 mg (4,43 mg /ml) d'anticorps (free PSA, cloneA455, CIS bio international, France) sont activés 30 min à température ambiante, en tampon phosphate 0,1 M, pH = 7,0, par ajout de 26,2 /il d'une solution éthanolique de SPDP à 2 mg/ ml (rapport molaire initial réactif-protéine : 8). A la fin de ce temps, on génère la formation de fonctions thiols (SH) par ajout au milieu réactionnel de 37 l d'une solution de dithiothréitol (DTT) à 61,7 mg / ml dans du tampon phosphate 0,1 M, pH = 7,0 et en incubant 15 min à température ambiante ; par la suite, le mélange est purifié sur une colonne Séphadex G25 HR10-10 avec comme éluant le tampon utilisé au cours de l'activation. b) Couplage de la protéine activée et du cryptate de formule (20)
A 386 l d'une solution d'anticorps A455 (1,2 mg/ ml en tampon phosphate 0,1 M, pH = 7,0) activé selon la procédure décrite au paragraphe a) de l'exemple 8 on additionne 55 l d'une solution à 1 mg/ ml dans le même tampon de cryptate de formule (20) puis on incube 20 heures à 4 C ; à la fin de ce temps, le mélange réactionnel est purifié sur une colonne Séphadex G25 HR10-30 avec comme éluant le tampon de la réaction de couplage. Des mesures d'absorbances du conjugué anticorps-cryptate à 280 nm et 325 nm donnent un taux de marquage de 8,0 et un rendement de 80%.
Exemple 9: Mise en évidence de la faible sensibilité à l'extinction des cryptâtes pyridiniques des exemples 2,4(b), 6 (c), 7, 8 dans le sérum.
Les déterminations ci-dessous ont été effectuées avec un spectrofluorimètre Perkin-Elmer LS50.
Les mesures de durées de vie de fluorescence des cryptates testés ont été réalisées suivant la procédure décrite dans le brevet EP 0 601 113.
Les composés ont été testés dans un tampon phosphate 0,1 M pH = 7,0 et en sérum de veau nouveau-né (SVNN). Les solutions de mesure de concentration
<Desc/Clms Page number 30>
en cryptate d'environ 10-6M/1 ont été préparées par dilution au 1/100 de la solution mère soit par le tampon seul soit par un mélange 2/3 de tampon 1/3 de sérum.
Les cryptates pyridiniques des exemples 2,4(b), 6 (c), 7 et 8 ont été testés en comparaison avec le cryptate trisbipyridine diamine (KNH2) et le cryptate pyridine-bispyridine [Eu3+Cpy.Bpy.Bpy] dont les préparations ont été décrites respectivement dans le brevet EP 0 321 353 et dans Helv. Chim. Acta 1988,71, 1042.
Les formules de ces deux molécules sont données ci-après :
3+
Les résultats sont donnés dans le tableau 1 ci-dessous :
3+
Les résultats sont donnés dans le tableau 1 ci-dessous :
<Desc/Clms Page number 31>
<tb>
<tb> 3Complexes <SEP> testés <SEP> # <SEP> Tampon <SEP> PO4 <SEP> # <SEP> sérum <SEP> (ms) <SEP> Extinction
<tb> (ms) <SEP> 1-( <SEP> #-sérum)
<tb> # <SEP> PO43KNH2 <SEP> 0,6 <SEP> 0,15 <SEP> 75 <SEP> %
<tb> Exemple <SEP> 2
<tb> macrobicycle <SEP> 6 <SEP> 1,06 <SEP> 0,80 <SEP> 25 <SEP> %
<tb> Exemple <SEP> 4 <SEP> (b)
<tb> macrobicycle <SEP> 12 <SEP> 1,03 <SEP> 0,90 <SEP> 13 <SEP> %
<tb> Exemple <SEP> 6
<tb> macrobicycle <SEP> 19 <SEP> 1,03 <SEP> 0,90 <SEP> 13 <SEP> %
<tb> Exemple <SEP> 7
<tb> macrobicycle <SEP> 20 <SEP> 1,01 <SEP> 0,89 <SEP> 12 <SEP> % <SEP>
<tb> Exemple <SEP> 8
<tb> conjugué <SEP> anticorps <SEP> o,95 <SEP> 0,86 <SEP> 9,5 <SEP> % <SEP>
<tb> cryptate
<tb> [Eu3+ <SEP> CBpy.Bpy.py] <SEP> 0,66 <SEP> 0,54 <SEP> 18 <SEP> %
<tb>
<tb> 3Complexes <SEP> testés <SEP> # <SEP> Tampon <SEP> PO4 <SEP> # <SEP> sérum <SEP> (ms) <SEP> Extinction
<tb> (ms) <SEP> 1-( <SEP> #-sérum)
<tb> # <SEP> PO43KNH2 <SEP> 0,6 <SEP> 0,15 <SEP> 75 <SEP> %
<tb> Exemple <SEP> 2
<tb> macrobicycle <SEP> 6 <SEP> 1,06 <SEP> 0,80 <SEP> 25 <SEP> %
<tb> Exemple <SEP> 4 <SEP> (b)
<tb> macrobicycle <SEP> 12 <SEP> 1,03 <SEP> 0,90 <SEP> 13 <SEP> %
<tb> Exemple <SEP> 6
<tb> macrobicycle <SEP> 19 <SEP> 1,03 <SEP> 0,90 <SEP> 13 <SEP> %
<tb> Exemple <SEP> 7
<tb> macrobicycle <SEP> 20 <SEP> 1,01 <SEP> 0,89 <SEP> 12 <SEP> % <SEP>
<tb> Exemple <SEP> 8
<tb> conjugué <SEP> anticorps <SEP> o,95 <SEP> 0,86 <SEP> 9,5 <SEP> % <SEP>
<tb> cryptate
<tb> [Eu3+ <SEP> CBpy.Bpy.py] <SEP> 0,66 <SEP> 0,54 <SEP> 18 <SEP> %
<tb>
Ces résultats montrent que dans une structure cryptate trisbipyridine, la substitution d'un motif bipyridine par un motif pyndine a pour effet de diminuer l'extinction de fluorescence due au sérum. Ces résultats mettent également en évidence que la présence de groupements carboxylates sur les motifs bipyridines influe favorablement sur la diminution de l'extinction.
Claims (24)
- dans laquelle Z est un atome ayant 3 ou 4 valences, R est rien ou représente l'hydrogène, le groupe hydroxy, un groupe amino ou un radical hydrocarboné, les radicaux bivalents #, # et #, sont indépendamment l'un de l'autre des chaînes hydrocarbonées qui contiennent éventuellement un ou plusieurs hétéroatomes et sont éventuellement interrompues par un hétéromacrocycle, au moins l'un des radicaux A, et # comportant de plus au moins un motif moléculaire ou étant essentiellement constitué par un motif moléculaire possédant une énergie de triplet supérieure à celle du niveau émissif de l'ion de terre rare complexé et au moins l'un des radicaux #, ()et # qui ne comporte pas ou n'est pas essentiellement constitué par ledit motif moléculaire comprend un radical pyridine substituée une ou plusieurs fois ou non substituée.REVENDICATIONS 1. Procédé de réduction de l'extinction de fluorescence due au milieu de mesure dans un dosage par fluorescence d'un analyte mettant en #uvre au moins un marqueur fluorescent caractérisé en ce qu'on introduit dans le milieu de mesure un complexe macropolycyclique de terre rare, constitué d'au moins un sel de terre rare complexé par un composé macropolycyclique de formule
- 2. Procédé selon la revendication 1, caractérisé en ce que les deux radicaux A , B ou C qui ne comportent pas ou ne sont pas essentiellement constitués par un motif moléculaire possédant une énergie de triplet supérieure à celle du niveau émissif de l'ion de terre rare complexé comprennent un radical pyridine substituée une ou plusieurs fois ou non substituée.
- 3. Procédé selon les revendications 1 ou 2, caractérisé en ce que le motif moléculaire possédant une énergie de triplet supérieure à celle du niveau émissif de l'ion de terre rare complexé est substitué par un groupement donneur d'électrons.
- 4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisée en ce que le motif moléculaire possédant une énergie de triplet supérieure à celle du<Desc/Clms Page number 33>niveau émissif de l'ion de terre rare complexé est choisi parmi la phénanthroline, l'anthracène, le benzène, le naphtalène, les bi- et ter-phényle, l'azobenzène, l'azopyridine, les bipyridines et les bisisoquinoléines.
- 5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le motif moléculaire possédant une énergie de triplet supérieure à celle du niveau émissif de l'ion de terre rare complexé est un groupe bipyridine.
- 6. Procédé selon la revendication 5, caractérisé en ce que le (ou les) groupe (s) bypiridine(s) est (sont) substitué(s) par un groupement donneur d'électrons choisi en particulier parmi les groupements carboxylate, -NH2, -NHAlk, -N(Alk)2, OH, 0-, -OAlk, Alk, -CH(Alk)2, -C(Alk)3, -NHCOAlk, phényl substitué ou non substitué ; Alk étant un groupe (Ci-C4)alkyle.
- 7. Procédé selon l'une quelconque des revendications 4 à 6, caractérisé en ce que le (ou les) motif (s) bipyridine(s) est (sont) substitué (s) parun groupement carboxylate.
- 8. Procédé selon l'une quelconque des revendications 1 à 6, caractérisée en ce que le complexe macropolycyclique est constitué d'au moins un sel de terre rare complexé par un composé macropolycyclique répondant à la formule Il :dans laquelle : - le cycle de formuleest le macrocycle bis-bipyridine de formule :<Desc/Clms Page number 34>- n = 0, 1 ou 2 ; - A est un groupe fonctionnel susceptible de se lier de façon covalente avec une substance biologique ; - R1 est un groupe -COOR3 dans lequel R3 est l'hydrogène ou un groupe alkyle en Ci à C10 et représente de préférence le groupe méthyle, éthyle ou tertiobutyle ou bien R1 est un groupe -CO-NH-Y-A ou -Y-A ; - R2 est l'hydrogène, un groupement donneur d'électrons, en particulier carboxylate, -NH2, -NHAlk, -N(Alk)2, OH, O-, -OAlk, Alk, -CH(Alk)2, -C(AJk)3, -NHCOAlk, phényl substitué ou non; Alk étant un groupe (C1-C4)alkyle, un groupe -CO-NH-Y-A ou -Y-A, sous réserve que l'un au plus des substituants R1 et R2 représente un groupe -CO-NH-Y-A ou -Y-A et Ri et R2 ne représentent pas simultanément un groupe -CO-NH-YA ou -Y-A ; - Y est un groupe ou un bras d'espacement qui est constitué par un radical organique bivalent, choisi parmi les groupes alkylène linéaires ou ramifiés en Ci à C20 contenant éventuellement une ou plusieurs doubles liaisons et/ou un ou plusieurs hétéroatomes tels que l'oxygène, l'azote, le soufre, le phosphore ou un ou plusieurs groupe (s) carbamoyle ou carboxamido ; parmi les groupes cycloalkylène en C5 à C8 ou parmi les groupes arylène en C6 à C14, lesdits groupes alkylène, cycloalkylène ou arylène étant éventuellement substitués par des groupes alkyle, aryle ou sulfonate.
- 9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'ion terre rare complexé est l'europium.
- 10. Procédé selon l'une quelconque des revendications 1 à 7 et 9, caractérisé en ce que le complexe macropolycyclique de terre rare est<Desc/Clms Page number 35>choisi parmi les cryptates d'europium [Eu3'C py.bPY(C02H)2.bPY(CO2H)2], [Eu3+C bpy(C02H)2.bPY(CO2H)2.py(NH2)2] et [Eu3+C bpy(C02H)2.bpy(C02H)2. py(CONH(CH2)2NHR4]2 dans lequel
- 11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que ledit complexe macropolycyclique de terre rare est utilisé comme seul marqueur ou comme l'un des marqueurs dans le dosage.
- 12. Procédé selon l'une quelconque des revendications 1 à 11, caractérisé en ce que le milieu de mesure est un milieu biologique, en particulier un milieu sérique.
- 13. Complexe macropolycyclique de terre rare, constitué d'au moins un sel de terre rare complexé par un composé macropolycyclique de formuledans laquelle Z est un atome ayant 3 ou 4 valences, R est rien ou représente l'hydrogène, le groupe hydroxy, un groupe amino ou un radical hydrocarboné, les radicaux bivalents #, et , sont indépendamment l'un de l'autre des chaînes hydrocarbonées qui contiennent éventuellement un ou plusieurs hétéroatomes et sont éventuellement interrompues par un hétéromacrocycle, au moins l'un des radicaux #, et # comportant de plus au moins un motif moléculaire ou étant essentiellement constitué par un motif moléculaire possédant une énergie de triplet supérieure à celle du niveau émissif de l'ion de terre rare complexé, caractérisé en ce que : - soit au moins l'un des radicaux #, et qui ne comporte pas ou n'est pas essentiellement constitué par ledit motif moléculaire comprend un radical pyridine substituée une ou plusieurs fois ; - soit au moins l'un des radicaux #, et # qui ne comporte pas ou n'est pas essentiellement constitué par ledit motif moléculaire comprend un radical<Desc/Clms Page number 36>pyridine substituée une ou plusieurs fois ou non substituée et le ou les radicaux@ , # ou autres que celui-ci est substitué par un groupement donneur d'électrons.
- 14. Complexe selon la revendications 13, caractérisé en ce que l'ion terre rare complexé est l'europium.
- 15. Complexe selon les revendications 13 ou 14, caractérisée en ce que les deux radicaux #, # ou # qui ne comportent pas ou ne sont pas essentiellement constitués par un motif moléculaire possédant une énergie de triplet supérieure à celle du niveau émissif de l'ion de terre rare complexé comprennent un radical pyridine substituée une ou plusieurs fois ou non substituée.
- 16. Complexe selon l'une quelconque des revendications 13 à 15, caractérisé en ce que le motif moléculaire possédant une énergie de triplet supérieure à celle du niveau émissif de l'ion de terre rare complexé est choisi parmi la phénanthroline, l'anthracène, le benzène, le naphtalène, les bi- et ter-phényle, l'azobenzène, l'azopyridine, les bipyridines et les bisisoquinoléines.
- 17. Complexe selon l'une quelconque des revendications 13 à 16, caractérisé en ce que le motif moléculaire possédant une énergie de triplet supérieure à celle du niveau émissif de l'ion de terre rare complexé est un groupe bipyridine.
- 18. Complexe selon la revendication 17, caractérisé en ce que le (ou les) groupe (s) bipyridine(s) est (sont) substitué (s) parun groupement donneur d'électrons choisi en particulier parmi les groupements carboxylate, -NH2, -NHAlk, -N(Alk)2, OH, 0-, -OAlk, Alk, -CH(Alk)2, -C(Alk)3, -NHCOAlk, phényt substitué ou non substitué ; Alk étant un groupe (C1-C4)alkyle.
- 19. Complexe selon les revendications 17 ou 18 caractérisé en ce que le (ou les) motif (s) bipyridine (s) est (sont) substitué (s) parun groupement carboxylate.
- 20. Complexe selon l'une quelconque des revendications 13 à 19, caractérisé en ce qu'il est constitué d'au moins un sel de terre rare complexé par un composé macropolycyclique répondant à la formule Il :dans laquelle :<Desc/Clms Page number 37>- n = 0, 1 ou 2 ; - Y est un groupe ou un bras d'espacement qui est constitué par un radical organique bivalent, choisi parmi les groupes alkylène linéaires ou ramifiés en Ci à C20 contenant éventuellement une ou plusieurs doubles liaisons et/ou un ou plusieurs hétéroatomes tels que l'oxygène, l'azote, le soufre, le phosphore ou un ou plusieurs groupe (s) carbamoyle ou carboxamido ; parmi les groupes cycloalkylène en C5 à Ce ou parmi les groupes arylène en C6 à C14, lesdits groupes alkylène, cycloalkylène ou arylène étant éventuellement substitués par des groupes alkyle, aryle ou sulfonate ; - A est un groupe fonctionnel susceptible de se lier de façon covalente avec une substance biologique ; - R1 est un groupe-COOR3 dans lequel R3 est l'hydrogène ou un groupe alkyle en C1 à C10 et représente de préférence le groupe méthyle, éthyle ou tertiobutyle ou bien R1 est un groupe -CO-NH-Y-A ou -Y-A ; - R2 est l'hydrogène, un groupement donneur d'électrons, en particulier carboxylate, -NH2, -NHAlk, -N(Alk)2, OH, O-, -OAlk, Alk, -CH(Alk)2, -C(Alk)3, -NHCOAlk, phényl substitué ou non substitué ; Alk étant un groupe (Ci-C4)alkyle,est le macrocycle bis-bipyndine de formule :- le cycle de formule<Desc/Clms Page number 38>-NHCOAlk, phényl substitué ou non substitué ;Alk étant un groupe (C1-C4)alkyle, ou un groupe -CO-NH-Y-A ou -Y-A, sous réserve que l'un au plus des substituants R1 et R2 représente un groupe -CO-NH-Y-A ou -Y-A et Ri et R2 ne représentent pas simultanément un groupe -CO-NH-Y-A ou -Y-A, et sous réserve que lorsque n = 0, R2 soit différent de l'hydrogène.
- 21. Complexe selon la revendication 20, caractérisé en ce qu'il est constitué d'au moins un sel de terre rare complexé par un composé macropolycyclique répondant à la formule Il dans laquelle : - n = 0, - Y, A et R1 sont tels que définis dans la revendication 20, et - R2 est tel que défini dans la revendication 20 et l'un des substituants R2 est un groupe -CO-NH-Y-A ou -Y-A.
- 23. Conjugué fluorescent, constitué par un complexe selon l'une quelconque des revendications 13 à 22 lié de manière covalente à l'un des membres d'un couple de molécules capables de se lier spécifiquement entre elles, en particulier un polypeptide, une protéine, un récepteur cellulaire, un antigène, un anticorps ou un acide nucléique.
- 24. Utilisation d'un complexe macropolycyclique selon l'une quelconque des revendications 13 à 22 pour réduire l'extinction de fluorescence due au milieu de mesure dans un dosage par fluorescence d'un analyte.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0007650A FR2810406B1 (fr) | 2000-06-15 | 2000-06-15 | Nouveaux cryptates de terre rare peu sensibles a l'extinction de fluorescence |
AU72468/01A AU7246801A (en) | 2000-06-15 | 2001-06-12 | Novel rare earth metal cryptates which are not very sensitive to the fluorescence quenching |
AT01951580T ATE377755T1 (de) | 2000-06-15 | 2001-06-12 | Kryptate der seltenen erden mit verringerter fluoreszenz-löschung |
EP01951580A EP1290448B1 (fr) | 2000-06-15 | 2001-06-12 | Cryptates de metal des terres rares a l'extinction de fluorescence reduite |
PCT/EP2001/006642 WO2001096877A2 (fr) | 2000-06-15 | 2001-06-12 | Nouveaux cryptates de metal des terres rares peu sensibles a l'extinction de fluorescence |
DE60131276T DE60131276T2 (de) | 2000-06-15 | 2001-06-12 | Kryptate der seltenen erden mit verringerter fluoreszenz-löschung |
JP2002510955A JP2004509075A (ja) | 2000-06-15 | 2001-06-12 | 蛍光消光にあまり敏感でない新規な希土類金属クリプテート |
US10/311,534 US7087384B2 (en) | 2000-06-15 | 2001-06-12 | Rare earth metal cryptates which are not very sensitive to the fluorescence quenching |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0007650A FR2810406B1 (fr) | 2000-06-15 | 2000-06-15 | Nouveaux cryptates de terre rare peu sensibles a l'extinction de fluorescence |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2810406A1 true FR2810406A1 (fr) | 2001-12-21 |
FR2810406B1 FR2810406B1 (fr) | 2002-09-20 |
Family
ID=8851298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR0007650A Expired - Fee Related FR2810406B1 (fr) | 2000-06-15 | 2000-06-15 | Nouveaux cryptates de terre rare peu sensibles a l'extinction de fluorescence |
Country Status (8)
Country | Link |
---|---|
US (1) | US7087384B2 (fr) |
EP (1) | EP1290448B1 (fr) |
JP (1) | JP2004509075A (fr) |
AT (1) | ATE377755T1 (fr) |
AU (1) | AU7246801A (fr) |
DE (1) | DE60131276T2 (fr) |
FR (1) | FR2810406B1 (fr) |
WO (1) | WO2001096877A2 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009143014A1 (fr) * | 2008-05-23 | 2009-11-26 | Amylin Pharmaceuticals, Inc. | Biodosages de l'agoniste du récepteur du glp-1 |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005020384A1 (de) * | 2005-05-02 | 2006-11-09 | Therainvention Gmbh | Spektroskopisches Verfahren zum Nachweis von Analyten |
FR2890174B1 (fr) | 2005-08-30 | 2009-04-24 | Cis Bio Internat Sa | Procede pour la mise en evidence d'un processus biologique par mesure d'un fret |
FR2890446B1 (fr) | 2005-09-05 | 2008-04-18 | Cis Bio Internat Sa | Methode de detection d'interaction intracellulaire entre bio-molecules |
FR2934684B1 (fr) | 2008-07-31 | 2012-11-16 | Cis Bio Int | Methode de detection de l'internalisation de proteines membranaires. |
FR2936245B1 (fr) | 2008-09-23 | 2012-07-06 | Cis Bio Int | Nouveaux substrats d'o6-alkylguanine-adn alkyltransferase et ses mutants. |
FR2940286B1 (fr) | 2008-12-19 | 2011-04-08 | Cis Bio Int | Nouveaux cryptates de terres rares comportant un motif tetraazatriphenylene |
WO2010125314A1 (fr) | 2009-04-30 | 2010-11-04 | Cis-Bio International | Procede de detection de composes modulateurs de dimeres de proteines membranaires a domaine vft |
FR2949156B1 (fr) | 2009-08-13 | 2016-04-15 | Cis-Bio Int | Methode de determination de la liaison d'un compose donne a un recepteur membranaire |
US8623324B2 (en) | 2010-07-21 | 2014-01-07 | Aat Bioquest Inc. | Luminescent dyes with a water-soluble intramolecular bridge and their biological conjugates |
FR2977674B1 (fr) | 2011-07-06 | 2015-08-14 | Cisbio Bioassays | Methode amelioree de detection et/ou de quantification d'un analyte present a la surface d'une cellule |
FR2978149B1 (fr) | 2011-07-18 | 2014-01-10 | Cisbio Bioassays | Nouveaux agents complexants et complexes de lanthanide correspondant, et leur utilisation comme marqueurs luminescents |
FR2980271B1 (fr) | 2011-09-16 | 2013-10-11 | Cisbio Bioassays | Procede de determination de la glycosylation d'un anticorps |
EP2817614A1 (fr) | 2012-02-22 | 2014-12-31 | Cisbio Bioassays | Procede de normalisation de la luminescence emise par un milieu de mesure. |
FR2988174B1 (fr) | 2012-03-19 | 2014-04-25 | Cisbio Bioassays | Procede de determination de la capacite d'un anticorps a maintenir des cellules a proximite l'une de l'autre |
FR3000960B1 (fr) | 2013-01-16 | 2015-03-06 | Cisbio Bioassays | Nouveaux agents complexants hydrosolubles et complexes de lanthanide correspondants |
FR3004189B1 (fr) | 2013-04-04 | 2015-09-04 | Ecole Norm Superieure Lyon | Complexes de lanthanide comprenant au moins deux groupes betaines, utiles comme marqueurs luminescents |
FR3032797B1 (fr) | 2015-02-13 | 2017-03-03 | Cisbio Bioassays | Procede de quantification d'une proteine d'interet presente dans un echantillon biologique |
FR3045053B1 (fr) | 2015-12-09 | 2018-01-05 | Cisbio Bioassays | Agents complexants hydrosolubles a base de triazapyridinophane et complexes de lanthanide fluorescents correspondants |
EP3394179B1 (fr) | 2015-12-16 | 2022-03-16 | Becton, Dickinson and Company | Colorants en tandem polymères fluorescents photostables comprenant des complexes métalliques luminescents |
CN106432298A (zh) * | 2016-09-05 | 2017-02-22 | 中国科学院苏州生物医学工程技术研究所 | 一种镧系金属穴醚配合物及其制备方法与用途 |
FR3067349B1 (fr) | 2017-06-12 | 2020-12-04 | Cisbio Bioassays | Nouveaux agents mono et di-antennes complexants hydrosolubles et complexes de lanthanide correspondants |
FR3067712B1 (fr) | 2017-06-14 | 2019-08-02 | Cisbio Bioassays | Nouveaux agents complexants de type trimethoxyphenyl pyridine hydrosolubles et complexes de lanthanide correspondants |
FR3069644B1 (fr) | 2017-07-28 | 2024-07-12 | Cisbio Bioassays | Methode pour mesurer la modulation de l'activation d'un recepteur couple a une proteine g |
FR3084365B1 (fr) | 2018-07-27 | 2020-10-23 | Cisbio Bioassays | Anticorps a domaine unique qui se lient a la proteine g alpha |
CN109180571B (zh) * | 2018-10-26 | 2021-08-13 | 章健 | 一种联吡啶衍生物及合成方法、用途 |
FR3092115B1 (fr) | 2019-01-30 | 2021-11-12 | Cisbio Bioassays | analogues de GTP fluorescents et utilisation |
FR3092172B1 (fr) | 2019-01-30 | 2021-02-12 | Cisbio Bioassays | Méthode pour mesurer la modulation de l’activation d’un récepteur couplé à une protéine G avec des analogues du GTP |
CN112341462A (zh) * | 2020-11-04 | 2021-02-09 | 济南国科医工科技发展有限公司 | 稀土镝穴醚荧光配合物及其制备方法 |
CN114324862B (zh) * | 2021-12-31 | 2025-03-07 | 成都微瑞生物科技有限公司 | 一种非洲猪瘟病毒均相检测反应试剂及检测方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5696240A (en) * | 1991-03-15 | 1997-12-09 | Vallarino; Lidia M. | Macrocyclic complexes of yttrium, the lanthanides and the actinides having peripheral coupling functionalities |
WO1999018114A1 (fr) * | 1997-10-03 | 1999-04-15 | Cis Bio International | Nouveaux conjugues fluorescents de nucleosides ou de nucleotides, leur procede de preparation et leurs utilisations |
US5925744A (en) * | 1994-09-02 | 1999-07-20 | Novartis Finance Corporation | Functional terpyridine-metal complexes, a process for the preparation thereof and oligonucleotide conjugates with terpyridine-metal complexes |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2570703B1 (fr) * | 1984-09-26 | 1988-07-08 | Commissariat Energie Atomique | Complexes macropolycycliques de terres rares et application a titre de marqueurs fluorescents |
FR2624862B1 (fr) * | 1987-12-18 | 1990-06-08 | Oris Ind | Cryptates de terres rares, procedes d'obtention, intermediaires de synthese et application a titre de marqueurs fluorescents |
-
2000
- 2000-06-15 FR FR0007650A patent/FR2810406B1/fr not_active Expired - Fee Related
-
2001
- 2001-06-12 JP JP2002510955A patent/JP2004509075A/ja active Pending
- 2001-06-12 US US10/311,534 patent/US7087384B2/en not_active Expired - Fee Related
- 2001-06-12 AT AT01951580T patent/ATE377755T1/de not_active IP Right Cessation
- 2001-06-12 EP EP01951580A patent/EP1290448B1/fr not_active Expired - Lifetime
- 2001-06-12 WO PCT/EP2001/006642 patent/WO2001096877A2/fr active IP Right Grant
- 2001-06-12 DE DE60131276T patent/DE60131276T2/de not_active Expired - Lifetime
- 2001-06-12 AU AU72468/01A patent/AU7246801A/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5696240A (en) * | 1991-03-15 | 1997-12-09 | Vallarino; Lidia M. | Macrocyclic complexes of yttrium, the lanthanides and the actinides having peripheral coupling functionalities |
US5925744A (en) * | 1994-09-02 | 1999-07-20 | Novartis Finance Corporation | Functional terpyridine-metal complexes, a process for the preparation thereof and oligonucleotide conjugates with terpyridine-metal complexes |
WO1999018114A1 (fr) * | 1997-10-03 | 1999-04-15 | Cis Bio International | Nouveaux conjugues fluorescents de nucleosides ou de nucleotides, leur procede de preparation et leurs utilisations |
Non-Patent Citations (3)
Title |
---|
ALPHA, BEATRICE; ANKLAM, ELKE; DESCHENAUX, ROBERT; LEHN, JEAN-MARIE; PIETRASKIEWICZ, MAREK: "Synthesis and Characterisation of the Sodium and Lithium Cryptates of Macrobicyclic Ligands Incorporating Pyridine, Bipyridine, and Biisoquinoline Units", HELV. CHIM. ACTA, vol. 71, 1988, pages 1042 - 1052, XP002165652 * |
E LOPEZ ET AL: "Europium(III) Trisbipyridine Cryptate Label for the Time-Resolved Fluorescence Detection of Polymerase Chain Reaction Products Fixed on a Solid Support", CLINICAL CHEMISTRY,US,AMERICAN ASSOCIATION FOR CLINICAL CHEMISTRY. WINSTON, vol. 39, no. 2, 1993, pages 196 - 201, XP002125037, ISSN: 0009-9147 * |
G MATHIS: "Rare Earth Cryptates and Homogeneous Fluoroimmunoassays with Human Sera", CLINICAL CHEMISTRY,US,AMERICAN ASSOCIATION FOR CLINICAL CHEMISTRY. WINSTON, vol. 39, no. 9, 1993, pages 1953 - 1959, XP002125039, ISSN: 0009-9147 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009143014A1 (fr) * | 2008-05-23 | 2009-11-26 | Amylin Pharmaceuticals, Inc. | Biodosages de l'agoniste du récepteur du glp-1 |
Also Published As
Publication number | Publication date |
---|---|
DE60131276T2 (de) | 2008-08-28 |
EP1290448A2 (fr) | 2003-03-12 |
ATE377755T1 (de) | 2007-11-15 |
US7087384B2 (en) | 2006-08-08 |
WO2001096877A3 (fr) | 2002-04-11 |
AU7246801A (en) | 2001-12-24 |
DE60131276D1 (de) | 2007-12-20 |
WO2001096877A2 (fr) | 2001-12-20 |
EP1290448B1 (fr) | 2007-11-07 |
FR2810406B1 (fr) | 2002-09-20 |
US20040092726A1 (en) | 2004-05-13 |
JP2004509075A (ja) | 2004-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2810406A1 (fr) | Nouveaux cryptates de terre rare peu sensibles a l'extinction de fluorescence | |
EP0601113B1 (fr) | Complexes macrocycliques de terres rares et leur utilisation pour reduire les interferences dans un dosage par fluorescence | |
EP0321353B1 (fr) | Cryptates de terres rares, procédés d'obtention, intermédiaires de synthèse et application à titre de marqueurs fluorescents | |
JP4959340B2 (ja) | 検体を検出するための試薬 | |
JP5228190B2 (ja) | パーオキシナイトライト蛍光プローブ | |
EP0539477A1 (fr) | Procede d'amplification du signal d'emission d'un compose luminescent. | |
US20110098475A1 (en) | Fluorescent probes | |
JP2016505528A (ja) | タンパク質の化学修飾のためのピクテ−スペングラーライゲーション | |
EP3638659B1 (fr) | Nouveaux agents mono et di-antennes complexants hydrosolubles et complexes de lanthanide correspondants | |
EP3212733A1 (fr) | Nouvelles structures de chromophores pour chélates de lanthanide macrocycliques | |
WO2010070232A1 (fr) | Nouveaux cryptates de terres rares comportant un motif tetraazatriphenylene | |
EP1161685B1 (fr) | Reduction de l'extinction de fluorescence lors d'un dosage | |
BE1011206A4 (fr) | Derives chimioluminescents heterocycliques. | |
EP3386974B1 (fr) | Agents complexants hydrosolubles a base de triazapyridonophane et complexes de lanthanide fluorescents correspondants | |
JP2004101389A (ja) | アルミニウムイオン及び/又は第二鉄イオン測定用プローブ | |
Shadmehr | Design and Synthesis of Triazabutadiene-Based Fluorogenic Probes for Tyrosine Specific Labeling of Proteins | |
EP1648883B1 (fr) | Complexes de lanthanides, leur preparation et leurs utilisations | |
CN116003341B (zh) | 一种荧光探针及其制备方法与应用 | |
EP0432017B1 (fr) | Dérivés de tétrahydro-2,3,6,7,1H,5H,11H-(1)benzopyrano(6,7,8,ij)quinolizinone-11 utilisables comme marqueurs de composés organiques en vue de la détection de ces composés par chimiluminescence ou fluorescence | |
JP3551984B2 (ja) | アクリジン誘導体 | |
KR20190120288A (ko) | 화학 발광 안드로스텐디온 컨쥬게이트 | |
FR3067712B1 (fr) | Nouveaux agents complexants de type trimethoxyphenyl pyridine hydrosolubles et complexes de lanthanide correspondants | |
FR2632307A1 (fr) | Nouveaux derives de tetrahydro-2,3,6,7,1h,5h,11h-1 benzopyrano (6,7,8, ij) quinolizinone-11 utilisables comme marqueurs de composes organiques en vue de la detection de ces composes par chimiluminescence ou fluorescence | |
Staab et al. | Pyromellitic Diimide‐Porphyrin Cyclophanes: Syntheses, Transannular Interactions, and Structure Analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ST | Notification of lapse |
Effective date: 20090228 |