[go: up one dir, main page]

ES2184354T3 - Crecimiento de capas epitaxiales muy uniformes de carburo de silicio. - Google Patents

Crecimiento de capas epitaxiales muy uniformes de carburo de silicio.

Info

Publication number
ES2184354T3
ES2184354T3 ES98965390T ES98965390T ES2184354T3 ES 2184354 T3 ES2184354 T3 ES 2184354T3 ES 98965390 T ES98965390 T ES 98965390T ES 98965390 T ES98965390 T ES 98965390T ES 2184354 T3 ES2184354 T3 ES 2184354T3
Authority
ES
Spain
Prior art keywords
silicon carbide
reactor
epitaxial layers
hydrogen
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
ES98965390T
Other languages
English (en)
Inventor
Olle Claes Erik Kordina
Kenneth George Irvine
Michael James Paisley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfspeed Inc
Original Assignee
Cree Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cree Inc filed Critical Cree Inc
Application granted granted Critical
Publication of ES2184354T3 publication Critical patent/ES2184354T3/es
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/148Silicon carbide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Método de deposición química en fase de vapor que aumenta la uniformidad del espesor de las capas epitaxiales de carburo de silicio, comprendiendo el método: calentar un reactor a una temperatura de al menos 1500ºC, suficientemente alta para el crecimiento epitaxial de carburo de silicio, pero inferior a la temperatura a la que un gas portador de hidrógeno tendería a mordentar el carburo de silicio; y dirigir el flujo de los gases fuente, incluyendo silano, y los gases portadores, a través del reactor calentado, para formar una capa epitaxial de carburo de silicio en el substrato, estando el flujo de gas dirigido a través del reactor en una dirección paralela a la superficie de crecimiento epitaxial; caracterizado porque los gases portadores comprenden una mezcla de un primer gas portador, que comprende hidrógeno en una cantidad de al menos 75% por caudal volumétrico, y un segundo gas portador que comprende argón, teniendo el segundo gas portador una conductividad térmica que es inferior a la conductividad térmica del hidrógeno, y que está presente en una cantidad suficiente para asegurar que los gases fuente se empobrecen menos según pasan a través del reactor, de lo que lo harían si se utilizara el hidrógeno como único gas portador.
ES98965390T 1997-12-17 1998-12-14 Crecimiento de capas epitaxiales muy uniformes de carburo de silicio. Expired - Lifetime ES2184354T3 (es)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/992,157 US6063186A (en) 1997-12-17 1997-12-17 Growth of very uniform silicon carbide epitaxial layers

Publications (1)

Publication Number Publication Date
ES2184354T3 true ES2184354T3 (es) 2003-04-01

Family

ID=25537981

Family Applications (1)

Application Number Title Priority Date Filing Date
ES98965390T Expired - Lifetime ES2184354T3 (es) 1997-12-17 1998-12-14 Crecimiento de capas epitaxiales muy uniformes de carburo de silicio.

Country Status (11)

Country Link
US (2) US6063186A (es)
EP (1) EP1042544B1 (es)
JP (1) JP4195192B2 (es)
KR (3) KR20010024730A (es)
CN (2) CN1313653C (es)
AT (1) ATE226266T1 (es)
AU (1) AU2086699A (es)
CA (1) CA2312790C (es)
DE (1) DE69808803T2 (es)
ES (1) ES2184354T3 (es)
WO (1) WO1999031306A1 (es)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803546B1 (en) 1999-07-08 2004-10-12 Applied Materials, Inc. Thermally processing a substrate
JP2006501664A (ja) * 2002-10-03 2006-01-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ エピタキシャル層を形成する方法および装置
US6987281B2 (en) * 2003-02-13 2006-01-17 Cree, Inc. Group III nitride contact structures for light emitting devices
US6952024B2 (en) * 2003-02-13 2005-10-04 Cree, Inc. Group III nitride LED with silicon carbide cladding layer
US7170097B2 (en) * 2003-02-14 2007-01-30 Cree, Inc. Inverted light emitting diode on conductive substrate
US7898047B2 (en) 2003-03-03 2011-03-01 Samsung Electronics Co., Ltd. Integrated nitride and silicon carbide-based devices and methods of fabricating integrated nitride-based devices
US7112860B2 (en) 2003-03-03 2006-09-26 Cree, Inc. Integrated nitride-based acoustic wave devices and methods of fabricating integrated nitride-based acoustic wave devices
US6964917B2 (en) * 2003-04-08 2005-11-15 Cree, Inc. Semi-insulating silicon carbide produced by Neutron transmutation doping
US7147713B2 (en) * 2003-04-30 2006-12-12 Cree, Inc. Phase controlled sublimation
US7247513B2 (en) * 2003-05-08 2007-07-24 Caracal, Inc. Dissociation of silicon clusters in a gas phase during chemical vapor deposition homo-epitaxial growth of silicon carbide
CN101697366B (zh) * 2003-05-09 2012-12-19 克里公司 通过离子注入进行隔离的发光二极管
US7018554B2 (en) * 2003-09-22 2006-03-28 Cree, Inc. Method to reduce stacking fault nucleation sites and reduce forward voltage drift in bipolar devices
JP4387159B2 (ja) * 2003-10-28 2009-12-16 東洋炭素株式会社 黒鉛材料、炭素繊維強化炭素複合材料、及び、膨張黒鉛シート
CN100418247C (zh) * 2003-11-07 2008-09-10 崇越科技股份有限公司 多腔体分离外延层有机金属化学气相外延装置及方法
US20050194584A1 (en) * 2003-11-12 2005-09-08 Slater David B.Jr. LED fabrication via ion implant isolation
US7230274B2 (en) * 2004-03-01 2007-06-12 Cree, Inc Reduction of carrot defects in silicon carbide epitaxy
US7109521B2 (en) * 2004-03-18 2006-09-19 Cree, Inc. Silicon carbide semiconductor structures including multiple epitaxial layers having sidewalls
US7173285B2 (en) 2004-03-18 2007-02-06 Cree, Inc. Lithographic methods to reduce stacking fault nucleation sites
US7592634B2 (en) * 2004-05-06 2009-09-22 Cree, Inc. LED fabrication via ion implant isolation
CN100430516C (zh) * 2005-03-18 2008-11-05 西北工业大学 碳/碳复合材料表面碳化硅纳米线的制备方法
US20060267043A1 (en) * 2005-05-27 2006-11-30 Emerson David T Deep ultraviolet light emitting devices and methods of fabricating deep ultraviolet light emitting devices
US8052794B2 (en) * 2005-09-12 2011-11-08 The United States Of America As Represented By The Secretary Of The Navy Directed reagents to improve material uniformity
US8193537B2 (en) 2006-06-19 2012-06-05 Ss Sc Ip, Llc Optically controlled silicon carbide and related wide-bandgap transistors and thyristors
US7821015B2 (en) 2006-06-19 2010-10-26 Semisouth Laboratories, Inc. Silicon carbide and related wide-bandgap transistors on semi insulating epitaxy
CA2657929C (en) * 2006-07-19 2014-11-04 Dow Corning Corporation Method of manufacturing substrates having improved carrier lifetimes
ITMI20061809A1 (it) * 2006-09-25 2008-03-26 E T C Srl Processo per realizzare un sustrato di carburo di silicio per applicazioni microelettroniche
US8823057B2 (en) 2006-11-06 2014-09-02 Cree, Inc. Semiconductor devices including implanted regions for providing low-resistance contact to buried layers and related devices
US20080173239A1 (en) * 2007-01-24 2008-07-24 Yuri Makarov Method, system, and apparatus for the growth of SiC and related or similar material, by chemical vapor deposition, using precursors in modified cold-wall reactor
CN100497760C (zh) * 2007-07-24 2009-06-10 中国电子科技集团公司第五十五研究所 高掺杂浓度的碳化硅外延生长的方法
US8536582B2 (en) 2008-12-01 2013-09-17 Cree, Inc. Stable power devices on low-angle off-cut silicon carbide crystals
CN101812730B (zh) * 2010-04-23 2013-02-13 中南大学 超长单晶β-SiC纳米线无金属催化剂的制备方法
JP2011243640A (ja) * 2010-05-14 2011-12-01 Sumitomo Electric Ind Ltd 炭化珪素基板の製造方法、半導体装置の製造方法、炭化珪素基板および半導体装置
US8685845B2 (en) 2010-08-20 2014-04-01 International Business Machines Corporation Epitaxial growth of silicon doped with carbon and phosphorus using hydrogen carrier gas
JP5212455B2 (ja) * 2010-12-16 2013-06-19 株式会社デンソー 炭化珪素単結晶の製造装置
SE536605C2 (sv) 2012-01-30 2014-03-25 Odling av kiselkarbidkristall i en CVD-reaktor vid användning av klorineringskemi
CN102646578B (zh) * 2012-05-09 2014-09-24 中国电子科技集团公司第五十五研究所 提高碳化硅多层结构外延材料批次间掺杂均匀性的方法
JP2014013850A (ja) * 2012-07-05 2014-01-23 Sumitomo Electric Ind Ltd 炭化珪素基板および半導体装置の製造方法、ならびに炭化珪素基板および半導体装置
TW201415541A (zh) * 2012-10-11 2014-04-16 Ritedia Corp 磊晶成長方法
JP6036200B2 (ja) * 2012-11-13 2016-11-30 富士電機株式会社 炭化珪素半導体装置の製造方法
US10322936B2 (en) 2013-05-02 2019-06-18 Pallidus, Inc. High purity polysilocarb materials, applications and processes
US11091370B2 (en) 2013-05-02 2021-08-17 Pallidus, Inc. Polysilocarb based silicon carbide materials, applications and devices
US9657409B2 (en) 2013-05-02 2017-05-23 Melior Innovations, Inc. High purity SiOC and SiC, methods compositions and applications
US9919972B2 (en) 2013-05-02 2018-03-20 Melior Innovations, Inc. Pressed and self sintered polymer derived SiC materials, applications and devices
JP5803979B2 (ja) 2013-05-29 2015-11-04 住友電気工業株式会社 炭化珪素基板および炭化珪素半導体装置ならびに炭化珪素基板および炭化珪素半導体装置の製造方法
WO2015129867A1 (ja) * 2014-02-28 2015-09-03 新日鐵住金株式会社 エピタキシャル炭化珪素ウエハの製造方法
CN104593865A (zh) * 2014-12-25 2015-05-06 廖奇泊 碳化硅垒晶层的制造方法
US9711353B2 (en) 2015-02-13 2017-07-18 Panasonic Corporation Method for manufacturing compound semiconductor epitaxial substrates including heating of carrier gas
JP2016028009A (ja) * 2015-09-02 2016-02-25 住友電気工業株式会社 炭化珪素基板および炭化珪素半導体装置ならびに炭化珪素基板および炭化珪素半導体装置の製造方法
US10249493B2 (en) 2015-12-30 2019-04-02 Siltronic Ag Method for depositing a layer on a semiconductor wafer by vapor deposition in a process chamber
JP6969628B2 (ja) * 2016-02-15 2021-11-24 住友電気工業株式会社 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法
JP6690282B2 (ja) * 2016-02-15 2020-04-28 住友電気工業株式会社 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法
CN118127620A (zh) * 2024-01-19 2024-06-04 宁波合盛新材料有限公司 一种改善碳化硅外延片掺杂均匀性的方法
CN118685758B (zh) * 2024-08-27 2024-12-17 浙江晶诚新材料有限公司 碳化硅涂层的制备方法与带有碳化硅涂层的基体

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186288A (ja) * 1985-02-14 1986-08-19 Nec Corp 炭化珪素化合物半導体の気相エピタキシヤル成長装置
US4912063A (en) * 1987-10-26 1990-03-27 North Carolina State University Growth of beta-sic thin films and semiconductor devices fabricated thereon
US4912064A (en) * 1987-10-26 1990-03-27 North Carolina State University Homoepitaxial growth of alpha-SiC thin films and semiconductor devices fabricated thereon
JPH02296799A (ja) * 1989-05-10 1990-12-07 Nec Corp 炭化珪素の成長方法
US5200022A (en) * 1990-10-03 1993-04-06 Cree Research, Inc. Method of improving mechanically prepared substrate surfaces of alpha silicon carbide for deposition of beta silicon carbide thereon and resulting product
US5374412A (en) * 1992-07-31 1994-12-20 Cvd, Inc. Highly polishable, highly thermally conductive silicon carbide
RU2067905C1 (ru) * 1993-04-23 1996-10-20 Новосибирский научно-исследовательский институт авиационной технологии и организации производства Способ автоматического регулирования толщины проката и устройство для его осуществления
DE4432813A1 (de) * 1994-09-15 1996-03-21 Siemens Ag CVD-Verfahren zum Herstellen einer einkristallinen Silicimcarbidschicht
SE9500327D0 (sv) * 1995-01-31 1995-01-31 Abb Research Ltd Device for epitaxially growing SiC by CVD
SE9502288D0 (sv) * 1995-06-26 1995-06-26 Abb Research Ltd A device and a method for epitaxially growing objects by CVD
SE9503426D0 (sv) * 1995-10-04 1995-10-04 Abb Research Ltd A device for heat treatment of objects and a method for producing a susceptor
SE9503427D0 (sv) * 1995-10-04 1995-10-04 Abb Research Ltd A method for epitaxially growing objects and a device for such a growth
SE9503428D0 (sv) * 1995-10-04 1995-10-04 Abb Research Ltd A method for epitaxially growing objects and a device for such a growth
SE9600705D0 (sv) * 1996-02-26 1996-02-26 Abb Research Ltd A susceptor for a device for epitaxially growing objects and such a device
SE9600704D0 (sv) * 1996-02-26 1996-02-26 Abb Research Ltd A susceptor for a device for epitaxially growing objects and such a device
US6165874A (en) * 1997-07-03 2000-12-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for growth of crystal surfaces and growth of heteroepitaxial single crystal films thereon

Also Published As

Publication number Publication date
KR20010024730A (ko) 2001-03-26
US6063186A (en) 2000-05-16
KR20060061405A (ko) 2006-06-07
WO1999031306A1 (en) 1999-06-24
US6297522B1 (en) 2001-10-02
CN1313653C (zh) 2007-05-02
CN1282386A (zh) 2001-01-31
ATE226266T1 (de) 2002-11-15
DE69808803T2 (de) 2003-09-18
CN1958841A (zh) 2007-05-09
KR100718575B1 (ko) 2007-05-15
CA2312790A1 (en) 1999-06-24
DE69808803D1 (de) 2002-11-21
EP1042544A1 (en) 2000-10-11
JP2002508298A (ja) 2002-03-19
KR100853553B1 (ko) 2008-08-21
CA2312790C (en) 2008-08-05
EP1042544B1 (en) 2002-10-16
JP4195192B2 (ja) 2008-12-10
KR20060121996A (ko) 2006-11-29
CN100560792C (zh) 2009-11-18
AU2086699A (en) 1999-07-05

Similar Documents

Publication Publication Date Title
ES2184354T3 (es) Crecimiento de capas epitaxiales muy uniformes de carburo de silicio.
ES2163263T3 (es) Diseños de susceptor para peliculas delgadas de carburo de silicio.
Faller et al. High-temperature CVD for crystalline-silicon thin-film solar cells
US5155062A (en) Method for silicon carbide chemical vapor deposition using levitated wafer system
SE9502288D0 (sv) A device and a method for epitaxially growing objects by CVD
TW200704819A (en) Method for silicon based dielectric chemical vapor deposition
TW261689B (en) Method and apparatus for producing thin films by low temperature plasma-enhanced chemical vapor deposition using a rotating susceptor reactor
KR960036140A (ko) 반도체 장치 제작 방법
TW200802614A (en) A method of ultra-shallow junction formation using si film alloyed with carbon
TW348272B (en) Method and apparatus for depositing planar and highly oriented layers
EP1720200B1 (en) Epitaxially growing equipment
EP1081756A3 (en) A method for producing silicon nitride series film
Narita et al. Initial stage of 3C–SiC growth on Si (0 0 1)–2× 1 surface using monomethylsilane
JPH058269B2 (es)
JP2004055595A (ja) 気相成長装置
Gurary et al. Thermal and flow issues in the design of metalorganic chemical vapor deposition reactors
JP3969484B2 (ja) ホットウオール加熱型化学気相成長装置
JPS6126775A (ja) 堆積膜形成方法
JPS587817A (ja) 半導体気相成長方法
JPH11256325A (ja) 結晶性SiC薄膜の製造方法
Li et al. Silicon Epitaxial Reactor for Minimal Fab
JPS61141120A (ja) プラズマcvd装置
JPS62190834A (ja) 気相成長装置
JP2004186346A (ja) 円形平板試料の均熱加熱方法
Ayres et al. Investigations of boundary layer formation as a function of nitrogen concentration and reactor pressure during microwave plasma deposition of diamond films