[go: up one dir, main page]

EP4507736A1 - Polythérapie pour le traitement de cancers exprimant trop-2 - Google Patents

Polythérapie pour le traitement de cancers exprimant trop-2

Info

Publication number
EP4507736A1
EP4507736A1 EP23721581.9A EP23721581A EP4507736A1 EP 4507736 A1 EP4507736 A1 EP 4507736A1 EP 23721581 A EP23721581 A EP 23721581A EP 4507736 A1 EP4507736 A1 EP 4507736A1
Authority
EP
European Patent Office
Prior art keywords
cancer
antibody
inhibitor
therapy
trop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP23721581.9A
Other languages
German (de)
English (en)
Inventor
Oyewale ABIDOYE
Chih-Chien Chou
William J. GROSSMAN
Jessica N. ORF
Joseph Kwang PARK
Nathalie Scholler
Mitchell R. SIERECKI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gilead Sciences Inc
Arcus Biosciences Inc
Original Assignee
Gilead Sciences Inc
Arcus Biosciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gilead Sciences Inc, Arcus Biosciences Inc filed Critical Gilead Sciences Inc
Publication of EP4507736A1 publication Critical patent/EP4507736A1/fr
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/68037Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a camptothecin [CPT] or derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6855Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from breast cancer cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6861Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from kidney or bladder cancer cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6869Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from a cell of the reproductive system: ovaria, uterus, testes, prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • the present disclosure relates to methods of treating, mitigating, or preventing or delaying the recurrence or metastasis of a Trop-2 expressing cancer (c.g., metastatic castrate resistant prostate cancer, non-small cell lung cancer) in a subject by administering an effective amount of: (a) an anti-Trop-2 antibody drug conjugate (ADC) (e.g., sacituzumab govitecan); and (b) an adenosine pathway inhibitor (e.g., etrumadenant, quemliclustat) to the subject.
  • ADC anti-Trop-2 antibody drug conjugate
  • adenosine pathway inhibitor e.g., etrumadenant, quemliclustat
  • the present disclosure further relates to methods of treating, mitigating, or preventing or delaying the recurrence or metastasis of a tumor antigen (TA) expressing cancer in a subject by administering an effective amount of: a) a tumor antigen targeted antibody-drug conjugate (ADC) comprising a topoisomerase I inhibitor (Topi ADC); and b) an adenosine pathway inhibitor.
  • ADC tumor antigen targeted antibody-drug conjugate
  • Topici ADC topoisomerase I inhibitor
  • Anti-Trop-2 antibody drug conjugates such as sacituzumab govitecan and datopotamab deruxtecan, are under clinical investigation for the treatment of a variety of Trop-2 expressing cancers. While evidence of clinical efficacy has been obtained in a monotherapy setting, further therapeutic benefits for patients are desired.
  • Trop-2 expression has been reported for a variety of epithelial cancers, including breast, bladder, lung, colorectal and prostate cancers.
  • Prostate cancer is the most commonly diagnosed cancer and the second most frequent cause of cancer-related mortality among men in the United States (US).
  • US United States
  • Adenocarcinoma comprises 95% of prostatic carcinomas (Lie AK. Histology of prostate cancer. Oncolex Oncology Encyclopedia. Accessed 25 February 2020 at oncolex.org/Prostate-cancer/Background/Histology.).
  • Most cases (90%) are diagnosed at a local or regional stage for which treatment options include active surveillance, surgery, or radiation.
  • the 5-ycar relative survival is 98% across all stages but is 30% for disease diagnosed at an advanced stage.
  • Metastatic or advanced prostate cancer has a more complex treatment algorithm. Patients with locally advanced disease initially receive androgen ablation with radiation or prostatectomy, whereas first-line therapy in the metastatic setting is androgen ablation plus systemic treatment (e.g., second-generation hormonal therapy or docetaxel-based chemotherapy).
  • Disease progression in the context of androgen deprivation is known as castrate resistant prostate cancer (CRPC).
  • PCWG2 Prostate Cancer Working Group 2
  • PCWG2 Prostate Cancer Working Group 2
  • PSA serum prostate-specific antigen
  • the progression of pre-existing local or metastatic disease and/or the appearance of new metastases in the setting of castrate levels of serum testosterone ( ⁇ 50 ng/dL; Scher HI, et al. J Clin Oncol. (2008) 26(7): 1148- 1159.).
  • Prognosis for CRPC is associated with several factors, including performance status, presence of bone pain, extent of disease on bone scan, and serum alkaline phosphatase (ALP) levels. Bone metastases will occur in approximately 80% of men with CRPC and can produce significant morbidity, including pain, pathologic fractures, spinal cord compression, and bone marrow failure. Paraneoplastic effects are also common, including anemia, weight loss, fatigue, hypercoagulability, and increased susceptibility to infection (Saad F and Hotte S. Can Urol Assoc J. (2010) 4(6):380-384).
  • Lung cancer is the leading cause of cancer-related mortality worldwide. It was estimated that in 2020, there were over 2 million new cases of lung cancer and approximately 1.8 million deaths worldwide. In the United States (US) in 2021, it is estimated that there will be over 235,000 new cases of lung cancer and over 131,000 deaths. Approximately 80% to 85% of all lung cancers are non-small cell lung cancer (NSCLC) (Ettinger et al. J Natl Compr Cane Netw (2019); 17(12): 1464-72) and more than half of these arc identified at an advanced stage (Siegel ct al. CA Cancer J Clin (2019);69 (l):7-34).
  • NSCLC non-small cell lung cancer
  • EGFR epidermal growth factor receptor
  • ALK anaplastic lymphoma kinase
  • ROS1 ROS proto-oncogene 1
  • BRAF proto-oncogene B-raf
  • RET alterations neurotrophic tyrosine receptor kinase
  • NSRK neurotrophic tyrosine receptor kinase
  • Chemotherapy /immunotherapy regimens such as pembrolizumab/(carboplatin or cisplatin)/pemetrexed are recommended for patients with non-squamous NSCLC regardless of PD-L1 expression.
  • chemotherapy/immunotherapy regimens such as pembrolizumab/carboplatin/ (paclitaxel or albumin-bound paclitaxel) are recommended (Ettinger et al. J Natl Compr Cane Netw (2019);17 (12): 1464-72).
  • Immune checkpoint inhibitors have reinvigorated clinical development interest in anticancer immunotherapy. The latter relies on therapeutic modulation of the tumor microenvironment or other aspects of the immune system to overcome mechanisms of immune suppression that a tumor elicits on the host immune system. Despite their proven benefit in numerous tumor types as evidenced by the approvals of nivolumab, pembrolizumab, atezolizumab, and ipilimumab, checkpoint inhibition has not proven effective in the treatment of metastatic prostate cancer where response rates to monotherapy are less than 5% (Antonarakis ES, et al. J Clin Oncol. (2020) 38(5):395-405.).
  • ADCs Antibody-drug conjugates
  • ADCs are a fast-growing drug class in oncology with several different ADCs currently approved as cancer treatments and many more in preclinical and clinical development (e.g., Drago, J.Z. et al., Nat Rev Clin Oncol (2021) 18, 327-344).
  • ADCs are generally composed of monoclonal antibodies linked to cytotoxic drugs (payloads).
  • ADCs are designed to limit the delivery of cytotoxic drugs specifically to cells expressing the target antigen of the respective antibody (e.g., Trop-2, Her-2, Nectin-4) and immediately surrounding tumor tissue (bystander effect).
  • ADCs As a result of their tumor targeted delivery of cytotoxic agents ADCs often have much improved therapeutic windows compared to systemically administered cytotoxic agents.
  • ADCs that have obtained marketing approval by the U.S. Food and Drug Administration (US FDA) include gemtuzumab ozogamicin, brentuximab vedotin, ado- trastuzumab emtansine (T-DM1), inotuzumab ozogamicin, trastuzumab deruxtecan (T-DXd), polatuzumab vcdotin, sacituzumab deruxtecan, enfortumab vedotin, and bclantamab mafodotin.
  • Adenosine pathway mediates immunosuppressive effects in the tumor microenvironment (e.g., Allard, B., et al. Nat Rev Clin Oncol (2020) 17, 611-629).
  • Adenosine pathway inhibitors including various CD39 inhibitors, CD73 inhibitors, and adenosine receptor antagonists, are under clinical investigation as promising agents stimulating anti-cancer immune responses.
  • a Trop-2 positive cancer comprising co-administering to a subject an effective amount of: a) an anti-Trop-2 antibody-drug conjugate (ADC); and b) an adenosine pathway inhibitor.
  • ADC anti-Trop-2 antibody-drug conjugate
  • the methods provided herein are for treating a Trop-2 positive cancer comprising co-administering to a subject an effective amount of: a) an anti-Trop-2 antibody-drug conjugate (ADC); and b) an adenosine pathway inhibitor.
  • ADC anti-Trop-2 antibody-drug conjugate
  • the anti-Trop-2 ADC comprises a topoisomerase I inhibitor.
  • the topoisomerase I inhibitor is a camptothecin (CPT).
  • the topoisomerase I inhibitor is a topotecan, irinotecan, belotecan or exatecan.
  • the topoisomerase I inhibitor is SN38 or Dxd.
  • the topoisomerase I inhibitor is selected from the group consisting of irinotecan, topetecan, and SN-38.
  • the topoisomerase I inhibitor is SN38.
  • the anti-Trop-2 ADC has a structural formula of mAb-CL2A-SN- 38, with a structure represented by:
  • the anti-Trop-2 ADC comprises sacituzumab (hRS7; described, e.g., in W02003074566, Figures 3 and 4).
  • the anti-Trop-2 ADC is selected from the group consisting of sacituzumab govitecan, datopotamab deruxtecan (DS-1062), ESG-401, SKB-264, DAC-02 and BAT-8003.
  • the anti-Trop-2 ADC is sacituzumab govitecan.
  • the adenosine pathway inhibitor is a CD39 inhibitor, a CD73 inhibitor, or an adenosine receptor antagonist.
  • the adenosine pathway inhibitor is a plurality of adenosine pathway inhibitors.
  • the plurality of adenosine pathway inhibitors comprises a CD73 inhibitor and an adenosine receptor antagonist.
  • the CD73 inhibitor is quemliclustat and the adenosine receptor antagonist is etrumadenant.
  • the adenosine pathway inhibitor is an adenosine receptor antagonist.
  • the adenosine pathway inhibitor is imaradenant, NIR178, ID11902, IN-A003, NTI-55, TT-10, TT-228, PBF-1129 (Palobiofarma), TT-702, etrumadenant, INCB 106385, M1069, HM87277, RVU-330, or TT-53.
  • the adenosine pathway inhibitor is a dual antagonist of adenosine A2A receptor (A2AR; ADORA2A) and A2B receptor (A2BR; ADORA2B).
  • A2AR adenosine A2A receptor
  • A2BR A2B receptor
  • the adenosine pathway inhibitor is etrumadenant (AB928; GS- 0928), taminadcnant, TT-10, TT-4, or M1069.
  • the adenosine pathway inhibitor is etrumadenant.
  • the adenosine pathway inhibitor is a CD73 inhibitor.
  • the CD73 inhibitor is oleclumab, B MS-986179, uliledlimab, AK119, quemliclustat, mupadolimab, HLX23, INCA00186, IB 1325, NZV930, ORIC-533, Sym024, IPH5301, IOA-237, JAB-BX100, PT199, TRB010, CD73 ASO, ABSK-051, AK131, BR101, BP1200, CB708, GB7002, or ATG-037.
  • the CD73 inhibitor is quemliclustat (AB680, GS-0680), uliledlimab, mupadolimab, ORIC-533, ATG-037, PT-199, AK131, NZV93O, BMS-986179, or oleclumab.
  • the CD73 inhibitor is quemliclustat.
  • the method further comprises co-administering an additional therapeutic agent or therapeutic modality.
  • the additional therapeutic agent or therapeutic modality comprises one, two, three, or four additional therapeutic agents and/or therapeutic modalities.
  • the additional therapeutic agent comprises an anti-PD-(L)l antibody.
  • the anti-PD-(L)l antibody is pembrolizumab, nivolumab, cemiplimab, pidilizumab, spartalizumab, atezolizumab, avelumab, durvalumab, cosibelimab, sasanlimab, tislelizumab, retifanlimab, balstilimab, toripalimab, cetrelimab, genolimzumab, prolgolimab, lodapolimab, camrelizumab, budigalimab, avelumab, dostarlimab, envafolimab, sintilimab, or zimberelimab.
  • the anti-PD-(L)l antibody is zimberelimab.
  • the additional therapeutic agent comprises an anti-TIGIT antibody.
  • the anti-TIGIT antibody is tiragolumab, vibostolimab, domvanalimab, AB3O8, AK127, BMS-986207, ralzapastotug, or etigilimab.
  • the anti-TTGTT antibody is domvanalimab.
  • the anti-TIGIT antibody is ralzapastotug.
  • the additional therapeutic agent comprises an anti-PD-(LI) antibody and an anti-TIGIT antibody.
  • the additional therapeutic agent comprises a) zimberelimab and domvanalimab, b) zimberelimab and AB308, c) atezolizumab and tiragolumab, d) pembrolizumab and vibostolimab, e) pembrolizumab and domvanalimab, f) pembrolizumab and AB308, g) MK- 7684A (pembrolizumab/vibostolimab coformulation), h) durvalumab and domvanalimab, i) zimberelimab and ralzapastotug, or j) pembrolizumab and ralzapastotug.
  • the additional therapeutic agent comprises zimberelimab and domvanalimab.
  • the Trop-2 positive cancer is a solid epithelial cancer.
  • the solid epithelial cancer is selected from breast cancer (e.g., triple negative breast cancer (TNBC), HR + /Her2- breast cancer, HR + /Her2 low breast cancer), colorectal cancer, lung cancer, stomach cancer, urinary tract cancer, urothelial cancer, bladder cancer, renal cancer, pancreatic cancer, ovarian cancer, uterine cancer, esophageal cancer and prostatic cancer.
  • breast cancer e.g., triple negative breast cancer (TNBC), HR + /Her2- breast cancer, HR + /Her2 low breast cancer
  • colorectal cancer e.g., lung cancer, stomach cancer, urinary tract cancer, urothelial cancer, bladder cancer, renal cancer, pancreatic cancer, ovarian cancer, uterine cancer, esophageal cancer and prostatic cancer.
  • the breast cancer is triple negative breast cancer (TNBC), HR + /Her2’ breast cancer, or HR + /Her2 low breast cancer.
  • the prostatic cancer is castrate-resistant prostate cancer (CRPC).
  • CRPC castrate-resistant prostate cancer
  • the lung cancer is non-small lung cancer (NSCLC).
  • NSCLC non-small lung cancer
  • the lung cancer is (i) squamous NSCLC or (ii) non-squamous NSCLC.
  • the lung cancer is without EGFR, ALK, or other actionable genomic alterations.
  • the Trop-2 positive cancer is (i) unresectable, locally advanced or (ii) metastatic.
  • the cancer has progressed following at least one prior anti-cancer therapy.
  • Tn some embodiments, the cancer has progressed after prior new hormonal agent treatment (NHA; first- or second-generation non-steroidal antiandrogens, abiratcronc).
  • NHA first- or second-generation non-steroidal antiandrogens, abiratcronc
  • the cancer has progressed or recurred after platinum-based chemotherapy.
  • the cancer has progressed or recurred after checkpoint inhibitor therapy (CPI) therapy.
  • CPI checkpoint inhibitor therapy
  • the cancer has progressed or recurred after platinum-based chemotherapy and anti-PD-(L)l antibody therapy, received either in combination or sequentially in any order.
  • the cancer has progressed or recurred after a tyrosine kinase inhibitor therapy.
  • the subject is treatment naive.
  • the subject has not received a prior therapy selected from the group consisting of a taxane therapy (taxane naive), checkpoint inhibitor therapy (CPI naive), and topoisomerase I inhibitor therapy.
  • a prior therapy selected from the group consisting of a taxane therapy (taxane naive), checkpoint inhibitor therapy (CPI naive), and topoisomerase I inhibitor therapy.
  • the subject has not received a prior taxane therapy (taxane naive), checkpoint inhibitor therapy (CPI naive), or topoisomerase I inhibitor therapy.
  • taxane naive prior taxane therapy
  • CPI naive checkpoint inhibitor therapy
  • topoisomerase I inhibitor therapy topoisomerase I inhibitor therapy
  • the taxane therapy comprises paclitaxel, nab-paclitaxel (ABRAXANE®), docetaxel, or cabazitaxel.
  • the checkpoint inhibitor therapy comprises an anti-CTLA4 antibody or an anti-PD(L)l antibody.
  • the topoisomerase I inhibitor therapy comprises a topotecan, irinotecan, belotecan or exatecan.
  • the anti-Trop-2 ADC and the adenosine pathway inhibitor are coadministered concurrently.
  • the anti-Trop-2 ADC and the adenosine pathway inhibitor are coadministered sequentially.
  • the subject is human.
  • the anti-Trop-2 ADC is administered at one or more doses in the range of 8 mg/kg to 10 mg/kg.
  • the anti-Trop2 ADC is administered at one or more doses of 8 mg/kg or 10 mg/kg.
  • the anti-Trop2 ADC is administered at one or more doses of 10 mg/kg.
  • the anti-Trop-2 ADC is administered intravenously.
  • the anti-Trop-2 ADC is administered on days 1 and 8 of a 21-day cycle.
  • the adenosine pathway inhibitor is administered at one or more doses of 75 mg or 150 mg.
  • the adenosine pathway inhibitor is administered at one or more doses of 150 mg.
  • the adenosine pathway inhibitor is administered orally (PO).
  • the adenosine pathway inhibitor is administered once daily (QD).
  • the anti-PD(L)l antibody is administered at one or more doses of 360 mg.
  • the anti-PD(L)l antibody is administered intravenously (IV).
  • the anti-PD(L)l antibody is administered once every three weeks (Q3W).
  • sacituzumab govitecan is administered intravenously (IV) at a dose of 10 mg/kg on day 1 and day 8 of a 21 -day treatment cycle
  • etrumadenant is administered orally (PO) once a day (QD) at a dose of 150 mg on each day of the 21-day treatment cycle
  • zimberelimab is administered intravenously (IV) on day 1 of the 21-day treatment cycle (Q3W).
  • an anti-cancer effect is observed as determined by objective response rate (ORR), disease control rate (DCR), progression free survival (PFS), duration of response (DOR), overall survival (OS), complete response (CR), partial response (PR), PSA response rate, radiographic response rate, change from baseline in blood and tumor tissue microenvironment pharmacodynamic (PD) biomarkers, or a combination thereof.
  • ORR objective response rate
  • DCR disease control rate
  • PFS progression free survival
  • DOR duration of response
  • OS overall survival
  • CR complete response
  • PR partial response
  • PSA response rate radiographic response rate
  • change from baseline in blood and tumor tissue microenvironment pharmacodynamic (PD) biomarkers or a combination thereof.
  • tumor response or progression is determined according to RECIST version 1.1.
  • a method of treating, mitigating, reducing, preventing or delaying the recurrence or metastasis of castrate-resistant prostate cancer comprising co-administering to a human patient an effective amount of a) sacituzumab govitecan; and b) etrumadenant.
  • CRPC castrate-resistant prostate cancer
  • Tn some embodiments, provided herein is a method of treating metastatic castrate-resistant prostate cancer (mCRPC) comprising co-administering to a human patient an effective amount of a) sacituzumab govitecan; and b) etrumadenant.
  • the method further comprises co-administering an anti-PD-(L)l antibody to the human patient.
  • the anti-PD-(L)l antibody is selected from the group consisting of pembrolizumab, nivolumab, cemiplimab, pidilizumab, spartalizumab, atezolizumab, avelumab, durvalumab, cosibelimab, sasanlimab, tislelizumab, retifanlimab, balstilimab, toripalimab, cetrelimab, genolimzumab, prolgolimab, lodapolimab, camrelizumab, budigalimab, avelumab, dostarlimab, envafolimab, sintilimab, and zimberelimab.
  • the method further comprises co-administering zimberelimab to the human patient.
  • the human mCRPC patient has previously progressed on ADT.
  • the human mCRPC patient has previously progressed on NHA.
  • the human mCRPC patient is CPI and taxane naive.
  • the human mCRPC patient has RECIST 1.1 measurable or non-measurable disease.
  • the CRPC is metastatic CRPC (mCRPC).
  • the CRPC is resistant or refractory to one or more anti-cancer therapies.
  • the CRPC has progressed following prior NHA therapy (first- or second-generation non-steroidal antiandrogens, abiraterone).
  • prior NHA therapy first- or second-generation non-steroidal antiandrogens, abiraterone.
  • the human patient has not received a prior therapy selected from taxanc therapy (taxanc naive), checkpoint inhibitor therapy (CPI naive), and topoisomerase I inhibitor therapy.
  • the human patient has not received a prior taxane therapy (taxane naive), checkpoint inhibitor therapy (CPI naive), or topoisomerase I inhibitor therapy.
  • taxane naive prior taxane therapy
  • CPI naive checkpoint inhibitor therapy
  • topoisomerase I inhibitor therapy topoisomerase I inhibitor therapy
  • the taxane therapy comprises paclitaxel, nab-paclitaxel (ABRAXANE®), docetaxel, or cabazitaxel.
  • the checkpoint inhibitor therapy comprises an anti-CTLA4 antibody or an anti-PD(L)! antibody.
  • the topoisomerase I inhibitor therapy comprises a topotecan, irinotecan, belotecan or exatecan.
  • NSCLC non-small cell lung cancer
  • the anti-PD-(L)l antibody is selected from the group consisting of pembrolizumab, nivolumab, cemiplimab, pidilizumab, spartalizumab, atezolizumab, avelumab, durvalumab, cosibelimab, sasanlimab, tislelizumab, retifanlimab, balstilimab, toripalimab, cetrelimab, genolimzumab, prolgolimab, lodapolimab, camrelizumab, budigalimab, avelumab, dostarlimab, envafolimab, sintilimab, and zimberelimab.
  • the anti-PD-(L)l antibody is zimberelimab.
  • the NSCLC has progressed or recurred after platinum-based chemotherapy. In some embodiments, the NSCLC has progressed or recurred after checkpoint inhibitor therapy (CPI) therapy. In some embodiments, the NSCLC has progressed or recurred after platinum based chemotherapy and anti-PD-(L)l antibody therapy, received either in combination or sequentially in any order. In some embodiments, the NSCLC has progressed or recurred after a tyrosine kinase inhibitor therapy. In some embodiments, the NSCLC is (i) unresectable, locally advanced or (ii) metastatic.
  • sacituzumab govitecan is administered intravenously (IV) at a dose of 8 mg/kg or 10 mg/kg on day 1 and day 8 of a 21 -day treatment cycle and etrumadenant is administered orally (PO) once a day (QD) at a dose of 75 mg or 150 mg on each day of the 21 -day treatment cycle.
  • sacituzumab govitecan is administered intravenously (IV) at a dose of 10 mg/kg on day 1 and day 8 of a 21-day treatment cycle and etrumadenant is administered orally (PO) once a day (QD) at a dose of 150 mg on each day of the 21-day treatment cycle.
  • zimberelimab is administered intravenously (IV) on day 1 of the 21-day treatment cycle (Q3W).
  • an anti-cancer effect is observed as determined by objective response rate (ORR), disease control rate (DCR), progression free survival (PFS), duration of response (DOR), overall survival (OS), complete response (CR), partial response (PR), PSA response rate, radiographic response rate, change from baseline in blood and tumor tissue microenvironment pharmacodynamic (PD) biomarkers, or combinations thereof.
  • an anti-cancer effect is observed as determined by objective response rate (ORR), disease control rate (DCR), progression free survival (PFS), overall survival (OS), complete response (CR), partial response (PR), PSA response rate, radiographic response rate, or change from baseline in blood and tumor tissue microenvironment pharmacodynamic (PD) biomarkers.
  • an anti-CD47 antibody e.g., magrolimab
  • an anti-CD47 antibody is not co-administered to the subject or human patient.
  • an MCL1 inhibitor e.g., GS-9716
  • GS-9716 is not co-administered to the subject or human patient.
  • a FLT3 agonist e.g., GS-3583, CDX-301
  • GS-3583, CDX-301 is not administered to the subject or human patient.
  • TA + tumor antigen positive
  • TA + tumor antigen positive
  • TA + tumor antigen positive
  • TA + tumor antigen positive
  • a tumor antigen targeted ADC comprising a topoisomerase I inhibitor (Topi ADC)
  • Topici ADC topoisomerase I inhibitor
  • adenosine pathway inhibitor an adenosine pathway inhibitor
  • optionally an anti-PD(L)l antibody optionally an anti-PD(L)l antibody.
  • an anti-Trop-2 ADC for use in combination with an adenosine pathway inhibitor and optionally an anti-PD(L)l antibody in a method of treating, mitigating, reducing, preventing or delaying the recurrence or metastasis of Trop-2 positive cancers, wherein the method comprises administering the anti-Trop-2 ADC, adenosine pathway inhibitor, and optionally the additional anti-PD(L) 1 antibody to a subject.
  • a Topi ADC for use in combination with an adenosine pathway inhibitor and optionally an anti-PD(L)l antibody in a method of treating, mitigating, reducing, preventing or delaying the recurrence or metastasis of tumor antigen positive (TA + ) cancers, wherein the method comprises administering the Topi ADC, adenosine pathway inhibitor, and optionally the anti-PD(L)l antibody to a subject.
  • arc combination therapies for treating, mitigating, reducing, preventing or delaying the recurrence or metastasis of Trop-2 positive (Trop-2 + ) cancers by co-administering effective amounts of a) an anti-Trop-2 antibody-drug conjugate (anti-Trop-2 ADC) and b) an adenosine pathway inhibitor to a subject.
  • an anti-Trop-2 antibody-drug conjugate anti-Trop-2 ADC
  • combination therapies for treating, mitigating, reducing, preventing or delaying the recurrence or metastasis of a tumor antigen positive (TA + ) cancer by co-administering an effective amount of a) a tumor antigen (TA) targeted ADC comprising a topoisomerase I inhibitor (Topi ADC) and b) an effective amount of an adenosine pathway inhibitor to a subject.
  • the combination therapies provided herein further comprise co-administering an additional therapeutic agent, such as a checkpoint inhibitor, or an additional therapeutic modality (e.g., surgery, radiation).
  • the anti-Trop-2 ADC is sacituzumab govitecan.
  • the Topi ADC is trastuzumab-deruxtecan (T-DXd).
  • the adenosine pathway inhibitor is a CD39 inhibitor (e.g., TTX-030, IPH5201, SRF617), a CD73 inhibitor (e.g., quemliclustat, oleclumab), or an adenosine receptor antagonist (e.g., etrumadenant, imaradenant, NIR178).
  • the checkpoint inhibitor is an anti-PD(L)l antibody (e.g., zimberelimab, pembrolizumab, nivolumab, atezolizumab, durvalumab).
  • the Trop-2 positive cancer is castrate-resistant prostate cancer (CRPC) or non-small cell lung cancer (NSCLC).
  • an anti-Trop-2 ADC e.g., sacituzumab govitecan
  • an adenosine pathway inhibitor e.g., etrumadenant
  • an additional therapeutic agent such as a checkpoint inhibitor (e.g., anti-PD(L)l antibody), or an additional therapeutic modality (e.g., surgery, radiation) in a method of treating, mitigating, reducing, preventing or delaying the recurrence or metastasis of Trop-2 positive cancers
  • the method comprises administering the anti-Trop-2 ADC, adenosine pathway inhibitor, and optionally the additional therapeutic agent or additional therapeutic modality to a subject (e.g., a human cancer patient).
  • the anti-Trop-2 ADC is sacituzumab govitecan.
  • the adenosine pathway inhibitor is a CD39 inhibitor (e.g., TTX-030, IPH5201, SRF617), a CD73 inhibitor (e.g., quemliclustat, oleclumab), or an adenosine receptor antagonist (e.g., etrumadenant, imaradenant, NIR178).
  • the checkpoint inhibitor is an anti-PD(L)l antibody (e.g., zimberelimab, pembrolizumab, nivolumab, atezolizumab, durvalumab).
  • the Trop-2 positive cancer is castrate-resistant prostate cancer (CRPC) or non-small cell lung cancer (NSCLC).
  • a Topi ADC for use in combination with an adenosine pathway inhibitor (e.g., CD39 inhibitor, CD73 inhibitor, adenosine receptor antagonist) and optionally an additional therapeutic agent, such as a checkpoint inhibitor (e.g., anti-PD(L)l antibody), or an additional therapeutic modality (e.g., surgery, radiation) in a method of treating, mitigating, reducing, preventing or delaying the recurrence or metastasis of TA positive cancers, wherein the method comprises administering the Topi ADC, adenosine pathway inhibitor, and optionally the additional therapeutic agent or additional therapeutic modality to a subject (e.g., a human cancer patient).
  • an adenosine pathway inhibitor e.g., CD39 inhibitor, CD73 inhibitor, adenosine receptor antagonist
  • an additional therapeutic agent such as a checkpoint inhibitor (e.g., anti-PD(L)l antibody), or an additional therapeutic modality (e.g., surgery, radiation) in
  • the Topi ADC is trastuzumab-deruxtecan (T-DXd).
  • the adenosine pathway inhibitor is a CD39 inhibitor (e.g., TTX-030, IPH5201, SRF617), a CD73 inhibitor (e.g., quemliclustat, oleclumab), or an adenosine receptor antagonist (e.g., etrumadenant, imaradenant, NIR178).
  • the checkpoint inhibitor is an anti-PD(L)l antibody (e.g., zimberelimab, pembrolizumab, nivolumab, atezolizumab, durvalumab).
  • the Trop-2 positive cancer is castrate-resistant prostate cancer (CRPC) or non-small cell lung cancer (NSCLC).
  • This disclosure is based, at least in part, on the realization that a combination therapy comprising co-administration of a) an anti-Trop2 ADC or a Topi ADC and b) an adenosine pathway inhibitor can have improved anticancer effects compared to single-agent therapies with one of the combined agents a) and b).
  • Improved anti-cancer effects can include, for example, improved overall response rates (ORR), improved partial response rates (PR), improved complete response rates (CR), improved durations of response (DOR), improved overall survival (OS), improved progression free survival (PFS), improved quality of life (QoL) indicators, or the like.
  • the combination therapies described herein generally have tolerable safety profiles, c.g., as determined by the incidence and/or severity of observed adverse events (AEs) or serious adverse events (SAEs).
  • the combination therapies described herein have improved safety profiles, e.g., as compared to monotherapies involving the co-administered agents, or relative to a standard of care for a given indication (e.g., a chemotherapy regimen of physician’s choice).
  • the term “antibody” refers to a polypeptide that includes canonical immunoglobulin sequence elements sufficient to confer specific binding to a particular target antigen (e.g., a heavy chain variable domain, a light chain variable domain, and/or one or more CDRs sufficient to confer specific binding to a particular target antigen).
  • a particular target antigen e.g., a heavy chain variable domain, a light chain variable domain, and/or one or more CDRs sufficient to confer specific binding to a particular target antigen.
  • the term antibody includes, for example, and without limitation, human antibodies, non-human antibodies, antibody fragments, and antigen-binding agents that include antibody fragments, inclusive of synthetic, engineered, and modified forms thereof.
  • the term antibody includes, by way of example, both naturally occurring and non-naturally occurring antibodies.
  • an antibody may comprise at least two heavy (H) chains and two light (L) chains interconnected by disulfide bonds, or an antigen-binding molecule thereof.
  • Each H chain comprises a heavy chain variable region (abbreviated herein as VH) and a heavy chain constant region.
  • the heavy chain constant region comprises three constant domains, CHI, CH2 and CH3.
  • Each light chain comprises a light chain variable region (abbreviated herein as VL) and a light chain constant region.
  • the light chain constant region comprises one constant domain, CL.
  • the VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDRs), interspersed with regions that are more conserved, termed framework regions (FR).
  • CDRs complementarity determining regions
  • Each VH and VL comprises three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, and FR4.
  • the variable regions of the heavy and light chains contain a binding domain that interacts with an antigen.
  • the constant regions of the antibodies (Abs) may mediate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (Clq) of the classical complement system.
  • Naturally -produced antibodies are glycosylated, typically on the CH2 domain.
  • antibodies include monoclonal antibodies, monospecific antibodies, polyclonal antibodies, multispecific antibodies (including bispecific antibodies), engineered antibodies, rccombinantly produced antibodies, wholly synthetic antibodies, humanized antibodies, chimeric antibodies, immunoglobulins, tetrameric antibodies comprising two heavy chain and two light chain molecules, antibody light chain monomers, antibody heavy chain monomers, antibody light chain dimers, antibody heavy chain dimers, antibody light chain- antibody heavy chain pairs, intrabodies, antibody fusions (sometimes referred to herein as “antibody conjugates”), heteroconjugate antibodies, single domain antibodies, monovalent antibodies, single chain antibodies or single-chain Fvs (scFv), camelized antibodies, affybodies, Fab fragments, Fab' fragments, F(ab’)2 fragments, Fd' fragments, Fd fragments, isolated CDRs, single chain Fvs, polypeptide-Fc fusions, single domain antibodies (e.g., shark single domain antibodies such as IgNAR or fragments thereof); came
  • the term “antibody-drug conjugate” generally refers to a compound comprising an antibody targeting a tumor antigen and an anticancer agent payload, optionally connected by a linker.
  • the tumor antigen is tumor- associated calcium signal transducer 2 (Trop-2; NCBI Gene ID: 4070).
  • the tumor antigen targeted antibody is an anti-Trop-2 antibody (e.g., sacituzumab or datopotamab).
  • the payload is a topoisomerase I inhibitor (e.g., SN38 or Dxd).
  • ADC linker chemistries are known to a skilled artisan and referenced herein (e.g., CL2A).
  • topoisomerase I inhibitor refers to small molecule compounds capable of inhibiting the activity of a DNA topoisomerase type I enzyme.
  • Type I topoisomerases can catalyze changes in DNA topology via transient single-stranded breaks in DNA.
  • Type I topoisomerases can be further classified as Type 1 A and a Type IB subtypes.
  • a description of type I topoisomerases can be found, for example, in Baker et al. (2009) Nucleic Acids Res 37(3), 693- 701.
  • Topoisomerase inhibitors that can be used as payloads in the ADCs described herein include camptothecin (CPT) and non-camptothecin based inhibitors.
  • Useful camptothecins include, for example, topotecan, irinotecan, belotecan, exatecan, and derivatives thereof.
  • Useful non- camptothccins include, for example, indcnosinoquinolincs (c.g., indcno[l,2-c]isoquinolinc, NSC314622, indotecan (LMP-400), indimitecan (LMP-776)), phenanthridines (e.g., topovale (ARC- 111), and indolocarbazoles (e.g., BE-13793C).
  • the topoisomerase I inhibitor is a camptothecin (e.g., an irinotecan, topotecan, belotecan, or exatecan derivative, such as SN38 or Dxd). In some embodiments, the topoisomerase I inhibitor is SN38. In some embodiments, the topoisomerase I inhibitor is Dxd.
  • camptothecin e.g., an irinotecan, topotecan, belotecan, or exatecan derivative, such as SN38 or Dxd.
  • the topoisomerase I inhibitor is SN38. In some embodiments, the topoisomerase I inhibitor is Dxd.
  • anti-PD(L)l antibody refers to antibodies that a) bind to programmed cell death protein 1 (PD-1, CD279; NCBI Gene ID: 5133) or programmed deathligand 1 (PD-L1 , CD274; NCBI Gene ID: 29126); and b) inhibit the PD-1/PD-L1 interaction and PD-1/PD-L1 pathway.
  • PD-1, CD279; NCBI Gene ID: 5133 programmed cell death protein 1
  • PD-L1 , CD274 NCBI Gene ID: 29126
  • the PD-1/PD-L1 pathway and its role in cancer immunotherapy is described, for example, in Salmaninejad etal, J. Cell Physiol (2019) 234 (10): 16824-16837.
  • Anti- PD(L)1 antibodies that can be used in the methods provided herein include, for example, pembrolizumab, nivolumab, cemiplimab, pidilizumab, spartalizumab, atezolizumab, avelumab, durvalumab, cosibelimab, sasanlimab, tislelizumab, retifanlimab, balstilimab, toripalimab, cetrelimab, genolimzumab, prolgolimab, lodapolimab, camrelizumab, budigalimab, avelumab, dostarlimab, envafolimab, sintilimab, and zimberelimab.
  • the anti-PD(L)l antibody is zimberelimab.
  • the terms “effective amount” or “therapeutically effective amount” refer to that amount of a therapeutic agent administered in the methods provided herein (e.g., ADC, adenosine pathway inhibitor, checkpoint inhibitor) that, when administered alone or in combination with another therapeutic agent to a cell, tissue, or subject is sufficient to effect treatment or a beneficial result in the subject.
  • the therapeutically effective amount may vary depending on the subject, and disease or condition being treated, the weight and age of the subject, the severity of the disease or condition, and the manner of administering, which can readily be determined by one of ordinary skill in the art.
  • an effective amount further refers to that amount of the therapeutic agent, which when used in the context of the combination therapies provided herein, is sufficient to treat, prevent, alleviate, ameliorate or mitigate a disease condition, or delay or slow the progression of a disease, and that amount sufficient to effect an increase in rate of treatment, healing, prevention or amelioration of such conditions.
  • an effective amount refers to that active ingredient alone.
  • a therapeutically effective amount refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.
  • an effective amount or therapeutically effective amount of a therapeutic agent e.g., ADC, adenosine pathway inhibitor, checkpoint inhibitor
  • a therapeutic agent e.g., ADC, adenosine pathway inhibitor, checkpoint inhibitor
  • the amount is sufficient to ameliorate, palliate, lessen, and/or delay one or more of symptoms of cancer.
  • treatment refers to reversing, alleviating, delaying the onset of, or inhibiting the progress of a disease or disorder, or one or more symptoms thereof, as described herein.
  • treatment may be administered after one or more symptoms have developed.
  • treatment may be administered in the absence of symptoms.
  • treatment may be administered to a susceptible individual prior to the onset of symptoms e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors). Treatment may also be continued after symptoms have resolved, for example, to prevent or delay their recurrence.
  • the methods provided herein refer to the treatment of a subject having cancer (e.g., a human cancer patient).
  • treating a subject having cancer comprises inhibiting cancer or cancer cell proliferation in the treated subject.
  • treating a human cancer patient using the methods provided herein results in the observation of anti-tumor effects or anti-cancer effects in the treated patient.
  • the terms “inhibition of cancer” and “inhibition of cancer cell proliferation” refer to the inhibition of the growth, division, maturation or viability of cancer cells, and/or causing the death of cancer cells, individually or in aggregate with other cancer cells, by cytotoxicity, nutrient depletion, or the induction of apoptosis.
  • anti-tumor effect refers to a biological effect that can present as a decrease in tumor volume, a decrease in the number of tumor cells, a decrease in tumor cell proliferation, a decrease in the number of metastases, an increase in overall or progression-free survival, an increase in life expectancy, or amelioration of various physiological symptoms associated with the tumor.
  • anti-cancer effects are measured using one or more of the endpoint criteria applied in the clinical studies described herein (e.g., primary, secondary, or exploratory endpoints).
  • Exemplary clinical endpoint criteria that can be used to measure anti-cancer effects in connection with the methods provided herein include objective response rate (ORR), complete response (CR) rate, partial response (PR) rate, disease control rate (DCR), progression-free survival (PFS), duration of response (DOR), overall survival (OS), biomarker-based signals, e.g., of intratumoral immune activation or induction of cancer cell death (e.g., tumor tissue or blood based biomarkers), patient quality of life (QoL) indicators (e.g., based on patient surveys), and others.
  • anti-tumor effects e.g., tumor responses or progression
  • RECIST version 1.1 Eisenhauer et al. Eur J Cancer (2009);45 (2):228-47.
  • Anti-cancer effects can be observed using any diagnostic methods known to a skilled artisan, such as computed tomography (CT), magnetic resonance imaging (MRI), radiography, or the like.
  • an “increased” or “enhanced” amount is typically a “statistically significant” amount (e.g., with respect to tumor size, cancer cell proliferation or growth), and may include an increase that is 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, or 50 or more times (e.g., 100, 500, 1000 times) (including all integers and decimal points in between and above 1, e.g., 2.1, 2.2, 2.3, 2.4, etc.) an amount or level described herein.
  • It may also include an increase of at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 100%, at least 150%, at least 200%, at least 500%, or at least 1000% of an amount or level described herein.
  • a “decreased” or “reduced” or “lesser” amount refers to a decrease that is about 1.1, 1.2, 1.3, 1.4, 1.5, 1.6
  • an amount or level described herein may also include a decrease of at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90%, at least 100%, at least 150%, at least 200%, at least 500%, or at least 1000% of an amount or level described herein.
  • AE adverse event
  • Adverse event refers to any untoward medical occurrence in a clinical study participant administered a study drug that does not necessarily have a causal relationship with the treatment.
  • An AE can therefore be any unfavorable and/or unintended sign (including clinically significant abnormal laboratory findings), symptom, or disease temporally associated with the use of a study drug, whether or not the AE is considered related to the study drug.
  • Adverse events may also include pretreatment or posttreatment complications that occur as a result of protocol-specified procedures or special situations.
  • preexisting events that increase in severity or change in nature after study drug initiation or during or as a consequence of participation in the clinical study are also considered AEs.
  • the term “serious adverse event” refers to a) death; b) a lifethreatening situation; c) in-participant hospitalization or prologation of existing hospitalization; d) persistent or significant disability or incapacity; e) a congenital anomaly or birth defect; or f) a medically important event or reaction as determined by an attending physician.
  • medically important events include intensive treatment in an emergency room or at home for allergic bronchospasm; blood dyscrasias or convulsions that do not result in hospitalization; and development of drug dependency or drug abuse.
  • tumor antigen expressing cancer or “tumor antigen positive cancer” are used interchangeably to refer to cancers having detectable levels of tumor antigen (TA) expression.
  • the tumor antigen is Trop-2.
  • Tumor antigen expression in a cancer tissue or cancer cell can be detected in a sample from a subject having cancer (e.g., a human cancer patient) by any method known to a skilled artisan, e.g., as a protein, mRNA, or cell-surface expression level.
  • tumor antigen expression can be determined by methods such as immunohistochemistry (IHC), western blot, fluorescence in-situ hybridization (FISH), polymerase chain reaction (PCR), next-generation exome sequencing, or fluorescence associated cell sorting (FACS).
  • IHC immunohistochemistry
  • FISH fluorescence in-situ hybridization
  • PCR polymerase chain reaction
  • FACS fluorescence associated cell sorting
  • TA expressing cancer or “TA positive cancer”
  • less than 99%, less than 95%, less than 90%, less than 80%, less than 70%, less than 60%, less than 50%, less than 40%, less than 30%, less than 20%, or less than 10% of cells in a tumor or tumor sample have detectable levels of tumor antigen expression.
  • 99% or more, 95% or more, 90% or more, 80% or more, 70% or more, 60% or more, 50% or more, 40% or more, 30% or more, 20% or more, or 10% or more of cells in a tumor or tumor sample have detectable levels of tumor antigen expression.
  • TA expressing cancer or “TA positive cancer” refers to a cancer for which treatment with a certain anti-Trop-2 ADC or Topi ADC is indicated either as a single-agent therapy or in a combination.
  • TA positive cancer indications of anti-Trop-2 ADCs or Topi ADCs that have received a marketing authorization from a regulatory health agency e.g., FDA, EMA are listed, for example, on agency approved drug product labels.
  • a TA positive (e.g., Trop-2 + ) cancer is a cancer in which an anti-Trop-2 ADC or Topi ADC has demonstrated an anti-cancer effect that is attributable to the anti-Trop-2 ADC or Topi ADC.
  • Such anti-cancer effects can be demonstrated in a preclinical model (e.g., a mouse xenograft or syngeneic cancer model) or in a clinical trial conducted with human cancer patients.
  • the TA expressing cancer or TA positive cancer does not express detectable levels of Trop-2, e.g., as determined by IHC and/or FISH analysis.
  • the term “tumor antigen targeted antibody-drug conjugate (ADC)” generally refers to an ADC comprising a tumor antigen binding antibody.
  • ADC tumor antigen targeted antibody-drug conjugate
  • Such TA binding antibodies can generally direct an ADC to TA expressing cancer cells in a tumor tissue.
  • the TA binding antibody is a neutralizing or blocking antibody (competing with the binding of another binding partner to the TA).
  • the TA binding antibody can modulate TA associated molecular or cellular signaling events.
  • the TA binding antibody has antagonistic or agonistic activity relative to the TA.
  • TA targeted ADCs that can be used in the methods provided herein include, without limitation, gemtuzumab ozogamicin, brentuximab vedotin, ado-trastuzumab emtansine (T-DM1), inotuzumab ozogamicin, trastuzumab deruxtecan (T-DXD), datopotamab deruxtecan (DATO-DXD), polatuzumab vedotin, sacituzumab govitecan, labetuzumab govitecan, enfortumab vedotin, and belantamab mafodotin.
  • the TA targeted ADC does not bind to Trop-2.
  • ADCs Antibody-Drug-Conjugates
  • the treatment methods provided herein comprise co-administering an antibody-drug- conjugate (ADC) to a subject, such as a human cancer patient.
  • ADC antibody-drug- conjugate
  • the ADC comprises an anti-Trop-2 antibody, an anti-cancer agent payload, and an optional linker connecting the anti-Trop-2 antibody and payload (anti-Trop-2 ADC).
  • the anti-cancer agent payload in the anti-Trop-2 ADC is a topoisomerase I inhibitor (e.g., SN38, Dxd).
  • the anti-cancer agent payload in the anti-Trop-2 ADC does not include a topoisomerase I inhibitor.
  • the ADC comprises a tumor antigen (TA) targeted antibody, a topoisomerase I inhibitor payload, and an optional linker connecting the TA targeted antibody and payload (Topi ADC).
  • TA targeted antibody in the Topi ADC is an anti-Trop-2 antibody.
  • the TA targeted antibody in the TropI ADC does not include an anti-Trop-2 antibody.
  • ADCs that can be used in the methods provided herein can comprise antibodies or antigen- binding fragments thereof of any format.
  • the ADC can include, without limitation, a monospecific or multispecific (e.g., bispecific, trispecific) antibody, or an antigenbinding fragment thereof, in any format, such as DART®, Duobody®, BiTE®, BiKE, TriKE, XmAb®, TandAb®, scFv, Fab, or Fab derivative.
  • the ADC comprises a non-immunoglobulin antibody mimetic (e.g., including adnectin, affibody, affilin, affimer, affitin, alphabody, anticalin, peptide aptamer, armadillo repeat protein (ARM), atrimer, avimer, designed ankyrin repeat protein (DARPin®), fynomer, knottin, Kunitz domain peptide, monobody, and nanoCLAMPs).
  • a non-immunoglobulin antibody mimetic e.g., including adnectin, affibody, affilin, affimer, affitin, alphabody, anticalin, peptide aptamer, armadillo repeat protein (ARM), atrimer, avimer, designed ankyrin repeat protein (DARPin®), fynomer, knottin, Kunitz domain peptide, monobody, and nanoCLAMPs).
  • the ADC antibody is a blocking antibody. In some embodiments, the ADC antibody is a neutralizing antibody. In some embodiments, the ADC antibody is an agonistic or activating antibody. Tn some embodiments, the ADC antibody is an antagonistic or inhibitory antibody.
  • the ADC comprises an IgG antibody or antigen-binding fragment thereof.
  • the IgG antibody or antigen-binding fragment thereof can be of various isotypes, such as IgGl, IgG2, IgG3 or IgG4.
  • the ADC antibody comprises human IgGl hinge and constant region sequences.
  • the ADC antibody can be a chimeric human-mouse, a chimeric human-primate, a humanized (human framework and murine hypervariable (CDR) regions), or a fully human antibody, as well as a variation thereof.
  • the ADC antibody is a half-IgG4 antibody (referred to as “unibody”), as described, e.g., by van der Neut Kolfschoten et al. (Science 2007; 317:1554-1557).
  • the ADC antibody or antigen-binding fragment thereof is designed or selected to comprise human constant region sequences that belong to specific allotypes, which may result in reduced immunogenicity when the antibody or ADC is administered to a human subject.
  • the ADC antibody or antigen-binding fragment thereof is of a non-Glml allotype (nGlml), such as Glm3, Glm3,l, Glm3,2 or Glm3,l,2.
  • the allotype is selected from the group consisting of the nGlml, Glm3, nGlml, 2 and Km3 allotypes.
  • the ADCs that can be used in the methods provided herein comprise an anti-Trop-2 antibody, an anti-cancer agent payload, and an optional linker connecting the anti-Trop-2 antibody and payload (Anti-Trop-2 ADC).
  • the pay load is a topoisomerase I inhibitor. In some embodiments, the payload does not include a toposisomerase I inhibitor.
  • anti-Trop-2 antibodies that can be used in anti-Trop-2 ADCs to perform the methods provided herein include, but are not limited to, those described in W02020016662 (Abmart), W02020249063 (Bio-Thera Solutions), US20190048095 (Bio-Thera Solutions), WO2013077458 (LivTech/Chiome), EP20110783675 (Chiome), W02015098099 (Daiichi Sankyo), WG2017002776 (Daiichi Sankyo), W02020130125 (Daiichi Sankyo), W02020240467 (Daiichi Sankyo), US2021093730 (Daiichi Sankyo), US9850312 (Daiichi Sankyo), CN112321715 (Biosion), US2006193865 (Immunomedics/Gilead), WO2011068845 (Immunomedic s/Gilead), US2016296633 (
  • WO2020257648 (Gilead), US2013039861 (Gilead), WO2014163684 (Gilead), US9427464 (LivTech/Chiome), US10501555 (Abruzzo Theranostic/Oncoxx), WO2018036428 (Sichuan Kelun Pharma), WO2013068946 (Pfizer), W02007095749 (Roche), and W02020094670 (SynAffix).
  • the anti-Trop-2 ADC comprises an antibody selected from sacituzumab (hRS7), datopotamab (hTINA HILI), and a Trop-2 binding fragment thereof.
  • the anti-Trop-2 ADC is sacituzumab (hRS7).
  • the anti-Trop-2 antibody is datopotamab (hTINA HILI).
  • the anti-Trop-2 ADC comprises a VH-CDR1, a VH-CDR2, a VH-CDR3, a VL-CDR1, a VL-CDR2 and a VL-CDR3 selected from one of Tables 1 to 4.
  • the anti-Trop-2 ADC comprises the following VH- CDR1 , a VH-CDR2, a VH-CDR3, a VL-CDR1 , a VL-CDR2 and a VL-CDR3 amino acid sequences (according to Kabat), respectively:
  • the anti-Trop-2 ADC comprise variable domains (VH and VL) selected from Table 5.
  • the anti-Trop-2 ADC comprises the following VH and VL amino acid sequences, respectively:
  • the anti-Trop-2 ADC comprises an anti-Trop-2 antibody, an anti-cancer agent payload, and an optional linker connecting antibody and pay load.
  • the linker is non-cleavable (e.g., a maleimidocaproyl or maleimidomethyl cyclohexane- 1 -carboxylate linker).
  • the linker is cleavable.
  • the linker is acid cleavable (e.g., a hydrazone linker).
  • the cleavable linker is reducible (e.g., a disulphide linker).
  • the linker is protease cleavable (e.g., a dipeptide or tetrapeptide linker). In some embodiments, the linker is selected from linkers disclosed in USPN 7,999,083 (e.g., CL2A, CL6, CL7, CLX, or CLY). In some embodiments, the linker is CL2A.
  • Exemplary anti-cancer agent payloads that can be used in anti-Trop-2 ADCs in the methods provided herein include, for example, microtubule inhibitors, DNA cleavage agents, and topoisomerase I inhibitors.
  • the microtubule inhibitor is an auristatin (e.g., monomethyl auristatin E (MMAE) or monomethyl auristatin F (MMAF), a taxane, a vinca alkaloid, an epothilone) or maytansinoid (e.g., mertansine (DM1) or ravtansine (DM4)).
  • auristatin e.g., monomethyl auristatin E (MMAE) or monomethyl auristatin F (MMAF)
  • MMAE monomethyl auristatin E
  • MMAF monomethyl auristatin F
  • DM1 mertansine
  • DM4 mertansine
  • the DNA cleavage agent is a calicheamicin (e.g., ozogamicin).
  • the topoisomerase I inhibitor is a camptothecin (e.g., an irinotecan, topotecan, belotecan, or exatecan derivative, such as SN38 or Dxd).
  • the topoisomerase I inhibitor is SN38.
  • the topoisomerase I inhibitor is Dxd.
  • the topoisomerase I inhibitor is not a camptothecin (i.e. non-camptothecin topoisomerase 1 inhibitor).
  • the non-camptothecin topoisomerase 1 inhibitor is selected from an indenosinoquinoline (e.g., indeno[l,2-c]isoquinoline, NSC314622, indotecan (LMP-400), indimitecan (LMP-776)), a phenanthridine (e.g., topovale (ARC-111), and a indolocarbazole (e.g., BE-13793C).
  • indenosinoquinoline e.g., indeno[l,2-c]isoquinoline, NSC314622, indotecan (LMP-400), indimitecan (LMP-776)
  • a phenanthridine e.g., topovale (ARC-111)
  • a indolocarbazole e.g., BE-13793C
  • Additional illustrative anti-cancer agent payloads that can be conjugated to anti-Trop-2 ADCs include without limitation anthracyline (e.g., doxorubicin, daunorubicin, epirubicin, idarubicin), pyrrolobenzodiazepine (PBD), or dimer thereof, DNA cross-linking agent SC-DR002 (D6.5), duocarmycin, a duocarmycin (A, B l, B2, Cl, C2, D, SA, CC-1065), tubulysin B and analogs thereof (e.g., Tubl96), and other anti-cancer agents described herein.
  • anthracyline e.g., doxorubicin, daunorubicin, epirubicin, idarubicin
  • PBD pyrrolobenzodiazepine
  • SC-DR002 DNA cross-linking agent SC-DR002 (D6.5)
  • duocarmycin a duocarmycin (A, B
  • Exemplary anti-Trop-2 ADCs that can be used in the methods provided herein are described in WO21225892 (Shanghai Escugen Biotechnology; ESG-401, STI-3258), W022010797 (BiOneCure Therapeutics; BIO-106), CN112237634 (Shanghai Fudan-Zhangjiang Biopharmaceutical; FDA018-ADC), WO19114666 (Sichuan Kelun Pharmaceutical; KLA264), WO22078524 (Hangzhou DAC Biotech; DAC-002), W015098099 (Daiichi Sankyo; datopotamab deruxtecan), WO21147993 (Jiangsu Hengrui Medicine; SHR-A1921), and WO21052402 (Sichuan Baili Pharmaceutical; BL-M02D1 ).
  • the anti-Trop-2 ADC is selected from sacituzumab govitecan (Immunomedic s/Gilead), datopotamab deruxtecan (DS- 1062, Dato- Dxd; Daiichi Snakyo/AstraZeneca), SKB-264 (KL-A264; Klus Pharma, Sichuan Kelun Pharma), ESG-401 (Shanghai Escugen Bio technology/Le vena Biopharma), JS-108 (DAC-002; Junshi Bio/Hangzhou DAC), FDA018-ADC (Shanghai Fudan Zhangjiang Bio Pharma), STI-3258 (Sorrento), OXG-64 (Oncoxx), BD1-4702 (OBI Pharma), BL-M02D1 (Systimmune), Anti-Trop- 2 Ab (Mediterrania Theranostic/Legochem), KD-065 (Nanjing KAEDI Bio
  • the anti-Trop-2 ADC is sacituzumab govitecan (Immunomedics/Gilead). In some embodiments, the anti-Trop-2 ADC is selected from sacituzumab govitecan, datopotamab deruxtecan (DS-1062), ESG-401, SKB-264, DAC-02 and BAT-8003. In some embodiments, the anti-Trop-2 ADC is sacituzumab govitecan. In some embodiments, the anti-Trop-2 ADC is datopotamab deruxtecan (DS-1062, Dato-Dxd; Daiichi Snakyo/AstraZeneca). Further examples of useful anti-Trop-2 therapeutics include, but are not limited to, those described in W02016201300 (Gilead), and CN108440674 (Hangzhou Lonzymc Biological Technology).
  • anti-Trop-2 ADCs that can be used in the methods provided herein are described, for example, in USPN 7,999,083 and USPN 9,028,833, which are hereby incorporated herein by reference in their entireties.
  • the anti-Trop-2 ADC comprises a topoisomerase I inhibitor.
  • the topoisomerase I inhibitor is selected from irinotecan, topotecan, and SN-38.
  • the anti-Trop-2 ADC has a structural formula of mAb-CL2A-SN-38, with a structure represented by:
  • the anti-Trop-2 ADC comprises sacituzumab (hRS7; described, e.g., in W02003074566, Figures 3 and 4).
  • the anti-Trop-2 ADC is sacituzumab govitecan (IMMU-132). Sacituzumab govitecan (SG) is an antibody-drug conjugate (ADC) composed of the following 3 components:
  • the humanized monoclonal antibody hRS7 IgGlK which binds to trophoblast cellsurface antigen 2 (Trop-2; TACSTD2; EGP-1; NCBI Gene ID: 4070), a transmembrane calcium signal transducer that is overexpressed in many epithelial cancers, including triple-negative breast cancer (TNBC).
  • camptothecin-derived agent SN-38 a topoisomerase I inhibitor.
  • a hydrolyzable linker that links the humanized monoclonal antibody to SN-38.
  • CL2A hydrolyzable linker
  • Additional exemplary anti-Trop-2 ADCs that can be used in the methods provided herein arc described in WO21225892 (Shanghai Escugcn Biotechnology).
  • the anti-Trop-2 ADC comprises a linker-payload conjugate having a structure represented by: attached to an anti-Trop-2 antibody (e.g., hRS7).
  • the anti-Trop-2 ADC has a DAR of between 1 and 8.
  • the anti-Trop-2 ADC has a DAR of between 7.0 and 8.0.
  • the anti-Trop-2 ADC is ESG-401 (STI-3258).
  • the anti-Trop-2 ADC comprises a linker-payload conjugate (TL035) having a structure represented by:
  • the anti-Trop-2 ADC has a DAR of between 1 and 8. In some embodiments, the anti-Trop-2 ADC has a DAR of between 7.0 and 8.0. In some embodiments, the anti-Trop-2 ADC has a DAR of about 7.0. In some embodiments, the anti-Trop-2 ADC is KL-A264.
  • anti-Trop-2 ADC comprises a linker-payload conjugate having a structure represented by:
  • the anti-Trop-2 ADC has a DAR of between 1 and 8. In some embodiments, the anti-Trop-2 ADC has a DAR of ⁇ 7.0. In some embodiments, the anti-Trop-2 ADC has a DAR of about 4. In some embodiments, the anti-Trop-2 ADC is datopotamab deruxtecan.
  • the ADCs that can be co-administered in the methods provided herein comprise a tumor antigen (TA) targeted antibody, a topoisomerase I inhibitor payload, and an optional linker connecting the TA targeted antibody and payload (Topi ADC).
  • TA tumor antigen
  • Topici ADC topoisomerase I inhibitor
  • the TA targeted antibody in the Topi ADC is an anti-Trop-2 antibody.
  • the TA targeted antibody in the Topi ADC does not comprise an anti-Trop-2 antibody.
  • the Topi ADCs that can be co-administered in the methods provided herein comprise an antibody that binds a tumor antigen selected from carbonic anhydrase IX, B7, CCCL19, CCCL21, CSAp, HER-2/neu, BrE3, CD1, CDla, CD2, CD3, CD4, CD5, CD8, CD11A, CD14, CD15, CD16, CD18, CD19, CD20, CD21, CD22, CD23, CD25, CD29, CD30, CD32b, CD33, CD37, CD38, CD40, CD40L, CD44, CD45, CD46, CD52, CD54, CD55, CD59, CD64, CD67, CD70, CD74, CD79a, CD80, CD83, CD95, CD126, CD133, CD138, CD147, CD154, CEACAM5, CEACAM-6, alpha-fetoprotein (AFP), VEGF, ED-B fibronectin, EGP-1, EGP
  • the Topi ADCs that can be co-administered in the methods provided herein comprise an antibody that binds a tumor antigen selected from CEACAM5 (NCBI Gene ID: 1048), CEACAM6 (NCBI Gene ID: 4680), CD74 (NCBI Gene ID: 972), CD19 (NCBI Gene ID: 930), CD20 (NCBI Gene ID: 931), CD22 (NCBI Gene ID: 933), CSAp (NCBI Gene ID: 126731), HLA-DR, HLA-G, MUC5ac (NCBI Gene ID: 4586), and AFP (NCBI Gene ID: 174).
  • a tumor antigen selected from CEACAM5 (NCBI Gene ID: 1048), CEACAM6 (NCBI Gene ID: 4680), CD74 (NCBI Gene ID: 972), CD19 (NCBI Gene ID: 930), CD20 (NCBI Gene ID: 931), CD22 (NCBI Gene ID: 933), CSAp (NCBI Gene ID: 126731), HLA-
  • the Topi ADCs that can be used to perform the methods provided herein comprise an antibody selected from gemtuzumab, brentuximab, belantamab, camidanlumab. trastuzumab, inotuzumab, glembatumumab, anetumab, mirvetuximab, depatuxizumab, vadastuximab, labetuzumab, ladiratuzumab, loncastuximab, patritumab, lifastuzumab, indusatumab, polatuzumab, pinatuzumab, coltuximab, upifitamab, indatuximab, milatuzumab, rovalpituzumab, enfortumab, tisotumab, tusamitamab. disitamab, telisotuzumab, and antigen-
  • the Topi ADC that can be used in the methods provided herein comprise an antibody selected from hLLl (anti-CD74; USPN 7,312,318), 11LL2 (anti-CD22; USPN 7,074,403), hRFB4 (anti-CD22), hPAM4 (anti-MUC5ac; USPN 7,282,567), hMN-3 (anti- NOTCH3; USPN 7,541,440), hMN-14 (labetuzumab; anti-CEAC AM5 ; USPN 6,676,924); hMN15 (anti-CEACAM6; USPN 7,541,440); hA19 (anti-CD19; USPN 7,109,304), hA20 (anti- CD22; USPN 7,251,164), hMu-9 (anti-CSAp; USPN 7,387,773), hL243 (anti-HLA-DR; USPN 7,612,180), and hIMMU-31 (anti- AFP; USPN 7,
  • the Topi ADC comprises a linker connecting a topoisomerase I inhibitor payload with a tumor antigen targeted antibody.
  • the linker is non-cleavable (e.g., a maleimidocaproyl or maleimidomethyl cyclohexane- 1 -carboxylate linker).
  • the linker is cleavable.
  • the linker is acid clcav blc (c.g., a hydrazone linker).
  • the cleavable linker is reducible (e.g., a disulphide linker).
  • the linker is protease cleavable (e.g., a dipeptide or tetrapeptide linker). In some embodiments, the linker is selected from linkers disclosed in USPN 7,999,083 (e.g., CL2A, CL6, CL7, CLX, or CLY). In some embodiments, the linker is CL2A.
  • the Topi ADC comprises a topoisomerase I inhibitor that is a camptothecin (e.g., an irinotecan, topotecan, belotecan, or exatecan derivative, such as Dxd or SN38).
  • a camptothecin e.g., an irinotecan, topotecan, belotecan, or exatecan derivative, such as Dxd or SN38.
  • the topoisomerase I inhibitor in the Topi ADC is Dxd.
  • the topoisomerase I inhibitor in the Topi ADC is SN38.
  • the topoisomerase I inhibitor in the Topi ADC is not a camptothecin.
  • the non-camptothecin topoisomerase I inhibitor is selected from an indenosinoquinoline (e.g., indeno[l,2-c]isoquinoline, NSC314622, indotecan (LMP-400), indimitecan (LMP-776)), a phenanthridine (e.g., topovale (ARC-111), and a indolocarbazole (e.g., BE-13793C).
  • indenosinoquinoline e.g., indeno[l,2-c]isoquinoline, NSC314622, indotecan (LMP-400), indimitecan (LMP-776)
  • a phenanthridine e.g., topovale (ARC-111)
  • a indolocarbazole e.g., BE-13793C
  • the Topi ADC has a structural formula of mAb-CL2A-SN-38, with a structure represented by:
  • the Topi ADC that can be used in a method provided herein includes an antibody targeting carcinocmbryonic antigen-related cell adhesion molecule 5 (CEACAM5; CD66e; NCBI Gene ID: 1048).
  • CEACAM5 an antibody targeting carcinocmbryonic antigen-related cell adhesion molecule 5
  • the CEACAM5 antibody is hMN-14 (e.g., as described in WO1996011013).
  • the anti-CEACAM5 ADC is as described in W02010093395 (anti-CEACAM5-CL2A-SN38).
  • the Topi ADC is labetuzumab govitecan (IMMU-130).
  • the Topi ADC that can be used in a method provided herein comprises an antibody targeting MHC class II cell surface receptor encoded by the human leukocyte antigen complex (HLA-DR).
  • HLA-DR antibody is hL243 (e.g., as described in W02006094192).
  • the HLA-DR-ADC is as described in W02010093395 (anti-HLA-DR-CL2A-SN38).
  • the antibody and/or fusion protein provided herein is administered with the HLA-DR-ADC IMMU-140.
  • Topi ADCs that can be co-administered in the methods provided herein are described in WO21225892 (Shanghai Escugen Biotechnology).
  • the Topi ADC comprises a linker-payload conjugate having a structure represented by: attached to a tumor antigen targeted antibody.
  • Topi ADCs that can be co-administered in the methods provided herein are described in US20210101906 (Sichuan Kelun Pharmaceutical).
  • the Topi ADC comprises a linker-payload conjugate (TLO35) having a structure represented by: attached to a tumor antigen targeting antibody.
  • TLO35 linker-payload conjugate
  • Topi ADCs that can be co-administered in the methods provided herein are described in US2016297890 (Daiichi Sankyo).
  • the Topi ADC comprises a linker-payload conjugate having a structure represented by: attached to a tumor antigen targeting antibody (e.g., trastuzumab).
  • a tumor antigen targeting antibody e.g., trastuzumab
  • the Topi ADC has a DAR of about 4.
  • the Topi ADC is trastuzumab-deruxtecan (T- DXd).
  • the adenosine pathway is one of several pathways that can promote tumor immune evasion in the tumor microenvironment. It is believed that the conversion of pro-inflammatory extracellular ATP into immunosuppressive adenosine (eADO) can favor tumor progression and escape from antitumor immunity.
  • eADO immunosuppressive adenosine
  • the role of the adenosine pathway in immuno-oncology is described, for example, in Allard et al., (2020) Nat Rev Clin Oncol 17, 611-629.
  • Adenosine pathway inhibitors that can be co-administered in the methods provided herein can include, for example, inhibitors of CD39 (cctonuclcosidc triphosphate diphospohydrolasc-1; ENTPD1; NCBI Gene ID: 953); inhibitors of CD73 (exto-5’ -nucleotidase; NT5E; NCBI Gene ID: 4907), or antagonists of adenosine receptors, such as adenosine A 2A receptor (AD0RA2A; NCBI Gene ID: 135) or adenosine AIB receptor (AD0RA2B; NCBI Gene ID: 136).
  • the adenosine pathway inhibitors that can be co-administered in the methods provided herein include Inhibitors of CD38 (cyclic ADP ribose hydrolase; NCBI Gene ID: 952).
  • CD39 inhibitors that can be co-administered in the methods provided herein include small molecule inhibitors and large molecule inhibitors (e.g., anti-CD39 antibodies) of CD39.
  • Exemplary CD39 inhibitors are described, for example in WO09095478, WO12085132, WO16073845, WO17157948, WO18049145, WO18065552, WO18065622, WO19027935, WO19178269, W021056610, WG21037037, WO21055329, WO21088838, and WO22111576.
  • the CD39 inhibitor is selected from TTX-030 (AbbVie/Trishula), IPH5201 (AstraZeneca/Innate Pharma), SRF617 (Surface Oncology), CD39 ASO (Secama Pharmaceuticals), JS-019 (Shanghai Junshi Biosciences); anti-CD39 (Arcus Biosciences), ES002 (Elpiscience Biopharmaceuticals), and CD39xPDl (Biotheus).
  • CD73 inhibitors that can be co-administered in the methods provided herein include small molecule inhibitors and large molecule inhibitors (e.g., anti-CD73 antibodies) of CD73.
  • CD73 inhibitors that can be used in the methods provided herein are described, for example, in US Patent No. 11,001,603, the compounds of which are hereby incorporated by reference herein. Additional illustrative CD73 inhibitors that can be co-administered in the methods provided herein are described, for example in WO15164573, W016055609, W016075099, WO16081746, WO16081748, W017064043, WO17098421, W017100670, WO17118613, WO17153952, WO18013611, WO18067424, WO18065627, WO18094148, WO18110555, WO18119284, WO18137598, WO18183635, W018208980, WO18208727, WO18215535, WO18237173, WO18237157, WO19053617, W019090111, WO19129059, WO19168744, WO
  • the CD73 inhibitor is quemliclustat (AB680, GS-0680), uliledlimab, mupadolimab, ORIC-533, ATG-037, PT-199, AK131, NZV93O, BMS-986179, or oleclumab.
  • the CD73 inhibitor is oleclumab or quemliclustat. In some embodiments, the CD73 inhibitor is quemliclustat.
  • the adenosine receptor antagonists that can be co-administered in the methods provided herein can be selective antagonists of adenosine A2A receptor (A2AR; ADORA2A) or A2B receptor (A2BR; ADORA2B), or dual A2A/2BR antagonists.
  • the adenosine receptor antagonist is a selective A2aR antagonist.
  • the adenosine receptor antagonist is an adenosine A2A receptor (A2AR; ADORA2A) selective antagonist selected from imaradenant (AstraZeneca), NIR178 (Novartis/Palobiofarma) ID11902 (Ildong), IN-A003 (Inno.n), NTI-55 (A2aR/TLR7, Nammi), TT-10 (Tarns Therapeutics), and TT-228 (Teon Therapeutics).
  • the adenosine receptor antagonist is a selective A2BR antagonist.
  • the adenosine receptor antagonist is an adenosine A2B receptor (A2BR; ADORA2B) selective antagonist selected from PBF-1129 (Palobiofarma) and TT-702 (Toon Therapeutics).
  • A2BR adenosine A2B receptor
  • ADORA2B adenosine A2B receptor
  • the adenosine receptor antagonist is a dual A2A/2BR antagonist.
  • the adenosine receptor antagonist is a dual adenosine A2A/A2B receptor antagonist selected from etrumadenant (AB928, Arcus Biosciences), INCB 106385 (Incyte), M1069 (Merck KGaA), A2aR/A2bR (Domain/Merck KgaA), HM87277 (Al/A2aR/A2bR, Hanmi Pharmaceutical), RVU-330 (Ryvu), and TT-53 (Tarns Therapeutics).
  • the adenosine receptor antagonist is etrumadenant.
  • the adenosine receptor antagonists can be small molecule antagonists or large molecule antagonists.
  • adenosine receptor antagonists that can be co-administered in the methods provided herein are described, for example, in WO07103776, WO07134958, W008086201, W009009178, WG09033161, WO09037463, WO09037468, WO09037467, WO09055548, W009055308, W010008775, WO11027805, WO11050160, WO11055391, WO12135084, W014101120, WO14101113, WO14106861, WO15027431, W016081290, WO16126570, W016200717, WO16209787, W017008205, WO18013951, W019086074, WO2019118313, WO20053263, W020106558, W020103930, W020103939, W020106560, W020112706, W020112700, WO20216152
  • adenosine receptor antagonists that can be used in the methods provided herein are described, for example, in US Patent No. 10,399,962, the compounds of which are hereby incorporated by reference.
  • the adenosine pathway inhibitor is a dual antagonist of adenosine A2A receptor (A2AR; ADORA2A) and A2B receptor (A2BR; ADORA2B).
  • the adenosine pathway inhibitor is etrumadenant (AB928; GS-0928), taminadenant, TT-10, TT-4, or M 1069.
  • the adenosine pathway inhibitor is etrumadenant.
  • Etrumadenant is a small molecule dual antagonist of both A2AR and A2BR that can inhibit the adcnosinc-drivcn impairment of tumor-infiltrating lymphocytes (mainly through A2AR on CD8+ T cells and NK cells) and myeloid cells (through A2BR on dendritic cells and macrophages) in the absence of any agonist activity.
  • Etrumadenant can achieve high penetration of tumor tissue, robust potency in the presence of high adenosine concentrations, and shows low nonspecific protein binding.
  • the combination treatment methods provided herein comprise coadministering a PD(L)1 inhibitor.
  • PD(L)1 inhibitors that can be co-administered can include small molecule PD(L)1 inhibitors and large molecule PD(L)1 inhibitors (e.g., anti-PD(L)-l antibodies).
  • Exemplary small molecule PD(L)1 inhibitors that can be co-administered in the methods provided herein include, for example, CA-170, GS-4224, GS-4416 and lazertinib (GNS-1480; PD- Ll/EGFR). Additional illustrative small molecule PD(L)1 inhibitors are described, for example, in Guzik et al. (2019) Molecules 24(11), 2071.
  • anti-PD-(L)l antibodies that can be co-administered in the method provided herein include, for example, pembrolizumab, nivolumab, cemiplimab, pidilizumab, spartalizumab, atezolizumab, avelumab, durvalumab, cosibelimab, sasanlimab, tislelizumab, retifanlimab, balstilimab, toripalimab, cetrelimab, genolimzumab, prolgolimab, lodapolimab, camrelizumab, budigalimab, avelumab, dostarlimab, envafolimab, sintilimab, and zimberelimab.
  • the anti-PD-(L)! antibody is zimberelimab.
  • Additional illustrative anti-PD-(L)l antibodies that can be co-administered in the methods provided herein include pembrolizumab, nivolumab, cemiplimab, pidilizumab, AMP- 224, MEDI0680 (AMP-514), spartalizumab, atezolizumab, avelumab, durvalumab, BMS-936559, cosibelimab (CK-301), sasanlimab (PF-06801591), tislelizumab (BGB-A317), GLS-010 (WBP- 3055), AK-103 (HX-008), AK-105, CS-1003, HLX-10, retifanlimab (MGA-012), BI-754091, balstilimab (AGEN-2034), AMG-404, toripalimab (JS-001), cetrelimab (JNJ-637232
  • anti-TIGIT antibodies that can be co-administered in the methods provided herein include, for example, tiragolumab, vibostolimab, domvanalimab, AB3O8, AK127, BMS- 986207, ralzapastotug, and etigilimab.
  • the anti-TIGIT antibody is domvanalimab.
  • the anti-TIGIT antibody is AB308.
  • the anti-TIGIT antibody is ralzapastotug.
  • the anti-TIGIT antibody is an Fc-silent antibody. In some embodiments, the anti-TIGIT antibody comprises one or more mutations in the Fc region to reduce, prevent, or eliminate binding to an Fc receptor. In some embodiments, the anti-TIGIT antibody comprises one or more mutations in the Fc region to reduce, prevent, or eliminate binding to FcyR. In some embodiments, any of the antibodies disclosed herein comprise one or more mutations in the Fc region to reduce, prevent, or eliminate binding to FcyRIIIA. In some embodiments, any of the antibodies disclosed herein comprise one or more mutations in the Fc region to reduce, prevent, or eliminate binding to FcyRIV.
  • the anti-TIGIT antibody comprises one or more mutations in the Fc region to reduce, prevent, or eliminate ADCC, ADCP, and/or CDC. In some embodiments, the anti-TIGIT antibody comprises one or more substitutions in the Fc region to reduce, prevent, or eliminate binding to Fc receptors, wherein the one or more substitutions occur at EU index positions 228, 233, 234, 235, 235, 235, 236, 237, 265, 297, 322, 327, 328, 330, 331, and any combination thereof.
  • the anti-TIGIT antibody comprises one or more substitutions in the Fc region to reduce, prevent, or eliminate binding to Fc receptors, wherein the one or more substitutions comprise S228P, E233P, E234A, L235A, E235E, E235F, G236R, G237A, D265A, N297A, K322A, A327G, E328R, A330S, P331S, and any combination thereof. Additional mutations in the Fc region that reduce, prevent, or eliminate binding to Fc receptors and alternative strategies for reducing, preventing, or eliminating binding to Fc receptors are described in, e.g., Saunders, Front Immunol.
  • the anti-TIGIT antibody is an Fc-enabled antibody. In some embodiments, the anti-TIGIT antibody comprises one or more mutations in the Fc region to enable or enhance binding to an Fc receptor. In some embodiments, the anti-TIGIT antibody comprises one or more mutations in the Fc region to enable or enhance binding to FcyR. In some embodiments, any of the antibodies disclosed herein comprise one or more mutations in the Fc region to enable or enhance binding to FcyRIIIA. In some embodiments, any of the antibodies disclosed herein comprise one or more mutations in the Fc region to enable or enhance binding to FcyRIV.
  • the anti-TIGIT antibody comprises one or more mutations in the Fc region to enable or enhance ADCC, ADCP, and/or CDC.
  • the anti-PD- (E)l antibody comprises one or more substitutions in Fc region to enhance or enable binding to Fc receptors, wherein the one or more substitutions occur at EU index positions 234, 235, 236, 239, 243, 247, 267, 268, 292, 298, 300, 305, 324, 326, 330, 332, 333, 334, 339, 345, 396, 430, and any combination thereof.
  • the anti-TIGIT antibody comprises one or more substitutions in the Fc region to enhance or enable binding to Fc receptors, wherein the one or more substitutions comprise F234L, L235V, G236A, S239D, F243L, P247I, S267E, H268E, R292P, S298A, Y300L, V305I, S324T, K326W, A33OE, I332E, E333A, E333S, K334A, A339Q, E345G, P396L, E430G, and any combination thereof.
  • substitutions comprise F234L, L235V, G236A, S239D, F243L, P247I, S267E, H268E, R292P, S298A, Y300L, V305I, S324T, K326W, A33OE, I332E, E333A, E333S, K334A, A339Q, E345G
  • the Fc-enabled antibody comprises a modified IgGl domain characterized by substitutions at S239D, A33OL, and I332E (Eu numbering).
  • the anti-TIGIT antibody contains or has a glycoform perturbation.
  • the anti-TIGIT antibody contains or has an N-linked Fc glycosylation.
  • the anti-TTGTT antibody contains or has sialylation, galactosylation, bisecting sugars, fucosylation, or any combination thereof. Additional mutations in the Fc region that enhance or enable binding to Fc receptors and alternative strategies for enhancing or enabling binding to Fc receptors are described in Saunders, 2019.
  • adenosine pathway inhibitor e.g., CD39 inhibitor, CD73 inhibitor, or A2R inhibitor
  • the methods provided herein include treating a Trop-2 positive cancer comprising co-administering to a subject an effective amount of: a) an anti-Trop-2 antibody-drug conjugate (ADC); and b) an adenosine pathway inhibitor (e.g., CD39 inhibitor, CD73 inhibitor, or A2R inhibitor).
  • the methods provided herein include treating the recurrence or metastasis of a Trop-2 positive cancer comprising co-administering to a subject an effective amount of: a) an anti-Trop-2 antibody-drug conjugate (ADC); and b) an adenosine pathway inhibitor (e.g., CD39 inhibitor, CD73 inhibitor, or A2R inhibitor).
  • the methods provided herein include preventing or delaying the recurrence or metastasis of a Trop-2 positive cancer comprising co-administering to a subject an effective amount of: a) an anti-Trop-2 antibody-drug conjugate (ADC); and b) an adenosine pathway inhibitor (e.g., CD39 inhibitor, CD73 inhibitor, or A2R inhibitor).
  • ADC anti-Trop-2 antibody-drug conjugate
  • the adenosine pathway inhibitor is a plurality of adenosine pathway inhibitors.
  • the plurality of adenosine pathway inhibitors comprises a CD73 inhibitor and an adenosine receptor antagonist.
  • the CD73 inhibitor is quemliclustat and the adenosine receptor antagonist is etrumadenant.
  • the methods provided herein are for treating a Trop-2 positive cancer comprising co-administering to a subject an effective amount of: a) an anti-Trop-2 antibody-drug conjugate (ADC); and b) an adenosine pathway inhibitor (e.g., CD39 inhibitor, CD73 inhibitor, or A2R inhibitor).
  • ADC anti-Trop-2 antibody-drug conjugate
  • adenosine pathway inhibitor e.g., CD39 inhibitor, CD73 inhibitor, or A2R inhibitor
  • TA + tumor antigen positive
  • methods of treating, mitigating, reducing, preventing or delaying the recurrence or metastasis of a tumor antigen positive (TA + ) cancer comprising co-administering to a subject an effective amount of: a) a tumor antigen (TA) targeted antibody-drug conjugate (ADC) comprising a topoisomerase I inhibitor (Topi ADC); and b) an adenosine pathway inhibitor (e.g., CD39 inhibitor, CD73 inhibitor, or A2R inhibitor).
  • TA tumor antigen
  • ADC targeted antibody-drug conjugate
  • Topici ADC topoisomerase I inhibitor
  • an adenosine pathway inhibitor e.g., CD39 inhibitor, CD73 inhibitor, or A2R inhibitor
  • the methods provided herein include treating a tumor antigen positive (TA+) cancer comprising co-administering to a subject an effective amount of: a) a tumor antigen targeted antibody-drug conjugate (ADC) comprising a topoisomerase I inhibitor; and b) an adenosine pathway inhibitor (e.g., CD39 inhibitor, CD73 inhibitor, or A2R inhibitor).
  • ADC tumor antigen targeted antibody-drug conjugate
  • adenosine pathway inhibitor e.g., CD39 inhibitor, CD73 inhibitor, or A2R inhibitor
  • the methods provided herein include treating the recurrence or metastasis of a tumor antigen positive cancer comprising co-administering to a subject an effective amount of: a) a tumor antigen targeted antibody-drug conjugate (ADC) comprising a topoisomerase I inhibitor; and b) an adenosine pathway inhibitor (e.g., CD39 inhibitor, CD73 inhibitor, or A2R inhibitor).
  • ADC tumor antigen targeted antibody-drug conjugate
  • an adenosine pathway inhibitor e.g., CD39 inhibitor, CD73 inhibitor, or A2R inhibitor.
  • the methods provided herein include preventing or delaying the recurrence or metastasis of a tumor antigen positive cancer comprising co-administering to a subject an effective amount of: a) a tumor antigen targeted antibody-drug conjugate (ADC) comprising a topoisomerase I inhibitor; and b) an adenosine pathway inhibitor (e.g., CD39 inhibitor, CD73 inhibitor, or A2R inhibitor).
  • ADC tumor antigen targeted antibody-drug conjugate
  • an adenosine pathway inhibitor e.g., CD39 inhibitor, CD73 inhibitor, or A2R inhibitor.
  • the methods provided herein are for treating a tumor antigen positive cancer comprising co-administering to a subject an effective amount of: a) a tumor antigen targeted antibody-drug conjugate (ADC) comprising a topoisomerase I inhibitor; and b) an adenosine pathway inhibitor (e.g., CD39 inhibitor, CD73 inhibitor, or A2R inhibitor).
  • ADC tumor antigen targeted antibody-drug conjugate
  • adenosine pathway inhibitor e.g., CD39 inhibitor, CD73 inhibitor, or A2R inhibitor
  • provided herein are methods of treating, mitigating, reducing, preventing or delaying the recurrence or metastasis of a tumor antigen (e.g., Trop-2) positive cancer comprising co-administering to a subject the combinations provided herein.
  • the treatment methods provided herein mitigate the occurrence or recurrence of a tumor antigen (e.g., Trop-2) positive cancer by administering the combinations provided herein.
  • the treatment methods provided herein reduce the occurrence or recurrence of a tumor antigen (e.g., Trop-2) positive cancer by administering the combinations provided herein.
  • the treatment methods provided herein prevent the occurrence or recurrence of a tumor antigen (e.g., Trop-2) positive cancer by administering the combinations provided herein. In some embodiments, the treatment methods provided herein delay the occurrence or recurrence of a tumor antigen (e.g., Trop-2) positive cancer by administering the combinations provided herein.
  • a tumor antigen e.g., Trop-2
  • the treatment methods provided herein delay the occurrence or recurrence of a tumor antigen (e.g., Trop-2) positive cancer by administering the combinations provided herein.
  • the methods provided herein further comprise co-administering an additional therapeutic agent or therapeutic modality, or a combination thereof.
  • the methods provided herein comprise co-administering one, two, or three additional therapeutic agents or therapeutic modalities, or combinations thereof.
  • the additional therapeutic agent comprises chemotherapy (e.g., a chemotherapy treatment of physician’s choice, or an indicated standard of care for a specific therapeutic setting).
  • the additional therapeutic agent comprises an immune checkpoint inhibitor (CPI; e.g., anti-CTLA4 antibody, anti-PD(L)! antibody, anti-TTGTT antibody).
  • CPI immune checkpoint inhibitor
  • the additional therapeutic agent comprises an anti-PD(L)l antibody (e.g., an anti- PD-1 antibody or an anti-PD-Ll antibody), and optionally an anti-TIGIT antibody.
  • the additional therapeutic agent comprises an anti-PD-(L)l antibody.
  • the additional therapeutic agent comprises an anti-TIGIT antibody.
  • the additional therapeutic agent comprises an anti-PD-(Ll) antibody and an anti- TIGIT antibody.
  • the additional therapeutic agent comprises a) zimberelimab and domvanalimab, b) zimberelimab and AB308, c) atezolizumab and tiragolumab, d) pembrolizumab and vibostolimab, e) pembrolizumab and domvanalimab, f) pembrolizumab and AB3O8, g) MK-7684A (pembrolizumab/vibostolimab coformulation), h) durvalumab and domvanalimab, i) zimberelimab and ralzapastotug, or j) pembrolizumab and ralzapastotug.
  • the additional therapeutic agent comprises zimberelimab and domvanalimab. In some embodiments, the additional therapeutic agent comprises zimberelimab and ralzapastotug. In some embodiments, the additional therapeutic modality comprises surgery or radiation therapy.
  • the subject is a cancer patient.
  • the subject is a human cancer patient.
  • the subject is treatment naive.
  • the subject e.g., human cancer patient
  • has not received a taxane e.g., paclitaxel, nab-paclitaxel (ABRAXANE®), docetaxel, cabazitaxel
  • a checkpoint inhibitor therapy e.g., anti-CTLA4 antibody, anti-PD(L)l antibody
  • the subject e.g. human cancer patient
  • a topoisomerase I inhibitor therapy e.g., irinotecan
  • the subject has received one or more lines of previous anti-cancer therapy before administration of a combination provided herein.
  • the subject e.g., human (m)CRPC patient
  • a new hormonal agent NHA; first- or second-generation nonsteroidal antiandrogens, e.g., abiraterone, enzalutamide, darolutamide, apalutamide, or combinations thereof
  • NHA new hormonal agent
  • first- or second-generation nonsteroidal antiandrogens e.g., abiraterone, enzalutamide, darolutamide, apalutamide, or combinations thereof
  • the subject e.g., human (m)CRPC patient
  • has shown disease progression after prior NHA treatment first- or second-generation non-steroidal antiandrogens, e.g., abiraterone, enzalutamide, darolutamide, apalutamide, or combinations thereof
  • first- or second-generation non-steroidal antiandrogens e.g., abiraterone, enzalutamide, darolutamide, apalutamide, or combinations thereof
  • the subject has received a prior anticancer therapy selected from surgery, radiation therapy, chemotherapy (including NHA therapy), checkpoint inhibitor therapy (e.g. anti-PD(L)l antibody).
  • the subject has a cancer that is resistant or refractory to one or more anti-cancer therapies.
  • the cancer is resistant or refractory to one or more anti-cancer therapies selected from radiation therapy, chemotherapy (including NHA therapy), and checkpoint inhibitor therapy (e.g., anti- PD(L)1 antibody).
  • the subject e.g., human (m)CRPC patient
  • first- or second-generation non-steroidal antiandrogens e.g., abiraterone, enzalutamide, darolutamide, apalutamide, or combinations thereof
  • a taxane e.g., docetaxel, cabazitaxel
  • checkpoint inhibitor e.g., anti-CTLA-4 antibody; anti-PD(L)l antibody
  • a topoisomerase I inhibitor e.g., irinotecan
  • the subject e.g., human (m)NSCLC patient
  • the subject e.g., human (m)NSCLC patient
  • has shown disease progression after checkpoint inhibitor therapy e.g., anti-PD-(L)l antibody or anti-CTLA4 antibody therapy.
  • the subject has progressed after platinum-based chemotherapy and checkpoint inhibitor therapy (e.g., anti-PD-(L)l antibody or anti-CTLA4 antibody therapy), received either in combination or sequentially in any order.
  • the subject e.g., human (m)NSCLC patient
  • a tyrosine kinase inhibitor therapy targeting specific genomic alterations in a cancer.
  • Exemplary tyrosine kinase inhibitors that are useful to address specific genomic alterations in lung cancer include gefitinib, erlotinib, afatinib, dacomitinib, neratinib, osimertinib, rociletinib, olmutinib, ASP8273 (Astellas), moninib, PF-06747775 (Pfizer), avitinib, and HS- 10296 (Jiangsu Hansoh).
  • the subject e.g., human (m)CRPC or (m)NSCLC patient
  • tumor antigen e.g., Trop-2
  • tumor antigen expression levels e.g., liquid or solid tumor biopsy, followed by tumor antigen expression analysis, e.g., by IHC or next-generation DNA sequencing.
  • the subject is a human prostate cancer patient.
  • the human patient has castrate resistant prostate cancer (CRPC).
  • the human patient has metastatic CRPC (mCRPC).
  • the human patient with CRPC or mCRPC ((m)CRPC) is treatment naive.
  • the human patient with (m)CRPC has not received a taxane (e.g., paclitaxel, nab-paclitaxel (ABRAXANE®), docetaxel, cabazitaxel) therapy before administration of a combination therapy provided herein.
  • a taxane e.g., paclitaxel, nab-paclitaxel (ABRAXANE®), docetaxel, cabazitaxel
  • the human patient with (m)CRPC has not received a checkpoint inhibitor therapy (e.g., anti-CTLA4 antibody, anti-PD(L)l antibody) before administration of a combination therapy provided herein.
  • a checkpoint inhibitor therapy e.g., anti-CTLA4 antibody, anti-PD(L)l antibody
  • the human patient with (m)CRPC has not received a topoisomerase I inhibitor therapy (e.g., irinotecan) before administration of a combination therapy provided herein.
  • the human patient with (m)CRPC has received one or more lines of anti-cancer therapy before administration of a combination provided herein.
  • the human patient with (m)CRPC has shown disease progression on one or more lines of anti-cancer therapy before administration of a combination provided herein.
  • the human patient with (m)CRPC has received a new hormonal agent (NHA; first- or second-generation non-steroidal antiandrogens, abiraterone) (NHA experienced) prior to administration of a combination therapy provided herein.
  • NHA new hormonal agent
  • the human patient with (m)CRPC has shown disease progression after prior NHA treatment (first- or second-generation non-steroidal antiandrogens, e.g., abiraterone, enzalutamide, darolutamide, apalutamide, or combinations thereof) before administration of a combination therapy provided herein
  • the human patient with (m)CRPC has received a prior anti-cancer therapy selected from surgery, radiation therapy, chemotherapy (including NHA therapy), checkpoint inhibitor therapy (e.g., anti-CTLA4 antibody, anti-PD(L)l antibody).
  • the human patient with (m)CRPC has a cancer that is resistant or refractory to one or more anti-cancer therapies.
  • the cancer is resistant or refractory to one or more anti-cancer therapies selected from radiation therapy, chemotherapy (including NHA therapy), and checkpoint inhibitor therapy (e.g., anti-CTLA4 antibody, anti- PD(L)1 antibody).
  • the human patient with (m)CRPC has received a prior NHA treatment (first- or second-generation non-steroidal antiandrogens, e.g., abiraterone, enzalutamide, darolutamide, apalutamide, or combinations thereof) (NHA experienced) and has not received a taxane (e.g., paclitaxel, nab-paclitaxel (ABRAXANE®), docetaxel, cabazitaxel) or checkpoint inhibitor (e.g., anti-CTLA-4 antibody; anti-PD(L)l antibody) (taxane and CPI naive) before administration of a combination therapy provided herein.
  • first- or second-generation non-steroidal antiandrogens e.
  • the human patient with (m)CRPC has received a prior NHA treatment (first- or second-generation nonsteroidal antiandrogens, e.g., abiraterone, enzalutamide, darolutamide, apalutamide, or combinations thereof) (NHA experienced) and has not received a taxane (e.g., paclitaxel, nab- paclitaxel (ABRAXANE®), docetaxel, cabazitaxel), checkpoint inhibitor (e.g., anti-CTLA-4 antibody; anti-PD(L)l antibody), or topoisomerase I inhibitor (e.g., irinotecan) before administration of a combination therapy provided herein.
  • first- or second-generation nonsteroidal antiandrogens e.g., abiraterone, enzalutamide, darolutamide, apalutamide, or combinations thereof
  • NHA experienced and has not received a taxane (e.g., pac
  • the human patient with (m)CRPC has shown disease progression after prior NHA treatment (first- or second- generation non-steroidal antiandrogens, e.g., abiraterone, enzalutamide, darolutamide, apalutamide, or combinations thereof) and has not received a taxane (e.g., paclitaxel, nab- paclitaxel (ABRAXANE®), docetaxel, cabazitaxel), checkpoint inhibitor (e.g., anti-CTLA-4 antibody; anti-PD(L)l antibody), or a topoisomerase I inhibitor (e.g., irinotecan) before administration of a combination therapy provided herein.
  • first- or second- generation non-steroidal antiandrogens e.g., abiraterone, enzalutamide, darolutamide, apalutamide, or combinations thereof
  • a taxane e.g., paclitaxel, na
  • the human patient with (m)CRPC has histologically confirmed adenocarcinoma of the prostate and metastatic castrate resistant with tumor progression while on androgen deprivation therapy (ADT; including orchiectomy) with castrate levels of serum (total) testosterone ( ⁇ 1.7 nmol/L or 50 ng/dL) defined by PSA and/or radiographic criteria according to PCWG3.
  • ADT on androgen deprivation therapy
  • the human patient (m)CRPC has metastatic castrate resistant adenocarcinoma of the prostate with tumor progression while on androgen deprivation therapy (e.g., including orchiectomy) with castrate levels of serum (total) testosterone ( ⁇ 1.7 nmol/L or 50 ng/dL) defined by prostate specific antigen (PSA) and/or radiographic criteria according to The Prostate Cancer Working Group 3 (PCWG3) and measurable or non-measurable disease per the Response Evaluation Criteria in Solid Tumors (RECIST) v 1.1.
  • the human patient with (m)CRPC has Eastern Cooperative Oncology Group performance status 0 or 1 with a life expectancy >3 months.
  • the human patient with (m)CRPC has been tested for tumor antigen (e.g., Trop-2) expression levels (e.g., liquid or solid tumor biopsy, followed by tumor antigen expression analysis, e.g., by IHC or next-generation DNA sequencing).
  • tumor antigen e.g., Trop-2
  • expression levels e.g., liquid or solid tumor biopsy, followed by tumor antigen expression analysis, e.g., by IHC or next-generation DNA sequencing.
  • the subject is a human lung cancer patient.
  • the human patient has non-small cell lung cancer (NSCLC).
  • NSCLC non-small cell lung cancer
  • the NSCLC is squamous.
  • the NSCLC is non-squamous.
  • the lung cancer does not have an actionable genomic alteration (e.g., an EGFR or ALK mutation, insertion, deletion, or the like) for which treatment with a targeted therapy (e.g., a targeted tyrosine kinase inhibitor therapy) is indicated (actionable genomic alteration).
  • a targeted therapy e.g., a targeted tyrosine kinase inhibitor therapy
  • Exemplary actionable genomic alterations and targeted tyrosine kinase inhibitor therapies are described, e.g., in Sullivan and Planchard Front.
  • the human NSCLC patient has shown disease progression after platinum-based chemotherapy. In some embodiments, the human NSCLC patient has shown disease progression after checkpoint inhibitor therapy (e.g., anti-PD- (L)l antibody or anti-CTLA4 antibody therapy). In some embodiments, the human NSCLC patient has progressed after platinum-based chemotherapy and checkpoint inhibitor therapy (e.g., anti-PD-(L)! antibody or anti-CTLA4 antibody therapy), received either in combination or sequentially in any order. In some embodiments, the human NSCLC patient has progressed after a tyrosine kinase inhibitor therapy targeting specific genomic alterations in a cancer.
  • checkpoint inhibitor therapy e.g., anti-PD- (L)l antibody or anti-CTLA4 antibody therapy
  • checkpoint inhibitor therapy e.g., anti-PD-(L)! antibody or anti-CTLA4 antibody therapy
  • Exemplary tyrosine kinase inhibitors that are useful to address specific genomic alterations in lung cancer (e.g., EGFR mutations or deletions) include gefitinib, erlotinib, afatinib, dacomitinib, neratinib, osimertinib, rociletinib, olmutinib, ASP8273 (Astellas), Feliartinib, PF-06747775 (Pfizer), avitinib, and HS- 10296 (Jiangsu Hansoh).
  • the combinations provided herein are administered in a neoadjuvant setting (e.g., in preparation for surgery or radiation therapy).
  • the combinations provided herein are administered in an adjuvant setting (e.g., following a primary treatment such as surgery or radiation therapy).
  • the combinations provided herein are administered in a therapeutic setting (e.g., as the primary therapy).
  • the combinations provided herein are administered in a maintenance setting.
  • the cancer is a hematological cancer.
  • the cancer includes a solid tumor.
  • the cancer includes a malignant tumor.
  • the cancer includes a metastatic cancer.
  • the cancer is resistant or refractory to one or more anticanccr therapies.
  • greater than about 50% of the cancer cells delectably express one or more cell surface immune checkpoint receptors (e.g., so-called “hot” cancer or tumor).
  • greater than about 1% and less than about 50% of the cancer cells detectably express one or more cell surface immune checkpoint receptors (e.g., so called “warm” cancer or tumor).
  • less than about 1% of the cancer cells detectably express one or more cell surface immune checkpoint receptors (e.g., so called “cold” cancer or tumor).
  • the cancer is a hematological cancer, e.g., a leukemia (e.g., Acute Myelogenous Leukemia (AML), Acute Lymphoblastic Leukemia (ALL), B-cell ALL, Myelodysplastic Syndrome (MDS), myeloproliferative disease (MPD), Chronic Myelogenous Leukemia (CML), Chronic Lymphocytic Leukemia (CLL), undifferentiated leukemia), a lymphoma (e.g., small lymphocytic lymphoma (SLL), mantle cell lymphoma (MCL), follicular lymphoma (FL), T-cell lymphoma, B-cell lymphoma, diffuse large B-cell lymphoma (DLBCL), marginal zone lymphoma (MZL), Waldestrom’s macroglobulinemia (WM)) and/or a myeloma (e.g., multiple myeloma (e.g., multiple mye
  • the cancer is an epithelial tumor (e.g., a carcinoma, a squamous cell carcinoma, a basal cell carcinoma, a squamous intraepithelial neoplasia), a glandular tumor (e.g., an adenocarcinoma, an adenoma, an adenomyoma), a mesenchymal or soft tissue tumor (e.g., a sarcoma, a rhabdomyosarcoma, a leiomyosarcoma, a liposarcoma, a fibrosarcoma, a dermatofibrosarcoma, a neurofibrosarcoma, a fibrous histiocytoma, an angiosarcoma, an angiomyxoma, a leiomyoma, a chondroma, a chondrosarcoma, an alve
  • a glandular tumor e.g., an
  • the cancer includes a solid tumor in or arising from a tissue or organ, such as:
  • bone e.g., adamantinoma, aneurysmal bone cysts, angiosarcoma, chondroblastoma, chondroma, chondromyxoid fibroma, chondrosarcoma, chordoma, dedifferentiated chondrosarcoma, enchondroma, epithelioid hemangioendothelioma, fibrous dysplasia of the bone, giant cell tumour of bone, haemangiomas and related lesions, osteoblastoma, osteochondroma, osteosarcoma, osteoid osteoma, osteoma, periosteal chondroma, Desmoid tumor, Ewing sarcoma);
  • bone e.g., adamantinoma, aneurysmal bone cysts, angiosarcoma, chondroblastoma, chondroma, chondromyxoid fibroma, chondrosarcoma, chord
  • lips and oral cavity e.g., odontogenic ameloblastoma, oral leukoplakia, oral squamous cell carcinoma, primary oral mucosal melanoma
  • salivary glands e.g., pleomorphic salivary gland adenoma, salivary gland adenoid cystic carcinoma, salivary gland mucoepidermoid carcinoma, salivary gland Warthin's tumors
  • esophagus e.g., Barrett's esophagus, dysplasia and adenocarcinoma
  • stomach e.g., gastric adenocarcinoma, primary gastric lymphoma, gastrointestinal stromal tumors (GISTs), metastatic deposits, gastric carcinoids, gastric sarcomas, neuroendocrine carcinoma, gastric primary squamous cell carcinoma, gastric adenoacanthomas), intestines and smooth muscle (e.g., intravenous leiomyomatosis), colon (e.g., colorectal adenocarcinoma), rectum, anus;
  • stomach e.g., gastric adenocarcinoma, primary gastric lymphoma, gastrointestinal stromal tumors (GISTs), metastatic deposits, gastric carcinoids, gastric sarcomas, neuroendocrine carcinoma, gastric primary squamous cell carcinoma, gastric adenoacanthomas), intestines and smooth muscle (e.g., intravenous leiomyomatosis), colon (e.g
  • pancreas e.g., serous neoplasms, including microcystic or macrocystic serous cystadenoma, solid serous cystadenoma, Von Hippel-Landau (VHL)-associated serous cystic neoplasm, serous cystadenocarcinoma; mucinous cystic neoplasms (MCN), intraductal papillary mucinous neoplasms (IPMN), intraductal oncocytic papillary neoplasms (IOPN), intraductal tubular neoplasms, cystic acinar neoplasms, including acinar cell cystadenoma, acinar cell cystadcnocarcinoma, pancreatic adenocarcinoma, invasive pancreatic ductal adenocarcinomas, including tubular adenocarcinoma, adenosquamous carcinoma, colloid carcinoma, medullary carcinoma, he
  • neuro-endocrine e.g., adrenal cortical carcinoma, carcinoid tumors, phaeochromocytoma, pituitary adenomas
  • thyroid e.g., anaplastic (undifferentiated) carcinoma, medullary carcinoma, oncocytic tumors, papillary carcinoma, adenocarcinoma);
  • liver e.g., adenoma, combined hepatocellular and cholangiocarcinoma, fibrolamellar carcinoma, hepatoblastoma, hepatocellular carcinoma, mesenchymal, nested stromal epithelial tumor, undifferentiated carcinoma; hepatocellular carcinoma, intrahepatic cholangiocarcinoma, bile duct cystadenocarcinoma, epithelioid hemangioendothelioma, angiosarcoma, embryonal sarcoma, rhabdomyosarcoma, solitary fibrous tumor, teratoma, York sac tumor, carcinosarcoma, rhabdoid tumor);
  • kidney e.g., ALK-rearranged renal cell carcinoma, chromophobe renal cell carcinoma, clear cell renal cell carcinoma, clear cell sarcoma, metanephric adenoma, metanephric adenofibroma, mucinous tubular and spindle cell carcinoma, nephroma, nephroblastoma (Wilms tumor), papillary adenoma, papillary renal cell carcinoma, renal oncocytoma, renal cell carcinoma, succinate dehydrogenase-deficient renal cell carcinoma, collecting duct carcinoma);
  • ALK-rearranged renal cell carcinoma e.g., ALK-rearranged renal cell carcinoma, chromophobe renal cell carcinoma, clear cell renal cell carcinoma, clear cell sarcoma, metanephric adenoma, metanephric adenofibroma, mucinous tubular and spindle cell carcinoma, nephroma, nephroblastoma (Wil
  • breast e.g. , invasive ductal carcinoma, including without limitation, acinic cell carcinoma, adenoid cystic carcinoma, apocrine carcinoma, cribriform carcinoma, glycogen-rich/clear cell, inflammatory carcinoma, lipid-rich carcinoma, medullary carcinoma, metaplastic carcinoma, micropapillary carcinoma, mucinous carcinoma, neuroendocrine carcinoma, oncocytic carcinoma, papillary carcinoma, sebaceous carcinoma, secretory breast carcinoma, tubular carcinoma; lobular carcinoma, including without limitation, pleomorphic carcinoma, signet ring cell carcinoma);
  • peritoneum e.g., mesothelioma; primary peritoneal cancer
  • female sex organ tissues including ovary (e.g., choriocarcinoma, epithelial tumors, germ cell tumors, sex cord-stromal tumors), Fallopian tubes (e.g., serous adenocarcinoma, mucinous adenocarcinoma, endometrioid adenocarcinoma, clear cell adenocarcinoma, transitional cell carcinoma, squamous cell carcinoma, undifferentiated carcinoma, Mullerian tumors, adenosarcoma, leiomyosarcoma, teratoma, germ cell tumors, choriocarcinoma, trophoblastic tumors), uterus (e.g., carcinoma of the cervix, endometrial polyps, endometrial hyperplasia, intraepithelial carcinoma (EIC), endometrial carcinoma (e.g., endometrioid carcinoma, serous carcinoma, clear cell carcinoma, mucinous carcinoma
  • male sex organ tissues including prostate, testis (e.g., germ cell tumors, spermatocytic seminoma), penis;
  • bladder e.g., squamous cell carcinoma, urothelial carcinoma, bladder urothelial carcinoma
  • brain e.g., gliomas (e.g., astrocytomas, including non-infiltrating, low-grade, anaplastic, glioblastomas; oligodendrogliomas, ependymomas)), meningiomas, gangliogliomas, schwannomas (neurilemmomas), craniopharyngiomas, chordomas, Non-Hodgkin lymphomas (NHLs), indolent non-Hodgkin’s lymphoma (iNHL), refractory iNHL, pituitary tumors;
  • gliomas e.g., astrocytomas, including non-infiltrating, low-grade, anaplastic, glioblastomas; oligodendrogliomas, ependymomas
  • Meningiomas e.g., astrocytomas, including non-infiltrating, low-grade, anaplastic, glioblastomas;
  • eye e.g., retinoma, retinoblastoma, ocular melanoma, posterior uveal melanoma, iris hamartoma
  • eye e.g., retinoma, retinoblastoma, ocular melanoma, posterior uveal melanoma, iris hamartoma
  • head and neck e.g., nasopharyngeal carcinoma, Endolymphatic Sac Tumor (ELST), epidermoid carcinoma, laryngeal cancers including squamous cell carcinoma (SCC) (e.g., glottic carcinoma, supraglottic carcinoma, subglottic carcinoma, transglottic carcinoma), carcinoma in situ, verrucous, spindle cell and basaloid SCC, undifferentiated carcinoma, laryngeal adenocarcinoma, adenoid cystic carcinoma, neuroendocrine carcinomas, laryngeal sarcoma), head and neck paragangliomas (e.g., carotid body, jugulotympanic, vagal); thymus (e.g., thymoma);
  • heart e.g., cardiac myxoma
  • lung e.g., small cell carcinoma (SCLC), non-small cell lung carcinoma (NSCLC), including squamous cell carcinoma (SCC), adenocarcinoma and large cell carcinoma, carcinoids (typical or atypical), carcinosarcomas, pulmonary blastomas, giant cell carcinomas, spindle cell carcinomas, pleuropulmonary blastoma);
  • SCLC small cell carcinoma
  • NSCLC non-small cell lung carcinoma
  • SCC squamous cell carcinoma
  • carcinoids typically or atypical
  • carcinosarcomas pulmonary blastomas
  • giant cell carcinomas e.g., giant cell carcinomas, spindle cell carcinomas, pleuropulmonary blastoma
  • pleuropulmonary blastoma e.g., small cell carcinoma (SCLC), non-small cell lung carcinoma (NSCLC), including squamous cell carcinoma (SCC), adenocarcinoma and large cell carcinoma, carcinoids (typical or atypical), carcino
  • lymphomas including Hodgkin’s lymphoma, non-Hodgkin’s lymphoma (NHL), indolent non-Hodgkin’s lymphoma (iNHL), refractory iNHL, Epstein-Barr virus (EBV)-associatcd lymphoproliferative diseases, including B cell lymphomas and T cell lymphomas e.g., Burkitt lymphoma; large B cell lymphoma, diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma, indolent B-cell lymphoma, low grade B cell lymphoma, fibrin-associated diffuse large cell lymphoma; primary effusion lymphoma; plasmablastic lymphoma; extranodal NK/T cell lymphoma, nasal type; peripheral T cell lymphoma, cutaneous T cell lymphoma, angioimmunoblastic T cell lymphoma; follicular
  • central nervous system e.g., gliomas including astrocytic tumors (e.g., pilocytic astrocytoma, pilomyxoid astrocytoma, subependymal giant cell astrocytoma, pleomorphic xanthoastrocytoma, diffuse astrocytoma, fibrillary astrocytoma, gemistocytic astrocytoma, protoplasmic astrocytoma, anaplastic astrocytoma, glioblastoma (e.g., giant cell glioblastoma, gliosarcoma, glioblastoma multiforme) and gliomatosis cerebri), oligodendroglial tumors (e.g., oligodendroglioma, anaplastic oligodendroglioma), oligoastrocytic tumors (e.g., oligoastrocytoma, an astrocy
  • skin e.g., clear cell hidradenoma, cutaneous benign fibrous histiocytomas, cylindroma, hidradenoma, melanoma (including cutaneous melanoma, mucosal melanoma), pilomatricoma, Spitz tumors); and
  • soft tissues e.g. , aggressive angiomyxoma, alveolar rhabdomyosarcoma, alveolar soft part sarcoma, angiofibroma, angiomatoid fibrous histiocytoma, synovial sarcoma, biphasic synovial sarcoma, clear cell sarcoma, dermatofibrosarcoma protuberans, desmoid-type fibromatosis, small round cell tumor, desmoplastic small round cell tumor, elastofibroma, embryonal rhabdomyosarcoma, Ewing's tumors/primitive neurectodermal tumors (PNET), extraskeletal myxoid chondrosarcoma, extraskeletal osteosarcoma, paraspinal sarcoma, inflammatory myofibroblastic tumor, lipoblastoma, lipoma, chondroid lipoma, liposarcoma I malignant lipomatous tumors, lipo
  • the cancer is positive for a tumor antigen selected from carbonic anhydrase IX, B7, CCCL19, CCCL21, CSAp, HER-2/neu, BrE3, CD1, CDla, CD2, CD3, CD4, CD5, CD8, CD11A, CD14, CD15, CD16, CD18, CD19, CD20 (e.g., C2B8, hA20, 1F5 MAbs), CD21, CD22, CD23, CD25, CD29, CD30, CD32b, CD33, CD37, CD38, CD40, CD40L, CD44, CD45, CD46, CD52, CD54, CD55, CD59, CD64, CD67, CD70, CD74, CD79a, CD80, CD83, CD95, CD126, CD133, CD138, CD147, CD154, CEACAM5, CEACAM-6, alpha-fetoprotein (AFP), VEGF, fibronectin splice variant, ED-B fibronectin
  • a tumor antigen selected
  • the cancer is positive for a tumor antigen selected from CD74, CD22, Trop-2, CEA, CSAp Mu-9, AFP, CC49, and PSMA.
  • the cancer is Trop-2 positive.
  • the Trop-2 positive cancer is a solid epithelial cancer.
  • the solid epithelial cancer is selected from breast cancer (e.g., triple negative breast cancer (TNBC); HR positive/Her-2 negative (HR + /Her-2 ) breast cancer; HR positive/Her-2 low breast cancer), colorectal cancer, lung cancer, stomach cancer, urinary tract cancer, urothelial cancer, bladder cancer, renal cancer, pancreatic cancer, ovarian cancer, uterine cancer, esophageal cancer, and prostatic cancer.
  • the prostatic cancer is castrate-resistant prostate cancer (CRPC).
  • the lung cancer is non-small lung cancer (NSCLC).
  • the Trop- 2 positive cancer is (i) unresectable, locally advanced or (ii) metastatic cancer (e.g., mCRPC or mNSCLC). In some embodiments, the Trop-2 positive cancer is resistant or refractive to one or more anti-cancer therapy.
  • the Trop-2 positive cancer is prostate cancer. In some embodiments, the Trop-2 positive cancer is metatstatic prostate cancer. In some embodiments, the Trop-2 positive cancer is castrate resistant prostate cancer (CRPC). In some embodiments, the Trop-2 positive cancer is metatstatic castrate resistant prostate cancer (mCRPC).
  • the Trop-2 positive cancer is metastatic castrate resistant adenocarcinoma of the prostate showing tumor progression on androgen deprivation therapy (e.g., including orchiectomy) with castrate levels of serum (total) testosterone ( ⁇ 1.7 nmol/L or 50 ng/dL) defined by prostate specific antigen (PSA) and/or radiographic criteria according to The Prostate Cancer Working Group 3 (PCWG3); measurable or non-measurable disease per the Response Evaluation Criteria in Solid Tumors (RECIST) vl.l.
  • tumor progression on androgen deprivation therapy e.g., including orchiectomy
  • PSA prostate specific antigen
  • PCWG3 Prostate Cancer Working Group 3
  • RECIST Solid Tumors
  • the methods provided herein comprise co-administering to a subject (e.g., a human cancer patient) having a Trop-2 positive cancer an effective amount of a) an anti-Trop2 antibody drug conjugate; and b) an adenosine pathway inhibitor.
  • the anti-Trop-2 ADC comprises a topoisomerase I inhibitor.
  • the topoisomerase inhibitor is a camptothecin analog.
  • the camptothecin analog is an irinotecan derivative, a topotecan derivative, or an exatecan derivative.
  • the camptothecin analog is SN38 or Dxd.
  • the camptothecin analog is SN38. In some embodiments, the camptothecin analog is connected to an anti-Trop-2 antibody via a hydrolyzable linker. In some embodiments, the hydrolyzable linker is CL2A (e.g., as described in US 7,999,083). In some embodiments, the camptothecin analog is connected to an anti-Trop-2 antibody via a protease cleavable linker. In some embodiments, the anti-Trop-2 ADC has a structure mAb-CL2A-SN-38, represented by:
  • the drug-antibody ratio (DAR) of CL2A-SN38 to anti-Trop-2 antibody in the anti-Trop2 ADC is between 7.0 and 8.0. In some embodiments, the DAR of CL2A-SN38 to anti-Trop-2 antibody in the anti-Trop-2 ADC is about 7.6. In some embodiments, the anti-Trop-2 ADC comprises the anti-Trop-2 antibody sacituzumab (hRS7, described, e.g., in W02003074566, Figures 3 and 4).
  • the anti-Trop-2 ADC is selected from sacituzumab govitecan, datopotamab deruxtecan (DS- 1062), ESG-401, SKB-264, DAC-02 and BAT-8003. In some embodiments, the anti-Trop-2 ADC is sacituzumab govitecan. In some embodiments, the anti-Trop-2 ADC is datopotamab deruxtecan (DS- 1062). In some embodiments, the adenosine pathway inhibitor is a CD39 inhibitor, a CD73 inhibitor, or an adenosine receptor antagonist.
  • the CD39 inhibitor is selected from TTX-030 (AbbVie/Trishula), IPH5201 (AstraZeneca/Innate Pharma), SRF617 (Surface Oncology), CD39 ASO (Secarna Pharmaceuticals), JS-019 (Shanghai Junshi Biosciences); AB598 (anti-CD39) (Arcus Biosciences), ES002 (Elpiscience Biopharmaceuticals), and CD39xPDl (Biotheus).
  • the CD73 inhibitor is selected from oleclumab (AstraZeneca), BMS-986179 (BMS), uliledlimab (I-MAB Biopharma), AK119 (Akeso Biopharma), quemliclustat (AB680, Arcus Biosciences), mupadolimab (Corvus Pharmaceuticals), HLX23 (Shanghai Hcnlius Biotech), INCA00186 (Incytc), IBI325 (Innovcnt Bio), NZV930 (Novartis/Surface Oncology), ORIC-533 (ORIC Pharma), Sym024 (Servier), IPH5301 (Innate), IOA-237 (iOnctura), JAB-BX100 (Jacobio), PT199 (Phanes Therapeutics), TRB010 (Trican Biotechnology), CD73 ASO (Secarna Pharmaceuticals), 622 (3SBio), ABSK-051 (Abbisko Therapeutics), AK131 (CD73xPD
  • the CD73 inhibitor is oleclumab or quemliclustat. In some embodiments, the CD73 inhibitor is quemliclustat.
  • the adenosine receptor antagonist is an adenosine A2A receptor (A2AR; ADORA2A) selective antagonist, such as imaradenant (AstraZeneca), NIR178 (Novartis/Palobiofarma) ID11902 (Ildong), IN-A003 (Inno.n), NTI-55 (A2aR/TLR7, Nammi), TT-10 (Tarus Therapeutics), or TT- 228 (Teon Therapeutics).
  • A2AR adenosine A2A receptor
  • ADORA2A adenosine A2A receptor selective antagonist
  • the adenosine receptor antagonist is an adenosine A2B receptor (A2BR; ADORA2B) antagonist, such as PBF-1129 (Palobiofarma) or TT-702 (Teon Therapeutics).
  • A2BR adenosine A2B receptor
  • ADORA2B adenosine A2B receptor
  • PBF-1129 Palobiofarma
  • TT-702 Teon Therapeutics
  • the adenosine receptor antagonist is a dual adenosine A2A/A2B receptor antagonist, such as etrumadenant (AB928, Arcus Biosciences), INCB 106385 (Incyte), M1069 (Merck KgaA), A2aR/A2bR (Domain/Merck KgaA), HM87277 (Al/A2aR/A2bR, Hanmi Pharmaceutical), RVU-330 (Ryvu), TT-53 (Tarus Therapeutics).
  • the adenosine receptor antagonist is etrumadenant.
  • the adenosine pathway inhibitor is quemliclustat or etrumadenant.
  • the adenosine pathway inhibitor is etrumadenant.
  • the methods provided herein comprise co-administering to a subject (e.g., a human cancer patient) having a Trop-2 positive cancer an effective amount of a) an anti-Trop-2 ADC comprising a topoisomerase I inhibitor (e.g., SN38 or Dxd); and b) an adenosine pathway inhibitor selected from a CD39 inhibitor, a CD73 inhibitor, and an adenosine receptor antagonist.
  • the methods provided herein comprise co-administering to a subject (e.g., a human cancer patient) having a Trop-2 positive cancer an effective amount of a) an anti-Trop-2 ADC comprising a topoisomerase I inhibitor (e.g., SN38 or Dxd); and b) an adenosine pathway inhibitor selected from a CD73 inhibitor and an adenosine receptor antagonist.
  • a subject e.g., a human cancer patient
  • an anti-Trop-2 ADC comprising a topoisomerase I inhibitor (e.g., SN38 or Dxd)
  • an adenosine pathway inhibitor selected from a CD73 inhibitor and an adenosine receptor antagonist.
  • the methods provided herein comprise co-administering to a subject (e.g., a human cancer patient) having a Trop-2 positive cancer an effective amount of a) an anti-Trop-2 ADC comprising a topoisomerase I inhibitor (e.g., SN38 or Dxd); and b) an adenosine pathway inhibitor selected from oleclumab, BMS-986179, ulilcdlimab, imaradenant, NIR178, and ctrumadcnant.
  • a subject e.g., a human cancer patient
  • an anti-Trop-2 ADC comprising a topoisomerase I inhibitor (e.g., SN38 or Dxd)
  • an adenosine pathway inhibitor selected from oleclumab, BMS-986179, ulilcdlimab, imaradenant, NIR178, and ctrumadcnant.
  • the methods provided herein comprise co-administering to a subject (e.g., a human cancer patient) having a Trop-2 positive cancer an effective amount of a) an anti-Trop-2 ADC having a structure mAb-CL2A-SN-38, represented by: and b) an adenosine pathway inhibitor selected from oleclumab, BMS-986179, uliledlimab, imaradenant, NIR178, and etrumadenant.
  • a subject e.g., a human cancer patient
  • an anti-Trop-2 ADC having a structure mAb-CL2A-SN-38, represented by: and b) an adenosine pathway inhibitor selected from oleclumab, BMS-986179, uliledlimab, imaradenant, NIR178, and etrumadenant.
  • the methods provided herein comprise co-administering to a subject (e.g., a human cancer patient) having a Trop-2 positive cancer an effective amount of a) sacituzumab govitecan or datopotamab deruxtecan (DS-1062); and b) an adenosine pathway inhibitor selected from oleclumab, BMS-986179, uliledlimab, imaradenant, NIR178, and etrumadenant.
  • a subject e.g., a human cancer patient
  • a Trop-2 positive cancer an effective amount of a) sacituzumab govitecan or datopotamab deruxtecan (DS-1062); and b) an adenosine pathway inhibitor selected from oleclumab, BMS-986179, uliledlimab, imaradenant, NIR178, and etrumadenant.
  • the methods provided herein comprise co-administering to a subject (e.g., a human cancer patient) having a Trop-2 positive cancer an effective amount of a) sacituzumab govitecan; and b) etrumadenant.
  • the methods provided herein further comprise co-administering an additional therapeutic agent or therapeutic modality, or a combination thereof.
  • the additional therapeutic agent comprises an immune checkpoint inhibitor (CPI).
  • the CPI comprises an anti-PD(L)l antibody (e.g., an anti-PD-1 antibody or an anti- PD-L1 antibody), and optionally an anti-TIGIT antibody.
  • the anti-PD(L)l antibody is selected from pembrolizumab, nivolumab, cemiplimab, pidilizumab, spartalizumab, atezolizumab, avelumab, durvalumab, cosibelimab, sasanlimab, tislelizumab, retifanlimab, balstilimab, toripalimab, cetrelimab, genolimzumab, prolgolimab, lodapolimab, camrelizumab, budigalimab, avelumab, dostarlimab, envafolimab, sintilimab, and zimberelimab.
  • the anti-PD(L)l antibody is zimberelimab.
  • the anti-TIGIT antibody is selected from tiragolumab, vibostolimab, domvanalimab, AB308, AK127, BMS- 986207, ralzapastotug, and etigilimab.
  • the anti-TIGIT antibody is domvanalimab.
  • the additional therapeutic agent comprises an anti-PD(L)! antibody and an anti-TIGIT antibody.
  • the additional therapeutic agent comprises a) zimberelimab and domvanalimab, b) zimberelimab and AB3O8, c) atezolizumab and tiragolumab, d) pembrolizumab and vibostolimab, e) MK-7684A (pembrolizumab/vibostolimab coformulation), f) durvalumab and domvanalimab, g) zimberelimab and ralzapastotug, or h) pembrolizumab and ralzapastotug.
  • the anti-PD(L)l antibody is zimberelimab and the anti-TIGIT antibody is domvanalimab.
  • the additional therapeutic modality comprises surgery or radiation therapy.
  • the methods provided herein comprise co-administering to a subject (e.g., a human cancer patient) having a Trop-2 positive cancer an effective amount of a) an anti-Trop-2 ADC comprising a topoisomerase I inhibitor (e.g., SN38 or Dxd); b) an adenosine pathway inhibitor selected from oleclumab, BMS- 986179, uliledlimab, imaradenant, NIR178, and etrumadenant, and c) an anti-PD(L)l antibody.
  • a subject e.g., a human cancer patient
  • a Trop-2 positive cancer an effective amount of a) an anti-Trop-2 ADC comprising a topoisomerase I inhibitor (e.g., SN38 or Dx
  • the methods provided herein comprise co-administering to a subject (e.g., a human cancer patient) having a Trop-2 positive cancer an effective amount of a) an anti-Trop-2 ADC having a structure mAb-CL2A-SN-38, represented by: b) an adenosine pathway inhibitor selected from oleclumab, BMS-986179, uliledlimab, imaradenant, NIR178, and etrumadenant, and c) an anti-PD(L)l antibody.
  • the methods provided herein comprise co-administering to a subject (e.g.
  • a human cancer patient having a Trop-2 positive cancer an effective amount of a) sacituzumab govitecan or datopotamab deruxtecan (DS- 1062); b) an adenosine pathway inhibitor selected from oleclumab, BMS-986179, uliledlimab, imaradenant, NIR178, and etrumadenant; and c) and anti-PD(L)l antibody.
  • the methods provided herein comprise co-administering to a subject (e.g., a human cancer patient) having a Trop-2 positive cancer an effective amount of a) sacituzumab govitecan; b) etrumadenant; and c) an anti-PD(L)l antibody.
  • a subject e.g., a human cancer patient
  • a Trop-2 positive cancer an effective amount of a) sacituzumab govitecan; b) etrumadenant; and c) an anti-PD(L)l antibody.
  • the anti-PD(L)l antibody is selected from pembrolizumab, nivolumab, cemiplimab, pidilizumab, spartalizumab, atezolizumab, avelumab, durvalumab, cosibelimab, sasanlimab, tislelizumab, retifanlimab, balstilimab, toripalimab, cctrclimab, gcnolimzumab, prolgolimab, lodapolimab, camrclizumab, budigalimab, avelumab, dostarlimab, envafolimab, sintilimab, and zimberelimab.
  • the anti-PD(L)l antibody is zimberelimab.
  • the methods provided herein comprise co-administering to a subject (e.g., a human cancer patient) having a Trop-2 positive cancer an effective amount of a) sacituzumab govitecan; b) etrumadenant; and c) zimberelimab.
  • the Trop-2 positive cancer is castrate resistant prostate cancer (CRPC) or non-small cell lung cancer (NSCLC).
  • the Trop-2 positive cancer is CRPC.
  • the Trop-2 positive cancer is metastatic (e.g., mCRPC, mNSCLC).
  • the Trop-2 positive cancer is resistant or refractive of one or more anti-cancer therapy (e.g., NHA resistant or refractive mCRPC).
  • the methods provided herein comprise co-administering to a subject e.g., a human cancer patient) having a tumor antigen positive (TA + ) cancer an effective amount of a) a Topi ADC; and b) an adenosine pathway inhibitor.
  • the Topi ADC comprises a camptothecin analog.
  • the camptothecin analog is an irinotecan derivative, a topotecan derivative, or an exatecan derivative.
  • the camptothecin analog is SN38 or Dxd.
  • the camptothecin analog is SN38.
  • the camptothecin analog is connected to a tumor antigen targeted antibody via a hydrolyzable linker.
  • the hydrolyzable linker is CL2A (e.g., as described in US 7,999,083).
  • the camptothecin analog is connected to a tumor antigen targeted antibody via a protease cleavable linker.
  • the Topi ADC has a structure mAb-CL2A-SN-38, represented by:
  • the tumor antigen targeted antibody in the Topi ADC is selected from gemtuzumab, brentuximab, belantamab, camidanlumah, trastuzumab, inotuzumab, glembatumumab, anetumab, mirvetuximab, dcpatuxizumab, vadastuximab, labctuzumab, ladiratuzumab, loncastuximab, patritumab, lifastuzumab, indusatumab, polatuzumab, pinatuzumab, coltuximab, upifitamab, indatuximab, milatuzumab, rovalpituzumab, enfortumab, tisotumab, tusamitamab, disitamab
  • the tumor antigen targeted antibody in the Topi ADC is selected from hLLl, hLL2, RFB4, hA19, hA20, hRS7, hPAM4, hMN-3, hMN-14, hMu-9, hRl, CC49, hL243, D2/B, hlmmu-31, and antigen binding fragments thereof.
  • the anti-Trop-2 ADC comprises the anti-Trop-2 antibody sacituzumab (hRS7, described, e.g., in W02003074566, Figures 3 and 4).
  • the Topi ADC is trastuzumab deruxtecan.
  • the adenosine pathway inhibitor is a CD39 inhibitor, a CD73 inhibitor, or an adenosine receptor antagonist.
  • the CD39 inhibitor is selected from TTX-030 (AbbVie/Trishula), IPH5201 (AstraZeneca/Innate Pharma), SRF617 (Surface Oncology), CD39 ASO (Secama Pharmaceuticals), JS-O19 (Shanghai Junshi Biosciences); anti-CD39 (Arcus Biosciences), ES002 (Elpiscience Biopharmaceuticals), and CD39xPDl (Biotheus).
  • the CD73 inhibitor is selected from oleclumab (AstraZeneca), BMS-986179 (BMS), uliledlimab (I-MAB Biopharma), AK119 (Akeso Biopharma), quemliclustat (AB68O, Arcus Biosciences), mupadolimab (Corvus Pharmaceuticals), HLX23 (Shanghai Henlius Biotech), TNCAOO186 (Tncyte), IBT325 (Tnnovent Bio), NZV930 (Novartis/Surface Oncology), ORIC-533 (ORIC Pharma), Sym024 (Servier), IPH5301 (Innate), IOA-237 (iOnctura), JAB- BX100 (Jacobio), PT199 (Phanes Therapeutics), TRB010 (Trican Biotechnology), CD73 ASO (Secarna Pharmaceuticals), 622 (3SBio), ABSK-051 (Abbisko Therapeutics), AK131 (CD73xPDl
  • the CD73 inhibitor is oleclumab or quemliclustat. In some embodiments, the CD73 inhibitor is quemliclustat.
  • the adenosine receptor antagonist is an adenosine A2A receptor (A2AR; AD0RA2A) selective antagonist, such as imaradenant (AstraZeneca), NIR178 (Novartis/Palobiofarma) ID11902 (Ildong), IN-A003 (Inno.n), NTI-55 (A2aR/TLR7, Nammi), TT-10 (Tarns Therapeutics), or TT-228 (Teon Therapeutics).
  • A2AR adenosine A2A receptor
  • AD0RA2A adenosine A2A receptor selective antagonist
  • the adenosine receptor antagonist is an adenosine A2B receptor (A2BR; AD0RA2B) antagonist, such as PBF-1129 (Palobiofarma) or TT-702 (Teon Therapeutics).
  • A2BR adenosine A2B receptor
  • AD0RA2B adenosine A2B receptor
  • PBF-1129 Palobiofarma
  • TT-702 Teon Therapeutics
  • the adenosine receptor antagonist is a dual adenosine A2A/A2B receptor antagonist, such as etrumadenant (AB928, Arcus Biosciences), INCB 106385 (Incyte), M1069 (Merck KGaA), A2aR/A2bR (Domain/Merck KGaA), HM87277 (Al/A2aR/A2bR, Hanmi Pharmaceutical), RVU-330 (Ryvu), TT-53 (Tarns Therapeutics).
  • the methods provided herein further comprise co-administering an additional therapeutic agent or therapeutic modality, or a combination thereof.
  • the additional therapeutic agent comprises an immune checkpoint inhibitor.
  • the CPI comprises an anti-PD(L)l antibody (e.g., an anti-PD-1 antibody or an anti-PD-Ll antibody), and optionally an anti-TIGIT antibody.
  • the anti-PD(L)l antibody is selected from pembrolizumab, nivolumab, cemiplimab, pidilizumab, spartalizumab, atezolizumab, avelumab, durvalumab, cosibelimab, sasanlimab, tislelizumab, retifanlimab, balstilimab, toripalimab, cetrelimab, genolimzumab, prolgolimab, lodapolimab, camrelizumab, budigalimab, avelumab, dostarlimab, envafolimab, sintilimab, and zimberelimab.
  • the anti-PD(L)l antibody is zimberelimab.
  • the anti-TIGIT antibody is selected from tiragolumab, vibostolimab, domvanalimab, AB3O8, AK127, BMS-986207, ralzapastotug, and etigilimab.
  • the anti-TIGIT antibody is domvanalimab.
  • the additional therapeutic agent comprises an anti-PD(L)l antibody and an anti- TIGIT antibody.
  • the additional therapeutic agent comprises a) zimberelimab and domvanalimab, b) zimberelimab and AB308, c) atezolizumab and tiragolumab, d) pembrolizumab and vibostolimab, e) MK-7684A (pembrolizumab/vibostolimab coformulation), f) durvalumab and domvanalimab, g) zimberelimab and ralzapastotug, or h) pembrolizumab and ralzapastotug.
  • the anti-PD(L)l antibody is zimberelimab and the anti-TIGIT antibody is domvanalimab.
  • the additional therapeutic modality comprises surgery or radiation therapy.
  • the tumor antigen positive cancer is positive for a tumor antigen selected from carbonic anhydrase IX, B7, CCCL19, CCCL21, CSAp, HER-2/neu, BrE3, CD1, CDla, CD2, CD3, CD4, CD5, CD8, CD11A, CD14, CD15, CD16, CD18, CD19, CD20, CD21, CD22, CD23, CD25, CD29, CD30, CD32b, CD33, CD37, CD38, CD40, CD40L, CD44, CD45, CD46, CD52, CD54, CD55, CD59, CD64, CD67, CD70, CD74, CD79a, CD80, CD83, CD95, CD126, CD133, CD138, CD147, CD154, CEACAM5, CEACAM5, CEACAM5, CEACAM5, CE
  • General dosing and administration regimens and pharmaceutical compositions for antibody-drug conjugates, adenosine pathway inhibitors, and additional therapeutic agents that can be used in the methods provide herein are known to a skilled artisan.
  • general dosing and administration regimens and pharmaceutical compositions are described in W02014/092804A1 for exemplary ADCs, including sacituzumab govitecan, in WO2017120508 for exemplary CD73 inhibitors, including quemliclustat, in W02018136700A1 for exemplary adenosine receptor antagonists, including etrumadenant, and in W02017025051A1 for exemplary anti-PD(L)l antibodies, including zimberelimab.
  • the ADC e.g., sacituzumab govitecan
  • adenosine pathway inhibitor e.g., etrumadenant, quemliclustat
  • the anti-PD(L)l antibody e.g., zimberelimab
  • the ADC e.g., sacituzumab govitecan
  • adenosine pathway inhibitor e.g., etrumadenant, quemliclustat
  • the anti-PD(Ll) antibody e.g., zimberelimab
  • the same day e.g., on day 1 of a 21-day treatment cycle.
  • the ADC e.g., sacituzumab govitecan
  • adenosine pathway inhibitor e.g., etrumadenant, quemliclustat
  • the anti-PD(Ll) antibody e.g., zimberelimab
  • the ADC e.g., sacituzumab govitecan
  • adenosine pathway inhibitor e.g., etrumadenant, quemliclustat
  • the anti-PD(Ll) antibody e.g., zimberelimab
  • the ADC e.g., sacituzumab govitecan
  • adenosine pathway inhibitor e.g., etrumadenant, quemliclustat
  • the anti-PD(Ll) antibody e.g., zimberelimab
  • sacituzumab govitecan and etrumadenant are co-administered sequentially on day 1 of a 21 -day treatment cycle, wherein etrumadenant is co-administcrcd orally at least 30 minutes prior to the start of an intravenous infusion of sacituzumab govitecan.
  • sacituzumab govitecan, etrumadenant, and zimberelimab are co-administered sequentially on day 1 of a 21 -day treatment cycle, wherein etrumadenant is co-administered orally at least 30 minutes prior to the start of an intravenous infusion of zimberelimab, and sacituzumab govitecan is coadministered intravenously after completion of the zimberelimab infusion.
  • sacituzumab govitecan is coadministered on day 1 and day 8 of a 21 -day treatment cycle.
  • sacituzumab govitecan is co-administered intravenously (IV).
  • IV intravenously
  • sacituzumab govitecan is co-administered at a dose of 8 mg/kg to 10 mg/kg.
  • sacituzumab govitecan is co-administered at a dose of 8 mg/kg or 10 mg/kg.
  • sacituzumab govitecan is co-administered at a dose of 10 mg/kg.
  • sacituzumab govitecan is coadministered intravenously (IV) at a dose of 8 mg/kg or 10 mg/kg on day 1 and day 8 of a 21-day treatment cycle.
  • etrumadenant is co-administered once daily (QD). In some embodiments, etrumadenant is co-administered orally (PO). In some embodiments, etrumadenant is co-administered at a dose of 75 mg or 150 mg. In some embodiments, etrumadenant is co-administered at a dose of 150 mg. Tn some embodiments, etrumadenant is co-administered orally (PO) once daily (QD) at a dose of 75 mg or 150 mg. In some embodiments, etrumadenant is co-administered orally (PO) once daily (QD) at a dose of 150 mg.
  • an anti-PD(L)l antibody e.g., zimberelimab
  • Q3W once every three weeks
  • an anti-PD(L)1 antibody is co-administered intravenously (IV).
  • an anti-PD(L)l antibody is co-administered at a dose of 360 mg.
  • sacituzumab govitecan is coadministered intravenously (IV) on day 1 and day 8 of a 21-day treatment cycle at a dose of 8 mg/kg or 10 mg/kg; etrumadenant is co-administered orally (PO) once daily (QD) at a dose of 75 mg or 150 mg on each day of the 21 -day treatment cycle, and, optionally, zimberelimab is coadministered on day 1 of the 21-day treatment cycle (Q3W) at a dose of 360 mg.
  • IV intravenously
  • etrumadenant is co-administered orally (PO) once daily (QD) at a dose of 75 mg or 150 mg on each day of the 21 -day treatment cycle
  • Zmberelimab is coadministered on day 1 of the 21-day treatment cycle (Q3W) at a dose of 360 mg.
  • sacituzumab govitecan is coadministered intravenously (IV) on day 1 and day 8 of a 21-day treatment cycle at a dose of 10 mg/kg; etrumadenant is co-administered orally (PO) once daily (QD) at a dose of 150 mg on each day of the 21-day treatment cycle, and, optionally, zimberelimab is co-administered on day 1 of the 21-day treatment cycle (Q3W) at a dose of 360 mg.
  • IV intravenously
  • etrumadenant is co-administered orally (PO) once daily (QD) at a dose of 150 mg on each day of the 21-day treatment cycle
  • Zmberelimab is co-administered on day 1 of the 21-day treatment cycle (Q3W) at a dose of 360 mg.
  • the methods provided herein have anti-cancer effects as determined by one or more efficacy endpoints selected from objective response rate (ORR), disease control rate (DCR), progression free survival (PFS), duration of response (DOR), overall survival (OS), complete response (CR), partial response (PR), PSA response rate, radiographic response rate, and change from baseline in blood and tumor tissue microenvironment pharmacodynamic (PD) biomarkers.
  • ORR objective response rate
  • DCR disease control rate
  • PFS progression free survival
  • DOR duration of response
  • OS overall survival
  • CR complete response
  • PR partial response
  • PSA response rate radiographic response rate
  • tumor response or progression is determined according to RECIST version 1.1.
  • the ORR is defined as the composite proportion of participants with a PSA and/or radiographic complete and partial response determined by the investigator according to the Prostate Cancer Working Group 3 (PCWG3) criteria.
  • PCWG3 Prostate Cancer Working Group 3
  • the PSA response is defined as the proportion of participants with a confirmed PSA decrease from baseline of 50% or more based on 2 consecutive assessments measured at least 3 to 4 weeks apart.
  • the radiographic response defined as the proportion of participants with a best overall response of CR or PR according to RECIST v 1.1.
  • DCR is defined as the proportion of participants with a best overall RECIST response of CR, PR, or stable disease (SD).
  • SD stable disease
  • the DCR is at least 6 months.
  • PFS is defined as the time from treatment assignment until first documentation of progressive disease (PSA progression, radiographic progression, bone scan progression, or other) or death, whichever occurs first. Depending on data availability, time to progression due to specific reasons (e.g., PSA progression or radiographic progression) may also be presented individually.
  • OS is defined as the time from treatment assignment until death due to any cause.
  • the methods provided herein further comprise determining tumor antigen (e.g., Trop-2) expression levels in a sample from the subject.
  • the determination of tumor antigen (e.g., Trop-2) expression levels can occur with any clinical analytics method known to a skilled artisan.
  • Samples can include liquid biopsy samples (e.g., blood samples) and solid tumor biopsy samples.
  • Tumor antigen (e.g., Trop-2) expression levels can be determined at the DNA, RNA, or protein level.
  • Illustrative methods for the determination of tumor antigen (e.g., Trop-2) expression levels include western blot, immunohistochemistry, QPCR, exome sequencing, FACS, and the like.
  • an anti-CD47 antibody is not coadministered to the subject or human patient (CD47; integrin associated protein; IAP; NCBI Gene ID: 961).
  • the subject or human patient is not co-administered an anti-CD47 antibody selected from magrolimab, lemzoparlimab, letaplimab, ligufalimab, AO- 176, IBI-322, ZL-1201, IMC-002, SRF-231, CC-90002 (a.k.a., INBRX-103), NI-1701 (a.k.a., TG-1801) and STI-6643.
  • the subject or human patient is not co-administered magrolimab.
  • an MCL1 inhibitor is not coadministered to the subject or human patient (MCL1; myeloid leukemia cell differentiation protein; NCBI Gene ID: 4170).
  • MCL1 myeloid leukemia cell differentiation protein
  • NCBI Gene ID: 4170 the subject or human patient is not coadministered an MCL1 inhibitor selected from GS-9716, AMG-397, AMG-176, PRT-1419, and S6431.
  • the subject or human patient is not co-administered GS-9716.
  • a FLT3 agonist is not coadministered to the subject or human patient (FLT3; fms like tyrosine kinase; CD135; NCBI Gene ID: 2322).
  • the FLT3 agonist is selected from GS-3583, CDX-301, TAK- 605, ONCR-177, Alb-Ftl3L, and SYM-027.
  • the FLT3 agonist is GS-3583.
  • kits for use as a medicament comprising a) TROP-2- targeted antibody-drug conjugate (ADC) comprising an anti-TROP-2 antibody (anti-TROP-2 ADC); b) an adenosine pathway inhibitor; and c) optionally an anti-PD-(L)l antibody.
  • ADC TROP-2- targeted antibody-drug conjugate
  • kits for use as a medicament comprising a) a tumor antigen (TA) targeted ADC comprising a topoisomerase I inhibitor (Topi ADC); b) an adenosine pathway inhibitor; and c) optionally an anti-PD-(L)! antibody.
  • TA tumor antigen
  • Topici ADC topoisomerase I inhibitor
  • adenosine pathway inhibitor optionally an anti-PD-(L)! antibody.
  • kits comprising one or more unitary doses of the active agents, e.g., a) an anti-Trop-2 ADC (c.g., sacituzumab govitccan) or Topi ADC; b) an adenosine pathway inhibitor (e.g., etrumadenant, quemliclustat); and optionally c) an anti-PD(L)l antibody (e.g., zimberelimab), and formulations thereof, as described herein, and instructions for use.
  • an anti-Trop-2 ADC c.g., sacituzumab govitccan
  • Topi ADC adenosine pathway inhibitor
  • an anti-PD(L)l antibody e.g., zimberelimab
  • the a) anti-Trop-2 ADC e.g., sacituzumab govitecan
  • Topi ADC e.g., adenosine pathway inhibitor (e.g., etrumadenant, quemliclustat); and optionally c) anti-PD(L)l antibody (e.g., zimberelimab)
  • the kit can further contain a least one additional reagent, e.g. an anti-TIGIT antibody.
  • Kits typically include a label indicating the intended use of the contents of the kit. The term label includes any writing, or recorded material supplied on or with the kit, or which otherwise accompanies the kit.
  • one or more of the a) anti-Trop-2 ADC e.g., sacituzumab govitecan) or Topi ADC
  • adenosine pathway inhibitor e.g., etrumadenant, quemliclustat
  • c) anti-PD(L)l antibody e.g., zimberelimab
  • a dosage form e.g., a therapeutically effective dosage form
  • one or more of the a) anti-Trop-2 ADC e.g., sacituzumab govitecan) or Topi ADC
  • b) adenosine pathway inhibitor e.g., etrumadenant, quemliclustat
  • optionally c) anti-PD(L)l antibody e.g., zimberelimab
  • two or more different dosage forms e.g., two or more different therapeutically effective dosage forms.
  • one or more of the a) anti-Trop-2 ADC e.g., sacituzumab govitecan) or Topi ADC
  • b) adenosine pathway inhibitor e.g., etrumadenant, quemliclustat
  • c) anti-PD(L)l antibody e.g., zimberelimab
  • any convenient packaging e.g., stick pack, dose pack, etc.
  • anti-Trop-2 ADC e.g., sacituzumab govitecan
  • Topi ADC e.g., adenosine pathway inhibitor (e.g., etrumadenant, quemliclustat); and optionally c) anti-PD(L)l antibody (e.g., zimberelimab)
  • adenosine pathway inhibitor e.g., etrumadenant, quemliclustat
  • anti-PD(L)l antibody e.g., zimberelimab
  • the a) anti-Trop-2 ADC e.g., sacituzumab govitecan
  • Topi ADC e.g., adenosine pathway inhibitor (e.g., etrumadenant, quemliclustat); and optionally c) anti-PD(L)l antibody (e.g., zimberelimab) are provided in separate containers.
  • adenosine pathway inhibitor e.g., etrumadenant, quemliclustat
  • anti-PD(L)l antibody e.g., zimberelimab
  • compositions comprising one or more of the a) anti-Trop-2 ADC (e.g., sacituzumab govitecan) or Topi ADC; b) adenosine pathway inhibitor (e.g., etrumadenant, quemliclustat); and optionally c) anti-PD(L)l antibody (e.g., zimberelimab) are provided in one or more containers, the containers having a label.
  • Suitable containers include, for example, bottles, vials, ampoules, syringes (including pre-loaded syringes), and test tubes.
  • the containers may be formed from a variety of materials such as glass or plastic.
  • the container holds a composition which is effective for treating the condition and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle).
  • the active agent in one composition is a) an anti-Trop-2 ADC (e.g., sacituzumab govitecan) or Topi ADC.
  • the active agent in a second composition is an adenosine pathway inhibitor (e.g., etrumadenant, quemliclustat).
  • the active agent in an optional third composition is optionally c) anti-PD(L)l antibody (e.g., zimberelimab).
  • the label on, or associated with, the container indicates that the composition is used for treating the condition of choice.
  • the article of manufacture may further comprise one or more containers comprising a pharmaceutically- acceptable buffer, e.g., for use as diluent.
  • a pharmaceutically- acceptable buffer include without limitation phosphate -buffered saline, Ringer’s solution and/or dextrose solution.
  • the kit may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for use.
  • the subject kits may further include (in certain embodiments) instructions for practicing the subject methods.
  • These instructions may be present in the subject kits in a variety of forms, one or more of which may be present in the kit.
  • One form in which these instructions may be present is as printed information on a suitable medium or substrate, e.g., a piece or pieces of paper on which the information is printed, in the packaging of the kit, in a package insert, and the like.
  • Yet another form of these instructions is a computer readable medium, e.g., diskette, compact disk (CD), flash drive, and the like, on which the information has been recorded.
  • Yet another form of these instructions that may be present is a website address which may be used via the internet to access the information at a removed site.
  • mCRPC metastatic castrateresistant prostate cancer
  • the method further comprises co-administering zimberelimab to the human patient.
  • the human mCRPC patient has previously progressed on androgen deprivation therapy (ADT).
  • ADT androgen deprivation therapy
  • the human mCRPC patient has previously progressed on one or more next generation hormonal agents (NHAs, e.g., abiraterone, enzalutamide, darolutamide, apalutamide).
  • NHAs next generation hormonal agents
  • the human mCRPC patient is checkpoint inhibitor (CPI) and taxanc naive.
  • the human mCRPC patient has RECIST 1.1 measurable or non-measurable disease.
  • a method of treating castrate resistant prostate cancer comprising co-administering to a human patient an effective amount of a) an anti- Trop-2 ADC; b) a CD73 inhibitor or adenosine receptor antagonist; and, optionally, c) an anti- PD(L)1 antibody.
  • the CRPC is metastatic CRPC (mCRPC).
  • the anti-Trop-2 ADC has a structural formula of mAb-CL2A-SN-38, with a structure represented by:
  • the anti-Trop-2 ADC comprises a linker-payload conjugate having a structure represented by: attached to an anti-Trop-2 antibody (e.g., hRS7).
  • the anti-Trop-2 ADC comprises a linker-payload conjugate (TL035) having a structure represented by:
  • the anti-Trop-2 ADC comprises a linker-payload conjugate having a structure represented by: attached to an anti-Trop-2 antibody (e.g., hTINAl-HILl).
  • the anti-Trop-2 ADC has a DAR of about 4.
  • the anti-Trop-2 ADC is selected from sacituzumab govitecan, datopotamab deruxtecan (DS-1062), ESG-401, SKB-264, DAC-02 and BAT-8003.
  • the anti-Trop-2 antibody is sacituzumab govitecan or datopotamab deruxtecan.
  • the anti-Trop-2 antibody is sacituzumab govitecan.
  • the CD73 inhibitor is selected from oleclumab (AstraZeneca), BMS-986179 (BMS), uliledlimab (I-MAB Biopharma), AK119 (Akeso Biopharma), quemliclustat (AB680, Arcus Biosciences), mupadolimab (Corvus Pharmaceuticals), HLX23 (Shanghai Henlius Biotech), INCA00186 (Incyte), IBI325 (Innovent Bio), NZV930 (Novartis/Surface Oncology), ORIC-533 (ORIC Pharma), Sym024 (Servier), IPH5301 (Innate), IOA-237 (iOnctura), JAB-BX100 (Jacobio), PT199 (Phanes Therapeutics), TRB010 (Trican Biotechnology), CD73 ASO (Secarna Pharmaceuticals), 622 (3Sbio),
  • the CD73 inhibitor is selected from oleclumab and quemliclustat. In some embodiments, the CD73 inhibitor is quemliclustat.
  • the adenosine receptor antagonist is an adenosine A2A receptor (A2AR; AD0RA2A) selective antagonist, such as imaradenant (AstraZeneca), NIR178 (Novartis/Palobiofarma) ID11902 (Ildong), IN-A003 (Inno.n), NTI-55 (A2aR/TLR7, Nammi), TT-10 (Tarus Therapeutics), or TT-228 (Teon Therapeutics).
  • A2AR adenosine A2A receptor
  • AD0RA2A adenosine A2A receptor selective antagonist
  • the adenosine receptor antagonist is an adenosine A2B receptor (A2BR; AD0RA2B) antagonist, such as PBF- 1129 (Palobiofarma) or TT-702 (Teon Therapeutics).
  • A2BR adenosine A2B receptor
  • AD0RA2B adenosine A2B receptor
  • PBF- 1129 Palobiofarma
  • TT-702 Teon Therapeutics
  • the adenosine receptor antagonist is a dual adenosine A2A/A2B receptor antagonist, such as etrumadenant (AB928, Arcus Biosciences), INCB 106385 (Incyte), M1069 (Merck KgaA), A2aR/A2bR (Domain/Merck KgaA), HM87277 (Al/A2aR/A2bR, Hanmi Pharmaceutical), RVU-330 (Ryvu), and TT-53 (Tarus Therapeutics).
  • the adenosine receptor antagonist is etrumadenant.
  • the anti-PD(L)1 antibody is selected from pembrolizumab, nivolumab, cemiplimab, pidilizumab, spartalizumab, atezolizumab, avelumab, durvalumab, cosibelimab, sasanlimab, tislelizumab, retifanlimab, balstilimab, toripalimab, cetrelimab, genolimzumab, prolgolimab, lodapolimab, camrelizumab, budigalimab, avelumab, dostarlimab, envafolimab, sintilimab, and zimberelimab.
  • the anti-PD(L)l antibody is zimberelimab.
  • the human patient is not co-administered an additional therapeutic agent selected from an MCL-1 inhibitor, an anti-CD47 antibody, and a FLT3 agonist.
  • a method of treating castrate resistant prostate cancer comprising co-administering to a human patient an effective amount of a) sacituzumab govitecan; and b) etrumadenant.
  • the CRPC is metastatic CRPC (mCRPC).
  • the CRPC or mCRPC ((m)CRPC) is resistant or refractive to at least one anti-cancer therapy.
  • the human patient has shown disease progression after prior treatment with a new hormonal agent (NHA; first- or second- generation non-steroidal antiandrogens, abiraterone, enzalutamide, darolutamide, apalutamide).
  • the human patient has not received a prior taxane therapy (e.g., paclitaxel, nab-paclitaxel (ABRAXANE®), docetaxel, cabazitaxel), checkpoint inhibitor therapy (e.g., anti- CTLA4 antibody, anti-PD(L)l antibody), topoisomerase I inhibitor therapy (e.g., irinotecan).
  • a prior taxane therapy e.g., paclitaxel, nab-paclitaxel (ABRAXANE®), docetaxel, cabazitaxel
  • checkpoint inhibitor therapy e.g., anti- CTLA4 antibody, anti-PD(L)l antibody
  • topoisomerase I inhibitor therapy e.g., irinotecan
  • the human patient with (m)CRPC has histologically confirmed adenocarcinoma of the prostate and metastatic castrate resistant with tumor progression while on androgen deprivation therapy (ADT ; including orchiectomy) with castrate levels of scrum (total) testosterone ( ⁇ 1.7 nmol/L or 50 ng/dL) defined by PSA and/or radiographic criteria according to PCWG3.
  • ADT on androgen deprivation therapy
  • the human patient (m)CRPC has metastatic castrate resistant adenocarcinoma of the prostate with tumor progression while on androgen deprivation therapy (e.g., including orchiectomy) with castrate levels of serum (total) testosterone ( ⁇ 1.7 nmol/L or 50 ng/dL) defined by prostate specific antigen (PSA) and/or radiographic criteria according to The Prostate Cancer Working Group 3 (PCWG3) and measurable or non-measurable disease per the Response Evaluation Criteria in Solid Tumors (RECIST) vl.l.
  • the human patient with (m)CRPC has Eastern Cooperative Oncology Group performance status 0 or 1 with a life expectancy >3 months.
  • the human patient with (m)CRPC has been tested for tumor antigen (e.g., Trop-2) expression levels (e.g., liquid or solid tumor biopsy, followed by tumor antigen expression analysis, e.g., by IHC or next-generation DNA sequencing).
  • tumor antigen e.g., Trop-2
  • sacituzumab govitecan is administered intravenously (IV) on day 1 and day 8 of a 21-day treatment cycle at a dose of 8 mg/kg or 10 mg/kg and etrumadenant is administered orally (PO) once daily (QD) at a dose of 75 mg or 150 mg on each day of the 21-day treatment cycle.
  • sacituzumab govitecan is administered intravenously (IV) on day 1 and day 8 of a 21-day treatment cycle at a dose of 10 mg/kg and etrumadenant is administered orally (PO) once daily (QD) at a dose of 150 mg on each day of the 21-day treatment cycle.
  • the methods provided herein have anti-cancer effects as determined by one or more efficacy endpoints selected from objective response rate (ORR), disease control rate (DCR), progression free survival (PFS), overall survival (OS), complete response (CR), partial response (PR), PSA response rate, radiographic response rate, and change from baseline in blood and tumor tissue microenvironment pharmacodynamic (PD) biomarkers.
  • the ORR is defined as the composite proportion of participants with a PSA and/or radiographic complete and partial response determined by the investigator according to the Prostate Cancer Working Group 3 (PCWG3) criteria.
  • the PSA response is defined as the proportion of participants with a confirmed PSA decrease from baseline of 50% or more based on 2 consecutive assessments measured at least 3 to 4 weeks apart.
  • the radiographic response defined as the proportion of participants with a best overall response of CR or PR according to RECIST vl.l.
  • DCR is defined as the proportion of participants with a best overall RECTST response of CR, PR, or stable disease (SD). Tn some embodiments, the DCR is at least 6 months.
  • PFS is defined as the time from treatment assignment until first documentation of progressive disease (PSA progression, radiographic progression, bone scan progression, or other) or death, whichever occurs first. Depending on data availability, time to progression due to specific reasons (e.g., PSA progression or radiographic progression) may also be presented individually.
  • OS is defined as the time from treatment assignment until death due to any cause.
  • the human patient is not coadministered an additional therapeutic agent selected from an MCL-1 inhibitor, an anti-CD47 antibody, and a FLT3 agonist.
  • a method of treating castrate resistant prostate cancer comprising co-administering to a human patient an effective amount of a) sacituzumab govitecan; b) etrumadenant and c) zimberelimab.
  • the CRPC is metastatic CRPC (mCRPC).
  • the CRPC or mCRPC ((m)CRPC) is resistant or refractive to at least one anti-cancer therapy.
  • the human patient has shown disease progression after prior treatment with a new hormonal agent (NHA; first- or second-generation non-steroidal antiandrogens, e.g, abiraterone, enzalutamide, darolutamide, apalutamide).
  • NHA new hormonal agent
  • the human patient has not received a prior taxane therapy (e.g., paclitaxel, nab-paclitaxel (ABRAXANE®), docetaxel, cabazitaxel), checkpoint inhibitor therapy (e.g., anti-CTLA4 antibody, anti-PD(L)l antibody), topoisomerase I inhibitor therapy (e.g., irinotecan).
  • a prior taxane therapy e.g., paclitaxel, nab-paclitaxel (ABRAXANE®), docetaxel, cabazitaxel
  • checkpoint inhibitor therapy e.g., anti-CTLA4 antibody, anti-PD(L)l antibody
  • the human patient with (m)CRPC has histologically confirmed adenocarcinoma of the prostate and metastatic castrate resistant with tumor progression while on androgen deprivation therapy (ADT ; including orchiectomy) with castrate levels of serum (total) testosterone ( ⁇ 1.7 nmol/L or 50 ng/dL) defined by PSA and/or radiographic criteria according to PCWG3.
  • ADT on androgen deprivation therapy
  • the human patient (m)CRPC has metastatic castrate resistant adenocarcinoma of the prostate with tumor progression while on androgen deprivation therapy (e.g., including orchiectomy) with castrate levels of serum (total) testosterone ( ⁇ 1.7 nmol/L or 50 ng/dL) defined by prostate specific antigen (PSA) and/or radiographic criteria according to The Prostate Cancer Working Group 3 (PCWG3) and measurable or non-measurable disease per the Response Evaluation Criteria in Solid Tumors (RECTST) vl .l . Tn some embodiments, the human patient with (m)CRPC has Eastern Cooperative Oncology Group performance status 0 or 1 with a life expectancy >3 months.
  • the human patient with (m)CRPC has been tested for tumor antigen (e.g., Trop-2) expression levels (e.g., liquid or solid tumor biopsy, followed by tumor antigen expression analysis, e.g., by IHC or nextgeneration DNA sequencing).
  • tumor antigen e.g., Trop-2
  • sacituzumab govitecan is administered intravenously (IV) on day 1 and day 8 of a 21-day treatment cycle at a dose of 8 mg/kg or 10 mg/kg
  • etrumadenant is administered orally (PO) once daily (QD) at a dose of 75 mg or 150 mg on each day of the 21-day treatment cycle
  • zimberelimab is administered on day 1 of the 21- day treatment cycle (Q3W) at a dose of 360 mg.
  • sacituzumab govitecan is administered intravenously (IV) on day 1 and day 8 of a 21-day treatment cycle at a dose of 10 mg/kg
  • etrumadenant is administered orally (PO) once daily (QD) at a dose of 150 mg on each day of the 21-day treatment cycle
  • zimberelimab is administered on day 1 of the 21-day treatment cycle (Q3W) at a dose of 360 mg.
  • the methods provided herein have anticancer effects as determined by one or more efficacy endpoints selected from objective response rate (ORR), disease control rate (DCR), progression free survival (PFS), overall survival (OS), complete response (CR), partial response (PR), PSA response rate, radiographic response rate, and change from baseline in blood and tumor tissue microenvironment pharmacodynamic (PD) biomarkers, hr some embodiments, the ORR is defined as the composite proportion of participants with a PSA and/or radiographic complete and partial response determined by the investigator according to the Prostate Cancer Working Group 3 (PCWG3) criteria.
  • PCWG3 Prostate Cancer Working Group 3
  • the PSA response is defined as the proportion of participants with a confirmed PSA decrease from baseline of 50% or more based on 2 consecutive assessments measured at least 3 to 4 weeks apart.
  • the radiographic response defined as the proportion of participants with a best overall response of CR or PR according to RECIST vl.l.
  • DCR is defined as the proportion of participants with a best overall RECIST response of CR, PR, or stable disease (SD).
  • the DCR is at least 6 months.
  • PFS is defined as the time from treatment assignment until first documentation of progressive disease (PSA progression, radiographic progression, bone scan progression, or other) or death, whichever occurs first.
  • time to progression due to specific reasons may also be presented individually.
  • OS is defined as the time from treatment assignment until death due to any cause.
  • the human patient is not co-administered an additional therapeutic agent selected from an MCL-1 inhibitor, an anti-CD47 antibody, and a FLT3 agonist.
  • Tn some embodiments, provided herein is a method of treating metastatic non-small cell lung cancer (mNSCLC) comprising co-administcring to a human mNSCLC patient an effective amount of a) sacituzumab govitecan; b) etrumadenant; and c) an anti-PD-(L)l antibody.
  • mNSCLC metastatic non-small cell lung cancer
  • the anti-PD-(L)l antibody is selected from the group consisting of pembrolizumab, nivolumab, cemiplimab, pidilizumab, spartalizumab, atezolizumab, avelumab, durvalumab, cosibelimab, sasanlimab, tislelizumab, retifanlimab, balstilimab, toripalimab, cetrelimab, genolimzumab, prolgolimab, lodapolimab, camrelizumab, budigalimab, avelumab, dostarlimab, envafolimab, sintilimab, and zimberelimab.
  • the anti-PD-(L)l antibody is zimberelimab.
  • the human mNSCLC patient has progressed after platinumbased chemotherapy.
  • the human mNSCLC patient has progressed after checkpoint inhibitor therapy (e.g., anti-PD-(L)l antibody or anti-CTLA4 antibody therapy).
  • the human mNSCLC patient has progressed after platinum-based chemotherapy and anti-PD-(L)l antibody therapy, received either in combination or sequentially (in any order).
  • the human mNSCLC patient is treatment naive.
  • NSCLC non-small cell lung cancer
  • a method of treating non-small cell lung cancer comprising co-administering to a human patient an effective amount of a) an anti-Trop- 2 ADC; b) a CD73 inhibitor or adenosine receptor antagonist; and, optionally, c) an anti-PD(L)l antibody.
  • the NSCLC is metastatic NSCLC (mNSCLC).
  • the anti-Trop-2 ADC has a structural formula of mAb-CL2A-SN-38, with a structure represented by:
  • the anti-Trop-2 ADC comprises a linker-payload conjugate having a structure represented by:
  • the anti-Trop-2 ADC comprises a linker-payload conjugate (TL035) having a structure represented by:
  • the anti-Trop-2 ADC comprises a linker-payload conjugate having a structure represented by: attached to an anti-Trop-2 antibody (e.g., hTINAl-HILl).
  • the anti-Trop-2 ADC has a DAR of about 4.
  • the anti-Trop-2 ADC is selected from sacituzumab govitecan, datopotamab deruxtecan (DS-1062), ESG-401, SKB-264, DAC-02 and BAT-8003.
  • the anti-Trop-2 antibody is sacituzumab govitecan or datopotamab deruxtecan. In some embodiments, the anti-Trop-2 antibody is sacituzumab govitecan.
  • the CD73 inhibitor is selected from oleclumab (AstraZeneca), B MS-986179 (BMS), ulilcdlimab (I-MAB Biopharma), AK119 (Akcso Biopharma), quemliclustat (AB680, Arcus Biosciences), mupadolimab (Corvus Pharmaceuticals), HLX23 (Shanghai Henlius Biotech), INCA00186 (Incyte), IBI325 (Innovent Bio), NZV930 (Novartis/Surface Oncology), ORIC-533 (ORIC Pharma), Sym024 (Servier), IPH5301 (Innate), IOA-237 (iOnctura), JAB-BX100 (Jacobio),
  • the CD73 inhibitor is selected from oleclumab and quemliclustat. In some embodiments, the CD73 inhibitor is quemliclustat.
  • the adenosine receptor antagonist is an adenosine A2A receptor (A2AR; ADORA2A) selective antagonist, such as imaradenant (AstraZeneca), NIR178 (Novartis/Palobiofarma) ID11902 (Ildong), IN-A003 (Inno.n), NTI-55 (A2aR/TLR7, Nammi), TT-10 (Tarus Therapeutics), or TT-228 (Teon Therapeutics).
  • A2AR adenosine A2A receptor
  • ADORA2A adenosine A2A receptor selective antagonist
  • the adenosine receptor antagonist is an adenosine A2B receptor (A2BR; ADORA2B) antagonist, such as PBF- 1129 (Palobiofarma) or TT-702 (Teon Therapeutics).
  • A2BR adenosine A2B receptor
  • ADORA2B adenosine A2B receptor
  • PBF- 1129 Palobiofarma
  • TT-702 Teon Therapeutics
  • the adenosine receptor antagonist is a dual adenosine A2A/A2B receptor antagonist, such as etrumadenant (AB928, Arcus Biosciences), INCB 106385 (Incyte), M1069 (Merck KGaA), A2aR/A2bR (Domain/Merck KGaA), HM87277 (Al/A2aR/A2bR, Hanmi Pharmaceutical), RVU-330 (Ryvu), and TT-53 (Tarus Therapeutics).
  • the adenosine receptor antagonist is etrumadenant.
  • the anti-PD-(L)l antibody is selected from pembrolizumab, nivolumab, cemiplimab, pidilizumab, spartalizumab, atezolizumab, avelumab, durvalumab, cosibelimab, sasanlimab, tislelizumab, retifanlimab, balstilimab, toripalimab, cetrelimab, genolimzumab, prolgolimab, lodapolimab, camrelizumab, budigalimab, avelumab, dostarlimab, envafolimab, sintilimab, and zimberelimab.
  • the anti-PD-(L)l antibody is zimberelimab.
  • the human patient is not co-administered an additional therapeutic agent selected from an MCL-1 inhibitor, an anti-CD47 antibody, and a FLT3 agonist.
  • NSCLC non-small cell lung cancer
  • the anti-PD- (L)1 antibody is selected from the group consisting of pembrolizumab, nivolumab, cemiplimab, pidilizumab, spartalizumab, atczolizumab, avclumab, durvalumab, cosibclimab, sasanlimab, tislelizumab, retifanlimab, balstilimab, toripalimab, cetrelimab, genolimzumab, prolgolimab, lodapolimab, camrelizumab, budigalimab, avelumab, dostarlimab, envafolimab, sintilimab, and zimberelimab.
  • the anti-PD-(L)l antibody is zimberelimab.
  • the NSCLC is metastatic NSCLC (mNSCLC).
  • the NSCLC or mNSCLC ((m)NSCLC) is resistant or refractive to at least one anti-cancer therapy.
  • the human mNSCLC patient has progressed after platinum-based chemotherapy.
  • the human mNSCLC patient has progressed after checkpoint inhibitor therapy (e.g., anti-PD-(L)l antibody or anti-CTLA4 antibody therapy).
  • the human mNSCLC patient has progressed after platinum-based chemotherapy and anti-PD-(L)l antibody therapy, received either in combination or sequentially (in any order).
  • the human mNSCLC patient is treatment naive.
  • the human patient with (m)NSCLC has been tested for tumor antigen (e.g., Trop-2) expression levels (e.g., liquid or solid tumor biopsy, followed by tumor antigen expression analysis, e.g., by IHC or next-generation DNA sequencing).
  • tumor antigen e.g., Trop-2
  • tumor antigen expression levels e.g., liquid or solid tumor biopsy, followed by tumor antigen expression analysis, e.g., by IHC or next-generation DNA sequencing.
  • sacituzumab govitecan is administered intravenously (IV) on day 1 and day 8 of a 21 -day treatment cycle at a dose of 8 mg/kg or 10 mg/kg and etrumadenant is administered orally (PO) once daily (QD) at a dose of 75 mg or 150 mg on each day of the 21-day treatment cycle.
  • sacituzumab govitecan is administered intravenously (IV) on day 1 and day 8 of a 21-day treatment cycle at a dose of 10 mg/kg and etrumadenant is administered orally (PO) once daily (QD) at a dose of 150 mg on each day of the 21-day treatment cycle.
  • the methods provided herein have anti-cancer effects as determined by one or more efficacy endpoints selected from objective response rate (ORR), disease control rate (DCR), progression free survival (PFS), duration of response (DOR), overall survival (OS), complete response (CR), partial response (PR), radiographic response rate, and change from baseline in blood and tumor tissue microenvironment pharmacodynamic (PD) biomarkers.
  • efficacy endpoints selected from objective response rate (ORR), disease control rate (DCR), progression free survival (PFS), duration of response (DOR), overall survival (OS), complete response (CR), partial response (PR), radiographic response rate, and change from baseline in blood and tumor tissue microenvironment pharmacodynamic (PD) biomarkers.
  • tumor response or progression is determined according to RECIST version 1.1.
  • the human patient is not co-administered an additional therapeutic agent selected from an MCL-1 inhibitor, an anti-CD47 antibody, and a FLT3 agonist.
  • [0215] Disclosed herein are methods of treating, mitigating, reducing, preventing or delaying the recurrence or metastasis of breast cancer comprising co-administering to a human patient an effective amount of: (a) sacituzumab govitecan; and (b) a CD73 inhibitor.
  • the CD73 inhibitor is olcclumab, BMS-986179, ulilcdlimab, AK119, qucmliclustat, mupadolimab, HLX23, INCA00186, IB 1325, NZV930, ORIC-533, Sym024, IPH5301, IOA-237, JAB-BX100, PT199, TRB010, CD73 ASO, ABSK-051, AK131, BR101, BP1200, CB708, GB7002, or ATG-037.
  • the CD73 inhibitor is quemliclustat (AB680, GS- 0680), uliledlimab, mupadolimab, ORIC-533, ATG-037, PT-199, AK131, NZV930, BMS- 986179, or oleclumab. In some embodiments, the CD73 inhibitor is quemliclustat (AB680, GS- 0680). In some embodiments, the method further comprises co-administering an anti-PD-(L)l antibody to the human patient.
  • the anti-PD-(L)l antibody is selected from the group consisting of pembrolizumab, nivolumab, cemiplimab, pidilizumab, spartalizumab, atezolizumab, avelumab, durvalumab, cosibelimab, sasanlimab, tislelizumab, retifanlimab, balstilimab, toripalimab, cetrelimab, genolimzumab, prolgolimab, lodapolimab, camrelizumab, budigalimab, avelumab, dostarlimab, envafolimab, sintilimab, and zimberelimab.
  • the method further comprises co-administering zimberelimab to the human patient.
  • the breast cancer is metastatic breast cancer.
  • the breast cancer is resistant or refractory to one or more anti-cancer therapies.
  • the breast has progressed following prior anti-cancer therapy (first- or second-generation anti-cancer therapy, e.g., hormone therapy).
  • the human patient has not received a prior therapy selected from taxane therapy (taxane naive), checkpoint inhibitor therapy (CPI naive), and topoisomerase I inhibitor therapy.
  • the human patient has not received a prior taxane therapy (taxane naive), checkpoint inhibitor therapy (CPI naive), or topoisomerase I inhibitor therapy.
  • taxane therapy comprises paclitaxel, nab-paclitaxel (ABRAXANE®), docetaxel, or cabazitaxel.
  • the checkpoint inhibitor therapy comprises an anti-CTLA4 antibody or an anti- PD(L)1 antibody.
  • the topoisomerase I inhibitor therapy comprises a topotecan, irinotecan, belotecan, or exatecan.
  • the methods provided herein have anti-cancer effects as determined by one or more efficacy endpoints selected from objective response rate (ORR), disease control rate (DCR), progression free survival (PFS), duration of response (DOR), overall survival (OS), complete response (CR), partial response (PR), radiographic response rate, and change from baseline in blood and tumor tissue microenvironment pharmacodynamic (PD) biomarkers.
  • efficacy endpoints selected from objective response rate (ORR), disease control rate (DCR), progression free survival (PFS), duration of response (DOR), overall survival (OS), complete response (CR), partial response (PR), radiographic response rate, and change from baseline in blood and tumor tissue microenvironment pharmacodynamic (PD) biomarkers.
  • tumor response or progression is determined according to RECTST version 1.1.
  • the human patient is not co-administcrcd an additional therapeutic agent selected from an MCL- 1 inhibitor, an anti-CD47 antibody, and a FLT3 agonist.
  • a clinical study is conducted administering human patients with metastatic castrate resistant prostate cancer (mCRPC) with a combination of an anti-Trop-2 antibody and an adenosine receptor antagonist.
  • mCRPC metastatic castrate resistant prostate cancer
  • a subgroup of patients is treated with a combination of an anti-Trop-2 antibody, an adenosine receptor antagonist, and an anti-PD-(L)l antibody.
  • human mCRPC patients are treated with a combination of sacituzumab govitecan and etrumadenant.
  • human mCRPC patients are treated with a combination of sacituzumab govitecan (SG), etrumadenant, and zimberelimab.
  • the patient population in this study can include previously treated mCRPC patients who have progressed on androgen deprivation therapy (ADT) and/or next generation hormonal agents (NHAs). mCRPC patients who are CPI and taxane naive can also be included. Additional patients can have RECIST 1.1 measurable or non-measurable disease.
  • ADT androgen deprivation therapy
  • NHAs next generation hormonal agents
  • Primary endpoints in the study can include composite overall response rate (ORR; PSA/RECIST Response) and safety.
  • Secondary endpoints can include ORR per RECIST 1.1, PSA response rate per PCWG3, disease control rate (DCR), or pharmacokinetics (PK).
  • ORR per RECIST 1.1 PSA response rate per PCWG3, disease control rate (DCR), or pharmacokinetics (PK).
  • DCR disease control rate
  • PK pharmacokinetics
  • Exploratory endpoints can include progression free survival, overall survival, or certain biomarkers. Investigational Products
  • Sacituzumab govitecan is an antibody-drug conjugate (ADC) composed of the following 3 components: o The humanized monoclonal antibody hRS7 IgGlK, which binds to trophoblast cellsurface antigen 2 (Trop-2), a transmembrane calcium signal transducer that is overexpressed in many epithelial cancers, including triple-negative breast cancer (TNBC) and non-small cell lung cancer (NSCLC). o The camptothecin-derived agent SN-38, a topoisomerase I inhibitor. o A hydrolyzable linker CL2A that links the humanized monoclonal antibody to SN-38.
  • ADC antibody-drug conjugate
  • SG delivers significantly greater amounts of SN 38 to a Trop 2-cxprcssing tumor than conventional irinotecan chemotherapy (Sharkey RM, et al. Clinical Cancer Research (2015) 21(22):5131-8).
  • the extracellular release of SN 38 from SG also allows for bystander killing of Trop 2 negative tumor cells (Lopez S, et al. Oncotarget (2020) l l(5):560;Perrone E, et al. Frontiers in Oncology (2020): 118; Zeybek B, et al. Scientific Reports (2020) 10(l):973)Thus
  • SG can deliver cytotoxic chemotherapy to tumors, including adjacent cancer cells, in concentrations that are higher than those with standard chemotherapy and may reduce toxic effects in normal tissues that do not express the target.
  • sacituzumab govitecan is generally administered at 10 mg/kg as an IV infusion on Days 1 and 8 of a 21-day cycle.
  • Etrumadenant is generally administered at 10 mg/kg as an IV infusion on Days 1 and 8 of a 21-day cycle.
  • Etrumadenant also known as AB928, GS-0928
  • Etrumadenant is a low-molecular-weight, orally bioavailable, selective dual antagonist of adenosine receptors adenosine 2a receptor (A2aR) and adenosine 2b receptor (A2b ).
  • A2aR adenosine 2a receptor
  • A2b adenosine 2b receptor
  • etrumadenant has been shown to selectively reverse the immunosuppressive effects caused by high concentrations of adenosine, without causing any immune activation effects on its own.
  • Tn prostate cancer, A2bR is upregulated and the activity of prostatic acid phosphatase (PAP) produces additional adenosine, suggesting this tumor type may be more susceptible than others to adenosine-mediated immunosuppression.
  • PAP prostatic acid phosphatase
  • Etrumadenant can achieve high penetration of tumor tissue, robust potency in the presence of high adenosine concentrations, and only small shift in potency from nonspecific protein binding.
  • Etrumadenant exhibits PK/pharmacodynamics consistent with once-daily dosing and has been well tolerated in dose escalation studies as a single agent and in Phase lb/2 studies administered in combination with chemo/immunotherapy across multiple advanced solid tumor indications.
  • Tn the clinical studies described herein, etrumadenant is generally administered orally at a dose of 75 mg or 150 mg QD.
  • Zimberelimab is a fully human IgG4 monoclonal antibody targeting human PD- 1.
  • PD- 1 is a type I transmembrane protein that is part of the immunoglobulin gene superfamily and the CD28 family of cell surface receptors.
  • the structure of PD-1 consists of 1 immunoglobulin variable-like extracellular domain and 1 cytoplasmic domain containing an immunoreceptor tyrosine-based inhibitory motif and an immunoreceptor tyrosine-based switch motif.
  • PD-1 has 2 known ligands, PD-L1 (B7 Hl and CD274) and programmed cell death ligand 2 (PD-L2; B7 DC and CD73), which are members of the B7 family and are expressed on the plasma membrane of cancer cells and tumor-infiltrating leukocytes. Both PD-L1 and PD-L2 are B7 homologs that bind to PD-1, but they do not bind to other CD28 family members. [0229] PD-1 is an inhibitory immune checkpoint protein that is expressed on activated B cells, T cells, and myeloid cells, and it plays a key role in limiting the activity of effector T cells. It also provides a major resistance mechanism by which tumor cells can escape immune surveillance.
  • PD-1 When activated by its ligands, PD-1 induces a state of anergy or unresponsiveness in T cells, and the cells are unable to produce optimal levels of effector cytokines or carry out other effector T- cell functions. PD-1 may also induce apoptosis in T cells via its ability to inhibit survival signals. Under normal circumstances, PD-1 is important for limiting the extent of T cell-mediated immune responses. PD- 1 -deficient animals develop various autoimmune phenotypes, including autoimmune cardiomyopathy and a lupus-like syndrome with arthritis and nephritis.
  • PD-1/PD-L1 The interaction of PD-1 expressed on activated T cells and PD-L1 expressed on tumor cells negatively regulates immune response and dampens anticancer immunity.
  • PD-L1 is abundantly expressed on a variety of human tumors, and its expression correlates with reduced patient survival in esophageal, pancreatic, and other types of cancers. Therefore, the PD-1/PD-L1 pathway is an important target for tumor immunotherapy.
  • Activation of the PD-1/PD-L1 signaling pathway results in a decrease in tumor-infiltrating lymphocytes, a decrease in T cell proliferation, and an increase in immune evasion by cancerous cells.
  • Immune suppression can be reversed by inhibiting the local interaction of PD-1 with PD-L1, and the effect is additive when the interaction of PD-1 with PD-L2 is also blocked.
  • the selected dose of zimberelimab is generally 360 mg administered IV Q3W.
  • the treatment arms will be conducted in 2 stages: Stage 1 and Stage 2. Depending on the treatment arm and stage, enrollment may or may not involve randomization. The decision to begin randomized enrollment in a specific treatment arm will be made by the sponsor for each combination therapy. Stage 1
  • Stage 1 approximately 15 participants will be enrolled and will receive investigational products at the single agent recommended dose for expansion; standard of care therapies will be administered according to label instructions. The decision to begin enrollment in a specific treatment arm in Stage 1 will be made by the sponsor. The study includes the following anus:
  • Etrumadenant Sacituzumab govitecan 10 mg/kg on Days 1 and 8 of a 21-day cycle + Etrumadenant 150 mg QD.
  • SG+ Etrumadenant + Zimberelimab Sacituzumab govitecan 10 mg/kg on Days 1 and 8 of a 21-day cycle + Etrumadenant 150 mg QD + Zimberelimab 360 mg Q3W.
  • CPI checkpoint inhibitor
  • NHA new hormonal agent
  • SG sacituzumab govitecan
  • Safety assessments will consist of monitoring and recording AEs, including SAEs and AEs of special interest (AESI), performing protocol- specified safety laboratory assessments, measuring protocol- specified vital signs, and conducting other protocol- specified tests that are deemed critical to the safety evaluation of the study. All AEs and laboratory abnormalities will be graded according to the Common Terminology Criteria for Adverse Events (CTCAE) v5.0. Objectives and Endpoints
  • ORR Objective response rate
  • PCWG3 Prostate Cancer Working Group 3
  • ORR defined as the composite proportion of participants with a PSA and/or radiographic complete and partial response determined by PCWG3 criteria.
  • Participants for biopsy should have at least 2 measurable lesions at baseline: 1 for tissue sampling and 1 for radiographic response assessment.
  • HIV Negative human immunodeficiency virus
  • HBsAg hepatitis B surface antigen
  • HBcAb total hepatitis B core antibody
  • HCV hepatitis C virus
  • Prior anticancer treatment for the disease under study including approved agents, systemic radiotherapy, or investigational therapy, within 4 weeks (or 5 half-lives) prior to initiation of study treatment.
  • Prior focal radiotherapy must be completed at least 2 weeks prior to the initiation of study treatment
  • systemic immunostimulatory agents including, but not limited to, interferon and interleukin-2
  • systemic immunostimulatory agents including, but not limited to, interferon and interleukin-2
  • systemic immunosuppressive medication including, but not limited to, corticosteroids, cyclophosphamide, azathioprine, methotrexate, thalidomide, and antitumor necrosis factor-a agents
  • systemic immunosuppressive medication including, but not limited to, corticosteroids, cyclophosphamide, azathioprine, methotrexate, thalidomide, and antitumor necrosis factor-a agents
  • a Patients who received low dose ( ⁇ 10 mg/day prednisone or equivalent), systemic immunosuppressant medications or a 1-time pulse dose of systemic immunosuppressant medication (eg, 48 hours of corticosteroids for a contrast allergy) are eligible for the study after medical monitor approval has been obtained.
  • CNS metastases a. Patients with a history of treated CNS metastases arc eligible, if all of the following criteria are met: i. The patient has no history of intracranial hemorrhage or spinal cord hemorrhage. ii. Metastases are limited to the cerebellum or the supratentorial region (ie, no metastases to the midbrain, pons, medulla, or spinal cord). iii. There is no evidence of interim progression between completion of CNS directed therapy and the screening brain scan. iv. The patient has not received stereotactic radiotherapy within 7 days prior to initiation of study treatment or whole brain radiotherapy within 14 days prior to initiation of study treatment.
  • IV intravenous
  • Severe infection within 4 weeks prior to initiation of study treatment including, but not limited to, hospitalization for complications of infection, bacteremia, or severe pneumonia
  • Known allergy or hypersensitivity to any of the study drugs or their excipients may affect the interpretation of the results, or may render the patient at high risk from treatment complications 22.
  • autoimmune disease or immune deficiency including, but not limited to, myasthenia gravis, myositis, autoimmune hepatitis, systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, antiphospholipid antibody syndrome, Wegener granulomatosis, Sjogren syndrome, Guillain Barre syndrome, or multiple sclerosis with the following exceptions: a. Patients with a history of autoimmune related hypothyroidism who are on thyroid replacement hormone are eligible for the study. b. Patients with controlled Type 1 diabetes mellitus who, in the judgment of the investigator, arc on a stable insulin regimen arc eligible for the study. c.
  • Treatment with known strong CYP3A4 inducers eg, rifampin, phenytoin, carbamazepine, phenobarbital, and St. John’s Wort
  • strong CYP3A4 inhibitors eg, clarithromycin, grapefruit juice, itraconazole, ketoconazole, posaconazole, telithromycin, and voriconazole
  • Sacituzumab govitecan 10 mg/kg, IV, on Days 1 and 8 of a 21-day cycle
  • Etrumadenant 150 mg, oral, once daily continuous dosing (21-day cycle)
  • Table 7 provides study intervention details: Table 7: Etrumadenant + sacituzumab govitecan with or without zimberelimab
  • a participant may receive etrumadenant as a capsule or tablet but cannot receive both formulations.
  • the dose of SG will be calculated based on actual weight at randomization (using weight obtained either at screening or on Cycle 1 Day 1) and remains constant throughout the study, unless there is a > 10% change in body weight from baseline. Modifications to the study drug doses administered should be made for a > 10% change in body weight from baseline and according to local and regional prescribing standards. Dose modifications for changes in body weight ⁇ 10% may be made according to local institutional guidelines. Sacituzumab govitecan is administered via IV infusion.
  • Sacituzumab govitecan will be administered in 21-day cycles on Days 1 and 8; the next cycle should start a minimum 14 days after the Day 8 dose (i.e., the Day 8 infusion will be counted as the first day of that 14-day period).
  • Etrumadenant should be taken at least 30 minutes prior to the start of IV infusion of SG. Sacituzumab govitecan is administered via IV infusion. The first infusion is administered over 3 hours. Subsequent infusions may be administered over 1 to 2 hours if previous infusions were well tolerated.
  • Etrumadenant should be taken at least 30 minutes prior to the start of IV infusion of zimberelimab. Administer zimberelimab over a 60-minute ( ⁇ 5 min) IV infusion followed by a 30- minute observation (+15 min) interval. Following the zimberelimab observation period, sacituzumab govitecan should be administered as described above.
  • Table 8 provides the study treatment administration schedule.
  • 1 experimental treatment cycle is 21 days in duration (Cl, C2, C3, C4).
  • Concomitant medications or treatments may be prescribed if considered necessary for adequate prophylactic or supportive care except for those medications identified as prohibited further below.
  • Anticoagulant therapy including low-molecular-weight heparins, are allowed as clinically indicated. Applicable participants should undergo routine monitoring of coagulation parameters, including INR, according to institutional guidelines.
  • Premedication is permitted for treatment with SG.
  • Guidance for premedication for prevention of toxicities associated with SG is presented in Table 9.
  • ANC absolute neutrophil count
  • ASCO American Society of Clinical Oncology
  • ESMO European Society for Medical Oncology
  • IV intravenous
  • PO orally
  • SG Sacituzumab govitecan
  • Systemic immuno stimulatory agents including but not limited to interferons and interleukin-2.
  • Systemic immunosuppressive medications including but not limited to corticosteroids, cyclophosphamide, azathioprinc, methotrexate, thalidomide, and antitumor necrosis factor-a agents
  • Systemic immunosuppressive medications including but not limited to corticosteroids, cyclophosphamide, azathioprinc, methotrexate, thalidomide, and antitumor necrosis factor-a agents
  • acute, low dose ⁇ 10 mg/day prednisone or equivalent
  • systemic immunosuppressant medications for management of AEs are allowed after medical monitor approval has been obtained.
  • UGT1A1 inducers that should be avoided while receiving SG include: Carbamazepine, efavirenz, ethinylestradiol, lamotrigine, phenobarbital, phenytoin, primidone, rifampicin, ritonavir, and tipranavir.
  • Stage 1 Participants will be enrolled into various treatment arms based on their prior cancer history. Enrollment may be paused after the accrual of approximately 6 participants in a treatment arm to allow for safety evaluation. A rate of toxicity of ⁇ 33% will be targeted, with toxicity being defined as the occurrence of either a treatment-related Grade 4 AE or a treatment- related Grade 3 AE that is not responsive to supportive care during Cycle 1. If 2 or more such events are observed, enrollment in that arm may not continue.
  • Radiographic response is defined as either a CR or PR by RECIST vl.l
  • PSA response is defined as percent change from baseline PSA of > 50%.
  • At least 1 radiographic CR or PR or 2 PSA responses out of 15 evaluable participants must be observed in order to consider opening Stage 2. In this case, across a range of prior beta distributions, observing 1 or fewer PSA responses would provide greater than 80% posterior probability confidence that the PSA response rate is less than 20%.
  • Participants must have at least 1 postbaseline radiographic disease evaluation or consecutive postbaseline PSA assessments measured at least 3 to 4 weeks apart to be considered evaluable for Stage 1 decision gating.
  • Stage 2 up to 25 additional participants may be enrolled either onto an experimental arm or a standard of care control arm. The goal of this stage is to better characterize potential treatment differences between experimental arms and standard of care among concurrently enrolled participants. Representative estimates of 90% confidence intervals for potential differences in response between treatment arms are provided. Safety Endpoints
  • Safety analyses will be conducted in the safety-evaluable population, defined as all participants who are enrolled and receive any amount of study treatment. Safety will be assessed through summaries of AEs, as well as relevant changes in laboratory test results, vital signs, and electrocardiograms. Verbatim AE terms will be mapped and coded using the Medical Dictionary for Regulatory Activities. All AEs will be assessed for severity according to National Cancer Institute Common Terminology Criteria for Adverse Events (NCI CTCAE) v5.0.
  • NCI CTCAE National Cancer Institute Common Terminology Criteria for Adverse Events
  • Treatment-emergent adverse events defined as AEs with onset date on or after initiation of study treatment or as AEs present at baseline but which worsened after initiation of study treatment, will be summarized. Adverse events will be summarized on the participant-level using the maximum severity or grade reported. All TEAEs, SAEs, AEs leading to study treatment discontinuation, Grade 3 or higher AEs, and deaths will be listed and summarized by treatment arm with the mapped preferred terms, thesaurus level and NCI CTCAE grade, as appropriate.
  • Efficacy analyses will be primarily conducted in the efficacy-evaluable population, defined as all participants who are enrolled and receive at least 1 dose of each drug of their assigned treatment regimen. The following prioritized efficacy endpoints will be analyzed according to PCWG3 and based on the investigator’s assessment:
  • ORR defined as the composite proportion of participants with a PSA response or a radiographic CR or PR (defined below).
  • PSA response defined as the proportion of participants with a confirmed PSA decrease from baseline of 50% or more based on 2 consecutive assessments measured at least 3 to 4 weeks apart.
  • Radiographic response defined as the proportion of participants with a best overall response of CR or PR according to RECIST vl.l.
  • DCR is defined as the proportion of participants with a best overall RECIST response of CR, PR, or stable disease (SD).
  • PFS is defined as the time from treatment assignment until first documentation of progressive disease (PSA progression, radiographic progression, bone scan progression, or other) or death, whichever occurs first. Depending on data availability, time to progression due to specific reasons (e.g., PSA progression or radiographic progression) may also be presented individually.
  • OS is defined as the time from treatment assignment until death due to any cause.
  • the primary efficacy endpoint is the ORR, defined as the composite proportion of participants with a PSA response or a radiographic complete or partial response determined by the investigator according to the PCWG3 criteria. PSA response and radiographic complete or partial response may be reported individually. For clarity, PSA response is defined as the proportion of participants with a confirmed PSA decrease from baseline of 50% or more based on 2 consecutive assessments measured 3 to 4 weeks apart. Radiographic response is defined as the percentage of participants with measurable disease at baseline who achieve a best overall response of CR or PR according to RECIST vl.l.
  • tumor assessments every 12 weeks ( ⁇ 7 days) from start of study treatment until disease progression (regardless of whether the participant is still receiving treatment), the start of new anticancer therapy, withdrawal of consent, death, or the end of the study.
  • tumor assessments may be repeated at any time if disease progression is suspected. All participants who discontinue study treatment for reasons other than disease progression (e.g., AEs) will continue tumor assessments until death, disease progression, initiation of another systemic anticancer therapy, lost to follow-up, withdrawal of consent, or study termination, whichever occurs first.
  • Measurable and evaluable lesions should be assessed and documented at screening. Tumor assessments performed as standard of care prior to obtaining informed consent and within 28 days prior to enrollment do not have to be repeated at screening.
  • Baseline disease assessments for all participants will include: CT scan with contrast of the chest and abdomen/pelvis, Full-body bone scan (technetium-99m [TC-99m]), and MRI scan of the brain.
  • Postbaseline disease assessments for all participants will include:
  • All scans should be performed in accordance with RECIST vl.l and with contrast. If contrast is medically contraindicated, a chest CT without contrast and an abdomen/pelvis MRI without contrast may be performed. If a brain MRI is contraindicated, a brain CT with contrast should be performed. If a CT scan for tumor assessment is performed in a positron emission tomography (PET)/CT scanner, the CT acquisition must be consistent with standard for a full contrast diagnostic CT scan.
  • PET positron emission tomography
  • All measurable and evaluable lesions identified at baseline should be reassessed at each subsequent postbaseline tumor evaluation.
  • the same radiographic procedures used to assess disease sites at screening should be used for subsequent tumor assessments (e.g., same contrast protocol for CT scans). Response will be assessed by the investigator using PCWG3. Assessments should be performed by the same evaluator, if possible, to ensure internal consistency across disease evaluations. Results must be reviewed by the investigator before dosing at the next planned study treatment cycle.
  • An adverse event is any untoward medical occurrence in a clinical investigation participant administered a pharmaceutical product regardless of causal attribution.
  • An AE can therefore be any of the following: Any unfavorable and unintended sign (including an abnormal laboratory finding), symptom, or disease temporally associated with the use of a medicinal product, whether or not considered related to the medicinal product
  • a serious adverse event is any AE that meets any of the following criteria:
  • Severity refers to the intensity of an AE (e.g., rated as mild, moderate, or severe, or according to the National Cancer Institute [NCI] CTCAE); the event itself may be of relatively minor medical significance (such as severe headache without any further findings). Assessment of Severity
  • CTCAE Instrumental activities of daily living refer to preparing meals, shopping for groceries or clothes, using the telephone, managing money, etc.
  • Examples of self-care activities of daily living include bathing, dressing and undressing, feeding oneself, using the toilet, and taking medications, as performed by patients who are not bedridden.
  • c If an event is assessed as a “significant medical event”, it must be reported as an SAE d Grade 4 and 5 events must be reported as SAEs should the event meet the SAE definition.
  • This study will evaluate the efficacy and safety of combination treatment regimens for patients with advanced or metastatic NSCLC with progression on or recurrence after platinumbased chemotherapy and PD-1/PD-L1 immunotherapy, received either in combination or sequentially.
  • Participants must have a diagnosis of advanced or metastatic squamous or non-squamous NSCLC.
  • Participants with EGFR, ALK, or any other known actionable genomic alterations must have also received treatment with at least 1 approved tyrosine kinase inhibitor appropriate to the genomic alteration.
  • participants will be randomly assigned to an experimental arm. Randomization will be stratified by histology (squamous versus non-squamous) and prior therapy for an actionable genomic alteration (yes versus no).
  • participant will be randomly assigned to the comparator arm or an experimental arm. Participants in the comparator arm will receive either sacituzumab govitecan or docetaxel, with the comparator arm choice based on the treatment landscape at the time of initiation of the expansion stage.
  • ORR Objective response rate
  • PFS Progression-free survival
  • DOR Duration of response
  • OS overall survival
  • Tumor biopsy must have been performed on or after progression on prior line of therapy and before enrollment with no anticancer treatment between collection of tissue and enrollment.
  • Topoisomerase 1 inhibitors Any agent including an ADC containing a chemotherapeutic agent targeting topoisomerase 1.
  • Trop-2-targeted therapy c) Docetaxel as monotherapy or in combination with other agents.
  • Docetaxel as monotherapy or in combination with other agents.
  • Sacituzumab govitecan, etrumadenant, and zimberelimab are as described in Example 1.
  • Etrumadenant is administered orally, followed by zimberelimab IV, followed by sacituzumab govitecan IV.
  • the comparator arm during the expansion phase of the study will be either docetaxel or sacituzumab govitecan monotherapy (Table 12).
  • EGFR testing will be performed using the Cobas® EGFR Mutation Test (Roche).
  • ALK the Vysis ALK Break Apart FISH probe test (Abbott) will be used.
  • Additional biomarkers in blood and tissue may include, but are not limited to, protein expression, analyses of specific immune and tumor signatures (RNA), as well as tumor mutational burden and tumor mutations (DNA). Tumor and blood samples will be collected to measure biomarkers of response and resistance and to better understand molecular attributes predictive of treatment in lung cancer. Examples may include, but will not be limited to, PD-L1 and Trop-2 - expression, other proteins as well as mutations/gene expression (WES/RNAseq) related to any of the study treatments or related to lung cancer, tumor mutational burden, oncogenic mutations, composition of immune subsets in tumor microenvironment, and pathological features of the tumor.
  • WES/RNAseq mutations/gene expression
  • hRS7 mAb, SG, Rab64 Ab and surrogate SG to Trop-2 was characterized by surface plasmon resonance (SPR, Table 13) and demonstrated that surrogate SG bound to both mouse and human Trop-2 in the low nanomolar range (1 .37 nM to mTrop-2 and 1.1 nM to hTrop-2).
  • a mouse isotype antibody control (mMAB1129/mG2a/mKap) was used as control ADC and coupled to CL2A linker/SN-38 payload in the same condition that Rab64 mAb.
  • Table 14 summarizes the ADC constructs.
  • the purpose of this study is to determine the in vivo efficacy of murinized SG combined to anti-mouse PD1 and/or quemliclustat in an immunocompetent mouse model of orthotopic breast cancer expressing human Trop-2.
  • mice were acquired from Biocytogen. Female (5-7 weeks old) are injected into the left fourth mammary fat pad with huTrop-2 transduced EO771 tumor cells. When the tumor volume reaches a mean volume of 100 mm 3 , mice are randomized into 12 groups (10 mice per group) and treated for four weeks with
  • Murinized SG ADC was produced as described in Example 3.
  • the anti-mouse PD1 antibody RMP1.14 mlgGl D265A is a commercially available antibody that can be purchased, for example, from Invivogen (cat. code mpdl-mabl5-l).
  • Palpable tumors are measured with calipers. Mice are sacrificed when tumor sizes reached -2000 mm 3 . It is contemplated that the group treated with triple combinations (group 8) will survive the longest due to the combination of the anti-tumor effect of murinized SG to the activation of the tumor infiltrate via IO drugs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Endocrinology (AREA)
  • Reproductive Health (AREA)
  • Urology & Nephrology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)

Abstract

La présente invention concerne des méthodes de traitement, d'atténuation ou de prévention ou de ralentissement de la récurrence ou de la métastase d'un cancer exprimant Trop-2 (par exemple d'un cancer de la prostate résistant à la castration métastatique, un cancer du poumon non à petites cellules) chez un patient par administration d'une quantité efficace de : (a) un conjugué anticorps anti-Trop-2/médicament (CAM) (p. ex., le sacituzumab govitécan) ; et (b) un inhibiteur de la voie de l'adénosine (p. ex., l'etrumadenant, le quemliclustat) au patient. La présente invention concerne en outre des méthodes de traitement, d'atténuation ou de prévention ou de ralentissement de la récurrence ou de la métastase d'un cancer exprimant un antigène tumoral (AT) chez un patient par administration d'une quantité efficace de : a) un conjugué anticorps ciblé vers un antigène tumoral/médicament (CAM) comprenant un inhibiteur de la topoisomérase I (CAM TopI) ; et b) un inhibiteur de la voie de l'adénosine.
EP23721581.9A 2022-04-13 2023-04-12 Polythérapie pour le traitement de cancers exprimant trop-2 Pending EP4507736A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202263330700P 2022-04-13 2022-04-13
US202263370228P 2022-08-02 2022-08-02
US202263377918P 2022-09-30 2022-09-30
PCT/US2023/065682 WO2023201267A1 (fr) 2022-04-13 2023-04-12 Polythérapie pour le traitement de cancers exprimant trop-2

Publications (1)

Publication Number Publication Date
EP4507736A1 true EP4507736A1 (fr) 2025-02-19

Family

ID=86328489

Family Applications (1)

Application Number Title Priority Date Filing Date
EP23721581.9A Pending EP4507736A1 (fr) 2022-04-13 2023-04-12 Polythérapie pour le traitement de cancers exprimant trop-2

Country Status (7)

Country Link
EP (1) EP4507736A1 (fr)
JP (1) JP2025512384A (fr)
KR (1) KR20250004779A (fr)
CN (1) CN119173276A (fr)
AU (1) AU2023252914A1 (fr)
TW (1) TW202345845A (fr)
WO (1) WO2023201267A1 (fr)

Family Cites Families (220)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874540A (en) 1994-10-05 1999-02-23 Immunomedics, Inc. CDR-grafted type III anti-CEA humanized mouse monoclonal antibodies
ATE490518T1 (de) 1999-02-05 2010-12-15 Samsung Electronics Co Ltd Verfahren und vorrichtung zum wiederauffinden von texturbildern
US8435529B2 (en) 2002-06-14 2013-05-07 Immunomedics, Inc. Combining radioimmunotherapy and antibody-drug conjugates for improved cancer therapy
US8877901B2 (en) 2002-12-13 2014-11-04 Immunomedics, Inc. Camptothecin-binding moiety conjugates
CA2478047C (fr) 2002-03-01 2014-01-21 Immunomedics, Inc. Anticorps rs7
US8435539B2 (en) 2004-02-13 2013-05-07 Immunomedics, Inc. Delivery system for cytotoxic drugs by bispecific antibody pretargeting
US9707302B2 (en) 2013-07-23 2017-07-18 Immunomedics, Inc. Combining anti-HLA-DR or anti-Trop-2 antibodies with microtubule inhibitors, PARP inhibitors, bruton kinase inhibitors or phosphoinositide 3-kinase inhibitors significantly improves therapeutic outcome in cancer
JP5214252B2 (ja) 2005-03-03 2013-06-19 イミューノメディクス、インコーポレイテッド ヒト化l243抗体
US20130039861A1 (en) 2005-04-06 2013-02-14 Immunomedics, Inc. Dye Conjugated Peptides for Fluorescent Imaging
US7420040B2 (en) 2006-02-24 2008-09-02 Arius Research Inc. Cytotoxicity mediation of cells evidencing surface expression of TROP-2
CA2644996A1 (fr) 2006-03-02 2007-09-13 Cv Therapeutics, Inc. Antagonistes du recepteur a2a de l'adenosine
CN101448844B (zh) 2006-05-18 2012-07-25 霍夫曼-拉罗奇有限公司 作为腺苷a2b受体拮抗剂的噻唑并嘧啶/吡啶脲衍生物
AU2008205069A1 (en) 2007-01-05 2008-07-17 Biogen Idec Ma Inc. Polymorphs and solvates of a pharmaceutical and methods of making
US8314406B2 (en) 2007-04-06 2012-11-20 The General Hospital Corporation Systems and methods for optical imaging using early arriving photons
US9585957B2 (en) 2007-09-07 2017-03-07 The Johns Hopkins University Adenosine receptor agonists and antagonists to modulate T cell responses
GB0718432D0 (en) 2007-09-21 2007-10-31 Vernalis R&D Ltd New chemical compounds
GB0718434D0 (en) 2007-09-21 2007-10-31 Vernalis R&D Ltd New chemical compounds
GB0718433D0 (en) 2007-09-21 2007-10-31 Vernalis R&D Ltd New chemical compounds
AU2008317034A1 (en) 2007-10-24 2009-04-30 Janssen Pharmaceutica, N.V. Arylindenopyrimidines and their use as Adenosine A2a receptor antagonists
PA8801401A1 (es) 2007-10-25 2009-05-15 Janssen Pharmaceutica Nv Arilindenopirimidinas y su uso como adenosina a2a
ES2618292T3 (es) 2008-01-31 2017-06-21 Inserm - Institut National De La Sante Et De La Recherche Medicale Anticuerpos contra CD39 humano y uso de los mismos para inhibir la actividad de las células T reguladoras
WO2010008775A1 (fr) 2008-06-23 2010-01-21 Ligand Pharmaceuticals Inc. Dérivés d'aminopyridopyrazinone pour le traitement de maladies neurodégénératives
LT3903829T (lt) 2009-02-13 2023-06-12 Immunomedics, Inc. Imunokonjugatai su viduląsteliniu būdu skaldoma jungtimi
UA110097C2 (uk) 2009-09-02 2015-11-25 Терапевтичний агент для лікування розладів настрою
WO2011050160A1 (fr) 2009-10-22 2011-04-28 Biogen Idec Ma Inc. Agents pharmaceutiques, compositions et procédés de préparation et d'utilisation de ceux-ci
EP2499142B1 (fr) 2009-11-09 2016-09-21 Advinus Therapeutics Limited Composés pyrimidine fusionnés substitués, leur préparation et leurs utilisations
CA2782194C (fr) 2009-12-02 2018-01-16 Immunomedics, Inc. Combinaison d'anticorps radio-marquees et de conjugues anticorps-medicament pour le traitement du cancer pancreatique
DK2654789T3 (en) 2010-12-22 2018-09-03 Orega Biotech ANTIBODIES AGAINST HUMAN CD39 AND USE THEREOF
WO2012135084A1 (fr) 2011-03-31 2012-10-04 Merck Sharp & Dohme Corp. Métabolites de 2-(furan-2-yl)-7-(2-(4-(4-(2-méthoxyéthoxy)phényl)pipérazin-1-yl)éthyl)-7h-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine et leur utilité en tant qu'antagonistes du récepteur a2a de l'adénosine
US8871908B2 (en) 2011-11-11 2014-10-28 Rinat Neuroscience Corp. Antibodies specific for Trop-2 and their uses
US9427464B2 (en) 2011-11-22 2016-08-30 Chiome Bioscience Inc. Anti-human TROP-2 antibody having an antitumor activity in vivo
US9682143B2 (en) 2012-08-14 2017-06-20 Ibc Pharmaceuticals, Inc. Combination therapy for inducing immune response to disease
US10413539B2 (en) 2012-12-13 2019-09-17 Immunomedics, Inc. Therapy for metastatic urothelial cancer with the antibody-drug conjugate, sacituzumab govitecan (IMMU-132)
US9492566B2 (en) 2012-12-13 2016-11-15 Immunomedics, Inc. Antibody-drug conjugates and uses thereof
KR102356017B1 (ko) 2012-12-13 2022-01-27 이뮤노메딕스, 인코오포레이티드 개선된 효능 및 감소된 독성을 위한 항체 및 sn-38의 면역컨쥬게이트의 투약
US10744129B2 (en) 2012-12-13 2020-08-18 Immunomedics, Inc. Therapy of small-cell lung cancer (SCLC) with a topoisomerase-I inhibiting antibody-drug conjugate (ADC) targeting Trop-2
WO2014101113A1 (fr) 2012-12-28 2014-07-03 Merck Sharp & Dohme Corp. Composés de 7-méthoxy-[1,2,4]triazolo[1,5-c]quinazoline-5-amine à substitution pipérazine présentant des propriétés d'antagoniste d'a2a
WO2014101120A1 (fr) 2012-12-28 2014-07-03 Merck Sharp & Dohme Corp. Composés de 7-méthoxy-[1,2,4]triazolo[1,5-c]quinazoline-5-amine à substitution hétérobicyclo présentant des propriétés d'antagoniste d'a2a
EP2941420B1 (fr) 2013-01-03 2018-09-05 Council of Scientific & Industrial Research (4e)-4-(benzylidène 4-substitué)amino-2,3-dihydro-3-substitués-2-thioxothiazole-5-carbonitriles comme antagonistes a2ar et procédés pour leur préparation
WO2014163684A1 (fr) 2013-04-03 2014-10-09 Ibc Pharmaceuticals, Inc. Polytherapie pour induire une reponse immunitaire a une maladie
WO2015027431A1 (fr) 2013-08-29 2015-03-05 Merck Sharp & Dohme Corp. Antagonistes 2,2-difluorodioxolo du récepteur a2a
EP3088419B1 (fr) 2013-12-25 2018-10-10 Daiichi Sankyo Company, Limited Conjugué anticorps anti-trop2-médicament
JP6657182B2 (ja) 2014-04-25 2020-03-04 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 癌治療用のcd73阻害剤としてのプリン誘導体
ES2821964T3 (es) 2014-10-10 2021-04-28 Innate Pharma Bloqueo de CD73
EP3215538A4 (fr) 2014-11-07 2018-07-04 Igenica Biotherapeutics, Inc. Anticorps anti-cd39 et utilisations
KR20250037600A (ko) 2014-11-10 2025-03-17 메디뮨 리미티드 Cd73에 특이적인 결합 분자 및 이의 용도
EP3220910B1 (fr) 2014-11-18 2020-01-15 Merck Sharp & Dohme Corp. Composés aminopyrazines ayant des propriétés antagonistes de l'a2a
HUE050596T2 (hu) 2014-11-21 2020-12-28 Bristol Myers Squibb Co Antitestek CD73 ellen és azok felhasználásai
PL3221346T3 (pl) 2014-11-21 2021-03-08 Bristol-Myers Squibb Company Przeciwciała ze zmodyfikowanym regionem stałym łańcucha ciężkiego
CA2968330A1 (fr) 2014-12-04 2016-06-09 Abruzzo Theranostic S.R.L. Anticorps monoclonaux anti-pre-trop-2 humanises et leurs utilisations
WO2016126570A1 (fr) 2015-02-06 2016-08-11 Merck Sharp & Dohme Corp. Composés d'aminoquinazoline comme antagonistes d'a2a
EP3307067B1 (fr) 2015-06-11 2022-11-02 Merck Sharp & Dohme LLC Composés d'aminopyrazine ayant des propriétés d'antagoniste a2a
CN107708741A (zh) 2015-06-12 2018-02-16 免疫医疗公司 用嵌合抗原受体(car)构建体和表达car构建体的t细胞(car‑t)或nk细胞(car‑nk)进行的疾病疗法
US10195175B2 (en) 2015-06-25 2019-02-05 Immunomedics, Inc. Synergistic effect of anti-Trop-2 antibody-drug conjugate in combination therapy for triple-negative breast cancer when used with microtubule inhibitors or PARP inhibitors
WO2016209787A1 (fr) 2015-06-26 2016-12-29 Merck Sharp & Dohme Corp. Formulation à libération prolongée et comprimés préparés à partir de celle-ci
WO2017008205A1 (fr) 2015-07-10 2017-01-19 Merck Sharp & Dohme Corp. Composés d'aminoquinazoline substitués a titre d'antagonistes du récepteur a2a
HRP20241381T1 (hr) 2015-08-11 2024-12-20 WuXi Biologics Ireland Limited Nova anti-pd-1 protutijela
EP3362475B1 (fr) 2015-10-12 2023-08-30 Innate Pharma Agents de blocage de cd73
WO2017098421A1 (fr) 2015-12-08 2017-06-15 Glaxosmithkline Intellectual Property Development Limited Composés benzothiadiazine
KR20180134837A (ko) 2015-12-09 2018-12-19 코버스 파마슈티칼스, 인크. 인간화된 항-cd73 항체
SG11201805506YA (en) 2016-01-08 2018-07-30 Arcus Biosciences Inc Modulators of 5'-nucleotidase, ecto and the use thereof
WO2017118613A1 (fr) 2016-01-08 2017-07-13 Syddansk Universitet Anticorps bispécifiques ciblant cd73 humain
CA3011372A1 (fr) 2016-02-10 2017-08-17 Immunomedics, Inc. La combinaison inhibiteurs abcg2-sacituzumab govitecan (immu-132) surmonte la resistance a sn-38 dans les cancers exprimant trop-2
WO2017153952A1 (fr) 2016-03-10 2017-09-14 Glaxosmithkline Intellectual Property Development Limited Dérivés de 5-sulfamoyl-2-hydroxybenzamide
WO2017157948A1 (fr) 2016-03-14 2017-09-21 Innate Pharma Anticorps anti-cd39
US10793636B2 (en) 2016-07-11 2020-10-06 Corvus Pharmaceuticals, Inc. Anti-CD73 antibodies
WO2018013951A1 (fr) 2016-07-15 2018-01-18 Northwestern University Ciblage des récepteurs a2a de l'adénosine pour le traitement de dyskinésies induites par la lévodopa
CN106297966A (zh) 2016-08-22 2017-01-04 广东纳路纳米科技有限公司 一种金属纳米线‑抗氧化材料复合的透明导电膜及其制备
TWI767937B (zh) 2016-09-09 2022-06-21 美商卡利泰拉生物科技公司 外核苷酸酶抑制劑及其使用方法
US11058704B2 (en) 2016-10-03 2021-07-13 Arcus Biosciences, Inc. Inhibitors of adenosine 5′-nucleotidase
WO2018065552A1 (fr) 2016-10-06 2018-04-12 Innate Pharma Anticorps anti-cd39
CA3039077A1 (fr) 2016-10-07 2018-04-12 Secarna Pharmaceuticals Gmbh & Co. Kg Oligonucleotides d'inversion de l'immunosuppression inhibant l'expression de cd73
WO2018065622A1 (fr) 2016-10-07 2018-04-12 Secarna Pharmaceuticals Gmbh & Co Kg Oligonucléotides d'inversion de l'immunosuppression inhibant l'expression de cd39
CN110022881B (zh) 2016-11-18 2023-05-02 艾库斯生物科学有限公司 Cd73介导的免疫抑制的抑制剂
US11180554B2 (en) 2016-12-13 2021-11-23 Astellas Pharma Inc. Anti-human CD73 antibody
EP3558998A4 (fr) 2016-12-22 2020-06-10 Calithera Biosciences, Inc. Inhibiteurs d'éctonucléotidase et leurs méthodes d'utilisation
AU2018210272C1 (en) 2017-01-20 2024-05-23 Arcus Biosciences, Inc. Azolopyrimidine for the treatment of cancer-related disorders
EP3383916B1 (fr) 2017-01-24 2022-02-23 I-Mab Biopharma US Limited Anticorps anti-cd73 et leurs utilisations
WO2018183041A1 (fr) 2017-03-27 2018-10-04 Immunomedics, Inc. Traitement de cancer du sein triple négatif exprimant la trop-2 avec du sacmuzumab govitécan et un inhibiteur de rad51
EP3600273A4 (fr) 2017-03-31 2021-01-20 Peloton Therapeutics, Inc. Inhibiteurs de cd73 et leurs utilisations
JOP20180040A1 (ar) 2017-04-20 2019-01-30 Gilead Sciences Inc مثبطات pd-1/pd-l1
WO2018208727A1 (fr) 2017-05-08 2018-11-15 Eternity Bioscience Inc. Analogues de nucléosides et de nucléotides en tant qu'inhibiteurs de cd73 et utilisations thérapeutiques associées
US11129841B2 (en) 2017-05-10 2021-09-28 Oric Pharmaceuticals, Inc. CD73 inhibitors
CN110753703B (zh) 2017-05-23 2024-04-09 德国亥姆霍兹慕尼黑中心健康与环境研究中心(有限公司) 新的cd73抗体、其制备和用途
WO2018217227A1 (fr) 2017-05-24 2018-11-29 Immunomedics, Inc. Nouveaux anticorps inhibiteurs de point de contrôle anti-pd-1 qui bloquent la liaison de pd-l1 à pd-1
US20200172628A1 (en) 2017-06-22 2020-06-04 Novartis Ag Antibody molecules to cd73 and uses thereof
MY204117A (en) 2017-06-22 2024-08-08 Novartis Ag Antibody molecules to cd73 and uses thereof
AU2018312251B2 (en) 2017-07-31 2025-02-20 Trishula Therapeutics, Inc. Anti-CD39 antibodies, compositions comprising anti-CD39 antibodies and methods of using anti-CD39 antibodies
CN107446050A (zh) 2017-08-11 2017-12-08 百奥泰生物科技(广州)有限公司 Trop2阳性疾病治疗的化合物及方法
WO2019053617A1 (fr) 2017-09-12 2019-03-21 Glaxosmithkline Intellectual Property Development Limited Composés chimiques
DE102017125533A1 (de) 2017-10-31 2019-05-02 Helmholtz-Zentrum Dresden - Rossendorf E.V. 4-(Furan-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-6-amin-Derivate und deren Verwendung
US11377469B2 (en) 2017-11-03 2022-07-05 Oric Pharmaceuticals, Inc. CD73 inhibitors
WO2019118313A1 (fr) 2017-12-13 2019-06-20 Merck Sharp & Dohme Corp. Composés imidazo[1,2-c]quinazolin-5-amine présentant des propriétés antagonistes du a2a
CN119306732B (zh) 2017-12-15 2025-04-25 四川科伦博泰生物医药股份有限公司 生物活性物偶联物及其制备方法和用途
WO2019129059A1 (fr) 2017-12-29 2019-07-04 上海和誉生物医药科技有限公司 Dérivé d'acide phosphonique présentant une activité inhibitrice de cd73, procédé de préparation et utilisation associés
TWI796596B (zh) 2018-02-13 2023-03-21 美商基利科學股份有限公司 Pd‐1/pd‐l1抑制劑
TWI702954B (zh) 2018-03-01 2020-09-01 美商美國禮來大藥廠 Cd73抑制劑
WO2019166701A1 (fr) 2018-03-02 2019-09-06 Turun Yliopisto Anticorps anti-voie de signalisation de l'adénosine conjugués ou fusionnés avec de l'adénosine désaminase ou capables de se lier à l'adénosine désaminase
WO2019170131A1 (fr) 2018-03-07 2019-09-12 复旦大学 Anticorps cd73 ciblé et conjugué anticorps-médicament, procédé de préparation associé et utilisations correspondantes
CA3093468A1 (fr) 2018-03-09 2019-09-12 Agenus Inc. Anticorps anti-cd73 et leurs procedes d'utilisation
CN111867628B (zh) 2018-03-09 2024-08-23 凡恩世制药(北京)有限公司 抗cd73抗体及其用途
JP7037218B2 (ja) 2018-03-14 2022-03-16 サーフィス オンコロジー インコーポレイテッド Cd39と結合する抗体及びその使用
CN108440674A (zh) 2018-04-28 2018-08-24 杭州荣泽生物科技有限公司 一种Trop-2特异性嵌合抗原受体细胞制备及其用途
EP3569618A1 (fr) 2018-05-19 2019-11-20 Boehringer Ingelheim International GmbH Antagonisation d'anticorps cd73
US20210214459A1 (en) 2018-05-31 2021-07-15 Novartis Ag Antibody molecules to cd73 and uses thereof
WO2019246403A1 (fr) 2018-06-21 2019-12-26 Calithera Biosciences, Inc. Inhibiteurs d'ectonucléotidases et leurs procédés d'utilisation
JP2021531826A (ja) 2018-07-09 2021-11-25 ジーンクアンタム ヘルスケア (スーチョウ) シーオー., エルティーディー.Genequantum Healthcare (Suzhou)Co., Ltd. 栄養膜細胞表面抗原2(trop2)に対する特異的な抗体
PT3820572T (pt) 2018-07-13 2023-11-10 Gilead Sciences Inc Inibidores pd-1/pd-l1
US11931343B2 (en) 2018-08-27 2024-03-19 Arcus Biosciences, Inc. CD73 inhibitors
EP3843742A4 (fr) 2018-08-28 2022-04-20 Jiangsu Hengrui Medicine Co., Ltd. Inhibiteurs de cd73 et leurs utilisations thérapeutiques
EP3849558B1 (fr) 2018-09-11 2024-06-05 iTeos Belgium SA Dérivés de thiocarbamate en tant qu'inhibiteurs d'a2a, composition pharmaceutique associée et combinaisons avec des agents anticancéreux
CN110885352B (zh) 2018-09-11 2023-02-24 润佳(苏州)医药科技有限公司 Cd73抑制剂及其药学应用
CA3118706A1 (fr) 2018-11-05 2020-05-14 Corvus Pharmaceuticals, Inc. Anticorps anti-cd73 activant les lymphocytes b
EP3876998A1 (fr) 2018-11-05 2021-09-15 Synaffix B.V. Anticorps-conjugués pour le ciblage de tumeurs exprimant trop -2
CA3118775A1 (fr) 2018-11-12 2020-05-22 Jiangsu Hengrui Medicine Co., Ltd. Anticorps anti-cd73, fragment de liaison a l'antigene de celui-ci et son utilisation
JP2022507734A (ja) 2018-11-20 2022-01-18 メルク・シャープ・アンド・ドーム・コーポレーション 置換アミノトリアゾロピリミジン及びアミノトリアゾロピラジンアデノシン受容体アンタゴニスト、医薬組成物及びそれらの使用
EP3883576A4 (fr) 2018-11-20 2022-06-22 Merck Sharp & Dohme Corp. Composés amino-triazolopyrimidine et amino-triazolopyrazine substitués utilisés en tant qu'antagonistes de récepteur de l'adénosine, compositions pharmaceutiques et leur utilisation
WO2020103939A1 (fr) 2018-11-22 2020-05-28 上海科技大学 Composé à cycle triazolo, son procédé de préparation, intermédiaires de celui-ci et utilisation associée
CN111205244B (zh) 2018-11-22 2023-08-18 上海科技大学 噻唑并环类化合物、其制备方法、中间体和应用
MA54298A (fr) 2018-11-30 2022-03-09 Merck Sharp & Dohme Dérivés amino triazolo quinazoline 9-substitués utiles en tant qu'antagonistes du récepteur de l'adénosine, compositions pharmaceutiques et leur utilisation
CA3120331A1 (fr) 2018-11-30 2020-06-04 Merck Sharp & Dohme Corp. Derives d'amino triazolo quinazoline a substitution en positions 7, 8 et 10 utilises en tant qu'antagonistes du recepteur de l'adenosine, compositions pharmaceutiques et leur utilisation
CN113195000A (zh) 2018-12-21 2021-07-30 第一三共株式会社 抗体-药物缀合物和激酶抑制剂的组合
WO2020139803A1 (fr) 2018-12-24 2020-07-02 Dcb-Usa Llc Dérivés de benzothiadiazine et compositions les comprenant pour traiter des troubles médiés par l'adénosine
KR20210110288A (ko) 2018-12-28 2021-09-07 쓰촨 케룬-바이오테크 바이오파마수티컬 컴퍼니 리미티드 치환된 아릴 화합물, 및 이의 제조 방법 및 이의 용도
EP3904348A4 (fr) 2018-12-28 2022-10-19 Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd. Composé aminopyridine, son procédé de préparation et son utilisation
CN111434688A (zh) 2019-01-11 2020-07-21 上海开拓者生物医药有限公司 Cd73抗体及其制备方法和应用
CN111499747B (zh) 2019-01-11 2022-03-18 康诺亚生物医药科技(成都)有限公司 一种抗cd73单克隆抗体及其应用
MX2021008650A (es) 2019-01-18 2021-11-03 Nuvation Bio Inc Compuestos heterociclicos como antagonistas de adenosina.
EP3911324A4 (fr) 2019-01-18 2022-08-17 Nuvation Bio Inc. Composés de 1,8-naphthyridinone et leurs utilisations
WO2020150677A1 (fr) 2019-01-18 2020-07-23 Nuvation Bio Inc. Composés hétérocycliques en tant qu'antagonistes de l'adénosine
US20230066315A1 (en) 2019-01-18 2023-03-02 Nuvation Bio Inc. Compounds and uses thereof
AR117844A1 (es) 2019-01-22 2021-09-01 Merck Patent Gmbh Derivados de tiazolopiridina como antagonistas del receptor de adenosina
CN112955444B (zh) 2019-01-22 2023-12-12 江苏恒瑞医药股份有限公司 一种新型的小分子cd73抑制剂、其制备方法及其在医药上的应用
TWI829857B (zh) 2019-01-29 2024-01-21 美商英塞特公司 作為a2a / a2b抑制劑之吡唑并吡啶及三唑并吡啶
WO2020156505A1 (fr) 2019-02-02 2020-08-06 江苏恒瑞医药股份有限公司 Dérivé de 2-amionpyrimidine, son procédé de préparation et son utilisation en médecine
CN113905743B (zh) 2019-03-29 2024-04-16 江苏恒瑞医药股份有限公司 Cd73抑制剂及其治疗用途
SG11202110694RA (en) 2019-04-02 2021-10-28 Medimmune Llc Anti-cd73, anti-pd-l1 antibodies and chemotherapy for treating tumors
WO2020210938A1 (fr) 2019-04-15 2020-10-22 Bioardis Llc Dérivés de quinazoline en tant qu'inhibiteurs de cd73
WO2020210970A1 (fr) 2019-04-16 2020-10-22 Bioardis Llc Dérivés d'imidazotriazine en tant qu'inhibiteurs de cd73
WO2020216697A1 (fr) 2019-04-23 2020-10-29 Innate Pharma Anticorps bloquant cd73
CN111333648B (zh) 2019-04-24 2021-05-11 东莞市东阳光新药研发有限公司 8-取代的芳香环乙烯基黄嘌呤衍生物及其用途
TWI821559B (zh) 2019-04-28 2023-11-11 大陸商上海和譽生物醫藥科技有限公司 一種cd73抑制劑,其製備方法和應用
WO2020227156A1 (fr) 2019-05-03 2020-11-12 Nektar Therapeutics Antagonistes du récepteur de l'adénosine 2
AU2020285681A1 (en) 2019-05-29 2022-01-27 Daiichi Sankyo Company, Limited Dosage of an antibody-drug conjugate
KR20220016974A (ko) 2019-06-06 2022-02-10 자코바이오 파마슈티칼스 컴퍼니 리미티드 Cd73에 특이적인 결합 분자 및 결합 분자의 용도
WO2020249063A1 (fr) 2019-06-13 2020-12-17 Bio-Thera Solutions, Ltd. Procédés de traitement de maladies positives pour trop2
GB201908511D0 (en) 2019-06-13 2019-07-31 Adorx Therapeutics Ltd Hydroxamate compounds
CN117946274A (zh) 2019-06-19 2024-04-30 海正生物制药有限公司 抗cd73抗体及其应用
CN114008048A (zh) 2019-06-20 2022-02-01 卡利泰拉生物科技公司 外核苷酸酶抑制剂及其使用方法
WO2020257648A1 (fr) 2019-06-20 2020-12-24 Fred Hutchinson Cancer Research Center Ciblage microluminal de cellules cancéreuses
JP2022538410A (ja) 2019-06-21 2022-09-02 アカデミー オブ ミリタリー メディカル サイエンシズ A2aアデノシン受容体拮抗作用を有する小分子化合物
DE102019116986A1 (de) 2019-06-24 2020-12-24 Helmholtz-Zentrum Dresden-Rossendorf E. V. Deuterierte 7-(3-(4-(2-([18F]Fluor)ethoxy)phenyl)propyl)-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amin-Derivate
KR20210002054A (ko) 2019-06-28 2021-01-06 한미약품 주식회사 아미노시아노피리딘 유도체 및 그의 용도
WO2021001873A1 (fr) 2019-07-01 2021-01-07 日本電信電話株式会社 Dispositif de commande de chemin, procédé de commande de chemin, programme, et système de réseau
JP7557522B2 (ja) 2019-07-16 2024-09-27 オリック ファーマシューティカルズ,インク. Cd73阻害剤
US20230024108A1 (en) 2019-07-17 2023-01-26 Teon Therapeutics, Inc. Adenosine a2a receptor antagonists
CN112237634B (zh) 2019-07-19 2023-11-28 上海复旦张江生物医药股份有限公司 抗体药物偶联物、其中间体、制备方法及应用
CN112625050B (zh) 2019-07-30 2021-10-01 杭州阿诺生物医药科技有限公司 一种a2a和/或a2b受体抑制剂的制备方法
WO2021029450A1 (fr) 2019-08-09 2021-02-18 한국화학연구원 Nouveau dérivé de pyrimidine sulfonamide et composition pharmaceutique pour prévenir ou traiter le cancer le comprenant en tant que principe actif
TWI793439B (zh) 2019-08-21 2023-02-21 大陸商和鉑醫藥(上海)有限責任公司 抗cd73抗體及其應用
WO2021040356A1 (fr) 2019-08-23 2021-03-04 Kainos Medicine, Inc. C-nucléosides, c-nucléotides et leurs analogues, équivalents et promédicaments de ceux-ci pour l'inhibition de l'ectonucléotidase
CR20220124A (es) 2019-08-26 2022-06-15 Incyte Corp Triazolopirimidinas como inhibidores de a2a/a2b
US20210388105A1 (en) 2019-08-27 2021-12-16 Elpiscience (Suzhou) Biopharma, Ltd. Novel anti-cd39 antibodies
US20220289716A1 (en) 2019-08-29 2022-09-15 Eli Lilly And Company Crystalline forms of a cd73 inhibitor
CN112442132A (zh) 2019-09-05 2021-03-05 复旦大学 靶向肿瘤的重组双功能融合蛋白及其应用
EP4025605A1 (fr) 2019-09-06 2022-07-13 Symphogen A/S Anticorps anti-cd73
MX2022003005A (es) 2019-09-16 2022-04-07 Surface Oncology Inc Composiciones y metodos de anticuerpos anti-cd39.
US20220411436A1 (en) 2019-09-18 2022-12-29 Sichuan Baili Pharmaceutical Co., Ltd Camptothecin derivative and conjugate thereof
CN110407941B (zh) 2019-09-25 2020-01-14 上海岸迈生物科技有限公司 Cd39的高亲和力抗体及其用途
US20210093730A1 (en) 2019-10-01 2021-04-01 Immunomedics, Inc. Biomarkers for antibody-drug conjugate monotherapy or combination therapy
KR102653726B1 (ko) 2019-10-30 2024-04-01 오릭 파마슈티칼스, 인크. Cd73 억제제
WO2021087463A1 (fr) 2019-11-01 2021-05-06 Corvus Pharmaceuticals, Inc. Anticorps anti-cd73 immunomodulateurs et leurs utilisations
WO2021088838A1 (fr) 2019-11-05 2021-05-14 北京加科思新药研发有限公司 Molécule se liant spécifiquement à cd39 et son utilisation
TW202131932A (zh) 2019-11-05 2021-09-01 美商博奥阿迪斯有限公司 作為cd73抑制劑的化合物
US20230017597A1 (en) 2019-11-11 2023-01-19 Sunshine Lake Pharma Co., Ltd. 8-substituted styryl xanthine derivatives and uses thereof
KR20220100929A (ko) 2019-11-15 2022-07-18 젠자임 코포레이션 이중파라토프성 cd73 항체
KR20210061202A (ko) 2019-11-19 2021-05-27 일동제약(주) 벤조나이트릴이 치환된 축합 피리미딘 유도체 및 그의 의약 용도
WO2021105916A1 (fr) 2019-11-26 2021-06-03 Aurigene Discovery Technologies Limited Composés de sulfonamide ciblant cd73 et les récepteurs d'adénosine
WO2021113625A1 (fr) 2019-12-06 2021-06-10 Plexxikon Inc. Composés et procédés de modulation de cd73 et leurs indications
KR20220121850A (ko) 2020-01-03 2022-09-01 인사이트 코포레이션 항-cd73 항체 및 이의 용도
WO2021146631A1 (fr) 2020-01-17 2021-07-22 Nuvation Bio Inc. Composés hétérocycliques en tant qu'antagonistes de l'adénosine
US20230101735A1 (en) 2020-01-22 2023-03-30 Jiangsu Hengrui Medicine Co., Ltd. Anti-trop-2 antidody-exatecan analog conjugate and medical use thereof
WO2021156439A1 (fr) 2020-02-06 2021-08-12 Astrazeneca Ab Composés de triazole utiles en tant qu'antagonistes du récepteur de l'adénosine
US20230151011A1 (en) 2020-03-10 2023-05-18 Marvel Biotechnology Purine compounds for treating disorders
KR20220147124A (ko) 2020-03-16 2022-11-02 상하이 하이옌 파마슈티컬 테크놀로지 컴퍼니, 리미티드 치환된 피리미딘 또는 피리딘 아민 유도체, 이의 조성물 및 의약적 용도
CN111534585A (zh) 2020-03-23 2020-08-14 至本医疗科技(上海)有限公司 一种非小细胞肺癌(nsclc)患者免疫疗法预后的方法
WO2021191376A1 (fr) 2020-03-26 2021-09-30 Astrazeneca Ab Composés de triazolone
WO2021191380A1 (fr) 2020-03-26 2021-09-30 Astrazeneca Ab Composés de triazolone
KR20230049579A (ko) 2020-03-26 2023-04-13 헵테얼즈 테라퓨틱스 리미티드 암에 대해 사용하기 위한 5-아미노-8-(4-피리딜)-[1,2,4]트리아졸로[4,3-c]피리미딘-3-온 화합물
US20230144283A1 (en) 2020-03-26 2023-05-11 Inspyr Therapeutics,Inc. 8-substituted diaryl xanthines as dual a2a-a2b antagonists
EP4126873A1 (fr) 2020-03-26 2023-02-08 Heptares Therapeutics Limited Composés de 5-amino-8-(4-fluorophényl)-[1,2,4]triazolo [4,3-c]pyrimidin-3-one destinés à être utilisés contre le cancer
JP2023521362A (ja) 2020-04-09 2023-05-24 エイプリルバイオ カンパニー リミテッド Cd73免疫チェックポイントを抑制するためのモノクローナル抗体及びその抗原結合断片並びにその使用
CA3176321A1 (fr) 2020-04-22 2021-10-28 Peng Zhang Anticorps bispecifique anti-cd73-anti-pd-1 et son utilisation
WO2021213466A1 (fr) 2020-04-22 2021-10-28 中山康方生物医药有限公司 Anticorps anti-cd73 et son utilisation
US11807626B2 (en) 2020-04-23 2023-11-07 Opna Bio SA Compounds and methods for CD73 modulation and indications therefor
US20240043427A1 (en) 2020-05-01 2024-02-08 Gilead Sciences, Inc. Cd73 compounds
MX2022013768A (es) 2020-05-03 2023-01-05 Levena Suzhou Biopharma Co Ltd Conjugados anticuerpo-fármaco (adc) que comprenden un anticuerpo anti-trop-2, composiciones que comprenden dichos adc, así como métodos para fabricar y utilizar los mismos.
BR112022022437A2 (pt) 2020-05-07 2023-01-03 Adorx Therapeutics Ltd Antagonistas do receptor a2a de adenosina
CN115551888A (zh) 2020-05-12 2022-12-30 普米斯生物技术(珠海)有限公司 抗cd73抗体及其用途
WO2021241729A1 (fr) 2020-05-29 2021-12-02 ブライトパス・バイオ株式会社 Anticorps anti-cd73 et son utilisation
KR20230026312A (ko) 2020-06-17 2023-02-24 아르커스 바이오사이언시즈 인코포레이티드 Cd73 억제제의 결정형 및 이의 용도
AU2021297856A1 (en) 2020-06-22 2023-02-02 Innovent Biologics (Suzhou) Co., Ltd. Anti-CD73 antibody and use thereof
CN115702150A (zh) 2020-07-07 2023-02-14 贝达药业股份有限公司 Cd73抑制剂及其在医药上的应用
US20230256114A1 (en) 2020-07-07 2023-08-17 Bionecure Therapeutics, Inc. Novel maytansinoids as adc payloads and their use for the treatment of cancer
WO2022020552A1 (fr) 2020-07-24 2022-01-27 Merck Sharp & Dohme Corp. Antagonistes doubles du récepteur a2a et du récepteur a2b de l'adénosine pour l'immuno-oncologie
EP4185296A4 (fr) 2020-07-24 2025-03-05 Merck Sharp & Dohme Llc Antagonistes doubles du récepteur a2a et du récepteur a2b de l'adénosine pour l'immuno-oncologie
GB202011996D0 (en) 2020-07-31 2020-09-16 Adorx Therapeutics Ltd Antagonist compounds
AU2021341258A1 (en) 2020-09-08 2023-04-13 Betta Pharmaceuticals Co., Ltd. CD73 inhibitor and application thereof in medicine
CN116348140A (zh) 2020-09-30 2023-06-27 北美生物技术公司 抗腺苷受体(A2aR)抗体
WO2022068929A1 (fr) 2020-09-30 2022-04-07 武汉人福创新药物研发中心有限公司 Composé de pyrimidinedione et son utilisation
CN114380915B (zh) 2020-10-19 2024-03-22 中山康方生物医药有限公司 抗cd73的抗体及其用途
WO2022090711A1 (fr) 2020-10-26 2022-05-05 AdoRx Therapeutics Limited Composés utilisés en tant qu'inhibiteurs de cd73
CN112321715B (zh) 2020-11-03 2022-05-10 博奥信生物技术(南京)有限公司 抗trop2纳米抗体及其制备方法和应用
WO2022095953A1 (fr) 2020-11-05 2022-05-12 武汉人福创新药物研发中心有限公司 Composés alcynes de pyridazine et leur utilisation
JP7651694B2 (ja) 2020-11-05 2025-03-26 武漢人福創新薬物研発中心有限公司 化合物、前記化合物の互変異性体、前記化合物の立体異性体、前記化合物の水和物、前記化合物の溶媒和物または前記化合物の薬学的に許容される塩、及び薬物組成物
CN114456268B (zh) 2020-11-09 2023-08-18 江苏中新医药有限公司 抗胞外-5’-核苷酸酶的抗体序列
EP4251650A4 (fr) 2020-11-27 2024-10-23 Elpiscience (Suzhou) Biopharma, Ltd. Nouvelles molécules conjuguées ciblant cd39 et tgfbeta
WO2022121914A1 (fr) 2020-12-10 2022-06-16 上海翰森生物医药科技有限公司 Régulateur de dérivé à cycle oxo-azote, son procédé de préparation et son application
GB202019622D0 (en) 2020-12-11 2021-01-27 Adorx Therapeutics Ltd Antagonist compounds
AU2021362997A1 (en) 2021-11-03 2024-05-16 Hangzhou Dac Biotech Co., Ltd. Specific conjugation of an antibody

Also Published As

Publication number Publication date
KR20250004779A (ko) 2025-01-08
TW202345845A (zh) 2023-12-01
JP2025512384A (ja) 2025-04-17
WO2023201267A1 (fr) 2023-10-19
CN119173276A (zh) 2024-12-20
AU2023252914A1 (en) 2024-10-17

Similar Documents

Publication Publication Date Title
ES2951650T3 (es) Uso de un anticuerpo anti-PD-1 junto con un anticuerpo anti-CD30 en el tratamiento del linfoma
EP3307778A1 (fr) Traitement du cancer par le blocage combiné des voies de signalisation pd-1 et cxcr4
CN107922502A (zh) 使用免疫检验点抑制剂治疗癌症的方法
CN117442719A (zh) 用于治疗肺癌的抗pd-1抗体
US20230279096A1 (en) Combination therapy with anti-il-8 antibodies and anti-pd-1 antibodies for treating cancer
US20220135682A1 (en) Anti-ICOS Antibodies for the Treatment of Cancer
CN113045655A (zh) 抗ox40抗体及其用途
KR20250004780A (ko) 종양 항원 발현 암을 치료하기 위한 병용 요법
CN113045654A (zh) 抗ox40抗体及其用途
EP4507736A1 (fr) Polythérapie pour le traitement de cancers exprimant trop-2
WO2024026019A1 (fr) Méthodes de traitement de la leucémie myélomonocytaire chronique avec des anticorps anti-ilt3
AU2018353432A1 (en) Combination product for the treatment of cancer
TW202311287A (zh) 用於治療疾病之轉形生長因子—β配體陷阱(TRAP)
AU2022264597A1 (en) Combination of anti-galectin-9 antibodies and chemotherapeutics for use in cancer therapy
US20220378909A1 (en) Methods of Treating Cancer with Anti-PD-1 Antibodies
WO2021155129A1 (fr) Conjugués medicament-anticorps anti-cd30 et leur utilisation pour le traitement d'un lymphome non hodgkinien
CN114127315A (zh) 鉴定适合于免疫肿瘤学(i-o)疗法的受试者的方法
CN113164599B (zh) 抗pd-l1单克隆抗体治疗癌症的用途
US20240270838A1 (en) Method for prophylactic therapy of cytokine release syndrome and/or immune effector cell-associated neurotoxicity syndrome (icans)
WO2024050515A1 (fr) Polythérapie pour le traitement de cancers de la prostate exprimant trop-2
WO2023192478A1 (fr) Polythérapie avec des anticorps anti-il-8 et des anticorps anti-pd-1 pour le traitement du cancer
KR20240099362A (ko) 혈액암에 대한 lag-3 길항제 요법

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20241024

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR