EP4080024B1 - Procédé de détection d'une anomalie de capteur - Google Patents
Procédé de détection d'une anomalie de capteur Download PDFInfo
- Publication number
- EP4080024B1 EP4080024B1 EP21169772.7A EP21169772A EP4080024B1 EP 4080024 B1 EP4080024 B1 EP 4080024B1 EP 21169772 A EP21169772 A EP 21169772A EP 4080024 B1 EP4080024 B1 EP 4080024B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- control unit
- nox sensor
- ice
- nox
- measurement data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 29
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 391
- 238000005259 measurement Methods 0.000 claims description 47
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 36
- 239000007789 gas Substances 0.000 claims description 18
- 238000002485 combustion reaction Methods 0.000 claims description 14
- 238000002347 injection Methods 0.000 claims description 12
- 239000007924 injection Substances 0.000 claims description 12
- 229910021529 ammonia Inorganic materials 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 8
- 238000004891 communication Methods 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 6
- 239000000446 fuel Substances 0.000 claims description 6
- 238000010531 catalytic reduction reaction Methods 0.000 claims description 5
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 239000002699 waste material Substances 0.000 claims description 3
- 229910000069 nitrogen hydride Inorganic materials 0.000 claims 2
- 238000003745 diagnosis Methods 0.000 description 17
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 14
- 239000004202 carbamide Substances 0.000 description 14
- 239000003054 catalyst Substances 0.000 description 14
- 230000006870 function Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000013618 particulate matter Substances 0.000 description 5
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
- F01N3/208—Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/026—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/14—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/04—Methods of control or diagnosing
- F01N2900/0412—Methods of control or diagnosing using pre-calibrated maps, tables or charts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/04—Methods of control or diagnosing
- F01N2900/0416—Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/16—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
- F01N2900/1616—NH3-slip from catalyst
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present disclosure generally relates to a computer implemented method for anomality detection at a first nitrogen oxide (NOx) sensor forming part of an exhaust gas aftertreatment system (EATS), wherein the EATS is coupled downstream of an internal combustion engine (ICE).
- NOx nitrogen oxide
- EATS exhaust gas aftertreatment system
- ICE internal combustion engine
- the disclosed methodology applies manipulation of the ICE for detecting such a possible anomality.
- the present disclosure also relates to a corresponding engine system and a computer program product.
- an EATS comprises a Selective Catalytic Reduction (SCR) for oxidizing nitrogen monoxide (NO) to nitrogen dioxide (NO2), a particulate filter and a unit for reducing NOx emissions.
- SCR Selective Catalytic Reduction
- NO2 nitrogen monoxide
- NO2 nitrogen dioxide
- a particulate filter a unit for reducing NOx emissions.
- the EATS functions as soon as exhaust gas temperatures are above around 200° - 250° deg. C.
- ensuring that the EATS functions in an optimal manner is complicated and it is problematic to ensure that only a minimal level of NOx is released into the environment.
- the above is at least partly alleviated by means of a computer implemented method for anomality detection at a first nitrogen oxide (NOx) sensor comprised with an exhaust gas aftertreatment system (EATS) coupled downstream of an internal combustion engine (ICE), the ICE comprising a control unit adapted to control an operation of the ICE and arranged in communication with the first NOx sensor, wherein the method comprises the steps of selecting, at the control unit, a first set of control parameters to operate the ICE to generate a first output, forming, at the control unit, a second set of control parameters to operate the ICE by manipulating the first set of control parameters with an adjustment signal having a predefined waveform, the adjustment signal adapted to vary an amount of NOx produced by the engine, operating, using the control unit, the ICE according to the second set of control parameters, receiving, at the control unit, measurement data from the first NOx sensor collected over a first predefined time period, determining, using the control unit, a first level of matching between the predefined waveform of the
- the present disclosure is based around the desire to allow for an independent diagnosis of a NOx sensor, where the NOx sensor forms part of an exhaust gas aftertreatment system (EATS), i.e. without having to rely on a comparison between measurements from multiple NOx sensors.
- EATS exhaust gas aftertreatment system
- the present inventors have identified the need to allow such a diagnosis to be achieved during normal use/operation of the ICE, i.e. not necessarily limited to when the EATS perform an aftertreatment component regeneration event.
- This is in line with the present disclosure achieved by inducing an adjustment signal onto general control parameters for controlling the ICE, where the adjustment signal is provided for varying how the ICE is producing NOx.
- the adjustment signal is however not randomly selected, but rather follows a predefined shape or waveform. Taking this known predefined shape or waveform into account, it will then by means of the present disclosure be possible to see if "real" measurements from the NOx sensor is matching the predefined shape/waveform.
- the matching between the real measurements from the NOx sensor and the predefined shape/waveform will then be investigated to see how well they fit, and in case the fit is at a desired level (above a predefined threshold), the NOx sensor is considered to be operating in a correct manner. Conversely, in case there is an in comparison undesirable matching between the real measurements from the NOx sensor and the predefined shape/waveform, then the NOx sensor is considered to be incorrect and an anomality is considered to be present.
- first NOx sensor relates to any NOx sensor comprised with the EATS, when taken separately. Accordingly, the diagnosis scheme according to the present disclosure may thus be separately applied to each of the possibly plurality of NOx sensors forming part of the EATS. That is, further sensors that just the first NOx sensor may form part of the EATS, such as a second sensor, as will be discussed further below.
- the first predefined threshold could in turn be selected based on the matching scheme used for comparing the real measurements from the NOx sensor and the predefined shape/waveform. In some embodiments the first predefined threshold is normalized/filtered to a 5 - 25 % and preferably 10% difference between the real measurements from the NOx sensor and the predefined shape/waveform.
- Advantages following by means of the present disclosure thus include a discrete way of investigating if the NOx sensor is behaving correctly or incorrectly, without having to force the ICE/EATS into the mentioned aftertreatment component regeneration event, possibly being highly undesirable and unwanted in some situations (possible soot generation).
- the diagnosis scheme according to the present disclosure may be performed without the need to increase a temperature of the EATS, meaning that the NOx sensor diagnosis may be performed completely "in the background".
- an intensity/amplitude of the predefined shape/waveform may be selected in such a way that the overall diagnosis process can go essentially unnoticed for e.g. an operator of the ICE.
- such an intensity/amplitude may be selected to ensure that the amount of NOx produced by the engine is varied "enough", in some embodiments at least 2% - 5%, and possibly up to 15%.
- a duration of the first predefined time period could in some embodiments be selected based on the intensity/amplitude of the predefined shape/waveform.
- the first predefined time period is at least 0.5 seconds and preferably at least 2 minutes. It should furthermore be understood that the predefined shape/waveform in some embodiments also could be asymmetrically shaped.
- the control unit used for controlling the operation of the present diagnosis scheme may in one embodiment be an electronic control unit (ECU), also used at least in part for controlling functions in relation to the ICE.
- ECU electronice control unit
- at least one portion of the functionality of the control unit may in some alternative embodiments be performed using a remote server such as a cloud server, where the cloud server being network connected to an/the electronic control unit (ECU) provided in conjunction with the ICE.
- a remote server such as a cloud server
- the cloud server being network connected to an/the electronic control unit (ECU) provided in conjunction with the ICE.
- ECU electronice control unit
- the predefined shape/waveform could also potentially be changed over time, for example dependent on results from corresponding diagnosis process performed in relation to other ICE/EATS combinations.
- the result of the diagnosis process performed at the "own" ICE/EATS combination may be shared with other ICE/EATS combinations. It could also be possible to selectively activate the present diagnosis scheme depending on an operating condition of the ICE/EATS combination. For example, it could in some situations be undesirable to activate the present diagnosis scheme, such as for example where inherently high NOx emissions in combination with the adjustment signal would push the resulting NOx emissions outside of a legal limit. Similarly, it could be undesirable to activate the present diagnosis scheme in case of an intermediately poor SCR conversion efficiency or if the ICE is operating in a point close to the saturation limits (max or min) of NOx.
- the predefined waveform could be sinusoidally or rectangularly shaped, or to include any form of periodic waveform. Such shapes may generally be easily formed and detected by the control unit. However, other shapes are of course possible and within the scope of the present disclosure, e.g. including trapezoid shaped waveforms or a stepwise changing waveform. It is preferred if the waveform oscillates a plurality of times within the first predefined time period, meaning that the waveform is repeated at least two times within the first predefined time period. It could however also be possible to introduce a waveform that has a frequency where e.g. only one single period is "fitted" within the first predefined time period. Consequently, the first predefined time period could in some embodiments be selected based on the selected type of predefined waveform.
- the EATS comprises a selective catalytic reduction (SCR) arrangement
- the first sensor is arranged upstream of the SCR arrangement
- the EATS further comprises a second NOx sensor arranged downstream of the SCR arrangement
- the method further comprise the steps of receiving, at the control unit, measurement data from the second NOx sensor collected over the first predefined time period, determining, using the control unit, a second level of matching between the measurement data from the first NOx sensor or the predefined waveform of the adjustment signal and the measurement data from the second NOx sensor, and indicating, using the control unit, the presence of an anomality at the second NOx sensor if the second level of matching is below a second predefined threshold.
- a second NOx sensor may in accordance to the present disclosure be diagnosed for determining if an anomality is present.
- the second level of matching may be determined in a similar manner as discussed above in relation to the first level of matching.
- the second NOx sensor is only diagnosed for anomality in case the first NOx sensor is determined to be operating correctly.
- the diagnosis scheme according to the present disclosure further comprises indicating, using the control unit, the presence of an ammonia (NH3) slip if the measurement data from the second NOx sensor is phase shifted as compared to the measurement data from the first NOx sensor. That is, if the measurement data from the second NOx sensor is
- the adjustment signal may be possible to select the adjustment signal to manipulate at least one of an EGR valve, a waste gate valve position, an intake throttle valve position, a fuel injection pressure, a fuel injection timing, a variable geometry turbine (VGT) position and an ignition timing.
- an engine system comprising an internal combustion engine (ICE), an exhaust gas aftertreatment system (EATS) coupled downstream of the ICE, a first nitrogen oxide (NOx) sensor, and a control unit, wherein the control unit is arranged to select a first set of control parameters to operate the ICE to generate a first output, form a second set of control parameters to operate the ICE by manipulating the first set of control parameters with an adjustment signal having a predefined waveform, the adjustment signal adapted to vary an amount of NOx produced by the engine, operate the ICE according to the second set of control parameters, receive measurement data from the first NOx sensor collected over a first predefined time period, determine a first level of matching between the predefined waveform of the adjustment signal and the measurement data from the first NOx sensor, and indicate the presence of an anomality at the first NOx sensor if the first level of matching is below a first predefined threshold.
- ICE internal combustion engine
- EATS exhaust gas aftertreatment system
- NOx nitrogen oxide
- control unit is arranged to select a first set of control parameters
- the engine system as presented above may in some embodiment be a component of a vehicle, further comprising the above-mentioned ICE/EATS combination.
- a vehicle may in turn for example be at least one of a truck, a buss, a car and a working machine.
- the urea injection control system is however also useful in other applications where the ICE/EATS combination is used for other purposes than propelling a vehicle.
- An example of such an implementation is an electric generator comprising an ICE EATS combination.
- the ICE is in turn generally a diesel-powered engine or a spark-ignition (SI) ICE powered by hydrogen. It should be understood that other applications are possible, such as in relation to any kind of vessel, including for example a marine vessel.
- a computer program product comprising a non-transitory computer readable medium having stored thereon computer program means for controlling an engine system, the engine system comprising an internal combustion engine (ICE), an exhaust gas aftertreatment system (EATS) coupled downstream of the ICE, a first nitrogen oxide (NOx) sensor, and a control unit
- the computer program product comprises code for selecting, at the control unit, a first set of control parameters to operate the ICE to generate a first output, code for forming, at the control unit, a second set of control parameters to operate the ICE by manipulating the first set of control parameters with an adjustment signal having a predefined waveform, the adjustment signal adapted to vary an amount of NOx produced by the engine, code for operating, using the control unit, the ICE according to the second set of control parameters, code for receiving, at the control unit, measurement data from the first NOx sensor collected over a first predefined time period, code for determining, using the control unit, a first level of matching between the predefined waveform
- a software executed by the server for operation in accordance to the present disclosure may be stored on a computer readable medium, being any type of memory device, including one of a removable nonvolatile random access memory, a hard disk drive, a floppy disk, a CD-ROM, a DVD-ROM, a USB memory, an SD memory card, or a similar computer readable medium known in the art.
- FIG. 1 there is depicted an exemplary vehicle, here illustrated as a truck 100, in which an engine system 200 (as shown in Fig. 2 ) according to the present disclosure may be incorporated.
- the engine system 200 may of course be implemented, possibly in a slightly different way, in a bus 102, wheel loader 104, a car, an electric generator, etc.
- the vehicle may for example be either a purely combustion-based vehicle (e.g. including a diesel or a spark-ignition (SI) ICE powered by hydrogen) or a hybrid vehicle, the hybrid vehicle comprising both an electrical machine and a combustion engine.
- the vehicle may further be manually operated, fully or semi-autonomous.
- the engine system 200 comprises an internal combustion engine (ICE) 202, where the ICE 202 is provided with an exhaust gas aftertreatment system (EATS) 204 arranged downstream of the ICE 202.
- the engine system 200 comprises a urea injector 206 adapted to inject urea into an exhaust line 208 of the ICE 202, the exhaust line 208 being arranged in fluid communication with a selective catalytic reduction (SCR) catalyst 210 of the EATS 204.
- the SCR catalyst 210 may for example include a base metal/zeolite formulation with optimum NOx conversion performance in the range of 200-500° C.
- the engine system 200 further comprises a control unit 212 provided for controlling the urea injector 206.
- the ICE 202 is generally arranged in communication with an air intake manifold (not shown) and the exhaust line 208. The further components of the ICE 202 are excluded in Fig. 2 .
- Reductant such as aqueous urea
- Reductant is stored in a storage vessel 211 and delivered upstream of the SCR catalyst 210 using the urea injector 206.
- the reductant is metered out by a pump through a control valve of the urea injector 206, where both the pump and the valve are controlled by the control unit 212. Air and reductant are then injected into the exhaust line 218 in a vaporized state, whereby the vapor is introduced into an exhaust gas mixture when entering the SCR catalyst 210.
- the engine system 200 further comprises two separate NOx sensors, where a first NOx sensor 214 is arranged upstream, and second NOx sensor 216 is arranged downstream of the SCR catalyst 210. Both the first and the second NOx sensor 214, 216 are coupled in the path of the exhaust gas from the ICE 202 entering and exiting the SCR catalyst 210, respectively.
- the outputs of these sensors 214, 216 are acquired by the control unit 212 and used by the control unit 212, for example for controlling the urea injector 206 as well as for determining a NOx conversion efficiency of the SCR catalyst 210.
- the EATS 204 preferably also comprises a particulate filter (not shown) arranged downstream of the SCR catalyst 210 and used to trap particulate matter (such as soot) generated during operation of the ICE 202.
- the particulate filter can be manufactured from a variety of materials including cordierite, silicon carbide, and other high temperature oxide ceramics.
- the control unit 212 may for example be an electronic control unit (ECU), comprised with the vehicle 100, 102, 104, possibly manifested as a general-purpose processor, an application specific processor, a circuit containing processing components, a group of distributed processing components, a group of distributed computers configured for processing, a field programmable gate array (FPGA), etc.
- the control unit 212 may be or include any number of hardware components for conducting data or signal processing or for executing computer code stored in memory.
- the memory may be one or more devices for storing data and/or computer code for completing or facilitating the various methods described in the present description.
- the memory may include volatile memory or nonvolatile memory.
- the memory may include database components, object code components, script components, or any other type of information structure for supporting the various activities of the present description. According to an exemplary embodiment, any distributed or local memory device may be utilized with the systems and methods of this description. According to an exemplary embodiment the memory is communicably connected to the processor (e.g., via a circuit or any other wired, wireless, or network connection) and includes computer code for executing one or more processes described herein.
- the diagnosis process comprises selecting, S1, a first set of control parameters to operate the ICE 202 to generate a first output.
- the first output may for example be delivery of an amount of torque for propelling one of the vehicles 100, 102, 104 as shown in Fig. 1 , e.g. for generally moving the vehicle 100, 102, 104.
- the curve 302 as shown in Fig. 3A in turn exemplifies an amount of NOx as generated by the ICE 202 when operated according to the first set of control parameters, i.e. needed to be handled by the EATS 204.
- the ICE 202 is however in accordance to the present disclosure not directly operated using the first set of parameters. Rather, a second set of control parameters are formed, S2, by the control unit 212, where instead the second set of parameters intended to be used for operating the ICE 202.
- the second set of parameters represent a "manipulated version" of the first set of parameters, where the second set of parameters are formed by manipulating the first set of parameters using an adjustment signal having a predefined waveform.
- a first example of such a waveform 304 is presented in Fig. 3B .
- the overall adjustment signal is formed with the intention to vary an amount of NOx produced by the ICE 202.
- the adjustment signal (i.e. represented by the waveform 304) is then combined with the first set of control parameters to form a second set of control parameters to operate the ICE 202.
- the control unit 212 operates, S3, the ICE 202.
- the operation of the ICE 202 based on the second control parameters will of course also generate an output.
- the second control parameters since the second control parameters has been "manipulated" with the adjustment signal, the operation based on the second control parameters will be slightly different as compared to the first output.
- the amount of NOx as generated by the ICE 202 when operated according to the second set of control parameters will be different as compared to the curve 302 as shown in Fig. 3A . That is, the amount of NOx as generated by the ICE 202 when operated according to the second set of control parameters will be dependent also on the adjustment signal, resulting in a curve 306 as shown in Fig. 3C , representing an amount of NOx as generated by the ICE 202 when operated according to the first set of control parameters.
- the curve 306 is influenced by the adjustment signal.
- the control unit 212 may accordingly be adapted to receive, S4, measurement data from the first NOx sensor 214 collected over the first predefined time period, such as for a duration of 60 seconds. The control unit 212 will then analyze the measurement data from the first NOx sensor 214 to determine, S5, a first level of matching, where the first level of matching provides an indication of how well the measurement data from the first NOx sensor 214 relates to the adjustment signal. If there is an in comparison good match, then this is in accordance to the present disclosure exemplified by an in comparison high first level of matching. Correspondingly, in case the comparison is "bad", then this is represented by an in comparison low first level of matching.
- the control unit 212 may then compare the first level of matching with a predefined threshold. In case the first level of matching is determined to be below the threshold, then the control unit 212 may indicate, S6, that an anomality is present at the first NOx sensor 214.
- Figs. 3A, 3B and 3C relate to the adjustment signal being a sinusoidally shaped waveform, as specifically shown by the curve 304 in Fig. 3B .
- the predefined waveform shape could for example be triangularly shaped as exemplified by curve 308.
- a combination of the curve 302 of Fig. 3A and the adjustment signal 308 will correspondingly generate curve 310 as presented in Fig. 3E .
- Fig. 4 it is illustrate an example of ammonia (NH3) slip detection.
- Fig. 4 shows a curve 402 representing exemplary measurements provided by the first NOx sensor 214 over a predefined time period.
- Fig. 4 further shows a curve 404 representing measurements provided by the second NOx sensor 216 over the same predefined time period.
- the measurements provided by the second NOx sensor 216 indicates that an amount of NOx present in exhaust gases has been reduced when passing through the SCR catalyst 210.
- the curve 404 is in "antiphase" as compared to the curve 402.
- Such a scenario is an indication of an ammonia (NH3) slip.
- the control unit 212 may in a corresponding manner provide an indication of an ammonia (NH3) slip in case this scenario is present.
- the present disclosure relates to a computer implemented method for anomality detection at a first nitrogen oxide (NOx) sensor comprised with an exhaust gas aftertreatment system (EATS) coupled downstream of an internal combustion engine (ICE), the ICE comprising a control unit adapted to control an operation of the ICE and arranged in communication with the first NOx sensor, wherein the method comprises the steps of selecting, at the control unit, a first set of control parameters to operate the ICE to generate a first output, selecting, at the control unit, an adjustment signal having a predefined waveform, the adjustment signal adapted to vary an amount of NOx produced by the engine, forming, at the control unit, a second set of control parameters to operate the ICE by manipulating the first set of control parameters with the adjustment signal, operating, using the control unit, the ICE according to the second set of control parameters, receiving, at the control unit, measurement data from the first NOx sensor collected over a first predefined time period, determining, using the control unit, a first level of matching between the predefined waveform of the adjustment signal and
- Advantages following by means of the present disclosure include the possibility to perform an independent diagnosis of a NOx sensor forming part of an exhaust gas aftertreatment system (EATS), without having to rely on a comparison between measurements from multiple NOx sensors.
- EATS exhaust gas aftertreatment system
- the urea injection control system according to the present discourse has been made in relation to an implementation where the EATS comprises only a single SCR catalyst. It should however be understood that the presented urea injection control system may be used also in relation to an implementation comprising more than a single SCR catalyst, such as two SCR catalysts. It should also be understood that some implementations may comprise more than just two NOx sensors, for example when the implementation comprises more than a single SCR catalyst.
- the present disclosure contemplates methods, devices and program products on any machine-readable media for accomplishing various operations.
- the embodiments of the present disclosure may be implemented using existing computer processors, or by a special purpose computer processor for an appropriate system, incorporated for this or another purpose, or by a hardwired system.
- Embodiments within the scope of the present disclosure include program products comprising machine-readable media for carrying or having machine-executable instructions or data structures stored thereon.
- Such machine-readable media can be any available media that can be accessed by a general purpose or special purpose computer or other machine with a processor.
- machine-readable media can comprise RAM, ROM, EPROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to carry or store desired program code in the form of machine-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer or other machine with a processor.
- a network or another communications connection either hardwired, wireless, or a combination of hardwired or wireless
- any such connection is properly termed a machine-readable medium.
- Machine-executable instructions include, for example, instructions and data that cause a general-purpose computer, special purpose computer, or special purpose processing machines to perform a certain function or group of functions.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
Claims (15)
- Procédé mis en œuvre par ordinateur pour la détection d'anomalies dans un premier capteur d'oxyde d'azote (NOx) (214, 216) compris dans un système de post-un traitement de gaz d'échappement (EATS) (204) couplé en aval d'un moteur à combustion interne (ICE) (202), l'ICE comprenant une unité de commande (212) apte à commander un fonctionnement de l'ICE et disposée un en communication avec le premier capteur de NOx, ce procédé comprenant les étapes suivantes :- sélection (S1), au niveau de l'unité de commande, d'un premier ensemble de paramètres de commande pour actionner l'ICE afin de générer une première sortie,- formation (S2), au niveau de l'unité de commande, d'un second ensemble de paramètres de commande pour actionner l'ICE en manipulant le premier ensemble de paramètres de commande avec un signal de réglage ayant une forme d'onde prédéfinie, le signal de réglage étant apte à varier une quantité de NOx produite par le moteur,- actionnement (S3), en utilisant l'unité de commande, de l'ICE en fonction du second ensemble de paramètres de commande,- réception (S4), au niveau de l'unité de commande, de données de mesure (306, 310) provenant du premier capteur de NOx collectées sur une première période prédéfinie,- détermination (S5), en utilisant l'unité de commande, d'un premier niveau de correspondance entre la forme d'onde prédéfinie du signal de réglage et les données de mesure provenant du premier capteur de NOx, et- indication (S6), en utilisant l'unité de commande, de la présence d'une anomalie au niveau du premier capteur de NOx si le premier niveau de correspondance est en-dessous d'un premier seuil prédéfini.
- Procédé selon la revendication 1, dans lequel la forme d'onde prédéfinie est sélectionnée de manière à être de forme sinusoïdale ou rectangulaire.
- Procédé selon l'une quelconque des revendications 1 et 2, dans lequel l'EATS comprend un dispositif (210) de réduction catalytique sélective (SCR), le premier capteur (214) est disposé en amont du dispositif SCR, l'EATS comprend en outre un second capteur de NOx (216) disposé en aval du dispositif SCR, et le procédé comprend en outre les étapes suivantes :- réception, au niveau de l'unité de commande, de données de mesure provenant du second capteur de NOx (404) collectées sur la première période prédéfinie,- détermination, en utilisant l'unité de commande, d'un second niveau de correspondance entre les données de mesure provenant du premier capteur de NOx (306, 310, 402) ou la forme d'onde prédéfinie du signal de réglage (304, 308) et les données de mesure provenant du second capteur de NOX, et- indication, en utilisant l'unité de commande, de la présence d'une anomalie au niveau du second capteur de NOx si le second niveau de correspondance est en-dessous d'un second seuil prédéfini.
- Procédé selon la revendication 3, dans lequel détermination du second niveau de correspondance n'est réalisée que si le premier niveau de correspondance est au-dessus du premier seuil prédéfini.
- Procédé selon l'une quelconque des revendications 3 et 4, comprenant en outre les étapes suivantes :- indication, en utilisant l'unité de commande, de la présence d'une perte d'ammoniaque (NH3) si les données de mesure provenant du second capteur de Nox sont en décalage de phase par rapport aux données de mesure provenant du premier capteur de Nox.
- Procédé selon l'une quelconque des revendications précédentes, dans lequel le signal de réglage est conçu pour manipuler au moins un élément parmi une vanne EGR, une position de vanne de soupape de décharge, une position de vanne de papillon d'admission, une pression d'injection de carburant, une temporisation d'injection de carburant, une position de turbine à géométrie variable (VGT) et une temporisation d'allumage.
- Système de moteur (200), comprenant :- un moteur à combustion interne (ICE) (202),- un système de post-traitement de gaz d'échappement (EATS)(204) couplé en aval de l'ICE,- un premier capteur d'oxyde d'azote (NOx) (214, 216), et- une unité de commande (212),l'unité de commande étant conçue pour :- sélectionner un premier ensemble de paramètres de commande pour actionner l'ICE afin de générer une première sortie,- former un second ensemble de paramètres de commande pour actionner l'ICE en manipulant le premier ensemble de paramètres de commande avec un signal de réglage ayant une forme d'onde prédéfinie, le signal de réglage étant apte à varier une quantité de NOx produite par le moteur,- actionner l'ICE en fonction du second ensemble de paramètres de commande- recevoir des données de mesure (304) provenant du premier capteur de NOx collectées sur une première période prédéfinie,- déterminer un premier niveau de correspondance entre la forme d'onde prédéfinie du signal de réglage et les données de mesure provenant du premier capteur de NOx,- indiquer la présence d'une anomalie au niveau du premier capteur de NOx si le premier niveau de correspondance est en-dessous d'un premier seuil prédéfini.
- Système de moteur selon la revendication 7, dans lequel la forme d'onde prédéfinie est sélectionnée de manière à être de forme sinusoïdale ou rectangulaire.
- Système de moteur selon l'une quelconque des revendications 7 et 8, dans lequel l'EATS comprend un dispositif (210) de réduction catalytique sélective (SCR), le premier capteur de NOx (214) est disposé en amont du dispositif SCR, le système comprend en outre un second capteur de NOx (216) disposé en aval du dispositif SCR, et l'unité de commande est en outre apte à :- recevoir des données de mesure provenant du second capteur de Nox (404) collectées sur la première période prédéfinie,- déterminer un second niveau de correspondance entre les données de mesure provenant du premier capteur de Nox (306, 310, 402) ou la forme d'onde prédéfinie du signal de réglage (304, 308) et les données de mesure provenant du second capteur de NOX, et- indiquer la présence d'une anomalie au niveau du second capteur de NOx si le second niveau de correspondance est en-dessous d'un second seuil prédéfini.
- Système de moteur selon la revendication 9, dans lequel la détermination du second niveau de correspondance n'est réalisée que si le premier niveau de correspondance est au-dessus du premier seuil prédéfini.
- Système de moteur selon l'une quelconque des revendications 9 et 10, dans lequel l'unité de commande est en outre apte à :- indiquer la présence d'une perte d'ammoniaque (NH3) si les données de mesure provenant du second capteur de Nox sont en décalage de phase par rapport aux données de mesure provenant du premier capteur de NOx.
- Système de moteur selon l'une quelconque des revendications 7 à 11, dans lequel le signal de réglage est conçu pour manipuler au moins un élément parmi une vanne EGR, une position de vanne de soupape de décharge, une position de vanne de papillon d'admission, une pression d'injection de carburant, une temporisation d'injection de carburant, une position de turbine à géométrie variable (VGT) et une temporisation d'allumage.
- Véhicule comprenant un système de moteur selon l'une quelconque des revendications 7 à 12.
- Véhicule selon la revendication 13, le véhicule étant au moins un véhicule parmi un camion (100) et un engin (104) .
- Produit de programmation informatique comprenant un support non transitoire lisible par ordinateur sur lequel sont enregistrés des moyens de programmation informatique pour commander un système de moteur (200), le système de moteur comprenant :- un moteur à combustion interne (ICE) (202),- un système de post-traitement de gaz d'échappement (EATS)(204) couplé en aval de l'ICE,- un premier capteur d'oxyde d'azote (NOx) (214, 216), et- une unité de commande (212),le produit de programmation informatique comprenant :- un code pour sélectionner, au niveau de l'unité de commande, un premier ensemble de paramètres de commande pour actionner l'ICE afin de générer une première sortie,- un code pour former, au niveau de l'unité de commande, un second ensemble de paramètres de commande pour actionner l'ICE en manipulant le premier ensemble de paramètres de commande avec un signal de réglage ayant une forme d'onde prédéfinie, le signal de réglage étant apte à varier une quantité de NOx produite par le moteur,- un code pour actionner, en utilisant l'unité de commande, l'ICE en fonction du second ensemble de paramètres de commande- un code pour recevoir, au niveau de l'unité de commande, des données de mesure (306, 310) provenant du premier capteur de NOx collectées sur une première période prédéfinie,- un code pour déterminer, en utilisant l'unité de commande, un premier niveau de correspondance entre la forme d'onde prédéfinie du signal de réglage et les données de mesure provenant du premier capteur de NOx,- un code pour indiquer, en utilisant l'unité de commande, la présence d'une anomalie au niveau du premier capteur de NOx si le premier niveau de correspondance est en-dessous d'un premier seuil prédéfini.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21169772.7A EP4080024B1 (fr) | 2021-04-22 | 2021-04-22 | Procédé de détection d'une anomalie de capteur |
US17/659,105 US11655746B2 (en) | 2021-04-22 | 2022-04-13 | Method for detecting a sensor anomality |
CN202210388411.7A CN115234349A (zh) | 2021-04-22 | 2022-04-14 | 用于检测传感器异常的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21169772.7A EP4080024B1 (fr) | 2021-04-22 | 2021-04-22 | Procédé de détection d'une anomalie de capteur |
Publications (3)
Publication Number | Publication Date |
---|---|
EP4080024A1 EP4080024A1 (fr) | 2022-10-26 |
EP4080024C0 EP4080024C0 (fr) | 2024-05-29 |
EP4080024B1 true EP4080024B1 (fr) | 2024-05-29 |
Family
ID=75639732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21169772.7A Active EP4080024B1 (fr) | 2021-04-22 | 2021-04-22 | Procédé de détection d'une anomalie de capteur |
Country Status (3)
Country | Link |
---|---|
US (1) | US11655746B2 (fr) |
EP (1) | EP4080024B1 (fr) |
CN (1) | CN115234349A (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2024149020A (ja) * | 2023-04-07 | 2024-10-18 | トヨタ自動車株式会社 | 水素エンジンの制御装置 |
CN117386495B (zh) * | 2023-11-27 | 2024-11-05 | 一汽解放汽车有限公司 | 一种车辆氮氧化物传感器的故障诊断方法、装置及设备 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003120399A (ja) * | 2001-10-09 | 2003-04-23 | Toyota Motor Corp | NOxセンサ異常検出装置 |
JP3957208B2 (ja) * | 2003-09-11 | 2007-08-15 | 本田技研工業株式会社 | 排気ガスセンサの劣化故障診断装置 |
JP4537417B2 (ja) * | 2007-03-06 | 2010-09-01 | トヨタ自動車株式会社 | NOxセンサの異常診断装置 |
JP2009162181A (ja) * | 2008-01-09 | 2009-07-23 | Denso Corp | NOxセンサ診断装置およびそれを用いた排気浄化システム |
EP2635888B1 (fr) | 2009-12-16 | 2017-05-31 | Cummins Filtration IP, Inc. | Appareil et procede de diagnostic d'un capteur de nox |
SE535748C2 (sv) | 2010-04-08 | 2012-12-04 | Scania Cv Ab | Anordning och förfarande för att detektera ett tillstånd hos en NOx-sensor hos ett motorfordon |
US8281578B2 (en) * | 2011-03-24 | 2012-10-09 | Ford Global Technologies, Llc | Method for correcting an estimate of NH3 stored within a selective catalyst reduction system |
US9080488B2 (en) | 2011-03-24 | 2015-07-14 | Ford Global Technologies, Llc | Method for estimating slippage of a selective catalyst reduction system |
DE102011077251B3 (de) * | 2011-06-09 | 2012-06-06 | Ford Global Technologies, Llc | Diagnoseverfahren und Diagnosemodul für einen Filter eines NOx Sensors eines Abgassystems |
DE202015003616U1 (de) * | 2015-05-19 | 2016-08-22 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | Steuersystem zur Diagnostizierung einer Funktionsstörung eines Drucksensors in einem Nachbehandlungssystem eines Verbrennungsmotors |
CN105156180A (zh) * | 2015-09-08 | 2015-12-16 | 沪东重机有限公司 | 降低NH3逃逸的NOx排放后处理装置 |
SE540087C2 (en) | 2016-07-14 | 2018-03-20 | Scania Cv Ab | A system and a method for diagnosing the performance of two NOx sensors in an exhaust gas processing configuration comprising two SCR units |
-
2021
- 2021-04-22 EP EP21169772.7A patent/EP4080024B1/fr active Active
-
2022
- 2022-04-13 US US17/659,105 patent/US11655746B2/en active Active
- 2022-04-14 CN CN202210388411.7A patent/CN115234349A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
CN115234349A (zh) | 2022-10-25 |
EP4080024C0 (fr) | 2024-05-29 |
EP4080024A1 (fr) | 2022-10-26 |
US20220341354A1 (en) | 2022-10-27 |
US11655746B2 (en) | 2023-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11725564B2 (en) | Diagnostic methods for a high efficiency exhaust aftertreatment system | |
EP3361063B1 (fr) | Moteur à combustion interne et procédé de commande d'un moteur à combustion interne | |
RU2623003C2 (ru) | Способ обнаружения отравления серой в системе очистки выхлопа | |
US9528462B2 (en) | NOx sensor plausibility monitor | |
CN105308282B (zh) | 用于诊断机动车辆的选择性催化还原系统的系统和方法 | |
US9476341B2 (en) | Exhaust treatment system that generates debounce duration for NOx sensor offset | |
US9708953B1 (en) | Apparatuses and methods for onboard diagnostic monitoring and detection | |
US11047283B2 (en) | Method of monitoring an SCR catalytic converter | |
US20090049899A1 (en) | Diagnostic method for an exhaust aftertreatment system | |
US11655746B2 (en) | Method for detecting a sensor anomality | |
US20130192214A1 (en) | Soot sensor monitoring | |
EP3800334B1 (fr) | Système moteur et procédé de commande d'un moteur sur la base de caractéristiques du système de post-traitement | |
US10371071B2 (en) | Systems and methods for non-intrusive closed-loop combustion control of internal combustion engines | |
US11028753B2 (en) | System and method for determining engine out NOx based on in-cylinder contents | |
US10895184B2 (en) | Method for monitoring an ammonia slip catalytic converter | |
US12158095B2 (en) | Method and system for sensor analysis in an exhaust gas aftertreatment system | |
US10337383B2 (en) | Selective catalyst reduction efficiency determination | |
US11542846B2 (en) | Urea injection control system for an internal combustion engine | |
US20120272638A1 (en) | Regeneration methods and systems for particulate filters | |
US11536181B2 (en) | Controlling an exhaust gas aftertreatment system | |
US20190249586A1 (en) | Abnormality diagnosis apparatus and vehicle | |
US20150068193A1 (en) | Regeneration system to regenerate a particulate filter based on code clear diagnostic signal | |
WO2024064225A1 (fr) | Systèmes et procédés de commande d'émissions d'échappement de tuyau d'échappement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230420 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20240102 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602021013720 Country of ref document: DE |
|
U01 | Request for unitary effect filed |
Effective date: 20240604 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20240612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240529 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240829 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240929 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240529 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240830 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240529 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240529 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240529 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240529 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240529 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240529 |