EP3350251A1 - Method for producing a lignocellulose plastic composite material - Google Patents
Method for producing a lignocellulose plastic composite materialInfo
- Publication number
- EP3350251A1 EP3350251A1 EP16791304.5A EP16791304A EP3350251A1 EP 3350251 A1 EP3350251 A1 EP 3350251A1 EP 16791304 A EP16791304 A EP 16791304A EP 3350251 A1 EP3350251 A1 EP 3350251A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- particles
- refiner
- lignocellulose
- thermoplastic
- melted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 36
- 229920003023 plastic Polymers 0.000 title claims abstract description 19
- 239000004033 plastic Substances 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title abstract description 17
- 239000002245 particle Substances 0.000 claims abstract description 88
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 62
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 59
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 23
- 239000011246 composite particle Substances 0.000 claims abstract description 5
- 238000000227 grinding Methods 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 37
- 239000002023 wood Substances 0.000 claims description 24
- -1 polyethylene Polymers 0.000 claims description 14
- 239000004743 Polypropylene Substances 0.000 claims description 13
- 229920001155 polypropylene Polymers 0.000 claims description 13
- 229920002522 Wood fibre Polymers 0.000 claims description 7
- 230000009477 glass transition Effects 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 7
- 230000008018 melting Effects 0.000 claims description 7
- 239000002025 wood fiber Substances 0.000 claims description 7
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 6
- 239000004952 Polyamide Substances 0.000 claims description 6
- 239000004698 Polyethylene Substances 0.000 claims description 6
- 229920008262 Thermoplastic starch Polymers 0.000 claims description 6
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 6
- 229920002647 polyamide Polymers 0.000 claims description 6
- 229920002530 polyetherether ketone Polymers 0.000 claims description 6
- 229920000573 polyethylene Polymers 0.000 claims description 6
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 6
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 6
- 239000004628 starch-based polymer Substances 0.000 claims description 6
- 102100031260 Acyl-coenzyme A thioesterase THEM4 Human genes 0.000 claims description 4
- 101000638510 Homo sapiens Acyl-coenzyme A thioesterase THEM4 Proteins 0.000 claims description 4
- 235000013312 flour Nutrition 0.000 claims description 4
- 229920003043 Cellulose fiber Polymers 0.000 claims description 3
- 239000004793 Polystyrene Substances 0.000 claims description 3
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 claims description 3
- 239000007900 aqueous suspension Substances 0.000 claims description 3
- 239000004417 polycarbonate Substances 0.000 claims description 3
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 239000004800 polyvinyl chloride Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 48
- 239000000835 fiber Substances 0.000 description 27
- 150000001875 compounds Chemical class 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- 238000013329 compounding Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 238000001035 drying Methods 0.000 description 6
- 229920001903 high density polyethylene Polymers 0.000 description 6
- 239000004700 high-density polyethylene Substances 0.000 description 6
- 241000218657 Picea Species 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229920001684 low density polyethylene Polymers 0.000 description 5
- 239000004702 low-density polyethylene Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000011155 wood-plastic composite Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000012978 lignocellulosic material Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229920002488 Hemicellulose Polymers 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229920001131 Pulp (paper) Polymers 0.000 description 2
- 229920001587 Wood-plastic composite Polymers 0.000 description 2
- 239000002318 adhesion promoter Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229920005610 lignin Polymers 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000012815 thermoplastic material Substances 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241001330002 Bambuseae Species 0.000 description 1
- 241000446313 Lamella Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 239000011173 biocomposite Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004537 pulping Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/045—Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/50—Mixing liquids with solids
- B01F23/53—Mixing liquids with solids using driven stirrers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/50—Mixing liquids with solids
- B01F23/57—Mixing high-viscosity liquids with solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/70—Pre-treatment of the materials to be mixed
- B01F23/711—Heating materials, e.g. melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/80—Mixing plants; Combinations of mixers
- B01F33/83—Mixing plants specially adapted for mixing in combination with disintegrating operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B13/00—Conditioning or physical treatment of the material to be shaped
- B29B13/10—Conditioning or physical treatment of the material to be shaped by grinding, e.g. by triturating; by sieving; by filtering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/82—Heating or cooling
- B29B7/826—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/88—Adding charges, i.e. additives
- B29B7/90—Fillers or reinforcements, e.g. fibres
- B29B7/905—Fillers or reinforcements, e.g. fibres with means for pretreatment of the charges or fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/88—Adding charges, i.e. additives
- B29B7/90—Fillers or reinforcements, e.g. fibres
- B29B7/92—Wood chips or wood fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/88—Adding charges, i.e. additives
- B29B7/94—Liquid charges
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2101/00—Mixing characterised by the nature of the mixed materials or by the application field
- B01F2101/2805—Mixing plastics, polymer material ingredients, monomers or oligomers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/80—Mixing plants; Combinations of mixers
- B01F33/836—Mixing plants; Combinations of mixers combining mixing with other treatments
- B01F33/8361—Mixing plants; Combinations of mixers combining mixing with other treatments with disintegrating
- B01F33/83613—Mixing plants; Combinations of mixers combining mixing with other treatments with disintegrating by grinding or milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
- B29B7/40—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/16—Auxiliary treatment of granules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
Definitions
- the invention relates to a method for producing a lignocellulosic plastic composite material and a lignocellulose plastic composite material produced or producible thereby.
- Lignocellulose-containing raw materials such as e.g. Wood, bamboo or various natural fibers are increasingly being used as reinforcing or filling components in composite materials. This happens both due to a scarcity of raw materials as well as for reasons of
- WPC wood-plastic-composites
- NFK natural-fiber-reinforced composites
- LKC lignocellulosic plastic composite or composite materials
- extruders in particular co-rotating twin-screw extruder, but also internal mixers or slotted kneaders
- the individual components lignocellulose, plastic and optionally additives
- the materials are fed by appropriate devices the screw channel of the extruder, melted in the screw channel and mixed and discharged at the end of the process through a nozzle, cooled and crushed into granules.
- lignocellulose-containing material In general, lignocellulose-containing material must be dried technically prior to thermoplastic processing, because excessively high humidities on the one hand lead to processes that are difficult to control (sudden loss of water vapor) and, on the other hand, the water that is contained must be evaporated with great energy expenditure. Due to their hygroscopic properties, the lignocelluloses absorb moisture from the environment, so that even after drying, moisture is returned to the composite. This means that even after drying water is absorbed by the material, which must be re-evaporated during the processing process.
- Dosing capability Due to the low bulk density, the fibers keep each other at a distance and interlock with each other whereby a dosage is prevented in a continuous processing process. Material drying reduces the flexibility of the refractory fibers, i. they become stiffer and tend to snag each other. If this happens, the material intake increases
- Agglomeration Due to the drying process, finely divided, e.g. milled or fibrous lignocellulose agglomerates. These agglomerates have such a high internal strength that they are not restored by the following
- Object of the present invention is to provide an improved over the prior art, in particular easier and more cost-effective way to produce lignocellulose plastic composite materials.
- the present invention provides a method for producing a lignocellulosic plastic composite, wherein
- Thermoplastic particles and a mixture of water and lignocellulose-containing particles are fed to a refiner, and
- thermoplastic particles are supplied to the refiner up or melted up or melted up in the refmer, so that the up or melted
- lignocellulose-containing raw materials in the form of, for example, fibers, chips, chips or flour and flowable thermoplastic
- thermoplastic particles fed to a refiner.
- the thermoplastic particles in the melted or fused state with fibrillated lignocellulosic particles to a
- Thermoplastics and lignocellulose-containing material are mixed in one process in such a way that a composite product (compound) is produced for preferably direct further processing in subsequent thermoplastic processes.
- the present invention thus makes possible for the first time a wet compounding of thermoplastics and lignocellulose-containing material.
- thermoplastic and lignocellulose without additional fiber destruction can be achieved.
- the compound thus prepared can be mixed with conventional
- Shaping process such as e.g. thermoplastic technology (extrusion, injection molding, compression molding).
- larger throughputs production quantities
- a “composite material”, also referred to as “composite material” or “compound”, is understood as meaning a material made of two or more materials connected by means of a fabric or form fit or a combination thereof, whereby the composite material has other, usually better, material properties than its individual components.
- lignocellulosic Plastic composite Under a "lignocellulosic Plastic composite 'is here a composite of one or more
- Plastics in particular a thermoplastic, and a lignocellulose-containing material understood.
- lignocellulose-containing material if appropriate synonymous as
- “Lignocellulosic material” herein is preferably understood to mean a material composed of cellulose, hemicellulose and lignin in different proportions, but the term includes not only a material consisting predominantly or wholly of lignocellulose, but rather also lignin-free hemicellulose / Cellulose fibers if the lignin has been wholly or partly depleted by appropriate chemical pulping (CTMP, pulp or semi-pulp) The term also includes materials which, in addition to lignocellulose, hemicellulose and / or cellulose, also contain other constituents.
- CMP chemical pulping
- lignocellulose-containing particles refers to particles of lignocellulose-containing material
- lignocellulose-containing particles are wood shavings, woodchips, wood fibers and wood flour.
- a mixture of water and lignocellulosic particles is meant a mixture of lignocellulosic particles and added water, in particular a mixture of lignocellulosic particles, for example wood particles, and water, the
- Water content above the fiber saturation of the lignocellulosic particles lies.
- the term also includes mixtures which contain other constituents in addition to water and lignocellulose-containing particles. In particular, however, the term refers to mixtures containing only water and lignocellulosic particles.
- aqueous suspension of lignocellulose-containing particles and thermoplastic particles is a suspension of lignocellulose-containing particles suspended in water and
- the suspension may also contain, for example, additives, for example lubricants, adhesion promoters or the like.
- a "refiner” is understood to mean a grinding or comminution device which is usually used in the pulp and / or wood-based material industry and which serves for grinding or defibrating lignocellulosic material for the production of fibrous materials.
- the lignocellulose is added to the refiner usually in the form of wood chips, sawdust or fiber. As a rule, refiner have a static grinding element (stator) and a rotating grinding element (rotor).
- a “disk refiner” is understood as meaning a refiner with opposing grinding disks, between which a grinding gap is formed, in which the grinding stock is ground, whereby usually a grinding disk (rotor) rotates in relation to a second fixed grinding disk (stator) Refiner with more than two grinding discs, eg double disc refiner with double grinding set and two
- the grinding discs are regularly crushed, e.g.
- the material to be ground is conveyed, for example, by a plug screw into the center of the grinding discs, and then finally to be conveyed by the rotor and the resulting centrifugal forces to the outside of the housing.
- the material to be ground is conveyed, for example, by a plug screw into the center of the grinding discs, and then finally to be conveyed by the rotor and the resulting centrifugal forces to the outside of the housing.
- Material discharge takes place through radially or tangentially arranged openings on the refiner housing. In the industrial process, the material is often continuously fed to and removed from the refiner.
- thermoplastic is meant a thermoplastic polymer or a mixture of thermoplastic polymers
- Thermoplastics are plastics that can be reversibly deformed in a specific temperature range (thermo-plastic)
- thermoplastics are polyethylene (PE), polypropylene (PP ), Acrylonitrile-butadiene-styrene (ABS), polyamide (PA), polylactate (PLA), polymethyl methacrylate (PMMA), polycarbonate (PC), polyethylene terephthalate (PET), polystyrene (PS), polyetheretherketone (PEEK), thermoplastic starch (TPS ) or polyvinyl chloride (PVC).
- the term "melted on” with respect to thermoplastic particles means that it at least partially heats at its surface above its glass transition temperature were so that the particles are at least viscous in at least a portion of its surface.
- the quantitative ratio between thermoplastic and lignocellulosic material is variable.
- the lignocellulose content preferably ranges between 10 and 90% by weight, more preferably between 20 and 80% by weight, particularly preferably between 30 and 70% by weight, based on the weight of the compound.
- thermoplastic particles can either be melted up or melted in the refiner, for example, by shearing forces arising therefrom and / or heating of the rhombus, or fed to the refiner already in the up or melted state.
- the method according to the invention the
- Thermoplastic particles at least predominantly up in the refiner or melted.
- the refiner can for this purpose have corresponding heaters or be heated by appropriate heaters.
- an electrical heating of a Mahlgarnitur for example, one or both grinding discs in the case of a Scheibenrefmers be made.
- the refiner can be heated by superheated steam.
- the thermoplastic particles, which may have already been melted or fused on, and the mixture of water and lignocellulose-containing particles may be fed to the refiner separately or together. For example, those, possibly already up or
- thermoplastic particles are added separately before refining a mixture of water and lignocellulose-containing particles and fed to the refiner together with the mixture of the water and the lignocellulose-containing particles.
- thermoplastic particles can also be fed to the refiner separately and brought together in the refiner. However, it is preferred to co-feed the thermoplastic particles and the mixture of water and lignocellulose-containing particles to the refiner. If appropriate, the thermoplastic particles may be melted or melted by suitable means before being added to the mixture of water and lignocellulose-containing particles, preferably just before the refiner.
- an aqueous suspension of lignocellulose-containing particles and thermoplastic particles is fed to the refiner, the thermoplastic particles in the refiner are melted up or fibrillated and the lignocellulose-containing particles are fiberized so that the molten thermoplastic particles and the fibrillated lignocellulose-containing particles in the composite particle refiner particles form.
- the temperature in the refiner is at or above the glass transition temperature of the thermoplastic particles. Unless a mixture of different thermoplastics with
- the temperature in the refiner is at or above the glass transition temperature of the thermoplastic having the highest glass transition temperature. This is particularly preferred in embodiments of the method according to the invention, in which the
- thermoplastic particles are first melted or melted in the refiner. But this is also advantageous in embodiments in which the thermoplastic particles are supplied to the refiner already up or melted, for example, a cooling of the
- the heat energy required for melting or melting the thermoplastic particles is at least partially generated by shearing energy in the refiner.
- such a shear energy can be generated on the choice of Mahlommenabstands, the Mahlinngarnitur, the rotational speed of the grinding disc (s) and the supply (type, pressure and speed of the material to be crushed) that the thermoplastic material is on or melted and when passing radially along the grinding set of the stator and rotor with the fibrillated lignocellulose-containing material connects.
- the required heat energy can optionally be applied exclusively by the resulting shear energy.
- the required thermal energy may also be provided in addition or exclusively by heating the grinding set of the rhombus, e.g. by electrical
- the refiner is a disk refiner with grinding disks, the supply of the thermoplastic particles and the mixture of water and lignocellulose-containing particles takes place centrally via a grinding disk and the material composite particles are discharged radially or tangentially with respect to the grinding disks.
- plastic and lignocellulosic material are placed centrally in the grinding gap between the grinding discs, the coumpounding (crushing, mixing and possibly melting) is continued radially or tangentially from the inside out to the edge of the grinding discs, and the resulting composite material is on delivered to the outer edges of the grinding discs, where it can be collected and optionally further treated, for example, can be separated from the suspension liquid.
- the resulting composite material particles are at least largely separated from excess liquid.
- the lignocellulose-containing particles are wood chips,
- thermoplastics may be, for example, polyethylene (PE), polypropylene (PP), acrylonitrile-butadiene-styrene (ABS), polyamide (PA), polylactate (PLA), polymethyl methacrylate (PMMA), polycarbonate (PC), polyethylene terephthalate (PET ), Polystyrene (PS),
- PE polyethylene
- PP polypropylene
- ABS acrylonitrile-butadiene-styrene
- PA polyamide
- PLA polylactate
- PMMA polymethyl methacrylate
- PC polycarbonate
- PET polyethylene terephthalate
- PS Polystyrene
- thermoplastic starch TPS
- PVC polyvinyl chloride
- Additives such as lubricants, adhesion promoters, etc. can be added to the thermoplastics.
- the invention also relates to a lignocellulosic Kunststoffsto ff composite material, which is produced by a method according to the invention or can be produced.
- the invention is described below purely by way of illustration with reference to FIG.
- Figure 1 Schematic representation of a preferred embodiment of an apparatus for performing the method according to the invention.
- the refiner 1 is a disc refiner with two grinding discs 2, 3, which form a grinding gap 5, in a housing 4.
- the first grinding disc (stator grinding disc) 2 is fixed, the second grinding disc (rotor grinding disc) 3 rotates about the axis 10, as indicated by the arrow.
- a screw conveyor 6 is arranged through which material to be ground can be introduced centrally into the grinding gap 5.
- the material to be ground can be fed via a hopper 7 on the screw conveyor 6.
- the housing 4 has on its upper side via a line 8, can be passed through the superheated steam into the interior of the housing 4.
- an outlet 9 is provided, can be removed from the housing 4 via the finished product.
- FIG. 2 shows schematically the structure of a rhombus, as it was used in Embodiment 2.
- the refiner 1 differs essentially in that instead of a funnel 7, a boiler 12 was used.
- Exemplary Embodiment 1 For the experiments described below, a low-density polyethylene (LDPE) and spruce sawdust were used for the wet compounding according to the invention. In this case, a mixing ratio of 60% spruce chips and 40% LDPE (mass fractions) was used. Before defibering in the refiner, the sawdust was pre-cooked in a so-called paddle reactor at 170 ° C for 6 minutes. In the process, about 10 L of water was added to the 5 kg chips. By such a hydrothermal pretreatment, the middle lamella of the wood fibers is softened, whereby the modulus of elasticity decreases and the defibration in the refiner is facilitated.
- LDPE low-density polyethylene
- LDPE low-density polyethylene
- the refiner 1 For reflow or melting of the polymer in the refiner 1, the refiner 1 was charged with steam (T approximately 100 ° C.) via the line 8 and preheated (see FIG. Due to the open system, the pre-heating of the Reimers 1 by steam only up to a temperature of about 100 ° C was possible. Further energy input, which causes the polymer to melt or melt, was introduced into the system by shearing energy generated by defibration of the shavings and polymer granules. During defibering, the refiner 1 was continuously steamed.
- the grinding disc spacing and thus the thickness of the grinding gap 5 was set to 0.1 mm.
- the material was fed through the hopper 7 to the grinding unit, shredded and discharged by centrifugal forces at the lower end of the housing 4 Refmergephaseuses 4 via the outlet.
- the residence time of the material in the Refmer 1 was from the
- the produced wet compound was heavily fiberized compared to the starting material.
- the polymer was heavily comminuted compared to the starting material and not visible to the naked eye. Signs of molten polymer were visually recognizable. Subsequent separation of wood and thermoplastic (e.g., by slurrying) was no longer possible.
- the material was previously mixed by hand with the addition of water and then added to the digester 12. Prior to defibering, the materials were added for up to 10 minutes Heated to 125 ° C and 145 ° C. The disc distance of the rhombus was set to 0.1 mm. After heating, the material mixture was transported by steam pressure (manually controllable), starting from the digester, as well as a screw conveyor between the refracting discs, there frayed and discharged by centrifugal force tangentially through a valve opening (10 mm).
- thermoplastic is apparently shredded and inseparably bonded to the wood fiber.
- HDPE Density 0.954 g / cm 3 3.3 3.3 30 Sabic TC 3054 Melting temperature: 132 ° C
- Fi / Ta wood chips fraction 5.5 50 10 min.
- Type Rettenmaier FS 14 2.5-4.0 mm at 125 ° C
- HDPE Density 0.954 g / cm 3 50 Sabic TC 3054 Melt Temp .: 132 ° C
- Fi / Ta wood chips fraction 70 10 min.
- Type Rettenmaier FS 14 2.5-4.0 mm at 145 ° C PP density: 0.905 g / cm 3
- Fi / Ta wood chips fraction Type: Rettenmaier FS 14 2,5-4,0 mm
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Dispersion Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Dry Formation Of Fiberboard And The Like (AREA)
Abstract
Description
VERFAHREN ZUR HERSTELLUNG EINES LIGNOCELLULOSE-KUNSTSTOFF- VERBUND WERKSTOFFS METHOD FOR PRODUCING A LIGNOCELLULOSE PLASTIC COMPOSITE MATERIAL
Die Erfindung betrifft ein Verfahren zur Herstellung eines Lignocellulose-Kunststoff- Verbundwerkstoffs und einen dadurch hergestellten oder herstellbaren Lignocellulose- Kunststoff- Verbundwerkstoff. The invention relates to a method for producing a lignocellulosic plastic composite material and a lignocellulose plastic composite material produced or producible thereby.
Lignocellulosehaltige Rohstoffe, wie z.B. Holz, Bambus oder verschiedene Naturfasern werden immer häufiger als Verstärkungs- oder Füllkomponente in Kompositwerkstoffen eingesetzt. Dieses geschieht sowohl auf Grund einer Rohstoffverknappung als auch aus Gründen derLignocellulose-containing raw materials, such as e.g. Wood, bamboo or various natural fibers are increasingly being used as reinforcing or filling components in composite materials. This happens both due to a scarcity of raw materials as well as for reasons of
Nachhaltigkeit. Zusätzlich dazu, werden spezielle Materialeigenschaften wie erhöhte Steifigkeit und Wärmeformbeständigkeit erreicht. So genannte„Wood-Plastic-Composites" (WPC) oder naturfaserverstärkte Komposite (NFK) finden hauptsächlich in der Bauindustrie (z.B. beim Terrassenbau) oder der Automobilindustrie (z.B. bei Innentürverkleidugen) Anwendung. 2012 hatten WPC und NFK bereits einen Marktanteil von 15% (352000 t) an den in Europa hergestellten Kompositwerkstoffen. Es wird jedoch ein weiterer starker Anstieg der Sustainability. In addition, special material properties such as increased rigidity and heat resistance are achieved. So-called "wood-plastic-composites" (WPC) or natural-fiber-reinforced composites (NFK) are mainly used in the construction industry (eg terraced construction) or the automotive industry (eg interior door cladding) .WPC and NFK already had a market share of 15% in 2012 ( 352000 t) of the composite materials produced in Europe, however, there will be another sharp increase in the
Produktionsmenge erwartet. In bestimmten Anwendungsbereichen, wie dem Production volume expected. In certain applications, such as
Konstruktionsbereich oder der Automobilindustrie wird teilweise sogar eine Verdoppelung der Produktion erwartet (Carus und Eder 2014, Wood-Plastic Composites (WPC) and Natural Fibre Composites (NFC): European and Global Markets 2012 and Future Trends). Anlass für diese Prognosen ist eine steigende Nachfrage an Werkstoffen, die auf Basis nachwachsender In some cases, the construction sector or the automotive industry is even expected to double production (Carus and Eder 2014, Wood-Plastic Composites (WPC) and Natural Fiber Composites (NFC): European and Global Markets 2012 and Future Trends). The reason for these forecasts is an increasing demand for materials based on renewable energy
Rohstoffe produziert werden. Raw materials are produced.
Zur Herstellung von Lignocellulose-Kunststo ff- Verbund- bzw. Kompositwerkstoffen, abgekürzt auch LKC, (Compounds), ist bekannt, dass vorzugsweise Extruder, im speziellen gleichläufige Doppelschneckenextruder, aber auch Innenmischkneter oder Stempelkneter eingesetzt werden. Dafür müssen die Einzelkomponenten (Lignocellulose, Kunststoff und gegebenenfalls Additive) vor der Extrusion in mehreren Verfahrensschritten getrocknet und dosierfähig aufgearbeitet werden. Nach einer meist energieintensiven Aufbereitung (Mahlen) werden die Materialen durch entsprechende Vorrichtungen dem Schneckenkanal des Extruders zugeführt, im Schneckenkanal aufgeschmolzen und vermengt und am Ende des Prozesses durch eine Düse ausgetragen, abgekühlt und zu Granulaten zerkleinert. Bei der Herstellung von LKC mit einem Extruder oder Innenmischkneter, wurden in For the production of lignocellulosic plastic composite or composite materials, abbreviated to LKC, (compounds), it is known that preferably extruders, in particular co-rotating twin-screw extruder, but also internal mixers or slotted kneaders are used. For this purpose, the individual components (lignocellulose, plastic and optionally additives) have to be dried in several process steps prior to extrusion and worked up in a dosing manner. After a mostly energy-intensive treatment (milling), the materials are fed by appropriate devices the screw channel of the extruder, melted in the screw channel and mixed and discharged at the end of the process through a nozzle, cooled and crushed into granules. In the production of LKC with an extruder or internal mixer, were in
verschiedenen Veröffentlichungen Refiner-Fasern (PvMP = Refiner mechanical pulp, TMP = thermomechanical pulp, CTMP = chemothermo mechanical pulp) als Verstärkungselement in einer thermoplastischen Matrix eingesetzt (Lerche, Henrik; Benthien, Jan T.; Schwarz, Katrin U.; Ohlmeyer, Martin, 2013, Effects of Defibration Conditions on Mechanical and Physical Properties of Wood Fiber/High-Density Polyethylene Composites. In: Journal of Wood various publications Refiner fibers (PvMP = thermomechanical pulp, CTMP = chemothermo mechanical pulp) are used as reinforcing element in a thermoplastic matrix (Lerche, Henrik, Benthien, Jan T, Schwarz, Katrin U, Ohlmeyer, Martin , 2013, Effects of Defibration Conditions on Mechanical and Physical Properties of Wood Fiber / High-Density Polyethylene Composites. In: Journal of Wood
Chemistry and Technology 34 (2), 98-110; Peltola, H.; Laatikainen, E.; Jetsu, P., 2011, Effects of physical treatment of wood fibres on fibre morphology and biocomposite properties. In: Plastics, Rubber and Composites 40 (2), 86-92). Chemistry and Technology 34 (2), 98-110; Peltola, H .; Laatikainen, E .; Jetsu, P., 2011, Effects of physical treatment of wood fibers on fiber morphology and biocomposite properties. In: Plastics, Rubber and Composites 40 (2), 86-92).
Die Ergebnisse der veröffentlichten Untersuchungen zeigen, dass durch die Verwendung von Refiner-Fasern die Festigkeiten des Kompositwerkstoffs erheblich verbessert werden. Grund dafür ist neben einem guten Länge-zu-Durchmesser- Verhältnis (L/D-Verhältnis) der Fasern eine große Faseroberfläche. Eine vergrößerte Faseroberfläche erhöht die Kontaktfläche an ein aufgeschmolzenes Polymer und verbessert so die Festigkeitseigenschaften des The results of the published studies show that the use of Refiner fibers significantly improves the strength of the composite material. The reason for this is besides a good length-to-diameter ratio (L / D ratio) of the fibers a large fiber surface. An increased fiber surface increases the contact area with a molten polymer and thus improves the strength properties of the polymer
Kompositwerkstoffes. Bisher konnten solche Compounds mit Refmerfasern jedoch nur in kleinen Mengen durch die Kombination mehrerer Verfahrensschritte hergestellt werden. Eine direkte Compoundierung von Fasern war bisher nicht möglich. Die Gründe dafür sind folgende: Composite material. So far, however, such compounds with refractory fibers could only be produced in small amounts by combining several process steps. A direct compounding of fibers was previously not possible. The reasons are the following:
- Schüttgewicht: Refmerfasern und Fasern im Allgemeinen haben eine sehr geringe Bulk weight: Reflow fibers and fibers in general have a very low
Schüttdichte. Der Grund dafür ist, dass die Fasern sich gegenseitig auf Distanz halten und so sehr viel Luft dazwischen enthalten ist. Die Luft verursacht Probleme in den nachfolgenden Prozessen, da sie während der Verarbeitung aus dem Werkstoff entfernt werden muss. Das bedeutet, dass Prozesse langsamer sind (weniger Durchsatz) und größeren technischen Bulk density. The reason for this is that the fibers keep each other at a distance and so much air is contained in between. The air causes problems in subsequent processes as it must be removed from the material during processing. This means that processes are slower (less throughput) and larger technical
Aufwand benötigen, z.B. mehr und größere Entgasungsöffnungen. Ein Ansatz zur Lösung dieses Problems stellt das Pelletieren der Fasern dar. Dabei werden die Fasern durch eine Matrize gepresst und so verdichtet, dass ein rieselfähiger Stoff entsteht. Die Herstellung von Pellets ist neben zusätzlichen Kosten und einem weiteren Verfahrensschritt auch mit einer Faserkürzung verbunden, die durch das Pressen durch die Matrize erfolgt. Eine solche Require effort, e.g. more and larger vents. One approach to solving this problem is the pelleting of the fibers. The fibers are pressed through a die and compacted so that a free-flowing material is formed. The production of pellets is associated not only with additional costs and a further process step but also with a fiber shortening which takes place by pressing through the die. Such
Faserkürzung wirkt sich negativ auf die Festigkeitseigenschaften des Komposits aus Fiber shortening has a negative effect on the strength properties of the composite
(Bengtsson, Magnus; Le Baillif, Marie; Oksman, Kristiina, 2007, Extrusion and mechanical properties of highly filled cellulose fibre-polypropylene composites. In: Composites Part A: Applied Science and Manufacturing 38 (8), 1922-1931). Zusätzlich entstehen dabei (Bengtsson, Magnus, Le Baillif, Marie, Oksman, Kristiina, 2007, Extrusion and mechanical Properties of highly filled cellulose fiber-polypropylene composites. In: Composites Part A: Applied Science and Manufacturing 38 (8), 1922-1931). In addition, arise
Agglomerate, die sich nicht mehr ausreichend mit dem Polymer dispergieren (mischen) lassen. Eine industrielle Produktion, in der pelletierte Fasern eingesetzt werden, ist nicht bekannt. Agglomerates that can no longer be adequately dispersed (mixed) with the polymer. An industrial production in which pelletized fibers are used is not known.
- Feuchtigkeit: Generell muss lignocellulosehaltiges Material vor der thermoplastischen Verarbeitung technisch getrocknet werden, da zu hohe Feuchtigkeiten einerseits zu schwer kontrollierbaren Prozessen führen (plötzlicher Wasserdampfaustritt) und anderseits das enthaltene Wasser mit hohem Energieaufwand verdampft werden muss. Die Lignocellulosen nehmen auf Grund ihrer hygroskopischen Eigenschaften Feuchtigkeit aus der Umgebung auf, so dass selbst nach dem Trocken wieder Feuchtigkeit in das Komposit gelangt. Das bedeutet, dass auch nach einer Trocknung Wasser vom Material aufgenommen wird, das während des Verarbeitungsprozesses erneut verdampft werden muss. - Dosierfähigkeit: Auf Grund des geringen Schüttgewichtes halten sich die Fasern gegenseitig auf Distanz und verhaken sich gegenseitig wodurch eine Dosierung in einen kontinuierlichen Verarbeitungsprozess verhindert wird. Durch eine Materialtrocknung verringert sich die Flexibilität von Refmerfasern, d.h. sie werden steifer und neigen dazu, sich zusätzlich ineinander zu verhaken. Tritt dies ein, kommt es am Materialeinzug vermehrt zu - Moisture: In general, lignocellulose-containing material must be dried technically prior to thermoplastic processing, because excessively high humidities on the one hand lead to processes that are difficult to control (sudden loss of water vapor) and, on the other hand, the water that is contained must be evaporated with great energy expenditure. Due to their hygroscopic properties, the lignocelluloses absorb moisture from the environment, so that even after drying, moisture is returned to the composite. This means that even after drying water is absorbed by the material, which must be re-evaporated during the processing process. - Dosing capability: Due to the low bulk density, the fibers keep each other at a distance and interlock with each other whereby a dosage is prevented in a continuous processing process. Material drying reduces the flexibility of the refractory fibers, i. they become stiffer and tend to snag each other. If this happens, the material intake increases
Brückenbildung, die ein selbständiges Weiterfördern verhindert. Bridging that prevents independent forwarding.
- Agglomeratbildung: Bedingt durch den Trocknungsprozess bilden sich auch aus feinteiliger, z.B. gemahlener bzw. faserförmiger Lignocellulose Agglomerate. Diese Agglomerate weisen eine so hohe innere Festigkeit auf, dass sie nicht wieder durch die nachfolgenden Agglomeration: Due to the drying process, finely divided, e.g. milled or fibrous lignocellulose agglomerates. These agglomerates have such a high internal strength that they are not restored by the following
Compoundierprozesse aufgelöst werden können. Dadurch entstehen im Compound und im Endprodukt Agglometrate, die das Aussehen und auch die technischen Eigenschaften des Compounds negativ beeinflussen. Compounding processes can be resolved. As a result, agglomerates are formed in the compound and in the final product, negatively affecting the appearance and also the technical properties of the compound.
Aufgabe der vorliegenden Erfindung ist es, eine gegenüber dem Stand der Technik verbesserte, insbesondere einfachere und kostengünstigere Möglichkeit zur Herstellung von Lignocellulose- Kunststoff- Verbundwerkstoffen bereit zu stellen. Zur Lösung der Aufgabe stellt die vorliegende Erfindung ein Verfahren zur Herstellung eines Lignocellulose-Kunststoff- Verbundwerkstoffs bereit, wobei Object of the present invention is to provide an improved over the prior art, in particular easier and more cost-effective way to produce lignocellulose plastic composite materials. To achieve the object, the present invention provides a method for producing a lignocellulosic plastic composite, wherein
a. Thermoplastpartikel und eine Mischung aus Wasser und lignocellulosehaltigen Partikeln einem Refmer zugeführt werden, und a. Thermoplastic particles and a mixture of water and lignocellulose-containing particles are fed to a refiner, and
b. die lignocellulosehaltigen Partikel im Refmer zerfasert werden, b. the lignocellulosic particles in the refiner become fiberized,
und wobei die Thermoplastpartikel dem Refmer auf- oder angeschmolzen zugeführt oder im Refmer auf- oder angeschmolzen werden, so dass die auf- oder angeschmolzenen and wherein the thermoplastic particles are supplied to the refiner up or melted up or melted up in the refmer, so that the up or melted
Thermoplastpartikel und die zerfaserten lignocellulosehaltigen Partikel im Refmer Thermoplastic particles and the fibrillated lignocellulosic particles in the refmer
Materialverbundpartikel bilden. Form composite material particles.
Bei dem erfindungsgemäßen Verfahren werden lignocellulosehaltige Rohstoffe in Form von beispielsweise Fasern, Spänen, Schnitzeln oder Mehl und fließfähige thermoplastische In the method according to the invention are lignocellulose-containing raw materials in the form of, for example, fibers, chips, chips or flour and flowable thermoplastic
Kunststoffe einem Refmer zugeführt. Im Refmer werden die Thermoplastpartikel im an- oder aufgeschmolzenen Zustand mit zerfaserten Lignocellulose-Partikeln zu einem Plastics fed to a refiner. In the refmer, the thermoplastic particles in the melted or fused state with fibrillated lignocellulosic particles to a
Verbundwerkstoff vermengt. Thermoplast und lignocellulosehaltiges Material werden dabei in einem Prozess so vermengt, dass ein Kompositprodukt (Compound) zur vorzugsweise direkten Weiterverarbeitung in nachfolgenden thermoplastischen Prozessen entsteht. Die vorliegende Erfindung ermöglicht damit erstmals eine Feuchtcompoundierung von Thermoplasten und lignocellulosehaltigem Material. Composite mixed. Thermoplastics and lignocellulose-containing material are mixed in one process in such a way that a composite product (compound) is produced for preferably direct further processing in subsequent thermoplastic processes. The present invention thus makes possible for the first time a wet compounding of thermoplastics and lignocellulose-containing material.
Mit dem erfindungsgemäßen Verfahren kann eine mehrfache Trocknung vermieden werden und eine Compoundierung von Thermoplast und Lignocellulose ohne zusätzliche Faserzerstörung erreicht werden. Das so hergestellte Compound kann mit herkömmlichen With the method according to the invention, a multiple drying can be avoided and a compounding of thermoplastic and lignocellulose without additional fiber destruction can be achieved. The compound thus prepared can be mixed with conventional
Formgebungsverfahren wie z.B. thermoplastischer Technologie (Extrusion, Spritzguss, Pressverfahren) weiter verarbeitet werden. Darüber hinaus sind mit dem erfindungsgemäßen Verfahren größere Durchsätze (Produktionsmengen) realisierbar als bei einem traditionellen Compoundierprozess. Shaping process such as e.g. thermoplastic technology (extrusion, injection molding, compression molding). In addition, larger throughputs (production quantities) can be realized with the method according to the invention than with a traditional compounding process.
Unter einem„Verbundmaterial", auch„Kompositmaterial" oder„Compound", wird ein Material aus zwei oder mehr mittels Stoff- oder Formschluss oder einer Kombination davon verbundenen Materialien verstanden. Dabei hat das Verbundmaterial andere, meist bessere, Materialeigenschaften als seine einzelnen Komponenten. Unter einem„Lignocellulose- Kunststoff- Verbundwerkstoff ' wird hier ein Verbundwerkstoff aus ein oder mehreren A "composite material", also referred to as "composite material" or "compound", is understood as meaning a material made of two or more materials connected by means of a fabric or form fit or a combination thereof, whereby the composite material has other, usually better, material properties than its individual components. Under a "lignocellulosic Plastic composite 'is here a composite of one or more
Kunststoffen, insbesondere einem Thermoplasten, und einem lignocellulosehaltigen Material verstanden. Unter dem Begriff„lignocellulosehaltiges Material", gegebenenfalls synonym auch alsPlastics, in particular a thermoplastic, and a lignocellulose-containing material understood. The term "lignocellulose-containing material", if appropriate synonymous as
„Lignocellulose-Material" bezeichnet, wird hier vorzugsweise ein Material verstanden, das aus Cellulose, Hemicellulose und Lignin in unterschiedlichen Anteilen besteht. Der Begriff umfasst jedoch nicht nur ein Material, das überwiegend oder vollständig aus Lignocellulose besteht. Vielmehr umfasst der Begriff auch ligninfreie Hemicellulose-/Cellulosefasern, wenn das Lignin durch einen entsprechenden chemischen Aufschluss ganz oder teilweise entfert wurde (CTMP, Zellstoff oder Halbzellstoff). Der Begriff umfasst darüber hinaus auch Materialien, die neben Lignocellulose, Hemicellulose und/oder Cellulose auch noch weitere Bestandteile enthalten. "Lignocellulosic material" herein is preferably understood to mean a material composed of cellulose, hemicellulose and lignin in different proportions, but the term includes not only a material consisting predominantly or wholly of lignocellulose, but rather also lignin-free hemicellulose / Cellulose fibers if the lignin has been wholly or partly depleted by appropriate chemical pulping (CTMP, pulp or semi-pulp) The term also includes materials which, in addition to lignocellulose, hemicellulose and / or cellulose, also contain other constituents.
Der Begriff„lignocellulosehaltige Partikel" bezeichnet Partikel aus lignocellulosehaltigem Material. Beispiele für lignocellulosehaltige Partikel sind Holsspäne, Holzhackschnitzel, Holzfasern und Holzmehl. The term "lignocellulose-containing particles" refers to particles of lignocellulose-containing material Examples of lignocellulose-containing particles are wood shavings, woodchips, wood fibers and wood flour.
Unter einer„Mischung aus Wasser und lignocellulosehaltigen Partikeln" wird eine Mischung aus lignocellulosehaltigen Partikeln und hinzugefügtem Wasser verstanden, insbesondere eine Mischung aus lignocellulosehaltigen Partikeln, z.B. Holzpartikeln, und Wasser, wobei derBy a "mixture of water and lignocellulosic particles" is meant a mixture of lignocellulosic particles and added water, in particular a mixture of lignocellulosic particles, for example wood particles, and water, the
Wasseranteil über der Fasersättigung der lignocellulosehaltigen Partikel, z.B. der Holzpartikel, liegt. Der Begriff umfasst auch Mischungen, die neben Wasser und lignocellulosehaltigen Partikeln weitere Bestandteile enthalten. Insbesondere bezieht sich der Begriff jedoch auf Mischungen, die nur Wasser und lignocellulosehaltige Partikel enthalten. Unter einer „wässrigen Suspension aus lignocellulosehaltigen Partikeln und Thermoplastpartikeln" wird eine Suspension aus in Wasser suspendierten lignocellulosehaltigen Partikeln und Water content above the fiber saturation of the lignocellulosic particles, e.g. the wood particles, lies. The term also includes mixtures which contain other constituents in addition to water and lignocellulose-containing particles. In particular, however, the term refers to mixtures containing only water and lignocellulosic particles. Under an "aqueous suspension of lignocellulose-containing particles and thermoplastic particles" is a suspension of lignocellulose-containing particles suspended in water and
Thermoplastpartikeln verstanden. Die Suspension kann beispielsweise auch Additive, beispielsweise Gleitmittel, Haftvermittler oder dergleichen enthalten. Unter einem„Refmer" wird eine Mahl- bzw. Zerkleinerungsvorrichtung verstanden, die üblicherweise in der Zellstoff- und/oder Holzwerkstoffindustrie eingesetzt wird und dabei der Mahlung oder Zerfaserung von Lignocellulosematerial, zur Herstellung von Faserstoffen dient. Die Lignocellulose wird dem Refiner in der Regel in Form von Hackschnitzel, Sägespänen oder Faserstoffen zugegeben. In der Regel weisen Refiner einen statischen Mahlkörper (Stator) und einen rotierenden Mahlkörper (Rotor) auf. Unter einem„Scheibenrefmer" wird ein Refiner mit gegenüberliegenden Mahlscheiben verstanden, zwischen denen ein Mahlspalt gebildet ist, in dem das Mahlgut zermahlen wird. Dabei rotiert meist eine Mahlscheibe (Rotor) im Verhältnis zu einer zweiten festen Mahlscheibe (Stator). Der Begriff umfasst auch Refiner mit mehr als zwei Mahlscheiben, z.B. Doppelscheibenrefmer mit doppelter Mahlgarnitur und zwei Understood thermoplastic particles. The suspension may also contain, for example, additives, for example lubricants, adhesion promoters or the like. A "refiner" is understood to mean a grinding or comminution device which is usually used in the pulp and / or wood-based material industry and which serves for grinding or defibrating lignocellulosic material for the production of fibrous materials. The lignocellulose is added to the refiner usually in the form of wood chips, sawdust or fiber. As a rule, refiner have a static grinding element (stator) and a rotating grinding element (rotor). A "disk refiner" is understood as meaning a refiner with opposing grinding disks, between which a grinding gap is formed, in which the grinding stock is ground, whereby usually a grinding disk (rotor) rotates in relation to a second fixed grinding disk (stator) Refiner with more than two grinding discs, eg double disc refiner with double grinding set and two
Mahlspalten. Die Mahlscheiben sind regelmäßig mit Zerkleinerungseinrichtungen, z.B. Grinding gaps. The grinding discs are regularly crushed, e.g.
unterschiedlich über den Radius verteilten Segmenten (Stegen) versehen. Das zu mahlende Gut wird beispielsweise durch eine Stopfschnecke in das Zentrum der Mahlscheiben gefördert, um dann schließlich durch den Rotor und die entstehenden Zentrifugalkräfte an die Außenseite des Gehäuses gefördert zu werden. In Abhängigkeit vom Mahlscheibenabstand und der different distributed over the radius segments (bars) provided. The material to be ground is conveyed, for example, by a plug screw into the center of the grinding discs, and then finally to be conveyed by the rotor and the resulting centrifugal forces to the outside of the housing. Depending on the grinding disc distance and the
Mahlscheibengarnitur entstehen Kompressions- und Friktionskräfte, die eine Mahlung des Materials hervorrufen (Gharehkhani, Samira; Sadeghinezhad, Emad; Kazi, Salim Newaz; Grinding wheel sets result in compression and friction forces that cause the material to be ground (Gharehkhani, Samira, Sadeghinezhad, Emad, Kazi, Salim Newaz;
Yarmand, Hooman; Badarudin, Ahmad; Safaei, Mohammad Reza; Zubir, Mohd Nashrul Mohd, 2015, Basic effects of pulp refining on fiber properties - a review, In: Carbohydr Polym 115, 785-803) und einen wesentlichen Einfluss auf die Materialeigenschaften haben. Der Yarmand, Hooman; Badaryudin, Ahmad; Safaei, Mohammad Reza; Zubir, Mohd Nashrul Mohd, 2015, Basic effects of pulp refining on fiber properties - a review, In: Carbohydr Polym 115, 785-803) and have a material effect on the material properties. Of the
Materialaustrag erfolgt durch radial oder tangential angeordnete Öffnungen am Refiner- Gehäuse. Im Industrieprozess wird das Material häufig kontinuierlich dem Refiner zu- und abgeführt. Material discharge takes place through radially or tangentially arranged openings on the refiner housing. In the industrial process, the material is often continuously fed to and removed from the refiner.
Unter einem„Thermoplasten" ist hier ein thermoplastisches Polymer oder eine Mischung aus thermoplastischen Polymeren zu verstehen. Thermoplaste sind Kunststoffe, die sich in einem bestimmten Temperaturbereich (thermo-plastisch) reversibel verformen lassen. Beispiele für Thermoplasten sind Polyethylen (PE), Polypropylen (PP), Acrylnitril-Butadien-Styrol (ABS), Polyamid (PA), Polylactat (PLA), Polymethylmethacrylat (PMMA), Polycarbonat (PC), Polyethylenterephthalat (PET), Polystyrol (PS), Polyetheretherketon (PEEK), thermoplasische stärke (TPS) oder Polyvinylchlorid (PVC). Der Ausdruck„auf- oder angeschmolzen" in Bezug auf Thermoplastpartikel bedeutet, dass diese zumindest teilweise an Ihrer Oberfläche oberhalb ihrer Glasübergangstemperatur erhitzt wurden, so dass die Partikel zumindest in einem Teilbereich ihrer Oberfläche mindestens zähflüssig sind. By "thermoplastic" is meant a thermoplastic polymer or a mixture of thermoplastic polymers Thermoplastics are plastics that can be reversibly deformed in a specific temperature range (thermo-plastic) Examples of thermoplastics are polyethylene (PE), polypropylene (PP ), Acrylonitrile-butadiene-styrene (ABS), polyamide (PA), polylactate (PLA), polymethyl methacrylate (PMMA), polycarbonate (PC), polyethylene terephthalate (PET), polystyrene (PS), polyetheretherketone (PEEK), thermoplastic starch (TPS ) or polyvinyl chloride (PVC). The term "melted on" with respect to thermoplastic particles means that it at least partially heats at its surface above its glass transition temperature were so that the particles are at least viscous in at least a portion of its surface.
Das Mengenverhältnis zwischen Thermoplast- und Lignocellulose-Material ist variabel. Der Lignocellulose- Anteil leigt vorzugsweise zwischen 10 und 90 Gewichtsprozent, besonders bevorzugt zwischen 20 und 80 Gew.-%, besonders bevorzugt zwischen 30 und 70 Gew.-%, bezogen auf das Gewicht des Compounds. The quantitative ratio between thermoplastic and lignocellulosic material is variable. The lignocellulose content preferably ranges between 10 and 90% by weight, more preferably between 20 and 80% by weight, particularly preferably between 30 and 70% by weight, based on the weight of the compound.
Die Thermoplastpartikel können entweder erst im Refiner auf- oder angeschmolzen werden, beispielsweise durch dort entstehende Scherkräfte und/oder eine Beheizung des Reimers, oder dem Refiner bereits in auf- oder angeschmolzenem Zustand zugeführt werden. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden die The thermoplastic particles can either be melted up or melted in the refiner, for example, by shearing forces arising therefrom and / or heating of the rhombus, or fed to the refiner already in the up or melted state. In a preferred embodiment of the method according to the invention, the
Thermoplastpartikel zumindest vorwiegend erst im Refiner auf- oder angeschmolzen. Der Refiner kann hierzu entsprechende Heizvorrichtungen aufweisen bzw. durch entsprechende Heizvorrichtungen aufgeheizt werden. Beispielsweise kann eine elektrische Beheizung einer Mahlgarnitur, beispielsweise einer oder beider Mahlscheiben im Falle eines Scheibenrefmers, vorgenommen werden. Alternativ oder zusätzlich kann der Refiner durch Heißdampf geheizt werden. Die gegebenenfalls bereits auf- oder angeschmolzen Thermoplastpartikel und die Mischung aus Wasser und lignocellulosehaltigen Partikeln können dem Refiner getrennt oder gemeinsam zugeführt werden. Beispielsweise können die, gegebenenfalls bereits auf- oder Thermoplastic particles at least predominantly up in the refiner or melted. The refiner can for this purpose have corresponding heaters or be heated by appropriate heaters. For example, an electrical heating of a Mahlgarnitur, for example, one or both grinding discs in the case of a Scheibenrefmers be made. Alternatively or additionally, the refiner can be heated by superheated steam. The thermoplastic particles, which may have already been melted or fused on, and the mixture of water and lignocellulose-containing particles may be fed to the refiner separately or together. For example, those, possibly already up or
angeschmolzenen, thermoplastischen Partikel separat vor dem Refiner einer Mischung aus Wasser und lignocellulosehaltigen Partikeln zugegeben und dem Refiner gemeinsam mit der Mischung aus dem Wasser und den lignocellulosehaltigen Partikeln zugeführt werden. Die, gegebenenfalls bereits auf- oder angeschmolzenen, thermoplastischen Partikel und die melted thermoplastic particles are added separately before refining a mixture of water and lignocellulose-containing particles and fed to the refiner together with the mixture of the water and the lignocellulose-containing particles. The, optionally already auf- or molten thermoplastic particles and the
Mischung aus Wasser und lignocellulosehaltigen Partikeln können dem Refiner jedoch auch separat zugeführt und erst im Refiner zusammengebracht werden. Es ist jedoch bevorzugt, die Thermoplastpartikel und die Mischung aus Wasser und lignocellulosehaltigen Partikeln dem Refiner gemeinsam zuzuführen. Dabei können die Thermoplastpartikel gegebenenfalls durch geeignete Mittel auf- oder angeschmolzen werden, bevor sie der Mischung aus Wasser und lignocellulosehaltigen Partikeln, vorzugsweise kurz vor dem Refiner, zugegeben werden. In einer Ausführungsform des erfindungsgemäßen Verfahrens wird eine wässrige Suspension aus lignocellulosehaltigen Partikeln und Thermoplastpartikel dem Refiner zugeführt, werden die Thermoplastpartikel im Refiner auf- oder angeschmolzen und die lignocellulosehaltigen Partikel zerfasert, so dass die auf- oder angeschmolzenen Thermoplastpartikel und die zerfaserten lignocellulosehaltigen Partikel im Refiner Materialverbundpartikel bilden. Mixture of water and lignocellulosic particles can also be fed to the refiner separately and brought together in the refiner. However, it is preferred to co-feed the thermoplastic particles and the mixture of water and lignocellulose-containing particles to the refiner. If appropriate, the thermoplastic particles may be melted or melted by suitable means before being added to the mixture of water and lignocellulose-containing particles, preferably just before the refiner. In one embodiment of the process according to the invention, an aqueous suspension of lignocellulose-containing particles and thermoplastic particles is fed to the refiner, the thermoplastic particles in the refiner are melted up or fibrillated and the lignocellulose-containing particles are fiberized so that the molten thermoplastic particles and the fibrillated lignocellulose-containing particles in the composite particle refiner particles form.
Vorzugsweise liegt die Temperatur im Refiner bei oder oberhalb der Glasübergangstemperatur der Thermoplastpartikel. Sofern eine Mischung verschiedener Thermoplasten mit Preferably, the temperature in the refiner is at or above the glass transition temperature of the thermoplastic particles. Unless a mixture of different thermoplastics with
unterschiedlichen Glasübergangstemperaturen in den Thermoplastpartikeln eingesetzt wird, ist es bevorzugt, dass die Temperatur im Refiner bei oder oberhalb der Glasübergangstemperatur des Thermoplasten mit der höchsten Glasübergangstemperatur liegt. Dies ist insbesondere bei Ausführungsformen des erfindungsgemäßen Verfahrens bevorzugt, bei denen die different glass transition temperatures is used in the thermoplastic particles, it is preferred that the temperature in the refiner is at or above the glass transition temperature of the thermoplastic having the highest glass transition temperature. This is particularly preferred in embodiments of the method according to the invention, in which the
Thermoplastpartikel erst im Refiner auf- oder angeschmolzen werden. Dies ist aber auch bei Ausführungsformen vorteilhaft, bei denen die Thermoplastpartikel dem Refiner bereits auf- oder angeschmolzen zugeführt werden, beispielsweise um eine Abkühlung der Thermoplastic particles are first melted or melted in the refiner. But this is also advantageous in embodiments in which the thermoplastic particles are supplied to the refiner already up or melted, for example, a cooling of the
Thermoplastpartikel unterhalb der Glasübergangstemperatur im Refiner zu verhindern. To prevent thermoplastic particles below the glass transition temperature in the refiner.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die zum Auf- oder Anschmelzen der Thermoplastpartikel erforderliche Wärmeenergie zumindest teilweise durch Scherenergie im Refiner erzeugt. Im bevorzugten Fall der Verwendung eines In a preferred embodiment of the method according to the invention, the heat energy required for melting or melting the thermoplastic particles is at least partially generated by shearing energy in the refiner. In the preferred case of using a
Scheibenrefmers beispielsweise kann beispielsweise über die Wahl des Mahlscheibenabstands, der Mahlscheibengarnitur, der Rotationsgeschwindigkeit der Mahlscheibe(n) und der Zufuhr (Art, Druck und Geschwindigkeit des zu zerkleinernden Materials) eine solche Scherenergie erzeugt werden, dass das Thermoplastmaterial an- oder aufgeschmolzen wird und sich beim radialen Durchlaufen entlang der Mahlgarnitur von Stator und Rotor mit dem zerfaserten lignocellulosehaltigen Material verbindet. Die erforderliche Wärmeenergie kann gegebenenfalls ausschließlich durch die entstehende Scherenergie aufgebracht werden. Wie oben angegeben, kann die erforderliche Wärmeenergie aber auch zusätzlich oder ausschließlich durch eine Beheizung der Mahlgarnitur des Reimers bereitgestellt werden, z.B. durch elektrische Scheibenrefmers example, such a shear energy can be generated on the choice of Mahlscheibenabstands, the Mahlscheibengarnitur, the rotational speed of the grinding disc (s) and the supply (type, pressure and speed of the material to be crushed) that the thermoplastic material is on or melted and when passing radially along the grinding set of the stator and rotor with the fibrillated lignocellulose-containing material connects. The required heat energy can optionally be applied exclusively by the resulting shear energy. However, as indicated above, the required thermal energy may also be provided in addition or exclusively by heating the grinding set of the rhombus, e.g. by electrical
Beheizung oder Heißdampf. In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist der Refiner ein Scheibenrefmer mit Mahlscheiben, erfolgt die Zufuhr der Thermoplastpartikel und der Mischung aus Wasser und lignocellulosehaltigen Partikeln zentral über eine Mahlscheibe und erfolgt der Austrag der Materialverbundpartikel radial oder tangential in Bezug auf die Mahlscheiben. Auf diese Weise werden Kunststoff und Lignocellulose-Material mittig in den Mahlspalt zwischen den Mahlscheiben eingebracht, die Coumpoundierung (Zerkleinern, Mischen und ggf. Schmelzen) setzt sich radial oder tangential von innen nach außen zum Rand der Mahlscheiben fort, und das entstehende Verbundmaterial wird an den äußeren Rändern der Mahlscheiben abgegeben, wo es aufgefangen und gegebenenfalls weiterbehandelt werden, z.B. von der Suspensionsflüssigkeit abgetrennt werden kann. Heating or superheated steam. In a particularly preferred embodiment of the method according to the invention, the refiner is a disk refiner with grinding disks, the supply of the thermoplastic particles and the mixture of water and lignocellulose-containing particles takes place centrally via a grinding disk and the material composite particles are discharged radially or tangentially with respect to the grinding disks. In this way, plastic and lignocellulosic material are placed centrally in the grinding gap between the grinding discs, the coumpounding (crushing, mixing and possibly melting) is continued radially or tangentially from the inside out to the edge of the grinding discs, and the resulting composite material is on delivered to the outer edges of the grinding discs, where it can be collected and optionally further treated, for example, can be separated from the suspension liquid.
Vorzugsweise werden die entstandenen Materialverbundpartikel von überschüssiger Flüssigkeit zumindest größtenteils getrennt. Vorzugsweise handelt es sich bei den lignocellulosehaltigen Partikeln um Holzspäne, Preferably, the resulting composite material particles are at least largely separated from excess liquid. Preferably, the lignocellulose-containing particles are wood chips,
Holzhackschnitzel, Holzfasern oder Holzmehl, oder um ligninfreie Cellulosefasern (CTMP) oder Zellstoffe. Das Verfahren ist dabei nicht auf bestimmte Holzsorten und Holzarten beschränkt. Bei den Thermoplasten kann es sich beispielsweise um Polyethylen (PE), Polypropylen (PP), Acrylnitril-Butadien-Styrol (ABS), Polyamid (PA), Polylactat (PLA), Polymethylmethacrylat (PMMA), Polycarbonat (PC), Polyethylenterephthalat (PET), Polystyrol (PS), Wood chippings, wood fibers or wood flour, or lignin-free cellulose fibers (CTMP) or pulps. The method is not limited to certain types of wood and wood species. The thermoplastics may be, for example, polyethylene (PE), polypropylene (PP), acrylonitrile-butadiene-styrene (ABS), polyamide (PA), polylactate (PLA), polymethyl methacrylate (PMMA), polycarbonate (PC), polyethylene terephthalate (PET ), Polystyrene (PS),
Polyetheretherketon (PEEK), Thermoplastische Stärke (TPS) oder Polyvinylchlorid (PVC), oder eine Mischung davon handeln. Den Thermoplasten können Additive wie beispielsweise Gleitmittel, Haftvermittler etc. zugesetzt sein. Polyetheretherketone (PEEK), thermoplastic starch (TPS) or polyvinyl chloride (PVC), or a mixture thereof. Additives such as lubricants, adhesion promoters, etc. can be added to the thermoplastics.
Die Erfindung betrifft auch einen Lignocellulose-Kunststo ff- Verbundwerkstoff, der durch ein erfindungsgemäßes Verfahren hergestellt oder herstellbar ist. Die Erfindung wird im Folgenden rein zu Veranschaulichungszwecken anhand von The invention also relates to a lignocellulosic Kunststo ff composite material, which is produced by a method according to the invention or can be produced. The invention is described below purely by way of illustration with reference to FIG
angehängten Figuren und Ausführungsbeispielen näher erläutert. Figur 1. Schematische Darstellung einer bevorzugten Ausführungsform einer Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens. attached figures and embodiments explained in more detail. Figure 1. Schematic representation of a preferred embodiment of an apparatus for performing the method according to the invention.
Figur 2. Schematische Darstellung einer weiteren bevorzugten Ausführungsform einer Figure 2. Schematic representation of another preferred embodiment of a
Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens. Apparatus for carrying out the method according to the invention.
Figur 1 zeigt schematisch den Aufbau eines in Ausführungsbeispiel 1 (s. u.) verwendeten Versuchs-Refmers. Bei dem Refmer 1 handelt es sich um einen Scheibenrefmer mit zwei Mahlscheiben 2, 3, die einen Mahlspalt 5 bilden, in einem Gehäuse 4. Die erste Mahlscheibe (Stator-Mahlscheibe) 2 ist fest, die zweite Mahlscheibe (Rotor-Mahlscheibe) 3 rotiert um die Achse 10, wie durch den Pfeil angedeutet. In der hohlen Achse 11 der Stator-Mahlscheibe 2 ist eine Förderschnecke 6 angeordnet, durch die zu zermahlendes Material zentral in den Mahlspalt 5 eingebracht werden kann. Das zu zermahlende Material kann über einen Trichter 7 auf die Förderschnecke 6 aufgegeben werden. Das Gehäuse 4 verfügt an seiner Oberseite über eine Leitung 8, über die Heißdampf in das Innere des Gehäuses 4 geleitet werden kann. Am Boden des Gehäuses 4 ist ein Auslass 9 vorgesehen, über den fertiges Produkt aus dem Gehäuse 4 entnommen werden kann. 1 schematically shows the construction of a test refmer used in embodiment 1 (see below). The refiner 1 is a disc refiner with two grinding discs 2, 3, which form a grinding gap 5, in a housing 4. The first grinding disc (stator grinding disc) 2 is fixed, the second grinding disc (rotor grinding disc) 3 rotates about the axis 10, as indicated by the arrow. In the hollow axis 11 of the stator grinding disc 2, a screw conveyor 6 is arranged through which material to be ground can be introduced centrally into the grinding gap 5. The material to be ground can be fed via a hopper 7 on the screw conveyor 6. The housing 4 has on its upper side via a line 8, can be passed through the superheated steam into the interior of the housing 4. At the bottom of the housing 4, an outlet 9 is provided, can be removed from the housing 4 via the finished product.
Figur 2 zeigt schematisch den Aufbau eines Reimers, wie er im Ausführungsbeispiel 2 verwendet wurde. Der Refmer 1 unterscheidet sich im Wesentlichen dadurch, dass anstatt eines Trichters 7 ein Kessel 12 verwendet wurde. Figure 2 shows schematically the structure of a rhombus, as it was used in Embodiment 2. The refiner 1 differs essentially in that instead of a funnel 7, a boiler 12 was used.
Ausführungsbeispiel 1. Für die nachfolgend beschriebenen Versuche wurden ein Low-Density-Polyethylen (LDPE) und Fichten-Sägespäne zur erfindungsgemäßen Feuchtcompoundierung eingesetzt. Hierbei wurde ein Mischungsverhältnis von 60 % Fichtenspäne und 40 % LDPE (Masseanteile) eingesetzt. Vor dem Zerfasern im Refmer wurden die Sägespäne in einem so genannten Paddelreaktor bei 170 °C für 6 Minuten vorgekocht. Dabei wurden den 5 kg Spänen rund 10 L Wasser zugegeben. Durch eine solche hydrothermische Vorbehandlung wird die Mittellamelle der Holzfasern erweicht, wodurch der Elastizitätsmodul sinkt und die Zerfaserung im Refmer erleichtert wird. Im industriellen Herstellungsprozess, wie z.B. bei der MDF-Herstellung, wird das Vorkochen der Hackschnitzel und die anschließende Zerfaserung in einem kontinuierlichen Prozess durchgeführt. Dabei handelt es sich vom Kocher bis zum Refmer um ein geschlossenes Drucksystem bei Temperaturen von 170°C bis 200 °C bei 6 bis 12 bar. Bei dem hier eingesetzten Versuchs-Refmer handelte es sich dagegegen um ein offenes System, bei dem Temperaturen um 100 °C realisiert werden können. Unmittelbar nach dem Vorkochen der Späne wurde das abgewogene Polymer in Granulat-Form den erweichten Spänen händisch untergemischt und ohne weitere Behandlung (Sieben, Abpressen oder dergleichen) dem Refmer zugeführt. Für ein An- oder Aufschmelzen des Polymers im Refmer 1 wurde der Refmer 1 hier über die Leitung 8 mit Dampf (T ca. 100 °C) beaufschlagt und vorgewärmt (s. Figur 1). Auf Grund des offenen Systems war das Vorheizen des Reimers 1 durch Dampf nur bis zu einer Temperatur von ca. 100 °C möglich. Weiterer Energieeintrag, der ein An- oder Aufschmelzen des Polymers hervorruft, wurde durch Scherenergie in das System eingebracht, die durch die Zerfaserung der Späne und der Polymergranulate erzeugt wurde. Während der Zerfaserung wurde der Refmer 1 durchgehend mit Dampf beaufschlagt. Exemplary Embodiment 1. For the experiments described below, a low-density polyethylene (LDPE) and spruce sawdust were used for the wet compounding according to the invention. In this case, a mixing ratio of 60% spruce chips and 40% LDPE (mass fractions) was used. Before defibering in the refiner, the sawdust was pre-cooked in a so-called paddle reactor at 170 ° C for 6 minutes. In the process, about 10 L of water was added to the 5 kg chips. By such a hydrothermal pretreatment, the middle lamella of the wood fibers is softened, whereby the modulus of elasticity decreases and the defibration in the refiner is facilitated. In the industrial manufacturing process, such as in MDF production, is the precooking of the wood chips and the subsequent defibration carried out in a continuous process. These are from the cooker to the refiner a closed pressure system at temperatures of 170 ° C to 200 ° C at 6 to 12 bar. By contrast, the experimental refiner used here was an open system in which temperatures around 100 ° C can be achieved. Immediately after the precooking of the chips, the weighed polymer was mixed by hand in granular form the softened chips and fed to the refiner without further treatment (screening, squeezing or the like). For reflow or melting of the polymer in the refiner 1, the refiner 1 was charged with steam (T approximately 100 ° C.) via the line 8 and preheated (see FIG. Due to the open system, the pre-heating of the Reimers 1 by steam only up to a temperature of about 100 ° C was possible. Further energy input, which causes the polymer to melt or melt, was introduced into the system by shearing energy generated by defibration of the shavings and polymer granules. During defibering, the refiner 1 was continuously steamed.
Für die Zerfaserung und Nasscompoundierung wurde der Mahlscheibenabstand und somit die Stärke des Mahlspalts 5, auf 0,1 mm eingestellt. Nach dem Anschalten des Reimers 1 und des Förderschneckenaggregats wurde das Material über den Trichter 7 dem Mahlaggregat zugeführt, zerfasert und durch Zentrifugalkräfte am unteren Ende des Refmergehäuses 4 über den Auslass 9 ausgelassen. Die Verweilzeit des Materials im Refmer 1 betrug von der For defibering and wet compounding, the grinding disc spacing and thus the thickness of the grinding gap 5 was set to 0.1 mm. After switching on the rhombus 1 and the auger unit, the material was fed through the hopper 7 to the grinding unit, shredded and discharged by centrifugal forces at the lower end of the housing 4 Refmergehäuses 4 via the outlet. The residence time of the material in the Refmer 1 was from the
Materialeingabe in den Trichter bis zum Materialauslass 9 um die 10 Sekunden. Die Versuchsparameter für den oben beschriebenen Versuch sind in Tabelle 1 aufgeführt. Enter material into the funnel up to the material outlet 9 by 10 seconds. The experimental parameters for the experiment described above are listed in Table 1.
Tabelle 1 Versuchsparamter für Ausführungsbeispiel 1 Table 1 Experimental example for embodiment 1
Versuchsparamter Attempt paramters
Material Fichtenspäne u. LDPE Material spruce chips u. LDPE
Mischungsverhältnis (Masseanteil) 60 % Fichten-Späne Mixing ratio (mass fraction) 60% spruce shavings
40 % LDPE Refiner Sprout- Waldron 12", 3000 min-1 40% LDPE Refiner Sprout- Waldron 12 ", 3000 min-1
Mahlscheibenabstand 0,1 mm Grinding disc distance 0.1 mm
Mahlscheibenbezeichnung: Andritz R243 Grinding disc designation: Andritz R243
Durchsatz ca. 8 kg Throughput approx. 8 kg
Hydrothermische Vorbehandlung Paddelreaktor Herbst Maschinenbau, Hydrothermal pretreatment paddle reactor autumn engineering,
Typ: 1203027 Type: 1203027
T = 170 °C T = 170 ° C
T = 6 min. T = 6 min.
Vorwärmung Refiner mittels Dampf Dampferzeuger: Typ CD9ST Dino, Bremen Preheating Refiner using steam steam generator: Type CD9ST Dino, Bremen
4 bar (max. 8 bar) 4 bar (max 8 bar)
Dampfauslass: ca. 100 °C Steam outlet: approx. 100 ° C
Das hergestellte Feuchtcompound war im Vergleich zum Ausgangsmaterial stark zerfasert. Das Polymer war im Vergleich zum Ausgangsmaterial stark zerkleinert und mit bloßem Auge nicht erkennbar. Anzeichen von angeschmolzenem Polymer waren optisch erkennbar. Eine nachträgliche Trennung von Holz und Thermoplast (z.B. durch Aufschlämmen) war nicht mehr möglich. The produced wet compound was heavily fiberized compared to the starting material. The polymer was heavily comminuted compared to the starting material and not visible to the naked eye. Signs of molten polymer were visually recognizable. Subsequent separation of wood and thermoplastic (e.g., by slurrying) was no longer possible.
Ausführungsbeispiel 2. Embodiment 2.
Für die nachfolgend beschriebene Versuchsdurchführung wurden Polypropylen (PP) und High- density-Polyethylen zusammen mit Fichte/Tanne Hackschnitzeln erfindungsgemäß For the experimental procedure described below, polypropylene (PP) and high-density polyethylene together with spruce / fir wood chips were used according to the invention
compoundiert. Die Eingangsmaterialfeuchte der Hackschnitzel betrug 13 %. Die einzelnen Versuchsparameter sowie die Materialkompositionen und Spezifikation sind in Tabelle 2 aufgelistst. Für den Versuch wurde ein Druck-Refiner 1 vom Typ: Sprout- Waldron 12" mit einem vorgeschalteten Kocher 12 (Volumen 55 1) eingesetzt (s. Figur 2). Durch einen Druck- Refiner 1 , wie in der beschriebenen Versuchsdurchführung verwendet, ist es möglich, industrienahe Bedingungen über einen im Vergleich zu Ausführungsbeispiel 1 längeren Zeitraum abzubilden. compounded. The input material moisture of the chips was 13%. The individual test parameters as well as the material compositions and specification are listed in Table 2. For the test, a pressure refiner 1 of the type: Sprout-Waldron 12 "with an upstream cooker 12 (volume 55 1) was used (see Figure 2)., Through a pressure refiner 1, as used in the experimental procedure described is It is possible to model industry-related conditions over a longer compared to Embodiment 1 period.
Das Material wurde vorab händisch unter Zugabe von Wasser vermengt und anschließend in den Kocher 12 gegeben. Vor der Zerfaserung wurden die Materialien für bis zu 10 Minuten bei 125°C und 145 °C aufgeheizt. Der Scheibenabstand des Reimers wurde auf 0,1 mm eingestellt. Nach dem Aufheizen wurde das Materialgemisch durch Dampfdruck (händisch steuerbar), vom Kocher ausgehend, sowie einer Förderschnecke zwischen die Refmerscheiben transportiert, dort zerfasert und durch Zentrifugalkräfte tangential durch eine Ventilöffnung (10 mm) ausgelassen. The material was previously mixed by hand with the addition of water and then added to the digester 12. Prior to defibering, the materials were added for up to 10 minutes Heated to 125 ° C and 145 ° C. The disc distance of the rhombus was set to 0.1 mm. After heating, the material mixture was transported by steam pressure (manually controllable), starting from the digester, as well as a screw conveyor between the refracting discs, there frayed and discharged by centrifugal force tangentially through a valve opening (10 mm).
Unmittelbar hinter dem Durchlassventil kommt es zu einer schlagartigen Verdampfung des im Material befindlichen Wassers, was zu einer Trocknung des Materials führt. Die Immediately behind the passage valve, there is a sudden evaporation of the water in the material, which leads to a drying of the material. The
Materialfeuchte unmittelbar nach Materialauslass betrug 35-40 %. Das Material ist Material moisture immediately after material outlet was 35-40%. The material is
augenscheinlich, im Vergleich zum Ausgangsmaterial (Hackschnitzel, Granulate), stark zerfasert. Die Fasergeometrie ist mit der von MDF-Fasern zu vergleichen. Der Thermoplast ist augenscheinlich zerfasert und untrennbar mit dem Holzfasern verbunden. apparently, in comparison to the starting material (chips, granules), heavily shredded. The fiber geometry is comparable to that of MDF fibers. The thermoplastic is apparently shredded and inseparably bonded to the wood fiber.
Tabelle 2 Versuchsparamter für Ausführungsbeispiel 1. Fi = Fichte, Ta = Tanne, Spezifik. = Spezifikation, PP = Polypropylen, HDPE = Hochdichte-Polyethylen. Unter„Fraktion" sind die Partikelgrößen-Bereiche angegeben. Table 2 Experimental Example for Embodiment 1. Fi = Spruce, Ta = Fir, Specific. = Specification, PP = polypropylene, HDPE = high density polyethylene. "Fraction" indicates the particle size ranges.
Versuch Material Spezifik. Verhältnis Aufheizen Nr. trocken t u T Trial material specific. Ratio heating up no dry t u T
(kg) (%) (min. u °C) (kg) (%) (min.u ° C)
Fi/Ta-Hackschnitzel Fraktion: 7,70 70 10 min Typ: Rettenmaier FS 14 2,5-4,0 mm bei 125 °C Fi / Ta wood chips Fraction: 7.70 70 10 min Type: Rettenmaier FS 14 2.5-4.0 mm at 125 ° C
HDPE Dichte: 0,954 g/cm33,3 3,3 30 Sabic TC 3054 Schmelztemp.: 132°C HDPE Density: 0.954 g / cm 3 3.3 3.3 30 Sabic TC 3054 Melting temperature: 132 ° C
MFI: 30 g/10 min. MFI: 30 g / 10 min.
Fi/Ta-Hackschnitzel Fraktion: 5,5 50 10 min. Typ: Rettenmaier FS 14 2,5-4,0 mm bei 125°C Fi / Ta wood chips fraction: 5.5 50 10 min. Type: Rettenmaier FS 14 2.5-4.0 mm at 125 ° C
HDPE Dichte: 0,954 g/cm3 50 Sabic TC 3054 Schmelztemp.: 132°C HDPE Density: 0.954 g / cm 3 50 Sabic TC 3054 Melt Temp .: 132 ° C
MFI: 30 g/10 min. MFI: 30 g / 10 min.
Fi/Ta-Hackschnitzel Fraktion: 70 10 min. Typ: Rettenmaier FS 14 2,5-4,0 mm bei 145°C PP Dichte: 0,905 g/cm3 Fi / Ta wood chips fraction: 70 10 min. Type: Rettenmaier FS 14 2.5-4.0 mm at 145 ° C PP density: 0.905 g / cm 3
Sabic, PP 575p Schmelzten^.: 160°C Sabic, PP 575p Melted: 160 ° C
MFI: 10,5 g/10 min. MFI: 10.5 g / 10 min.
Fi/Ta-Hackschnitzel Fraktion: Typ: Rettenmaier FS 14 2,5-4,0 mm Fi / Ta wood chips fraction: Type: Rettenmaier FS 14 2,5-4,0 mm
PP Dichte: 0,905 g/cm3 PP density: 0.905 g / cm 3
Sabic, PP 575p Schmelztemp.: 160°C Sabic, PP 575p Melting temperature: 160 ° C
MFI: 10,5 g/10 min. MFI: 10.5 g / 10 min.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015115472 | 2015-09-14 | ||
PCT/DE2016/200380 WO2017045676A1 (en) | 2015-09-14 | 2016-08-16 | Method for producing a lignocellulose plastic composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3350251A1 true EP3350251A1 (en) | 2018-07-25 |
Family
ID=57240768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16791304.5A Withdrawn EP3350251A1 (en) | 2015-09-14 | 2016-08-16 | Method for producing a lignocellulose plastic composite material |
Country Status (5)
Country | Link |
---|---|
US (1) | US10662301B2 (en) |
EP (1) | EP3350251A1 (en) |
CN (1) | CN108137826B (en) |
CA (1) | CA2998230A1 (en) |
WO (1) | WO2017045676A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10507968B2 (en) | 2017-12-18 | 2019-12-17 | Pratt Retail Specialties, Llc | Modular box assembly |
CN108912690A (en) * | 2018-07-28 | 2018-11-30 | 望江县天长光学仪器有限公司 | A kind of anti-cracking optical lens material |
BR102018073350B1 (en) * | 2018-11-13 | 2024-01-02 | Magma Indústria Comércio E Importação De Produtos Têxteis Ltda | INTEGRATED SYSTEM AND METHOD FOR RECYCLING AND PROCESSING COMPOSITE MATERIALS |
CN109675479A (en) * | 2019-01-08 | 2019-04-26 | 郑海东 | A kind of forage mixing device |
CN110575806A (en) * | 2019-06-28 | 2019-12-17 | 范儒毅 | Fiber-grade polypropylene production equipment |
CN110886122A (en) * | 2019-11-19 | 2020-03-17 | 湖南工业大学 | Plant fiber cellulose purification device |
US11718464B2 (en) | 2020-05-05 | 2023-08-08 | Pratt Retail Specialties, Llc | Hinged wrap insulated container |
US20230189867A1 (en) * | 2021-12-16 | 2023-06-22 | Frito-Lay North America, Inc. | Temperature Control for a Rotary Head Extruder |
EP4223488A1 (en) | 2022-02-08 | 2023-08-09 | Universität Hamburg | Fiber-reinforced composite material containing photodegraded polyolefin as bonding agent |
CN114474649B (en) * | 2022-02-11 | 2022-11-04 | 安徽戴家工艺有限公司 | Wood-plastic plate forming equipment and forming process |
AT526713A1 (en) * | 2022-11-29 | 2024-06-15 | Montanuniv Leoben | Continuous separation of a plastic mixture |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5624616A (en) * | 1995-04-20 | 1997-04-29 | Brooks; S. Hunter W. | Method for co-refining dry urban wood chips and blends of dry urban wood chips and thermoplastic resins for the production of high quality fiberboard products |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2534115C (en) * | 2003-07-07 | 2013-05-21 | Cvp Clean Value Plastics Gmbh | Method for producing a fibrous material |
DE102005022820A1 (en) * | 2005-05-12 | 2006-11-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Process for applying functional additives, in particular an adhesion promoter, to a pulp and method for producing a fiber composite material |
DE102007054549A1 (en) * | 2007-11-15 | 2009-05-20 | Kleine Wood & Fibre Gmbh & Co. Kg | Producing natural fiber plastic composite material by drying the natural material such as hemp and/or wood in the form of fiber, shred or flour, crushing the wood raw materials and then compounding with a plastic melt and/or additives |
WO2013137449A1 (en) | 2012-03-16 | 2013-09-19 | 王子ホールディングス株式会社 | Method for producing plant fiber-containing resin composition, method for producing ground product of molded article, and plant fiber-containing resin composition |
DE102013101667A1 (en) * | 2013-02-20 | 2014-08-21 | Papierfabrik Utzenstorf Ag | Producing wood-plastic composite material granulate, comprises manufacturing wood pulp fibers and processing to dewatered crumb material, and treating the crumb material in a refiner to produce a dried and singulated fibrous material |
-
2016
- 2016-08-16 WO PCT/DE2016/200380 patent/WO2017045676A1/en active Application Filing
- 2016-08-16 EP EP16791304.5A patent/EP3350251A1/en not_active Withdrawn
- 2016-08-16 CA CA2998230A patent/CA2998230A1/en not_active Abandoned
- 2016-08-16 US US15/759,329 patent/US10662301B2/en not_active Expired - Fee Related
- 2016-08-16 CN CN201680055866.XA patent/CN108137826B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5624616A (en) * | 1995-04-20 | 1997-04-29 | Brooks; S. Hunter W. | Method for co-refining dry urban wood chips and blends of dry urban wood chips and thermoplastic resins for the production of high quality fiberboard products |
Also Published As
Publication number | Publication date |
---|---|
US10662301B2 (en) | 2020-05-26 |
WO2017045676A1 (en) | 2017-03-23 |
CN108137826B (en) | 2021-02-09 |
CA2998230A1 (en) | 2017-03-23 |
CN108137826A (en) | 2018-06-08 |
US20180258242A1 (en) | 2018-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017045676A1 (en) | Method for producing a lignocellulose plastic composite material | |
EP2525951B1 (en) | Method for producing a polymer material filled with long fibers | |
DE102007054549A1 (en) | Producing natural fiber plastic composite material by drying the natural material such as hemp and/or wood in the form of fiber, shred or flour, crushing the wood raw materials and then compounding with a plastic melt and/or additives | |
DE102006054769A1 (en) | Recycling process for all waste plastics including mixed plastics involves milling in first stage using toothed disc refiner | |
Theng et al. | Comparison between two different pretreatment technologies of rice straw fibers prior to fiberboard manufacturing: Twin-screw extrusion and digestion plus defibration | |
CN103502533A (en) | Polymeric composites | |
EP1644170B1 (en) | Method for producing a fibrous material | |
CN104302461B (en) | Method for producing composite polymers | |
DE102013101667A1 (en) | Producing wood-plastic composite material granulate, comprises manufacturing wood pulp fibers and processing to dewatered crumb material, and treating the crumb material in a refiner to produce a dried and singulated fibrous material | |
EP2571926A1 (en) | Method for producing fiber-reinforced thermoplastic composite materials | |
EP2219838B1 (en) | Pressed articles from cellulose staple fibers, the production and use thereof | |
EP4139519B1 (en) | Method for manufacturing a dimensionally stable object from renewable biomass | |
WO2017207451A1 (en) | Method and device for producing wood-based material panels, and wood-based material panels | |
WO2013076960A1 (en) | Biomass powder derived from oil palm and production method therefor, and biomass-composite molded body and production method therefor | |
WO2011029904A1 (en) | System for converting wood fibres into a state processed by metering devices, prepared wood fibre material and extrudate produced therefrom | |
de Araújo Morandim-Giannetti et al. | Polypropylene/chemically treated coir composites: optimizing coir delignification conditions using central composite design | |
EP3386703B1 (en) | Process for manufacturing a precursor material | |
DE102013108102A1 (en) | A method for producing a mixture of biomass fibers and at least one plastic for the production of a composite material, mixture of biomass fibers and at least one plastic produced by the method and composite material produced from the mixture | |
DE10210107A1 (en) | Production of thermoplastics/natural fiber products (e.g. chipboard) is improved by introducing the plastics components in strand form | |
Bledzki et al. | Influence of separation and processing systems on morphology and mechanical properties of hemp and wood fibre reinforced polypropylene composites | |
EP3377562B1 (en) | Process for producing fiber-polymer-composites | |
WO2015011066A1 (en) | Method for producing molded products | |
Mertens et al. | Monitoring of fibre dimensions after a novel wood-plastic compounding approach | |
EP1483091A1 (en) | Method for the production of a thermoplastic natural fibre product | |
Mertens | Performance and processing evaluation of thermoplastic wood fiber composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180416 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200917 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20220301 |