EP2971204B1 - Nickel-based alloy with silicon, aluminum, and chromium - Google Patents
Nickel-based alloy with silicon, aluminum, and chromium Download PDFInfo
- Publication number
- EP2971204B1 EP2971204B1 EP14709528.5A EP14709528A EP2971204B1 EP 2971204 B1 EP2971204 B1 EP 2971204B1 EP 14709528 A EP14709528 A EP 14709528A EP 2971204 B1 EP2971204 B1 EP 2971204B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- max
- content
- mass
- comprised
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 49
- 239000000956 alloy Substances 0.000 title claims description 49
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims description 26
- 229910052710 silicon Inorganic materials 0.000 title claims description 18
- 229910052804 chromium Inorganic materials 0.000 title claims description 15
- 229910052782 aluminium Inorganic materials 0.000 title claims description 14
- 229910052759 nickel Inorganic materials 0.000 title claims description 14
- 239000011651 chromium Substances 0.000 title description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title description 6
- 239000010703 silicon Substances 0.000 title description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 title description 5
- 229910052735 hafnium Inorganic materials 0.000 claims description 18
- 229910052746 lanthanum Inorganic materials 0.000 claims description 16
- 229910052719 titanium Inorganic materials 0.000 claims description 16
- 229910052726 zirconium Inorganic materials 0.000 claims description 16
- 229910052684 Cerium Inorganic materials 0.000 claims description 14
- 229910052727 yttrium Inorganic materials 0.000 claims description 13
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 239000007772 electrode material Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- 238000002485 combustion reaction Methods 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 229910052745 lead Inorganic materials 0.000 claims 1
- 229910052715 tantalum Inorganic materials 0.000 claims 1
- 230000003647 oxidation Effects 0.000 description 21
- 238000007254 oxidation reaction Methods 0.000 description 21
- 239000010936 titanium Substances 0.000 description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 239000011572 manganese Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 241001295925 Gegenes Species 0.000 description 3
- 238000009760 electrical discharge machining Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005255 carburizing Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910018107 Ni—Ca Inorganic materials 0.000 description 1
- 229910018505 Ni—Mg Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005486 sulfidation Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/057—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/058—Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T13/00—Sparking plugs
- H01T13/20—Sparking plugs characterised by features of the electrodes or insulation
- H01T13/39—Selection of materials for electrodes
Definitions
- the invention relates to a nickel-based alloy with silicon, aluminum, chromium and reactive elements as alloying constituents.
- Nickel-base alloys are used inter alia to produce electrodes of ignition elements for internal combustion engines. These electrodes are exposed to temperatures between 400 ° C and 950 ° C. In addition, the atmosphere changes between reducing and oxidizing conditions. This produces a material destruction or loss due to high-temperature corrosion in the surface region of the electrodes. The generation of the spark leads to a further load (spark erosion). Temperatures of several 1000 ° C occur at the base of the spark, and currents of up to 100 A flow in the first nanosecond during a breakthrough. With each flashover, a limited volume of material in the electrodes is melted and partially vaporized, producing a loss of material.
- nickel alloys have a good potential to fulfill this property spectrum. They are inexpensive compared to precious metals, show no phase transformations to the melting point, such as Cobalt or iron, are comparatively insensitive to carburizing and nitriding, have good heat resistance, good corrosion resistance, and are readily formable and weldable.
- a nickel alloy has been disclosed consisting of about 0.2 to 3% Si, about 0.5% or less Mn, at least two metals selected from the group consisting of about 0.2 to 3% Cr, about 0.2 to 3% Al and about 0.01 to 1% Y, balance nickel.
- a nickel-based alloy which comprises 1.8 to 2.2% silicon, 0.05 to 0.1% yttrium and / or hafnium and / or zirconium, 2 to 2.4% aluminum, balance nickel.
- EP 1 867 739 A1 For example, there is proposed a nickel base alloy containing 1.5 to 2.5% silicon, 1.5 to 3% aluminum, 0 to 0.5% manganese, 0.05 to 0.2% titanium in combination with 0.1 to 0.3% zirconium, wherein Zr can be replaced wholly or partially by the double mass hafnium.
- a nickel-base alloy comprising 1.2 to 2.0% aluminum, 1.2 to 1.8% silicon, 0.001 to 0.1% carbon, 0.001 to 0.1% sulfur, and 0.1% or less chromium , maximum 0.01% manganese, maximum 0.1% Cu, maximum 0.2% iron, 0.005 to 0.06% magnesium, maximum 0.005% lead 0.05 to 0.15% Y and 0.05 to 0.10% hafnium or lanthanum or in each case 0.05 to 0.10% hafnium and lanthanum, balance nickel and manufacturing-related impurities.
- the aim of the subject invention is to provide a nickel-based alloy by which it comes to an increase in the life of components made therefrom, which by raising the spark erosion and corrosion resistance at the same time sufficient formability and weldability (workability) can be brought.
- the alloy should in particular have a high corrosion resistance and even with very corrosive acting fuels such. B. with a proportion of ethanol, have a sufficiently high corrosion resistance.
- the goal is achieved by a nickel base alloy consisting of (in mass%) Si 1.5 - 3.0% al 1.5 - 3.0% Cr > 0.1 - 3.0%, where 4.0 ⁇ ⁇ Al + Si + Cr ⁇ ⁇ 8.0 is satisfied with the contents of Si, Al and Cr in%, Fe 0.005 to 0.20%, Y 0.012-0.20%, ⁇ 0.001-0.20% of one or more of Hf, Zr, La, Ce, Ti, where 0.02 ⁇ ⁇ Y + 0.5 * Hf + Zr + 1.8 * Ti + 0 , 6 * (La + Ce) ⁇ ⁇ 0.30 is satisfied with the contents of Y, Hf, Zr, La, Ce, Ti in%.
- the alloy yttrium with a content of 0.01% to 0.20% and 0.001 to 0.20% of one or more of the elements Hf, Zr, La, Ce, Ti, where 0.02 ⁇ Y + 0.5 * Hf + Zr + 1.8 * Ti + 0.6 * (La + Ce) ⁇ 0.30 with the contents of Y, Hf, Zr, La, Ce, Ti in% is satisfied.
- Preferred ranges are given as follows: Y 0.01 to 0.15% Y 0.02 to 0.10% Hf, Zr, La, Ce, Ti 0.001 to 0.15%, respectively with 0.02 ⁇ Y + 0.5 * Hf + Zr + 1.8 * Ti + 0.6 * (La + Ce) ⁇ 0.25 Hf, Zr, La, Ce, Ti 0.001 to 0.10% each with 0.02 ⁇ Y + 0.5 * Hf + Zr + 1.8 * Ti + 0.6 * (La + Ce) ⁇ 0.20 Hf, Zr, Ti in each case 0.01 to 0.05% or La, Ce in each case 0.001 to 0.10% with 0.02 ⁇ Y + 0.5 * Hf + Zr + 1.8 * Ti + 0.6 * (La + Ce) ⁇ 0.20
- the element Mn may be given in the alloy as follows: Mn 0.001 to 0.20% preferably the following ranges are given: Mn 0.001 to 0.10% Mn 0.001 to 0.08%
- the alloy may further include calcium in amounts between 0.0001 and 0.06%, as needed.
- the sulfur content is limited to max. 0.015% limited. Preferred contents can be given as follows: S Max. 0.010%
- the copper content is limited to max. 0.80% limited. Preferably, a restriction occurs Max. 0.50% Max. 0.20%
- impurities may still have the following elements: Co max.0,50% W Max. 0.02% (maximum 0.10%) Not a word Max. 0.02% (maximum 0.10%) Nb Max. 0.02% (maximum 0.10%) V Max. 0.02% (maximum 0.10%) Ta Max. 0.02% (maximum 0.10%) pb Max. 0.005% Zn Max. 0.005% sn Max. 0.005% Bi Max. 0.005% P Max. 0.050% (max 0.020%) B Max. 0.020% (max 0.010%)
- the alloy of the invention is preferably melted open, followed by treatment in a VOD or VLF plant. But also a melting and pouring in a vacuum is possible. Thereafter, the alloy is poured in blocks or as a continuous casting. If necessary, the block / continuous casting is then annealed at temperatures between 800 ° C and 1270 ° C for 0.1 h to 70 h. Furthermore, it is possible to remelt the alloy additionally with ESU and / or VAR. Thereafter, the alloy is brought into the desired semifinished product.
- annealed at temperatures between 700 ° C and 1270 ° C for 0.1 h to 70 h then hot formed, possibly with intermediate anneals between 700 ° C and 1270 ° C for 0.05 h to 70 h.
- the surface of the material can optionally (also several times) be removed chemically and / or mechanically in between and / or after the hot forming for cleaning.
- one or more cold forming with degrees of deformation up to 99% in the desired semi-finished mold optionally with intermediate anneals between 700 ° C and 1250 ° C for 0.1 to 70 h, if necessary under inert gas such.
- the alloy according to the invention can be well in the product forms band, in particular in thicknesses of 100 microns to 4 mm, sheet, in particular in thicknesses of 1 mm to 70 mm, rod, in particular in thicknesses of 10 mm to 500 mm, and wire in particular in thicknesses from 0.1 mm to 15 mm, manufacture and use pipes, in particular in wall thicknesses of 0.10 mm to 70 mm and diameters of 0.2 mm to 3000 mm.
- These product forms are produced with a mean particle size of 4 ⁇ m to 600 ⁇ m.
- the preferred range is between 10 ⁇ m and 200 ⁇ m.
- the nickel-based alloy according to the invention is preferably usable as a material for electrodes of spark plugs for gasoline engines.
- an aluminum content of at least 1.5% further increases the oxidation resistance.
- the upper limit is therefore set to 3.0 wt% Si.
- a chromium content of at least 0.1% further increases the oxidation resistance.
- the upper limit is therefore set to 3.0 wt% Cr.
- Iron is limited to 0.20% because this element reduces the oxidation resistance. Too low an Fe content increases the cost of producing the alloy. The Fe content is therefore greater than or equal to 0.005%.
- a minimum content of 0.01% Y is necessary to obtain the oxidation resistance-enhancing effect of Y.
- the upper limit is set at 0.20% for cost reasons.
- Oxidation resistance further increases with the addition of at least 0.001% of one or more of the elements Hf, Zr, La, Ce, Ti, where Y + 0.5 * Hf + Zr + 1.8 * Ti + 0.6 * (La + Ce) must be greater than or equal to 0.02 in order to obtain the desired oxidation resistance.
- the addition of at least one or more of the elements Hf, Zr, La, Ce, Ti, greater than 0.20% increases the cost, where Y + 0.5 * Hf + Zr + 1.8 * Ti + 0.6 * ( La + Ce) is additionally restricted to less than or equal to 0.30 (with the contents of Y, Hf, Zr, La, Ce, Ti in%).
- the carbon content should be less than 0.10% to ensure processability. Too small C contents cause increased costs in the production of the alloy. The carbon content should therefore be greater than 0.001%.
- Nitrogen is limited to 0.10% because this element reduces oxidation resistance. Too small N contents cause increased costs in the production of the alloy. The nitrogen content should therefore be greater than 0.0005%.
- Manganese is limited to 0.20% because this element reduces oxidation resistance. Too small Mn contents cause increased costs in the production of the alloy. The manganese content should therefore be greater than 0.001%
- Mg manganese-based nickel-semiconductor
- a minimum content of 0.0001% is required.
- Excessively high levels can lead to intermetallic Ni-Mg phases, which significantly impair processability.
- the Mg content is therefore limited to 0.08% by weight.
- the oxygen content must be less than 0.010% to ensure the manufacturability of the alloy. Too small oxygen levels cause increased costs. The oxygen content should therefore be greater than 0.0001%.
- the levels of sulfur should be kept as low as possible, since this surfactant affects the oxidation resistance. It will therefore max. 0.015% S set.
- Copper is limited to 0.80% as this element reduces the oxidation resistance.
- Cobalt is reduced to max. 0.50% because this element reduces the oxidation resistance.
- Molybdenum is reduced to max. 0.20% limited because this element reduces the oxidation resistance. The same applies to tungsten, niobium and vanadium.
- the content of phosphorus should be less than 0.050%, since this surfactant affects the oxidation resistance.
- the content of boron should be kept as low as possible because this surfactant affects the oxidation resistance. It will therefore max. 0.020% B is set.
- Pb is set to max. 0.005% limited because this element reduces the oxidation resistance.
- Zn, Sn and Bi The same applies to Zn, Sn and Bi.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Spark Plugs (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Conductive Materials (AREA)
- Soft Magnetic Materials (AREA)
Description
Die Erfindung betrifft eine Nickelbasislegierung mit Silizium, Aluminium, Chrom und reaktiven Elementen als Legierungsbestandteile.The invention relates to a nickel-based alloy with silicon, aluminum, chromium and reactive elements as alloying constituents.
Nickelbasislegierungen werden unter anderem dazu eingesetzt, Elektroden von Zündelementen für Verbrennungskraftmaschinen zu erzeugen. Diese Elektroden sind Temperaturen zwischen 400°C und 950°C ausgesetzt. Zusätzlich wechselt die Atmosphäre zwischen reduzierenden und oxidierenden Bedingungen. Dies erzeugt eine Materialzerstörung bzw. einen Materialverlust durch Hochtemperaturkorrosion im Oberflächenbereich der Elektroden. Die Erzeugung des Zündfunkens führt zu einer weiteren Belastung (Funkenerosion). Am Fußpunkt des Zündfunkens entstehen Temperaturen von mehreren 1000°C und bei einem Durchbruch fließen in den ersten Nanosekunden Ströme von bis zu 100 A. Bei jedem Funkenüberschlag wird ein begrenztes Materialvolumen in den Elektroden geschmolzen und teilweise verdampft, was einen Materialverlust erzeugt.Nickel-base alloys are used inter alia to produce electrodes of ignition elements for internal combustion engines. These electrodes are exposed to temperatures between 400 ° C and 950 ° C. In addition, the atmosphere changes between reducing and oxidizing conditions. This produces a material destruction or loss due to high-temperature corrosion in the surface region of the electrodes. The generation of the spark leads to a further load (spark erosion). Temperatures of several 1000 ° C occur at the base of the spark, and currents of up to 100 A flow in the first nanosecond during a breakthrough. With each flashover, a limited volume of material in the electrodes is melted and partially vaporized, producing a loss of material.
Zusätzlich erhöhen Schwingungen vom Motor die mechanischen Belastungen.In addition, vibrations from the engine increase the mechanical loads.
Ein Elektrodenwerkstoff sollte die folgenden Eigenschaften haben:
- Eine gute Beständigkeit gegen Hochtemperaturkorrosion, insbesondere Oxidation, aber auch Sulfidierung, Aufkohlung und Nitrierung. Sodann ist eine Beständigkeit gegen die durch den Zündfunken entstehende Erosion erforderlich. Zusätzlich sollte der Werkstoff nicht empfindlich gegen Thermoschocks und warmfest sein. Des Weiteren sollte der Werkstoff eine gute Wärmeleitfähigkeit, eine gute elektrische Leitfähigkeit und einen ausreichend hohen Schmelzpunkt haben. Er sollte sich gut verarbeiten lassen und preisgünstig sein.
- Good resistance to high-temperature corrosion, in particular oxidation, but also sulfidation, carburizing and nitriding. Then a resistance to the erosion caused by the spark is required. In addition, the material should not be sensitive to thermal shocks and heat-resistant. Furthermore, the material should have a good thermal conductivity, a good electrical conductivity and a sufficiently high melting point. He should be easy to work with and cheap.
Insbesondere haben Nickellegierungen ein gutes Potenzial dieses Eigenschaftsspektrum zu erfüllen. Sie sind im Vergleich zu Edelmetallen preisgünstig, zeigen keine Phasenumwandlungen bis zum Schmelzpunkt, wie Kobalt oder Eisen, sind vergleichweise unempfindlich gegen Aufkohlung und Nitrierung, haben eine gute Warmfestigkeit, eine gute Korrosionsbeständigkeit und sind gut umformbar und schweißbar.In particular, nickel alloys have a good potential to fulfill this property spectrum. They are inexpensive compared to precious metals, show no phase transformations to the melting point, such as Cobalt or iron, are comparatively insensitive to carburizing and nitriding, have good heat resistance, good corrosion resistance, and are readily formable and weldable.
Für beide Schadensmechanismen, nämlich die Hochtemperaturkorrosion und die Funkenerosion, ist die Art der Oxidschichtausbildung von besonderer Bedeutung.For both damage mechanisms, namely high-temperature corrosion and spark erosion, the type of oxide layer formation is of particular importance.
Um eine optimale Oxidschichtausbildung für den konkreten Anwendungsfall zu erreichen, sind bei Nickelbasislegierungen verschiedene Legierungselemente bekannt.In order to achieve an optimum oxide layer formation for the specific application, various alloying elements are known in nickel-based alloys.
Im Folgenden sind alle Konzentrationsangeben in Masse-%, wenn nicht ausdrücklich anders vermerkt.In the following, all concentrations are in mass%, unless expressly stated otherwise.
Durch die
In der
In
In
In der Broschüre "Drähte von ThyssenKrupp VDM Automobilindustrie", Ausgabe 01/2006, wird auf Seite 18 eine Legierung nach dem Stand der Technik - NiCr2MnSi mit 1,4 bis 1,8 % Cr, max. 0,3 % Fe, max. 0,5 % C, 1,3 bis 1,8 % Mn, 0,4 bis 0,65 % Si, max. 0,15% Cu und max. 0,15 % Ti beschrieben.In the brochure "Wires of ThyssenKrupp VDM Automobilindustrie", issue 01/2006, on page 18 an alloy according to the state of the art - NiCr2MnSi with 1.4 to 1.8% Cr, max. 0.3% Fe, max. 0.5% C, 1.3 to 1.8% Mn, 0.4 to 0.65% Si, max. 0.15% Cu and max. 0.15% Ti described.
Ziel des Erfindungsgegenstandes ist es, eine Nickelbasislegierung bereitzustellen, durch welche es zu einer Erhöhung der Lebensdauer von daraus hergestellten Bauteilen kommt, was durch Erhöhung der Funkenerosions- und Korrosionsbeständigkeit bei gleichzeitig ausreichender Umformbarkeit und Schweißbarkeit (Verarbeitbarkeit) herbeiführbar ist. Die Legierung soll insbesondere eine hohe Korrosionsbeständigkeit haben und auch bei sehr korrosiv wirkenden Kraftstoffen, wie z. B. mit einem Anteil an Ethanol, eine ausreichend hohe Korrosionsbeständigkeit aufweisen.The aim of the subject invention is to provide a nickel-based alloy by which it comes to an increase in the life of components made therefrom, which by raising the spark erosion and corrosion resistance at the same time sufficient formability and weldability (workability) can be brought. The alloy should in particular have a high corrosion resistance and even with very corrosive acting fuels such. B. with a proportion of ethanol, have a sufficiently high corrosion resistance.
Das Ziel wird erreicht wird durch eine Nickelbasislegierung, bestehend aus (in Masse-%)
Bevorzugte Ausgestaltungen des Erfindungsgegenstandes sind den Unteransprüchen zu entnehmen.Preferred embodiments of the subject invention are set forth in the dependent claims.
Der Siliziumgehalt liegt zwischen 1,5 und 3,0 %, wobei bevorzugt definierte Gehalte innerhalb der Spreizungsbereiche eingestellt werden können:
- 1,8 bis 3,0 %
- 1,9 bis 2,5 %
- 1.8 to 3.0%
- 1.9 to 2.5%
Dies gilt in gleicher Weise für das Element Aluminium, das in Gehalten zwischen 1,5 bis 3,0 % eingestellt wird. Bevorzugte Gehalte können wie folgt gegeben sein:
- 1,5 bis 2,5 %
- 1,6 bis 2,5 %
- 1,6 bis 2,2 %
- 1,6 bis 2,0 %
- 1.5 to 2.5%
- 1.6 to 2.5%
- 1.6 to 2.2%
- 1.6 to 2.0%
Dies gilt in gleicher Weise für das Element Chrom, das in Gehalten zwischen >0,1 bis 3,0 % eingestellt wird. Bevorzugte Gehalte können wie folgt gegeben sein:
- 0,8 bis 3,0 %
- 1,2 bis 3,0 %
- 1,9 bis 3,0 %
- 1,9 bis 2,5 %
- 0.8 to 3.0%
- 1.2 to 3.0%
- 1.9 to 3.0%
- 1.9 to 2.5%
Für die Elemente Al, Si und Cr muss die Formel 4,0 < Al + Si + Cr < 8,0 mit den Gehalten von Si, Al und Cr in % erfüllt sein. Bevorzugte Bereiche ergeben sich für 4,5 ≤< Al + Si +Cr ≤< 7,5%
5,5 ≤ Al + Si + Cr ≤ 6,8 %For the elements Al, Si and Cr, the formula 4.0 <Al + Si + Cr <8.0 must be satisfied with the contents of Si, Al and Cr in%. Preferred ranges result for 4.5 ≦ <Al + Si + Cr <<7.5%
5.5 ≦ Al + Si + Cr ≦ 6.8%
Ebenso gilt das für das Element Eisen, das in Gehalten zwischen 0,005 bis 0,20 % % eingestellt wird. Bevorzugte Gehalte können wie folgt gegeben sein:
- 0,005 bis 0,10 %
- 0,005 bis 0,05 %
- 0.005 to 0.10%
- 0.005 to 0.05%
Des Weiteren ist es günstig, der Legierung Yttrium mit einem Gehalt von 0,01 % bis 0,20 % zuzugeben und 0,001 bis 0,20% eines oder mehrerer der Elemente Hf, Zr, La, Ce, Ti,
wobei 0,02 ≤ Y + 0,5*Hf + Zr +1,8*Ti+ 0,6*(La + Ce) ≤ 0,30 mit den Gehalten von Y, Hf, Zr, La, Ce, Ti in % erfüllt ist. Bevorzugte Bereiche sind dabei wie folgt gegeben:
mit 0,02 ≤ Y+ 0,5*Hf + Zr +1,8*Ti+ 0,6*(La + Ce) ≤ 0,25
Hf, Zr, La, Ce, Ti jeweils 0,001 bis 0,10 %
mit 0,02 ≤ Y+ 0,5*Hf + Zr +1,8*Ti+ 0,6*(La + Ce) ≤ 0,20
Hf, Zr, Ti jeweils 0,01 bis 0,05% bzw. La, Ce jeweils 0,001 bis 0,10 %
mit 0,02 ≤ Y+ 0,5*Hf + Zr +1,8*Ti+ 0,6*(La + Ce) ≤ 0,20Furthermore, it is favorable to add to the alloy yttrium with a content of 0.01% to 0.20% and 0.001 to 0.20% of one or more of the elements Hf, Zr, La, Ce, Ti,
where 0.02 ≦ Y + 0.5 * Hf + Zr + 1.8 * Ti + 0.6 * (La + Ce) ≦ 0.30 with the contents of Y, Hf, Zr, La, Ce, Ti in% is satisfied. Preferred ranges are given as follows:
with 0.02 ≦ Y + 0.5 * Hf + Zr + 1.8 * Ti + 0.6 * (La + Ce) ≤ 0.25
Hf, Zr, La, Ce, Ti 0.001 to 0.10% each
with 0.02 ≦ Y + 0.5 * Hf + Zr + 1.8 * Ti + 0.6 * (La + Ce) ≦ 0.20
Hf, Zr, Ti in each case 0.01 to 0.05% or La, Ce in each case 0.001 to 0.10%
with 0.02 ≦ Y + 0.5 * Hf + Zr + 1.8 * Ti + 0.6 * (La + Ce) ≦ 0.20
Kohlenstoff wird in der Legierung in gleicher Weise eingestellt, und zwar in Gehalten zwischen 0,001 - 0,10 %. Bevorzugt können Gehalte wie folgt in der Legierung eingestellt werden:
- 0,001 bis 0,05 %
- 0.001 to 0.05%
Ebenso wird Stickstoff in der Legierung eingestellt, und zwar in Gehalten zwischen 0,0005 - 0,10 %. Bevorzugt können Gehalte wie folgt in der Legierung eingestellt werden:
- 0,001 bis 0,05 %
- 0.001 to 0.05%
Das Elemente Mn kann in der Legierung wie folgt gegeben sein:
Magnesium wird in Gehalten 0,0001 bis 0,08 % eingestellt. Bevorzugt besteht die Möglichkeit, dieses Element wie folgt in der Legierung einzustellen:
- 0,001 bis 0,08 %
- 0.001 to 0.08%
Die Legierung kann bedarfsweise des Weiteren Kalzium in Gehalten zwischen 0,0001 und 0,06% beinhalten.The alloy may further include calcium in amounts between 0.0001 and 0.06%, as needed.
Der Schwefel-Gehalt ist auf max. 0,015 % beschränkt. Bevorzugte Gehalte können wie folgt gegeben sein:
Der Sauerstoffgehalt wird in der Legierung mit einem Gehalt von 0,0001 bis 0,010% eingestellt. Bevorzugt kann der folgende Gehalt eingestellt werden:
- 0,0001 bis 0,008 %
- 0.0001 to 0.008%
Der Kupfer-Gehalt ist auf max. 0,80 % beschränkt. Bevorzugt erfolgt eine Beschränkung auf
max. 0,50 %
max. 0,20 %The copper content is limited to max. 0.80% limited. Preferably, a restriction occurs
Max. 0.50%
Max. 0.20%
Schließlich können an Verunreinigungen noch die folgenden Elemente wie folgt gegeben sein:
Die erfindungsgemäße Legierung wird bevorzugt offen erschmolzen, gefolgt von einer Behandlung in einer VOD oder VLF Anlage. Aber auch ein Erschmelzen und Abgießen im Vakuum ist möglich. Danach wird die Legierung in Blöcken oder als Strangguss abgegossen. Ggf wird der Block/Strangguss dann bei Temperaturen zwischen 800°C und 1270°C für 0,1 h bis 70 h geglüht. Des Weiteren ist es möglich die Legierung zusätzlich mit ESU und/oder VAR umzuschmelzen. Danach wird die Legierung in die gewünschte Halbzeugform gebracht. Dafür wird ggf. bei Temperaturen zwischen 700°C und 1270°C für 0,1 h bis 70 h geglüht, danach warm umgeformt, ggf. mit Zwischenglühungen zwischen 700°C und 1270°C für 0,05 h bis 70 h. Die Oberfläche des Materials kann ggf. (auch mehrmals) zwischendurch und/oder nach der Warmformgebung zur Säuberung chemisch und/oder mechanisch abgetragen werden. Danach kann ggf. eine oder mehrere Kaltformgebungen mit Umformgraden bis zu 99% in die gewünschte Halbzeugform, ggf. mit Zwischenglühungen zwischen 700°C und 1250°C für 0,1 min bis 70 h, ggf. unter Schutzgas, wie z. B. Argon oder Wasserstoff, gefolgt von einer Abkühlung an Luft, in der bewegten Glühatmosphäre oder im Wasserbad durchgeführt werden. Sodann findet eine Lösungsglühung im Temperaturbereich von 700°C bis 1250°C für 0,1 min bis 70 h, ggf. unter Schutzgas, wie z. B. Argon oder Wasserstoff, gefolgt von einer Abkühlung an Luft, in der bewegten Glühatmosphäre oder im Wasserbad statt. Ggf. können zwischendurch und/oder nach der letzten Glühung chemische und/oder mechanische Reinigungen der Materialoberfläche erfolgen.The alloy of the invention is preferably melted open, followed by treatment in a VOD or VLF plant. But also a melting and pouring in a vacuum is possible. Thereafter, the alloy is poured in blocks or as a continuous casting. If necessary, the block / continuous casting is then annealed at temperatures between 800 ° C and 1270 ° C for 0.1 h to 70 h. Furthermore, it is possible to remelt the alloy additionally with ESU and / or VAR. Thereafter, the alloy is brought into the desired semifinished product. For this, if necessary, annealed at temperatures between 700 ° C and 1270 ° C for 0.1 h to 70 h, then hot formed, possibly with intermediate anneals between 700 ° C and 1270 ° C for 0.05 h to 70 h. The surface of the material can optionally (also several times) be removed chemically and / or mechanically in between and / or after the hot forming for cleaning. Thereafter, if necessary, one or more cold forming with degrees of deformation up to 99% in the desired semi-finished mold, optionally with intermediate anneals between 700 ° C and 1250 ° C for 0.1 to 70 h, if necessary under inert gas such. As argon or hydrogen, followed by a cooling in air, in the moving annealing atmosphere or in a water bath be performed. Then finds a solution annealing in the temperature range of 700 ° C to 1250 ° C for 0.1 to 70 h, optionally under inert gas, such as. As argon or hydrogen, followed by cooling in air, in the moving annealing atmosphere or in a water bath instead. Possibly. In between and / or after the last annealing chemical and / or mechanical cleaning of the material surface can take place.
Die erfindungsgemäße Legierung lässt sich gut in den Produktformen Band, insbesondere in Dicken von 100 µm bis 4 mm, Blech, insbesondere in Dicken von 1 mm bis 70 mm, Stange, insbesondere in Dicken von 10 mm bis 500 mm, und Draht insbesondere in Dicken von 0,1 mm bis 15 mm, Rohren, insbesondere in den Wanddicken 0,10 mm bis 70 mm und den Durchmessern 0,2 mm bis 3000 mm herstellen und verwenden.The alloy according to the invention can be well in the product forms band, in particular in thicknesses of 100 microns to 4 mm, sheet, in particular in thicknesses of 1 mm to 70 mm, rod, in particular in thicknesses of 10 mm to 500 mm, and wire in particular in thicknesses from 0.1 mm to 15 mm, manufacture and use pipes, in particular in wall thicknesses of 0.10 mm to 70 mm and diameters of 0.2 mm to 3000 mm.
Diese Produktformen werden mit einer mittleren Korngröße von 4 µm bis 600 µm hergestellt. Der bevorzugte Bereich liegt zwischen 10 µm und 200 µm.These product forms are produced with a mean particle size of 4 μm to 600 μm. The preferred range is between 10 μm and 200 μm.
Die erfindungsgemäße Nickelbasislegierung ist bevorzugt einsetzbar als Werkstoff für Elektroden von Zündkerzen für Benzinmotoren.The nickel-based alloy according to the invention is preferably usable as a material for electrodes of spark plugs for gasoline engines.
Die beanspruchten Grenzen für die Legierung lassen sich daher im Einzelnen wie folgt begründen:
- Die Oxidationsbeständigkeit steigt mit zunehmendem Si-Gehalt. Es ist ein Mindestgehalt von 1,5 % Si notwendig, um eine ausreichend große Oxidationsbeständigkeit zu erhalten. Bei größeren Si-Gehalten verschlechtert sich die Verarbeitbarkeit. Die Obergrenze wird deshalb auf 3,0 Gew.-% Si gelegt.
- The oxidation resistance increases with increasing Si content. A minimum content of 1.5% Si is necessary to obtain a sufficiently high oxidation resistance. At higher Si contents, the processability deteriorates. The upper limit is therefore set to 3.0 wt% Si.
Bei ausreichend hohem Si-Gehalt erhöht ein Aluminiumgehalt von mindestens 1,5 % die Oxidationsbeständigkeit weiter. Bei größeren Al-Gehalten verschlechtert sich die Verarbeitbarkeit. Die Obergrenze wird deshalb auf 3,0 Gew.-% Si gelegt.With a sufficiently high Si content, an aluminum content of at least 1.5% further increases the oxidation resistance. At higher Al contents, the processability deteriorates. The upper limit is therefore set to 3.0 wt% Si.
Bei ausreichend hohem Si-Gehalt und Al-Gehalt erhöht ein Chromgehalt von mindestens 0,1 % die Oxidationsbeständigkeit weiter. Bei größeren Cr-Gehalten verschlechtert sich die Verarbeitbarkeit. Die Obergrenze wird deshalb auf 3,0 Gew.-% Cr gelegt.With a sufficiently high Si content and Al content, a chromium content of at least 0.1% further increases the oxidation resistance. At higher Cr contents, processability deteriorates. The upper limit is therefore set to 3.0 wt% Cr.
Für einen gute Oxidationsbeständigkeit ist es erforderlich, dass die Summe Al + Si + Cr größer 4,0 % ist, um einen ausreichend gute Oxidationsbeständigkeit zu gewährleisten. Ist die Summe Al + Si + Cr größer als 8,0 % verschlechtert sich die Verarbeitbarkeit.For a good oxidation resistance, it is necessary that the sum of Al + Si + Cr is larger than 4.0% to ensure sufficiently good oxidation resistance. If the sum of Al + Si + Cr is larger than 8.0%, processability deteriorates.
Eisen wird auf 0,20 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert. Ein zu niedriger Fe - Gehalt erhöht die Kosten bei der Herstellung der Legierung. Der Fe-Gehalt ist deshalb größer gleich 0,005 %.Iron is limited to 0.20% because this element reduces the oxidation resistance. Too low an Fe content increases the cost of producing the alloy. The Fe content is therefore greater than or equal to 0.005%.
Es ist ein Mindestgehalt von 0,01 % Y notwendig, um die die Oxidationsbeständigkeit steigernde Wirkung des Y zu erhalten. Die Obergrenze wird aus Kostengründen bei 0,20 % gelegt.A minimum content of 0.01% Y is necessary to obtain the oxidation resistance-enhancing effect of Y. The upper limit is set at 0.20% for cost reasons.
Die Oxidationsbeständigkeit erhöht sich weiter, bei Zugabe von mindestens 0,001% eines oder mehrerer der Elemente Hf, Zr, La, Ce, Ti, wobei Y+ 0,5*Hf + Zr + 1,8*Ti + 0,6*(La + Ce) größer gleich 0,02 sein muss, um die gewünschte Oxidationsbeständigkeit zu erhalten. Die Zugabe von mindestens einem oder mehreren der Elemente Hf, Zr, La, Ce, Ti, von mehr als 0,20% erhöht die Kosten, wobei Y+ 0,5*Hf + Zr +1,8*Ti+ 0,6*(La + Ce) zusätzlich auf kleiner gleich 0,30 beschränkt ist (mit den Gehalten von Y, Hf, Zr, La, Ce, Ti in %).Oxidation resistance further increases with the addition of at least 0.001% of one or more of the elements Hf, Zr, La, Ce, Ti, where Y + 0.5 * Hf + Zr + 1.8 * Ti + 0.6 * (La + Ce) must be greater than or equal to 0.02 in order to obtain the desired oxidation resistance. The addition of at least one or more of the elements Hf, Zr, La, Ce, Ti, greater than 0.20% increases the cost, where Y + 0.5 * Hf + Zr + 1.8 * Ti + 0.6 * ( La + Ce) is additionally restricted to less than or equal to 0.30 (with the contents of Y, Hf, Zr, La, Ce, Ti in%).
Der Kohlenstoffgehalt sollte kleiner 0,10 % sein um die Verarbeitbarkeit zu gewährleisten. Zu kleine C-Gehalte verursachen erhöhte Kosten bei der Herstellung der Legierung. Der Kohlenstoffgehalt sollte deshalb größer 0,001 % sein.The carbon content should be less than 0.10% to ensure processability. Too small C contents cause increased costs in the production of the alloy. The carbon content should therefore be greater than 0.001%.
Stickstoff wird auf 0,10 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert. Zu kleine N-Gehalte verursachen erhöhte Kosten bei der Herstellung der Legierung. Der Stickstoffgehalt sollte deshalb größer 0,0005 % sein.Nitrogen is limited to 0.10% because this element reduces oxidation resistance. Too small N contents cause increased costs in the production of the alloy. The nitrogen content should therefore be greater than 0.0005%.
Mangan wird auf 0,20 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert. Zu kleine Mn-Gehalte verursachen erhöhte Kosten bei der Herstellung der Legierung. Der Mangangehalt sollte deshalb größer 0,001 % seinManganese is limited to 0.20% because this element reduces oxidation resistance. Too small Mn contents cause increased costs in the production of the alloy. The manganese content should therefore be greater than 0.001%
Schon sehr geringe Mg-Gehalte verbessern durch das Abbinden von Schwefel die Verarbeitung, wodurch das Auftreten von niedrig schmelzenden NiS-Eutektika vermieden wird. Für Mg ist deshalb ein Mindestgehalt von 0,0001 % erforderlich. Bei zu hohen Gehalten können intermetallische Ni-Mg-Phasen auftreten, die die Verarbeitbarkeit wieder deutlich verschlechtern. Der Mg-Gehalt wird deshalb auf 0,08 Gew % begrenzt.Already very low Mg contents improve the processing by the setting of sulfur, whereby the occurrence of low-melting NiS Eutektika is avoided. For Mg, therefore, a minimum content of 0.0001% is required. Excessively high levels can lead to intermetallic Ni-Mg phases, which significantly impair processability. The Mg content is therefore limited to 0.08% by weight.
Der Sauerstoffgehalt muss kleiner 0,010 % sein, um die Herstellbarkeit der Legierung zu gewährleisten. Zu kleine Sauerstoff-Gehalte verursachen erhöhte Kosten. Der Sauerstoffgehalt sollte deshalb größer 0,0001 % sein.The oxygen content must be less than 0.010% to ensure the manufacturability of the alloy. Too small oxygen levels cause increased costs. The oxygen content should therefore be greater than 0.0001%.
Die Gehalte an Schwefel sollten so gering wie möglich gehalten werden, da dieses grenzflächenaktive Element die Oxidationsbeständigkeit beeinträchtigt. Es werden deshalb max. 0,015 % S festgelegt.The levels of sulfur should be kept as low as possible, since this surfactant affects the oxidation resistance. It will therefore max. 0.015% S set.
Kupfer wird auf 0,80 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert.Copper is limited to 0.80% as this element reduces the oxidation resistance.
Genauso wie Mg verbessern auch schon sehr geringe Ca-Gehalte die Verarbeitung durch das Abbinden von Schwefel, wodurch das Auftreten von niedrig schmelzenden NiS-Eutektika vermieden wird. Für Ca ist deshalb ein Mindestgehalt von 0,0001 % erforderlich. Bei zu hohen Gehalten können intermetallische Ni-Ca-Phasen auftreten, die die Verarbeitbarkeit wieder deutlich verschlechtern. Der Ca-Gehalt wird deshalb auf 0,06 Gew.-% begrenzt.Just like Mg, even very low Ca contents improve the processing by the setting of sulfur, thereby avoiding the occurrence of low-melting NiS eutectics. For Ca, therefore, a minimum content of 0.0001% is required. If the contents are too high, intermetallic Ni-Ca phases can occur, which again significantly impair processability. The Ca content is therefore limited to 0.06 wt .-%.
Kobalt wird auf max. 0,50 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert.Cobalt is reduced to max. 0.50% because this element reduces the oxidation resistance.
Molybdän wird auf max. 0,20 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert. Das Gleiche gilt für Wolfram, Niob und auch für Vanadium.Molybdenum is reduced to max. 0.20% limited because this element reduces the oxidation resistance. The same applies to tungsten, niobium and vanadium.
Der Gehalt an Phosphor sollte kleiner 0,050 % sein, da dieses grenzflächenaktive Element die Oxidationsbeständigkeit beeinträchtigt.The content of phosphorus should be less than 0.050%, since this surfactant affects the oxidation resistance.
Der Gehalt an Bor sollte so gering wie möglich gehalten werden, da dieses grenzflächenaktive Element die Oxidationsbeständigkeit beeinträchtigt. Es werden deshalb max. 0,020 % B festgelegt.The content of boron should be kept as low as possible because this surfactant affects the oxidation resistance. It will therefore max. 0.020% B is set.
Pb wird auf max. 0,005 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert. Das Gleiche gilt für Zn, Sn und Bi.Pb is set to max. 0.005% limited because this element reduces the oxidation resistance. The same applies to Zn, Sn and Bi.
Claims (18)
- A nickel base alloy, consisting of (in % by mass)
Si 1.5 - 3.0 % Al 1.5 - 3.0 % Cr > 0.1 - 3.0 %, wherein 4.0 ≤< Al + Si + Cr ≤< 8.0 is satisfied by the contents of Si, Al and Cr in %, Fe 0.005 to 0.20 %, Y 0.012 - 0.20 %, < 0.001 to 0.20 % of one or more of the elements Hf, Zr, La, Ce, Ti, wherein 0.02 ≤< Y+ 0.5*Hf + Zr +1.8*Ti+ 0.6*(La + Ce) < 0.30 is satisfied by the contents of Y, Hf, Zr, La, Ce, Ti in %. C 0.001 - 0.10 % N 0.0005 - 0.10 % Mn 0.001 - 0.20 % Mg 0.0001 - 0.08 % O 0.0001 - 0.010 % S max. 0.0150 % Cu max. 0.80 % Ca 0.001 to 0.06 % Co max. 0.50 % W max. 0.20 % Mo max. 0.20 % Nb max. 0.20 % V max. 0.20 % Ta max. 0.20 % Pb max. 0.005 % Zn max. 0.005 % Sn max. 0.005 % Bi max. 0.005 % P max. 0.50 % B max. 0.020 % Ni rest and the usual production-related impurities. - An alloy according to claim 1, comprising a Si content (in % by mass) comprised between 1.8 and 3.0 %.
- An alloy according to claim 1 or 2, comprising a Si content (in % by mass) comprised between 1.9 and 2.5 %.
- An alloy according to one of the claims 1 through 3, comprising an Al content (in % by mass) comprised between 1.5 and 2.5 %.
- An alloy according to one or more of the claims 1 through 4, comprising an Al content (in % by mass) comprised between 1.6 and 2.5 %.
- An alloy according to one or more of the claims 1 through 5, comprising an Al content (in % by mass) comprised between 1.6 and 2.2 %, in particular between 1.6 and 2.0 %.
- An alloy according to one or more of the claims 1 through 6, comprising a Cr content (in % by mass) comprised between 0.8 and 3.0 %.
- An alloy according to one or more of the claims 1 through 7, comprising a Cr content (in % by mass) comprised between 1.2 and 3.0 %.
- An alloy according to one or more of the claims 1 through 8, comprising a Cr content (in % by mass) comprised between 1.9 and 3.0 %, preferably between 1.9 and 2.5 %.
- An alloy according to one or more of the claims 1 through 9, in which the formula 4.5 ≤< Al + Si + Cr ≤< 7.5 is satisfied by the contents of Si, Al and Cr in %.
- An alloy according to one or more of the claims 1 through 10, comprising a Fe content (in % by mass) comprised between 0.005 and 0.10 %.
- An alloy according to one or more of the claims 1 through 11, comprising a Y content (in % by mass) comprised between 0.015 and 0.15 %.
- An alloy according to one or more of the claims 1 through 12, comprising a Y content (in % by mass) comprised between 0.015 and 0.15 % and 0.001 to 0,15 % of one or more of the elements Hf, Zr, La, Ce, Ti, wherein 0.02 ≤< Y+ 0.5*Hf + Zr + 1.8*Ti+ 0.6*(La + Ce) ≤< 0.25 is satisfied by the contents of Y, Hf, Zr, La, Ce, Ti in %.
- An alloy according to one or more of the claims 1 through 13, comprising a C content (in % by mass) comprised between 0.001 and 0.05 % and comprising an N content (in % by mass) comprised between 0.001 and 0.05 %.
- An alloy according to one or more of the claims 1 through 14, comprising a Mn content (in % by mass) comprised between 0 001 and 0.10 %.
- An alloy according to one or more of the claims 1 through 15, comprising a Mg content (in % by mass) comprised between 0.0015 and 0.08 %.
- A use of the nickel-base alloy according to one or more of the claims 1 through 16 as an electrode material for ignition elements of combustion engines.
- A use according to claim 17, as an electrode material for ignition elements of gasoline engines.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201430413T SI2971204T1 (en) | 2013-03-14 | 2014-01-28 | Nickel-based alloy with silicon, aluminum, and chromium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013004365.4A DE102013004365B4 (en) | 2013-03-14 | 2013-03-14 | Nickel-based alloy with silicon, aluminum and chrome |
PCT/DE2014/000034 WO2014139490A1 (en) | 2013-03-14 | 2014-01-28 | Nickel-based alloy with silicon, aluminum, and chromium |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2971204A1 EP2971204A1 (en) | 2016-01-20 |
EP2971204B1 true EP2971204B1 (en) | 2017-09-06 |
Family
ID=50272236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14709528.5A Active EP2971204B1 (en) | 2013-03-14 | 2014-01-28 | Nickel-based alloy with silicon, aluminum, and chromium |
Country Status (11)
Country | Link |
---|---|
US (1) | US9932656B2 (en) |
EP (1) | EP2971204B1 (en) |
JP (1) | JP6150910B2 (en) |
KR (1) | KR20150114543A (en) |
CN (1) | CN105008562A (en) |
BR (1) | BR112015018192B1 (en) |
DE (1) | DE102013004365B4 (en) |
MX (1) | MX358313B (en) |
RU (1) | RU2610990C1 (en) |
SI (1) | SI2971204T1 (en) |
WO (1) | WO2014139490A1 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015120832A1 (en) * | 2014-02-13 | 2015-08-20 | VDM Metals GmbH | Titanium-free alloy |
JP6484160B2 (en) * | 2015-11-02 | 2019-03-13 | 住友電気工業株式会社 | Electrode material, spark plug electrode, and spark plug |
CN105385897B (en) * | 2015-11-04 | 2018-06-19 | 重庆材料研究院有限公司 | Nuclear reactor thermocouple for measuring temperature material and preparation method |
CN105296941B (en) * | 2015-11-23 | 2017-12-19 | 沈阳黎明航空发动机(集团)有限责任公司 | The preparation and the application in vacuum arc plating coating of a kind of Ni-based sleeve cathode target |
WO2017112688A1 (en) * | 2015-12-23 | 2017-06-29 | Materion Corporation | Nickel alloys for biosensors |
CN105587773B (en) * | 2016-02-23 | 2019-03-12 | 安徽省宁国顺昌机械有限公司 | A kind of high rigidity bearing |
CN105626697B (en) * | 2016-02-23 | 2018-07-06 | 安徽省宁国顺昌机械有限公司 | A kind of good rolling bearing of contact fatigue |
CN105757124B (en) * | 2016-02-23 | 2018-07-06 | 安徽省宁国顺昌机械有限公司 | A kind of high tenacity high rigidity rolling bearing |
CN105587771B (en) * | 2016-02-23 | 2019-03-26 | 安徽省宁国顺昌机械有限公司 | A kind of service life long bearing |
CN105673706B (en) * | 2016-02-23 | 2018-07-06 | 安徽省宁国顺昌机械有限公司 | A kind of wear resistant corrosion resistant bearing |
WO2019055462A1 (en) * | 2017-09-14 | 2019-03-21 | Bloom Energy Corporation | Internal light off mechanism for solid oxide fuel cell system startup using a spark ignitor |
DE102017218032A1 (en) * | 2017-10-10 | 2019-04-11 | Robert Bosch Gmbh | Spark plug resistor element with increased ZrSiO4 phase content |
CN108048692A (en) * | 2017-11-15 | 2018-05-18 | 重庆嘉萌鸿业科技有限公司 | A kind of aluminum alloy gear case and its preparation process |
CN116024524A (en) * | 2017-11-21 | 2023-04-28 | Lg伊诺特有限公司 | Metal plate and deposition mask using same |
KR102399595B1 (en) * | 2017-11-21 | 2022-05-19 | 엘지이노텍 주식회사 | Metal substrate and mask using the same |
CN108220689B (en) * | 2017-11-29 | 2020-05-12 | 重庆材料研究院有限公司 | High-temperature long-time stable temperature measurement K-type thermocouple positive electrode material and preparation method thereof |
CN108411161B (en) * | 2018-04-25 | 2020-07-17 | 常州市潞城慧热电子厂 | Negative electrode alloy wire of K-type thermocouple and preparation process thereof |
CN108486418B (en) * | 2018-04-25 | 2020-08-11 | 常州市潞城慧热电子厂 | Alloy wire for thermoelectric generator and preparation process thereof |
CN109136696B (en) * | 2018-08-08 | 2023-11-03 | 倧奇健康科技有限公司 | Infrared radiation material, preparation method thereof and infrared emission base material |
JP6944429B2 (en) * | 2018-11-09 | 2021-10-06 | 日本特殊陶業株式会社 | Spark plug |
CN110055440A (en) * | 2019-05-29 | 2019-07-26 | 南京达迈科技实业有限公司 | A kind of multicomponent alloy silk and preparation method thereof for spark plug |
DE102020116858A1 (en) * | 2019-07-05 | 2021-01-07 | Vdm Metals International Gmbh | Nickel-based alloy for powders and a process for producing a powder |
DE102022124393A1 (en) * | 2021-09-27 | 2023-03-30 | Denso Corporation | TYPE L10 ORDERED IRON-NICKEL ALLOY AND METHOD OF PRODUCTION OF TYPE L10 ORDERED IRON-NICKEL ALLOY |
KR20240043366A (en) * | 2022-09-27 | 2024-04-03 | 엘지이노텍 주식회사 | Metal substrate and mask comprising the same |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU172087A1 (en) * | 1964-03-25 | 1965-06-22 | Государственный научно исследовательский , проектный икстит | thermocouples |
JPS6043897B2 (en) * | 1978-09-07 | 1985-10-01 | 日本特殊陶業株式会社 | Nickel alloy for spark plug electrodes |
JPS6043897A (en) | 1983-08-19 | 1985-03-08 | パイオニア株式会社 | Method of soldering electronic part carrying board |
JPH0445239A (en) * | 1990-06-08 | 1992-02-14 | Toshiba Corp | Alloy for spark plug |
EP1090155A1 (en) * | 1998-06-30 | 2001-04-11 | Federal-Mogul Corporation | Spark plug electrode alloy |
DE10224891A1 (en) | 2002-06-04 | 2003-12-18 | Bosch Gmbh Robert | Nickel alloy suitable for internal combustion engine spark plug electrodes, contains silicon and aluminum with yttrium, hafnium or zirconium |
DE102006023374A1 (en) | 2006-05-16 | 2007-11-22 | Beru Ag | Nickel-based alloy containing Si Al Si, Mn, and Ti and Zr where the Zr can be replaced completely or partially by Hf useful for production of sparking plug electrodes has decreased burning off liability |
DE102006035111B4 (en) | 2006-07-29 | 2010-01-14 | Thyssenkrupp Vdm Gmbh | Nickel-based alloy |
US20080308057A1 (en) * | 2007-06-18 | 2008-12-18 | Lykowski James D | Electrode for an Ignition Device |
WO2011019893A2 (en) * | 2009-08-12 | 2011-02-17 | Federal-Mogul Ignition Company | Spark plug including electrodes with low swelling rate and high corrosion resistance |
DE102010024488B4 (en) | 2010-06-21 | 2012-04-26 | Thyssenkrupp Vdm Gmbh | Nickel-based alloy |
CN103283098B (en) * | 2010-12-20 | 2016-05-04 | 日本特殊陶业株式会社 | Spark plug and manufacture method thereof |
JP5697484B2 (en) * | 2011-02-25 | 2015-04-08 | 株式会社デンソー | Spark plug electrode material |
-
2013
- 2013-03-14 DE DE102013004365.4A patent/DE102013004365B4/en not_active Expired - Fee Related
-
2014
- 2014-01-28 MX MX2015010814A patent/MX358313B/en active IP Right Grant
- 2014-01-28 US US14/772,161 patent/US9932656B2/en active Active
- 2014-01-28 KR KR1020157023731A patent/KR20150114543A/en not_active Application Discontinuation
- 2014-01-28 CN CN201480008111.5A patent/CN105008562A/en active Pending
- 2014-01-28 WO PCT/DE2014/000034 patent/WO2014139490A1/en active Application Filing
- 2014-01-28 BR BR112015018192-9A patent/BR112015018192B1/en active IP Right Grant
- 2014-01-28 EP EP14709528.5A patent/EP2971204B1/en active Active
- 2014-01-28 JP JP2015560547A patent/JP6150910B2/en active Active
- 2014-01-28 SI SI201430413T patent/SI2971204T1/en unknown
- 2014-01-28 RU RU2015143912A patent/RU2610990C1/en active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
BR112015018192B1 (en) | 2021-01-26 |
SI2971204T1 (en) | 2017-11-30 |
DE102013004365A1 (en) | 2014-09-18 |
WO2014139490A1 (en) | 2014-09-18 |
RU2610990C1 (en) | 2017-02-17 |
CN105008562A (en) | 2015-10-28 |
US20160032425A1 (en) | 2016-02-04 |
BR112015018192A2 (en) | 2017-07-18 |
DE102013004365B4 (en) | 2015-09-24 |
US9932656B2 (en) | 2018-04-03 |
JP2016516127A (en) | 2016-06-02 |
EP2971204A1 (en) | 2016-01-20 |
KR20150114543A (en) | 2015-10-12 |
MX358313B (en) | 2018-08-14 |
JP6150910B2 (en) | 2017-06-21 |
MX2015010814A (en) | 2015-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2971204B1 (en) | Nickel-based alloy with silicon, aluminum, and chromium | |
EP2582854B1 (en) | Nickel based alloy | |
EP2855723B1 (en) | Nickel-chromium-aluminium alloy with good formability, creep strength and corrosion resistance | |
EP2855724B1 (en) | Nickel-chromium alloy with good formability, creep strength and corrosion resistance | |
EP3994288B1 (en) | Method for producing a nickel-cobalt alloy powder | |
DE102012002514B4 (en) | Nickel-chromium-iron-aluminum alloy with good processability | |
DE102012015828B4 (en) | Use of a nickel-chromium-iron-aluminum alloy with good processability | |
EP2956562B1 (en) | Nickel-cobalt alloy | |
EP3102710B1 (en) | Nickel-chromium-cobalt-titanium-aluminum alloy having good wear resistance, creep resistance, corrosion resistance and processability | |
EP2115179B1 (en) | Iron-nickel-chromium- silicon alloy | |
DE102014001328A1 (en) | Curing nickel-chromium-iron-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability | |
DE102014001329B4 (en) | Use of a thermosetting nickel-chromium-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability | |
DE2244311A1 (en) | HIGH TEMPERATURE-RESISTANT NICKEL ALLOY | |
AT399165B (en) | CHROME BASED ALLOY | |
DE112019001491B4 (en) | Ni-BASED ALLOY AND HEAT RESISTANT PLATE MATERIAL OBTAINED USING THE SAME | |
DE1292412B (en) | Process for the heat treatment of titanium alloys | |
EP0690140B1 (en) | High temperature wrought alloy | |
WO2020064126A1 (en) | Shape-memory alloy, flat steel product made therefrom with pseudo-elastic properties, and method for producing such a flat steel product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150808 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: VDM METALS INTERNATIONAL GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170524 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 926015 Country of ref document: AT Kind code of ref document: T Effective date: 20170915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014005334 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170906 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171206 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171207 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180106 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014005334 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 |
|
26N | No opposition filed |
Effective date: 20180607 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180128 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140128 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170906 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240122 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240119 Year of fee payment: 11 Ref country code: GB Payment date: 20240123 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SI Payment date: 20240118 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240129 Year of fee payment: 11 Ref country code: FR Payment date: 20240124 Year of fee payment: 11 |